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Abstract: Attention mechanisms have become a fundamental component of deep learning, including the field of
computer vision. The key idea behind attention in computer vision is to help the model focus on the relevant
spatial regions of the input image, rather than treating all regions equally. The traditional approaches to attention
mechanisms in computer vision often suffer from distribution inconsistencies in the attention maps, resulting in
sharp transitions that negatively affect model’s focus and lead to poor generalization on complex shapes. The
problem of spatial incoherence is particularly pronounced in the task of semantic segmentation, where accurate
pixel-level predictions require a detailed understanding of the spatial relationships within the image. In this
paper, we propose an attention mechanism called Smooth Attention designed for convolutional neural networks
to address the problem of spatial inconsistency in attention maps through multidimensional spatial smoothing.
We conduct a series of experiments to evaluate the effectiveness of the proposed mechanism and demonstrate its

superior performance compared to traditional methods.

Keywords: semantic segmentation; attention mechanism; spatial relationships; computer vision; deep learning

1. Introduction

Attention mechanisms [1-3] have become a fundamental component of deep learning models,
including the field of computer vision, where spatial understanding plays a crucial role. A wide
range of attention mechanisms have been designed to enable models to focus on the most relevant
parts of input images, leading to improved performance and enhanced interpretability of the models’
decision-making processes [4-7].

The origins of attention in deep learning can be traced back to the revolutionary works in natural
language processing (NLP), introduced as a way to address the limitations of traditional sequence-to-
sequence models [1], such as the inability to effectively capture long-range dependencies. The initial
success of attention mechanisms in NLP tasks, such as machine translation and language modeling
[8-10], inspired researchers to explore their potential in other domains, including computer vision.

In the computer vision domain, attention mechanisms have been adapted to various tasks, such as
image classification, object detection, and semantic segmentation. The key idea behind these attention
mechanisms is to allow the model to dynamically focus on the most relevant spatial regions of the
input image, rather than treating all regions equally. The selective focus has been shown to improve
the model’s performance and provide better interpretability of its decision-making [11].

However, the traditional approaches to attention mechanisms in computer vision often suffer
from a lack of smoothness in the attention maps, resulting in sharp transitions that negatively affect
model generalization. This problem of spatial incoherence is particularly pronounced in the task of
semantic segmentation, where accurate pixel-level predictions require a detailed understanding of the
spatial relationships within the image [12].

Semantic segmentation, the task of assigning a semantic label to each pixel in an image, relies
heavily on capturing fine-grained details and understanding the spatial context. The existing attention
mechanisms struggle to effectively capture the detailed relationships within the image due to the
abrupt pixel-level transitions in the attention maps [13,14]. This inconsistency in the attention maps
often leads to inaccurate segmentation boundary predictions and a tendency for the model to overfit
on the training data, limiting its ability to generalize well on unseen images.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Additionally, the lack of smoothness in attention maps can make models susceptible to noise [15].
Small perturbations in the input image may drastically alter the attention weights, causing unstable
predictions [16,17]. Such sensitivity to noise is particularly problematic in real-world scenarios where
images are often corrupted by artifacts or imperfections.

To address these limitations, we present a new approach called Smooth Attention that incorporates
a smoothness constraint, encouraging gradual changes in attention weights and mitigating the risks of
sharp transitions or noise sensitivity. By enabling a detailed understanding of spatial relationships
within the image, Smooth Attention leads to higher-level performance on tasks where spatial coherence
is crucial, such as image semantic segmentation.

2. Related Work

The Smooth Attention methodology builds on the successful implementation of attention mech-
anisms in computer vision, particularly within transformer-based architectures such as the Vision
Transformer [18] and Swin Transformer [19]. Our primary focus is the enhancement of the spatial
coherence within a single attention layer, drawing inspiration from attention integration techniques in
convolutional neural networks (CNNs), including Non-local Neural Networks [20] and the Convolu-
tional Block Attention Module (CBAM) [21].

Spatial coherence has been a focal point in various applications, including image segmentation
with CRF-RNN [22] and image generation through PatchGAN [23]. Smooth Attention introduces
adaptive computation elements akin to Adaptive Computation Time [24] for recurrent neural networks
(RNNSs), selectively applying smoothing techniques.

