1 Article

In vitro anti-microbial Activity of Essential oils and other 2

Extracts from salvia officinalis against Some Bacteria 3

- 4 Amna Yousif Mohamed¹ and Ahmed Ali Mustafa^{2*}
- 5 ¹Biotechnology Department, Faculty of Science and Technology, Omdurman Islamic University, P.O.Box#382,
- 6 Omdurman Sudan.
- ²Botany Department, Faculty of Science and Technology, Omdurman Islamic University, P.O.Box#382, Omdurman
- 8

10

20

9 *Correspondence: E.Mail: ahmad.ali11526@gmail.com tel: 00249911511696

11 **Abstract:** This study aimed to screen the antibacterial activity of essential oils from different parts (leave and 12 stem) of Salvia officinalis against some Gram positive and Gram negative bacteria using agar disc diffusion test,

- 13 then the extracts were prepared by hydro distillation to extract the essential oils. Maceration and hexane
- 14 extraction by Soxhlet were used to obtain crude extracts from the leave and stem. Essential oils from the leaves
- 15 and the ethyl acetate extract of the leaves showed higher antimicrobial activity, while hexane extract of leaves
- 16 and stems showed moderate antibacterial activity. In contrast the essential oil from the stems showed very low
- 17 antibacterial activity. It was observed that the results gram positive bacteria (staphylococcus aureus) was more
- 18 sensitive than Gram negative (Echerichia coli).
- 19 **Keywords:** Antimicrobial activity, Essential oils, *Salvia officinalis*, Sudan.

21 1. Introduction

- 22 Nature has provided a complete storehouse of remedies to cure ailments of mankind. About 80% of the
- 23 world's population depends wholly or partially on traditional medicines for its primary health care needs [1].
- 24 Herbal medicines as the major remedy in traditional medical system have been used in medical practice for
- 25 thousands of years and have made a great contribution to maintain human health [2]. Herbal treatments are
- 26 becoming increasing by popular as the herbal preparations have no or less side effects [3]. Natural products of
- 27 higher plants may possess a new source of antimicrobial agents with possibly novel mechanisms of order to
- 28 validate their use in folk medicine. Systematic screening of them may result into the discovery of novel active
- 29 compounds [4]. The family Lamiaceae is widely distributed over the world. It comprises over 5,000 medicinal
- 30 and aromatic plant species whose essential oils have multiple applications [5, 6]. The genus Salvia commonly
- 31 called Sage, is the largest member of lamiaceae or mint family containing over 900 species throughout the
- 32
- world [7]. Sage the dialect name of the genus Salvia is attributed to different species that are widely used in
- 33 the food, drug and fragrance industry. The high diversity in secondary metabolites (essential oils and the
- 34 phenolic derivatives) isolated from sage plants, possess excellent antimicrobial activity as well as antioxidant
- 35 capacity and some are used as anticancer agents or have hypoglycemic effect [8-10].
- 36 Sage tea has been traditionally used for the treatment of digestive and circulation disturbances bronchitis,
- 37 cough, asthma, angina, mouth and throat information, depression, excessive sweating skin diseases, and many
- 38 other diseases. Salvia essential oils have been used in the treatment of a wide range of diseases like those of the

- 39 nervous system, heart and blood circulation respiratory system digestive system, and metabolic and endocrine
- disease [11]. In addition, they possess a number of biological activities including antiseptic, antimicrobial [12,
- 41 13] antioxidant [14] astringent, anti-inflammatory [15-17] antiviral [18,19] antitumoral [20] cytotoxic [21, 22]
- spasmolitic, anticonvulsant [23]., antimycobacterial [24], and carminative activities [25]. Also salvia officinals
- has long history of medicinal, culinary and many different uses [26].
- The present work aimed to study the antibacterial activity of essential oils from different parts (leave and
- stem) of salvia offcinalis against some Gram positive and Gram negative bacteria in Sudan.