Our framework is inspired by recent innovations in Attention Augmented Convolutional Net-
works [25] and Focal Self-attention [26]. By leveraging the Chebyshev distance, we align with the
principle of dynamically adjusting kernel weights based on local features during convolutional opera-
tions [27].

The spatial coherence component of our approach resonates with the foundational concepts of
CoordConv [28], as it explicitly encodes spatial information into convolutional layers. Moreover, our
methodology exhibits parallels with the Performer architecture [29], which reduces computational
complexity while maintaining high performance by approximating attention through random feature
maps.

Building on the principles of adaptive filtering as outlined in [30] by Solomon et al., we effec-
tively combine original and smoothed attention scores based on identified variations. Such selective
smoothing enhances the established concept of gating in GRCNN [31], enabling precise control over
the influence of neighboring attention scores and pixels while preserving critical features.

3. Methodology

In this section, we present a new attention mechanism in convolutional neural networks called
Smooth Attention. The module is designed to enhance the spatial coherence of attention maps while
maintaining the flexibility and power of traditional attention mechanisms [6,32,33]. Our approach
addresses the issue of inconsistent or “noisy” attention patterns that oftentimes arise in standard
attention mechanisms, particularly in vision tasks where spatial coherence is crucial, like image
segmentation of complex-shaped objects [8,34].

3.1. Architecture Overview

The Smooth Attention approach is implemented as a neural network module. It consists of three
main components:

1. Query, key, and value projections (3.1.1)
2. Attention computation (3.1.2)
3.  Smoothness enforcement mechanism (3.1.3)
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Each of these components plays a crucial role in achieving the final goal of spatially coherent
attention.

3.1.1. Query, Key, and Value Projections

The first step in the Smooth Attention module is the projection of the input tensor X into query
(Q), key (K), and value (V) spaces. The projection is achieved using 1x1 convolutions (1), (2), (3).

Q = Convlx1(X) 1)
K = Convlx1(X) ()
V = Convlx1(X) 3)

Where [Conv1x1] represents a convolutional layer with a 1x1 kernel. The final projections serve
multiple purposes:

1. Allow the network to learn representations of the input that are suitable for computing attention.

2. Enable the module to adjust the channel dimensionality, reducing computational complexity.

3. Provide a learned transformation that emphasizes or suppresses aspects of the input for attention
computation.

3.1.2. Attention Computation

After obtaining the projected tensors, we compute the attention scores using the scaled dot-
product attention mechanism, similar to the one used in Transformer architectures [1], shown in
(4): .

attention = softmax (QK) 4)
Vi
Where:

QKT represents the matrix multiplication of Q and the transpose of K;

dy is the dimensionality of the key vectors;

\/dy is used for scaling to counteract the effect of large dot products in high dimensions;
Softmax is applied to normalize the attention scores.

Ll

The computation results in the attention map where each position attends to all other positions,
capturing global dependencies in the input.

3.1.3. Smoothness Enforcement Mechanism

The key concept in the Smooth Attention module is the introduction of a smoothness enforcement
mechanism. The mechanism is designed to address the spatial incoherence in vision attention when
nearby pixels may have radically different attention weights.

To enforce the smoothness, we compute the Chebyshev distance between each pixel’s attention
distribution and those of its eight neighboring pixels. The Chebyshev distance is defined as the
maximum absolute difference across all dimensions (5).

d_chebyshev(p,q) = max;|p; — qi ()

We compute this distance for each of the eight neighbors and take the maximum:

max_distance = max (d_chebyshev (attention[;, ], attention[i + d;, j + d;])) (6)
for d;,d;jin [(—1,~1),(~1,0),(~1,1),(0, 1), (0,1), (1, 1), (1,0), (1, 1)].
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The choice of Chebyshev distance over other metrics is motivated by its sensitivity to the largest
difference in any single dimension, which aligns well with the goal of detecting abrupt changes in
attention patterns [35,36].

3.2. Smoothness Thresholding and Mask Creation

If the maximum Chebyshev distance exceeds a predefined threshold (a value between 0 and 1),
we consider the attention at that pixel to be non-smooth. We create a binary mask where 1 indicates
non-smooth regions and 0 indicates smooth regions (7).

smoothing_mask = (max_chebyshev_distance > threshold).float() (7)

3.3. Attention Application with Smoothness Consideration

The smoothing mask is then used to selectively apply the attention mechanism. In smooth regions,
we allow the full attention mechanism to operate, while in non-smooth regions, we reduce the influence
of the attention mechanism:

output = v * attention * V + (1 — 7 * smoothing_mask) % x (8)
Where:

* 7 is a learnable parameter initialized to zero;
e V is the value projection of the input;
* xis the original input.

The learnable parameter y allows the network to gradually incorporate the attention mechanism
as training progresses. A soft start is used to help stabilize the training process and allow the network
to learn "when and how much" to rely on the attention mechanism.

Due to its structure, Smooth Attention module offers several advantages:

1.  Spatial Coherence: By enforcing local smoothness, the module encourages the production of more
coherent attention maps, improving model’s performance on complex computer vision tasks.
2. Noise Reduction: The smoothness constraint acts as a form of regularization, reducing the impact

of noise and spurious correlations in the attention computation.
3. Interpretability: Smoother attention maps are more interpretable, providing clearer insights into

which parts of the input the model is focusing on.
4.  Adaptive Mechanism: The learnable parameter v and the smoothness threshold provide addi-

tional level of engineering flexibility, allowing the network to adapt the strength of the smoothness
constraint based on the task and data.

The Smooth Attention module extends traditional attention mechanisms by incorporating a local
smoothness constraint. The constraint is enforced through applying the Chebyshev distances in the
attention space, resulting in more coherent and accurate attention maps for convolutional neural
networks. The module’s design allows for a flexible trade-off between global attention capabilities
and local coherence, making it adaptable to a wide range of vision tasks dependent on the spatial
coherence level.

4. Experiments

To demonstrate the effectiveness of Smooth Attention, we perform experiments on five diversified
image segmentation datasets, including the Caltech-UCSD Birds-200-2011 [37], Large-Scale Dataset
for Segmentation and Classification [38], Fire Segmentation Image Dataset [39], Kvasir-Instrument:
Diagnostic and Therapeutic Tool Segmentation Dataset in Gastrointestinal Endoscopy [40], and Flood
Semantic Segmentation Dataset [41].

To explore the influence of the attention module, we implement a custom model with the U-Net
architecture [42-44] which is a popular choice for semantic segmentation tasks. We use ResNet18 [45]
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as the encoder, which is followed by the Smooth Attention mechanism to help the model focus on
important features. The decoder is implemented as a series of transposed convolutions that upscale
the feature map [46]. Each transposed convolution is followed by a ReLU activation, except for the last
one. The decoder gradually increases the spatial dimensions while reducing the number of channels
[47,48]. The final layer outputs the same number of channels as the number of classes for segmentation.
The complete model architecture is demonstrated in Figure 1.
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Figure 1. Model Architecture.

We perform experiments across multiple smoothness thresholds (from 0.1 to 0.9 with a 0.1 step)
for each dataset, and compare the results with a threshold of 2.0 that illustrates the model without
attention mechanism in place (any value above 1.0 means no smoothing constraint applied). All
datasets are split into 80% for training, and 20% for testing. We choose IoU, Dice Coefficient, Test
Accuracy, Test Precision Test F1 Score as metrics to compare the final results [49].

The results for Caltech-UCSD Birds-200-2011 [37] can be observed in Table 1. The superior perfor-
mance of the Smooth Attention mechanism at lower smoothness thresholds (0.1, 0.2, 0.3) compared to
the model without attention (threshold of 2.0) suggests that the attention module is effectively helping
the model in focusing on the most relevant features in the image segmentation task. By applying
the smoothness constraint, the attention mechanism is able to selectively highlight most informative
regions of the input, leading to better segmentation accuracy, IoU, and Dice coefficient metrics.

We see the consistently high Test Recall values across all smoothness thresholds, showing that
the model is able to correctly identify most of the positive instances in the test set, regardless of the
attention mechanism’s configuration. Similar to IoU, the Dice coefficient peaks at a lower smoothness
threshold, demonstrating that low levels of attention smoothness provide better balance between focus
and flexibility in feature selection. At the same time, the highest accuracy and precision occur at a
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higher threshold, suggesting that for overall pixel-wise classification a smoother attention map reduces
the noise and the number of false positives. The recall peak occurs at the lowest smoothness threshold,
since true positives can be captured at a strict threshold easier. By applying a stricter smoothness
constraint, the attention module is able to capture important visual cues, maximizing the model’s
ability to detect positive instances in the data.