46 2. Materials and Methods

- 47 2.1 Plant material
- Salvia officinalis (Leave and stem) was collected in February 2018, at Khartoum State, Sudan, based on the
- 49 available market samples brought from Syria. The identification of the plant material has been carried out at the
- Department of Botany, Faculty of Science and Technology, Omdurman Islamic University.
- 51 *2.2 Extraction procedure*
- 52 2.2.1 Extraction by maceration
- The plant material has been air dried and ground to produce a fine powder, 50g of the plant material was
- macerated in 100 ml ethyl acetate (organic solvent) at room temperature, After 24 hours the solute was filtered
- using what man filter paper No.1. The procedure was repeated three times to ensure complete extraction of the
- plant material. The extracts were concentrated and the evaporator at 40 °C. The extracts were further dried by
- freeze-drying and kept in a refrigerator at 4 °C, until used.
- 58 2.2.2 Soxhlet Extraction
- Sage (Salvia offcinalis) areal parts was packed in thimble the thimble was covered with cotton wool to prevent
- the packed material from floating out. The packed thimble was placed into Soxhlet glass that was connected ed
- 61 to an extraction flask. The excess solvent was poured through the soxhlet glass. Then a condenser was attached
- and he extract was carried out continuously till the extract is exhausted from the crushed sage.
- 63 2.2.3 Hydro distillation extraction
- 64 lkg of crushed sage was put in a Clevenger distiller apparatus. Then the sample was covered by distilled
- water. The temperature was adjusted at 66 °C and the condenser was attached. The extraction was carried out
- 66 for 3hrs. The mixture obtained was separated and the resulted oil was collected then it was treated with
- anhydrous sodium sulphate to eliminate all the water, and then stored in a refrigerator at approximately 4c
- 68 until used.
- 69 2.3Antimicrobial susceptibility investigation
- 70 2.3.1 Preparation of the tested organisms
- 71 2.3.1.1 Preparation of standard bacterial suspension
- Mueller Hinton agar powder 2.8 g was dissolved into 1000 ml distilled water and allowed to soak for 10 minutes.
- 73 Then each 20 ml of prepared solution was put in 5 bottles. These were sterilized by autoclaving at 121 C/
- 15minutes, after which they were cooled at room temperature. The bacteria were incubated at 37 C in broth
- media (Oxoid Ltd England) the essential oil and other extraction was dissolved in normal saline (N.S) in serial
- dilutions(1/1,1/2,1/4,1/8) and applied in different concentrations. N.S was used as negative control and the
- antibiotic Ciprofloxin was used as positive control. Staphylococcus aureuse and Etherichia coli reference
- isolates, which were kindly provided by the authorities of the Department of Bacteriology, were utilized
- 79 throughout the antimicrobial susceptibility testing.

80 2.3.1.2 Disk diffusion Method

The disk diffusion assay was used to determine the antibacterial activity of the essential oil and other extracts of sage according to Hindler (1995) [27]. Overnight bacterial cultures were spread or swabbed onto the surface if Mueller Hinton agar. Sage extracts were applied to 10 mm disks (What man filter paper No.1), then placed onto the inoculated dishes and after 24 hours of incubation at 37 °C, the antibacterial activity was assessed by measuring the diameter of growth inhibition zones.

3. Results

3.1 Antimicrobial results

The antimicrobial activity of essential oil and other different extract has leaves and stem of *S.officinalis* was screened against gram positive bacteria (*Staphylococcus aureus*) Gram negative (*E.coli*) using disc diffusion methods.

3.1.1 Esential Oil of leaves by hydro distillation extract

Essential oil of leaves exhibited high antibacterial activity against both against, Gram positive bacteria *staphylococcus aureus* and Gram negative (*E.coli*), gram positive bacteria *Staphylococcus aureus* was more sensitive than gram negative *E.coli* (figure1)

Figure 1: Inhibition zone of essential oil (E.O) of leave against *Staphylococcus aureus*.

Figure 2: Inhibition zones of E.O leave against E. coli.

3.1.2 Esential Oil of steam by hydro distillation extract

103

104

105

106107

108

109110

111112

113

114

115116

117

118

4 of 9

Essential oil of steam has antimicrobial activity against gram positive bacteria, *staphylococcus aureus* but very low activity or no against *E.coli*. (Figure 4,5)

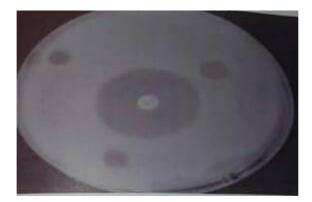


Figure 3: Inhibition zones of E.O leave against *E.coli*.

Figure 4: Inhibition zones of E.O stems against Staphylococcus aureuss.

3.1.3 Ethyl acetate extract from leaves by maceration

Ethyl acetate showed high antibacterial activity against both test bacteria but gram positive *staphylococcus* aureus was more susceptible than the gram negative *E.coli*.(figure 6,7)

Figure 5: Inhibition zone of ethyl acetate extract of leave against *Staphylococcus aureuss*.