Table 1. Experiments for Caltech-UCSD Birds-200-2011 results.

Metric Test IOU Test Dice Test Acc Test Prec Test Recall Test F1

0.1 0.7933 0.9231 0.9686 0.7674 0.9838 0.8550
0.2 0.8028 0.9294 0.9670 0.7457 0.9829 0.8430
0.3 0.7997 0.9292 0.9672 0.7641 0.9829 0.8521
0.4 0.7894 0.9186 0.9679 0.7654 0.9799 0.8495
0.5 0.7963 0.9258 0.9672 0.7609 0.9827 0.8494
0.6 0.7949 0.9260 0.9693 0.7740 0.9812 0.8562
0.7 0.7952 0.9239 0.9677 0.7685 0.9811 0.8526
0.8 0.8003 0.9272 0.9678 0.7700 0.9808 0.8493
0.9 0.7994 0.9229 0.9699 0.7881 0.9823 0.8610
2.0 0.7909 0.9222 0.9667 0.7497 0.9827 0.8453

The experiment results for the Large-Scale Dataset for Segmentation and Classification [38] can be
observed in Table 2. The stronger IoU and Dice coefficient performance at lower smoothing thresholds
indicates that the model is more effective in identifying variances in the input image data at strict
thresholds. Such behavior unveils the rich tapestry of diversity within the fish segmentation data,
highlighting the necessity for fine-grained approaches to capture the complexities of the images.

Table 2. Large-Scale Dataset for Segmentation and Classification.

Metric Test IOU Test Dice Test Acc Test Prec Test Recall Test F1

0.1 0.9344 0.9764 0.9882 0.9426 0.9904 0.9618
0.2 0.9364 0.9784 0.9887 0.9434 0.9916 0.9638
0.3 0.9309 0.9749 0.9879 0.9493 0.9901 0.9600
0.4 0.9320 0.9751 0.9883 0.9399 0.9898 0.9627
0.5 0.9355 0.9787 0.9886 0.9426 0.9910 0.9630
0.6 0.9283 0.9706 0.9874 0.9383 0.9872 0.9602
0.7 0.9247 0.9694 0.9886 0.9519 0.9866 0.9620
0.8 0.9290 0.9731 0.9885 0.9434 0.9882 0.9626
0.9 0.9336 0.9759 0.9879 0.9465 0.9899 0.9612
2.0 0.9363 0.9781 0.9886 0.9436 0.9915 0.9611

Consistently high accuracy scores for all thresholds, including 2.0 (no attention), showcase
the absence of background complexity within image data, helping the model be accurate in object
segmentation with and without smoothing. Still, slight improvements can be seen when attention
smoothing is applied with peak scores seen at thresholds of 0.2, 0.5 and 0.7.

Precision metric demonstrates the best result at a threshold of 0.7, showing accurate prediction
of pixel-level distribution. The higher thresholds can be more beneficial for tasks requiring broader
feature recognition helped by greater noise suppression and lesser sensitivity to variation in input
data.

Moreover, high values of Recall and F1 Score at lower thresholds are a clear representation of the
model’s effectiveness in capturing critical details due to strict smoothing masks.

Table 3 demonstrates the results for the Fire Segmentation Image Dataset [39]. The IoU and Dice
coefficient peaked at a smoothing threshold of 0.4, with strong performance also observed at 0.5 and
0.6. This behavior can be attributed to the special characteristics of fire images in the dataset. Fire
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scenes typically exhibit complex, irregular shapes with varying intensity and color gradients, making
them challenging to segment accurately.

Table 3. Fire Segmentation Image Dataset

Metric Test IOU Test Dice Test Acc Test Prec Test Recall Test F1

0.1 0.8484 0.9228 0.9904 0.4903 0.9630 0.6322
0.2 0.8512 0.9246 0.9913 0.4868 0.9633 0.6403
0.3 0.8488 0.9189 0.9925 0.5269 0.9599 0.6377
0.4 0.8518 0.9277 0.9914 0.4907 0.9662 0.6446
0.5 0.8501 0.9248 0.9910 0.4753 0.9648 0.6329
0.6 0.8507 0.9268 0.9919 0.5096 0.9656 0.6489
0.7 0.8498 0.9231 0.9918 0.5027 0.9628 0.6460
0.8 0.8480 0.9208 0.9918 0.5057 0.9594 0.6520
0.9 0.8497 0.9231 0.9915 0.4888 0.9608 0.6314
2.0 0.8504 0.9211 0.9911 0.4837 0.9623 0.6399

The dataset’s nature, featuring dynamic fire boundaries and potential smoke interference, explains
why moderate smoothing thresholds (0.4 - 0.6) outperform others. At these levels, the algorithm
effectively balances detail preservation and noise reduction. Lower thresholds (0.1 - 0.3) likely retain
too much noise and small, irrelevant features, while higher thresholds (0.7 - 0.9) risk oversimplifying
the fire’s complex structure.

Consistently high values of Accuracy and Recall suggest the model’s ability to correctly identify
true positives and relevant instances in the image dataset, regardless of whether smoothing is applied.
However, attention smoothing does lead to marginally improved performances in these metrics.

The balanced approach to smoothing not only improves traditional segmentation metrics like
IoU and Dice coefficient but also enhances the model’s overall predictive capabilities across a broader
range of performance indicators.

Table 4 presents the results of the Kvasir-Instrument: Diagnostic and Therapeutic Tool Segmenta-
tion Dataset in Gastrointestinal Endoscopy [40]. The dataset contains images of the commonly used
gastrointestinal endoscopy surgical tools that pose challenges for segmentation models due to the
shape complexity of the surgical tools captured in the scenes.

Table 4. Kvasir-Instrument: Diagnostic and Therapeutic Tool Segmentation Dataset in Gastrointestinal
Endoscopy.

Metric Test IOU Test Dice Test Acc Test Prec Test Recall Test F1

0.1 0.9105 0.9405 0.9853 0.9427 0.9370 0.9138
0.2 0.9248 0.9536 0.9881 0.9489 0.9674 0.9294
0.3 0.9223 0.9504 0.9876 0.9632 0.9548 0.9263
0.4 0.9071 0.9348 0.9852 0.9231 0.9367 0.9136
0.5 0.9125 0.9420 0.9848 0.9162 0.9364 0.9163
0.6 0.9054 0.9371 0.9847 0.9077 0.9326 0.9167
0.7 0.9052 0.9374 0.9828 0.9121 0.9345 0.9081
0.8 0.9093 0.9394 0.9861 0.9083 0.9587 0.9217
0.9 0.9091 0.9390 0.9857 0.9115 0.9470 0.9197
2.0 0.9108 0.9376 0.9855 0.9152 0.9479 0.9208

The best performance across numerous evaluation metric criteria can be seen at lower thresholds
(0.1-0.3) with peak values achieved at a threshold of 0.2. Such behavior clearly indicates the importance
of fine-grained attention in the medical industry where the decision based on spatial understanding of
the structure of organ imagery and surgical tools can play a major role in life and death situations.
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In tasks of segmentation and classification the medical instruments are commonly segmented
incorrectly and mistaken for others. The lower attention threshold strictly punishes false positives,
leading to more accurate segmentation results, as seen at the metrics-performance level.

Additionally, the high values of Dice and IOU at the threshold of 0.2 show that the model is
able to capture image-specific details and identify accurately both linear and non-linear segmentation
boundaries. At the same time, high values of Accuracy, Precision, Recall and F1 Score at the lower
thresholds highlight the model’s readiness to adhere to local sensitivity in pixel-level variations that
are crucial in the medical field.

Table 5 reveals the results for the Flood Semantic Segmentation Dataset [41]. The dataset covers a
wide range of image data of flood disaster area sensing in multiple geographical regions, introducing
the complexity of segmentation variation.

Table 5. Flood Semantic Segmentation Dataset .