Figure6: Inhibition zone of ethyl acetate extract of leave against *E.coli*

3.1.3 Hexane produced from steams by soxhlet:

119120

121122

123

124

125

126127

128

129130

Hexane extract of steams showed high antibacterial activity against gram positive and gram negative bacteria (figure 8, 9, 10)

Figure 7: Inhibition zone of hexane extract from stem against *E.coli*

Figure 8: Inhibition zones of hexane extract of stems against Staphylococcus aureus

131132

133

134

Figure 9: Inhibition zones of hexane extract of stems against Staphylococcus aureus

3.1.4 Hexane extraction obtained from leaves by Soxhlet:

It showed remarkable antimicrobial activity against *staphylococcus aureus* as well as in *E. coli* that showed much more sensitivity than that of the *S. aureus*. (figure 11,12,13)

135136

137138

Figure 10: Inhibition zones of hexane extract of leaves against *E.coli*

139

Figure 11: Inhibition zones of hexane extract of leaves against Staphylococcus aureus

140141

142

143

144

Figure 12: Inhibition zones of hexane extract of leaves against *Staphylococcus aureus*

4. Discussion

- The study aimed to show the antibacterial activity of volatiles and crude extracts from leaves and stems of
- Sage. It has been found that, hexane extract obtained from the leaves by Soxhlet had higher antibacterial
- activity compared with stem extract by the same method. Among the leave extracts (essential oil and ethyl
- acetate) both possessed remarkable antibacterial activity. However, volatiles extract from leaves showed
- higher activity than the extract from stem.
- Moreover, Gram positive bacteria, Staphylococcus aureus was more sensitive than Gram negative E.coli .
- 151 Conforming results already reported by [28-30]. Several studies had demonstrated the antibacterial activity of
- essential oil of leaves and aqueous extract of sage against Gram +ve and Gram- ve bacteria, But there have no
- studies to test the activity of stems extract of sage. Also this work showed that, Gram n-ve bacteria E.coli was
- resistant to the essential oil obtained from stem.
- 155 5. Conclusion

The antimicrobial activity results obtained confirmed that the essential oil of leave and the crude extract produced from leaves and stem of *Salvia officinalis* possesses an antibacterial activity. Therefore, it is beneficial to human health. In contrast essential oil of the stem showed very low antibacterial activity. This antimicrobial activity was more obvious against Gram positive than Gram negative.

6. References

- 161 1-Kunwar, R.M. and N. Adhikari., 2005., Ethnomedicine of dolpa: The plants of their vernacular names and
- 162 uses., Lyonia, PP 43-49.
- 2- Rahman M.S., M.M.H. Khan and M.A.H.M Jamal., A. Parvin and M.K.Alam., 2011
- Antimicrobial activity of Argemone Mexicana L., .against waterborne Microbes., Res. J. Med. Plant, 5: PP
- 165 621-26.

160

- 3- Rajasekaran. S., Sivagananam K., Narayanan V., Subramaniam S., 2001 Publications of Indian Association
- of Biomedical Sciences, PP41-45.
- 4-Tomoko N., Takashi A., Hiromu T., Yuka I., Hiroko M., 2002 'Antibacterial activity of Extracts prepared
- from tropical and subtropical plants on methicillin resistant Staphylococcus Aureus, J. Health Science, P
- 170 273-276.
- 5-Sakkas H, Papadopoulou C 2017. Antimicrobial activity of basil, oregano and thyme essential oil., Journal
- of Microbiology and Biotechnology 27(3):429-438.