Metric Test IOU Test Dice Test Acc Test Prec Test Recall Test F1

0.1 0.8746 0.9321 0.9571 0.9450 0.9669 0.9515
0.2 0.8694 0.9274 0.9542 0.9521 0.9790 0.9486
0.3 0.8765 0.9309 0.9543 0.9432 0.9712 0.9480
0.4 0.8772 0.9334 0.9554 0.9595 0.9662 0.9501
0.5 0.8374 0.9309 0.9560 0.9556 0.9691 0.9495
0.6 0.8728 0.9294 0.9531 0.9501 0.9658 0.9470
0.7 0.8744 0.9317 0.9555 0.9452 0.9612 0.9502
0.8 0.8674 0.9263 0.9522 0.9419 0.9622 0.9446
0.9 0.8696 0.9292 0.9518 0.9517 0.9646 0.9469
2.0 0.8720 0.9308 0.9542 0.9514 0.9605 0.9468

The optimal performance can be observed at the thresholds (0.4-0.6) with strong IOU, Dice and
Precision results. Due to the fluid image structure variations, it is important to find the balancing
between border smoothing and fine-grained detail retention. Such balance ensures the model captures
segmentation features while minimizing artifacts arising from overly aggressive smoothing techniques
[49,50].

Lower thresholds yield high recall but lower precision values. This phenomenon occurs because
the balance achieved ensures the detection of image details, resulting in a higher percentage of true
positives; however, still providing the needed leniency towards false positives, as the complexity of
flooded areas in varying geographical terrains—such as reflections, shallow water, and debris—can
cause the model to overreact to minor pixel distributions variations.

Higher thresholds tend to perform less effectively due to a tendency to under-segment the
shape complexities of flooded and non-flooded areas. This loss of detail obscures critical features,
making it challenging to accurately distinguish between waterlogged regions and surrounding terrain.
Consequently, important contextual information is lost, leading to inaccuracies in assessing the extent
of flooding.

We demonstrate the comparison of the attention values as heatmaps for the Flood Semantic
Segmentation Dataset [41] at different thresholds in Figures 2 and 3. Figure 2 illustrates attention
heatmap at a threshold of 2.0 (without smoothing applied), resulting in a more fragmented representa-
tion of attention values across the map. This higher threshold leads to sharper and isolated areas of
focus, which obscure subtle relationships in the image data. Conversely, Figure 3 presents attention
heatmap at a threshold of 0.4 (with effective smoothing applied), showing a more cohesive and visually
integrated attention values distribution. The smoothing process creates a gradual transition between
areas of high and low attention, enhancing spatial interpretability and resulting in a more stable
segmentation model performance.
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Figure 2. Attention as a Heatmap for Flood Semantic Segmentation Dataset at threshold 2.0 (without
smoothing).

Figure 3. Attention as a Heatmap for Flood Semantic Segmentation Dataset at threshold 0.4 (with
smoothing).

Developing further the insights from the previous figures, we introduce in Figures 4 and 5 the
3D heatmap representation of attention for the Flood Semantic Segmentation Dataset [41] at the same
respective thresholds. Figure 4 shows the 3D heatmap at a threshold of 2.0 (without smoothing applied),
clearly revealing a sparse and jagged attention landscape. The isolated peaks in this visualization
indicate areas of high attention, but the overall structure appears disjointed, making it challenging to
discern the concise relationships between different attention regions. In contrast, Figure 5 presents
the 3D heatmap with a threshold of 0.4 (effective smoothing applied), which significantly alters the
visual interpretation of attention. The smoothing process results in a more fluid attention surface,
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building a precise understanding of what regions help the model complete the task accurately. After
the smoothing constraint is applied, the attention regions shift due to the averaging effect that reduces
noise and emphasizes broader trends in the values’ distribution. Such cohesive representation not only
enhances the visibility of region-level importance but also facilitates the identification of underlying
patterns within the image data [51].

Figure 4. Attention as a 3D Heatmap for Flood Semantic Segmentation Dataset at threshold 2.0 (without
smoothing).

Figure 5. Attention as a 3D Heatmap for Flood Semantic Segmentation Dataset at threshold 0.4 (with
smoothing).

Figures 6 and 7 explore the representation of attention values using 3D scatter plots, providing a
distinct perspective on the attention distribution under varying levels of smoothing for the Large-Scale
Dataset for Segmentation and Classification [38]. Figure 6 illustrates the attention values at a threshold
of 0.9 (with light smoothing applied). It can be observed that the attention points are relatively sparse,
with some clusters indicating areas of significant focus. However, higher threshold values limit the
mechanism’s ability to identify finer details in the distribution map. The light smoothing enhances the
overall visual coherence, developing a stronger understanding of the focusing area where the fish is
illustrated, yet it still retains some of the original fragmentation.
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In contrast, Figure 7 presents the attention values at a threshold of 0.1 (with strong smoothing
applied). Such an approach results in a dense interconnected scatter plot, where attention points
are uniformly distributed across the attention region. The strong smoothing effectively blurs the
boundaries between areas of high and low attention, creating a continuous representation of attention
across the image data. Figure 7 highlights the strict relationships between different regions, making
it easier to identify patterns that could have been missed in the original attention map’s spatial
inconsistency.

Figure 6. 3D Scatter Plot for Attention Values at threshold 0.9 (light smoothing) for Large-Scale Dataset
for Segmentation and Classification.

Figure 7. 3D Scatter Plot for Attention Values at threshold 0.1 (strong smoothing) for Large-Scale
Dataset for Segmentation and Classification.

Figures 8 and 9 present the final predicted segmentation results for the Flood Semantic Seg-
mentation Dataset [41]. Figure 8 illustrates the segmentation output at a threshold of 2.0 (without
smoothing applied), revealing the segmented images that are characterized by abrupt edges and
fragmented regions. While some areas of interest are accurately captured, the lack of smoothing leads
to a disjointed segmentation that does not effectively represent the underlying structural details in the
spatial data.
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At the same time Figure 9 demonstrates the predicted segmentation mask at a threshold of 0.4
(with effective smoothing applied). The result with the Smooth Attention method achieves a more
coherent and unified segmentation, having smoother transitions between the object boundaries. The
application of smoothing constraint enhances the model’s ability to capture complex shapes and
relationships on the pixel-level, resulting in a segmentation mask that outlines detailed variation
within the images.

Input Image 1 Predicted Mask 1 True Mask 1
\ﬁ‘a“ \‘
’ \"/ ' ‘ » ‘

| N [

Input Image 2 Predicted Mask 2 True Mask 2

——— )

Figure 8. Predicted Segmentation Result threshold 2.0 (without smoothing) for Flood Semantic Seg-
mentation Dataset.

Input Image 1 Predicted Mask 1 True Mask 1
\g ‘ =
’ \‘q—'/

—

> “1 >\“:

i |

Input Image 2 Predicted Mask 2 True Mask 2

——

Figure 9. Predicted Segmentation Result threshold 0.4 (with smoothing) for Flood Semantic Segmenta-
tion Dataset.

We can see that the introduction of Smooth Attention notably improves the spatial distribution
of the attention values within the attention map, helping the model to achieve better segmentation
results. By incorporating a smoothness constraint, the Smooth Attention method encourages gradual
changes in attention weights, which effectively mitigates the noise sensitivity problems with attention
value distribution. We achieve the reduction of sharp transitions and foster a deeper understanding of
spatial relationships of the image data.
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5. Conclusion

To summarize, we introduce a new attention approach called Smooth Attention, designed to
enhance the spatial coherence of attention maps in convolutional neural networks, particularly for
vision tasks like image segmentation. Our experiments demonstrate that by incorporating a spatial
distribution-aware smoothness enforcement mechanism, we improve the quality of the model’s focus
on relevant regions of the input images.

The Smooth Attention module effectively mitigates the complications of noisy attention patterns,
resulting in smoother attention maps that still maintain the detail awareness inherent in traditional
attention mechanism ideas. By leveraging Chebyshev distance to enforce spatial-aware smoothness,
we achieve a balance between global and local attention, enhancing both the model’s performance and
interpretability.

Moreover, the adaptive nature of the learnable parameter and the tunable smoothness threshold
provide the flexibility needed to tailor the mechanism to specific tasks and datasets. Such adaptability
is essential for applications where varying degrees of spatial coherence are required, allowing to
optimize the performance for the particular use cases based on the metrics results.

Future work will explore the application of Smooth Attention across other datasets and tasks,
extending its use beyond image segmentation to other domains such as object detection and image
captioning.

We believe that the Smooth Attention mechanism holds promise for advancing the interpretability
and effectiveness of attention in convolutional neural networks for computer vision tasks. By address-
ing the challenge of spatial incoherence in attention maps, our approach paves the way for models
that can better understand the complex visual data. We anticipate that this work will inspire further
research in attention mechanisms in computer vision that prioritize interpretability and coherence,
ultimately leading to more trustworthy Al systems in critical applications.
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