- 173 6-Piras A, Goncalves MJ, Alves J, Falconieri D, Porcedda S, Maxia A, Salgueiro L 2018. Ocimum
- 174 tenuiflorum L. and Ocimum basilicum L., two spices of Lamiaceae family with bioactive essential oils.
- 175 Industral Crops and Products 113:89-97.
- 7-Hamidpour, Hamidpour, S., Hamidpour, M., and Shahlari, M., 2013. Sage: the functional novel medicine for
- preventing and curing chronic illnesses. International journal of case reported and images vol.4, pp671-677.
- 8-Kintzios, S.E., 2000. Sage: the genus *Salvia*, Harwood academic publisher, Australia, Canada.
- 9-Miladinovic, D., Miladinovic, Lj., 2000. Antimicrobial activity of essential oil of sage from Serbia. Facta
- Universitatis, Series: Physics, Chemistry and Technology 2 (2), 97-100.
- 181 10- Khalil, R. and Zheng-Guo, L., 2011. Antimicrobial activity of essential oil of Salvia officinalis L.
- collected in Syria. African Journal of Biotechnology 10 (42), 8397-8402.
- 183 11-Hamidpour, Hamidpour, R., Hamidpour, S., and Shahlari, M., 2014. Chemistry pharmacology, and
- Medicinal property of Sage (Salvia) to prevent and cure Illnesses such as obesity, Diabetes, Depression,
- Dementia, Lupus, Autism, Heart Disease, and cancer. J tradit complement med., Vol 4, pp 82-88.
- 186 12-Yang, Z., Kitano, Y., Chiba, K., Shibata, N., Kurokawa, H., and Doi, Y., 2001. "Synthesis of variously
- oxidized abietanediterpenes and their antibacterial activities against MRSA and VRE." Bioorg Med Chem., vol.
- 188 9, pp. 347-356.
- 189 13- Abd-Elmageed, M. A. M. and Hussein, B. A., 2008. "Cytotoxicity and antimicrobial activity of
- 190 Salvia officinalis L. flowers." Sudan JMS., vol. 3, pp. 127-130.
- 191 14-Lima, C. F., Andrade, P. B., Seabra, R. M., Fernandes-Ferreira, M., and Pereira-Wilson, C., 2005. "The
- 192 drinking of a Salvia officinalis infusion improves liver antioxidant status in mice and rats."
- 193 J Ethnopharmacol, vol. 97, pp. 383–389.
- 194 15-Baricevic, D., Sosa, S., Della, L. R., Tubaro, A., Simonovska, B., Krasna, A., and Zupancic, A.,
- 195 2001. "Topical antiinflammatory activity of Salvia officinalis L. leaves: The relevance of
- ursolic acid." J Ethnopharmacol, vol. 75, pp. 125-132.
- 197 16-Akkol, E. K., Goger, F., Kosar, M., and Baser, K. H. C., 2008. "Phenolic composition and
- biological activities of Salvia halophila and Salvia virgata from Turkey." Food Chem, vol. 108, pp. 942-949.
- 199 17-Çadirci, E., Süleyman, H., Gürbüz, P., Kuruüzüm, U. A., Güvenalp, Z., and Demirezer, L. Ö., 2012.
- 200 "Anti-inflammatory effects of different extracts from three Salvia species." Turk. J. Biol, vol. 36, pp. 59-64.
- 201 18-Tada, M., Okuna, K., Chiba, K., Ohnishia, E., and Yoshiia, T., 1994. "Antiviral diterpenes from
- Salvia officinalis." Phytochemistry, vol. 35, pp. 539-541.
- 203 19-Smidling, D., Mitic-Culafic, D., Vukovic-Gacic, B., Simic, D., and Knezevic-Vukcevic, J.,
- 204 2008. "Evaluation of antiviral activity of fractionated extracts of Sage Salvia officinalis L (Lamiaceae)."
- 205 Arch BiolSci Belgrade, vol. 60, pp. 421–429.
- 206 20-Fiore, G., Nencini, C., Cavallo, F., Capasso, A., Bader, A., Giorgi, G., and Micheli, L., 2006. "In
- vitro antiproliferative effect of six Salvia species on human tumor cell lines." Phytother Res, vol. 20, pp.
- 208 701-703.
- 209 21-Ryu, S. Y., Lee, C. O., and Choi, S. U., 1997. "In vitro cytotoxicity of tanshinones
- from Salvia miltiorrhiza." Planta Med, vol. 63, pp. 339-342.
- 211 22-ZareShahneh, F., Valiyari, S., Baradaran, B., Abdolalizadeh, J., Bandehagh, A., Azadmehr,
- 212 A., and Hajiaghaee, R., 2013. "Inhibitory and cytotoxic activities of salvia officinalis L. Extract
- on human lymphoma and leukemia cells by induction of apoptosis." Adv Pharm Bull, vol. 3, pp. 51-55.

- 214 23-Coelho, d. e., Souza, G. P., and Elisabetsky, E. I., 1998. "Ethnobotany and anticonvulsant properties of
- Lamiaceae from Rio Grande de Soul (Brasil). In: Harley R, Payton A, Harvey T, eds. Lamiales Newsletter
- 216 Royal Botanic Gardens, Kew " p. 10.
- 24- Aşkun, T., Başer, K. H. C., Tümen, G., and Kürkçüoğlu, M., 2010. "Characterization of essential
- oils of some Salvia species and their antimycobacterial activities." Turk J Biol, vol. 34, pp. 89-95.
- 25-Lawrence, B. M., 2005. The Antimicrobial/Biological Activity of Essential Oils, Allured Publishing Corp.
- USA: Carol Stream, IL.
- 221 26-Mayekisco B, Magwa M L, Coopoosamy R M 2008. The chemical composition and antimicrobial activity of
- leaf extract of S. reports Burch Exbenth, journal of medicinal plants Research 2(7) pp159-162.
- 27-Hindler J (1995). Special antimicrobial susceptibility test: In text book of diagnostic Microbiology, ED
- 224 Connie C Mahon, George Manuselis,89-96.
- 225 28-Ebd-Elmageed .M.A and Hussein. B.A (2008). Cytotoxicity and antibacterial activity of Salvia officinalis
- 226 flowers. Sudan. J.M.S.(3):127-130
- 29-Bonsic T, Softic. D and Vasic. JK (2006). Antibacterial activity of some essential oil and major constituents
- 228 of medicinal 35(1) 19-21
- 30-Culafic D. M,gacic B,Vukcevic JK, Stankovic.S and Simic S (2005). Comparative study on antibacterial
- activity of volatiles from Sage (Salvia officinals). Arch.bio. sci., Belegrade 57(3) 173-178.