
Article

Goodness-of-fit test for the bivariate Hermite
distribution

Pablo González-Albornoz 1,†,‡ and Francisco Novoa-Muñoz 2,*
1 Universidad Adventista de Chile, Chillán, Chile; pablogonzalez@uunach.cl
2 Departamento de Estadística, Universidad del Bío-Bío, Concepción, Chile; fnovoa@ubiobio.cl
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1. Introduction

The counting data can appear in different circumstances. In the univariate configuration, the
Hermite distribution (HD) is a linear combination of the form Y = X1 + 2X2, where X1 and X2 are
independent Poisson random variables. The properties that distinguish the HD is to be flexible when
it comes to modeling counting data that present a multimodality, along with presenting several zeros,
which is called zero-inflation. It also allows modeling data in which the overdispersion is moderate;
that is, the variance is greater than the expected value. It was McKendrick in [9] who modeled a
phagocytic experiment (bacteria count in leukocytes) through the HD, obtaining a more satisfactory
model than with the Poisson distribution. However, in practice, the bivariate count data arise in
several different disciplines and bivariate Hermite distribution (BHD) plays an important role, having
superinflated data. For example, the accident number on two different periods [1].

Testing the goodness of fit (gof) of observations given with a probabilistic model is a
crucial aspect of data analysis. For the univariate case, we have only found a single test of gof,
but for data that come from a generalized Hermite distribution (for a review, see Meintanis and
Bassiakos in [10]), but not from a HD. On the other hand, we did not find literature on gof tests for BHD.

The purpose of this paper is to propose and study a goodness-of-fit test for the bivariate Hermite
Distribution that is consistent.

According to Novoa-Muñoz in [12], the probability generating function (pgf) characterizes
the distribution of a random vector and can be estimated consistently by the empirical probability
generating function (epgf), the proposed test is a function of the epgf. This statistical test compares the
epgf of the data with an estimator of the pgf of the BHD. As it is well known, to establish the rejection
region, we need to know the distribution of the statistic test.

As for finite sample sizes the resulting test statistic is of the Cramér-Von Mises type, it was not
possible to calculate explicitly the distribution of the statistic under null hypothesis. That is why one
uses simulation techniques. Therefore, we decided to use a null approximation of the statistic by using
a parametric bootstrap.

Because the properties of the proposed test are asymptotic (see, for example, [11]) and with the
purpose of evaluating the behavior of the test for sample of finite size, a simulation study was carried
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out.

The present work is ordered as follows. In section 2 we present some preliminary results that will
serve us in the following chapters, the definition of the BHD with some of its properties is also given.
In section 3, the proposed statistic is presented. Section 4 is devoted to showing the bootstrap estimator
and its approximation to the null distribution of the statistic. Section 5 is dedicated to presenting the
results of a simulation study, power of a hypothesis test and the application to a set of real data.

Before ending this section, we introduce some notation: FA ∧
δ
FB denotes a mixture

(compounding) distribution where FA represents the original distribution and FB the mixing
distribution (i.e., the distribution of δ) [2]; all vectors are row vectors and x> is the transposed
of the row vector x; for any vector x, xk denotes its kth coordinate, and ‖x‖ its Euclidean norm;
N0 = {0, 1, 2, 3, ...}; I{A} denotes the indicator function of the set A; Pθ denotes the probability law
of the BHD with parameter θ; Eθ denotes expectation with respect to the probability function Pθ ; P∗
and E∗ denote the conditional probability law and expectation, given the data (X1, Y1), ..., (Xn, Yn),

respectively; all limits in this work are taken as n→ ∞; L−→ denotes convergence in distribution; a.s.−→
denotes almost sure convergence; let {Cn} be a sequence of random variables or random elements
and let ε ∈ R, then Cn = OP(n

−ε) means that nεCn is bounded in probability, Cn = oP(n
−ε) means

that nεCn
P−→ 0 and Cn = o(n−ε) means that nεCn

a.s.−→ 0 andH = L2 ([0, 1]2, $
)

denotes the separable
Hilbert space of the measurable functions ϕ, $ : [0, 1]2 → R such that ||ϕ||2H =

∫ 1
0

∫ 1
0 ϕ2(t) $(t)dt < ∞.

2. Preliminaries

Several definitions for the BHD have been given (see, for example, Kocherlakota and Kocherlakota
in [7]). In this paper we will work with the following one, which has received more attention in the
statistical literature (see, for example, Papageorgiou et al. in [13]; Kemp et al. in [4]).

Let X = (X1, X2) has the bivariate Poisson distribution with the parameters δλ1, δλ2 and δλ3 (for
more details of this distribution, see for example, Johnson et al. in [3]), then X ∧

δ
N(µ, σ2) has the BHD.

Kocherlakota in [6] got its pgf which is given by

v(t; θ) = exp
(

µλ +
1
2

σ2λ2
)

, (1)

where t = (t1, t2), θ = (µ, σ2, λ1, λ2, λ3), λ = λ1(t1 − 1) + λ2(t2 − 1) + λ3(t1t2 − 1) and
µ > σ2(λi + λ3), i = 1, 2.

From the pgf of the BHD, Kocherlakota and Kocherlakota [7] obtained the probability mass
function of the BHD, which is given by

f (r, s) =
λr

1λs
2

r!s!
M(γ)

min(r,s)

∑
k=0

(
r
k

)(
s
k

)
k! ξkPr+s−k(γ),

where M(x) is the moment-generating function of the normal distribution, Pr(x) is a polynomial of
degree r in x, γ = −(λ1 + λ2 + λ3) and ξ = λ3

λ1λ2
.

Remark 1. If λ3 = 0 then the probability function is reduced to

f (r, s) =
λr

1λs
2

r!s!
M(−λ1 − λ2) Pr+s(−λ1 − λ2).
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Remark 2. If X is a random vector that is bivariate Hermite distributed with parameter θ will be denoted
X ∼ BH(θ), where θ ∈ Θ, and the parameter space is

Θ =
{
(µ, σ2, λ1, λ2, λ3) ∈ R5/µ > σ2(λi + λ3), λi > λ3 ≥ 0, i = 1, 2

}
.

Let X1 = (X11, X12), X2 = (X21, X22), . . . , Xn = (Xn1, Xn2) be independent and identically
distributed (iid) random vectors defined on a probability space (Ω,A, P) and taking values in N2

0. In
what follows, let

vn(t) =
1
n

n

∑
i=1

tXi1
1 tXi2

2

denote the epgf of X1, X2, . . . , Xn for some appropriate W ⊆ R2.

In the next section we will develop our statistician and for this the result given below will be
fundamental, whose proof was presented in [11].

Proposition 1. Let X1, . . . , Xn be iid from a random vector X = (X1, X2) ∈ N2
0. Let v(t) = E

(
tX1
1 tX2

2

)
be

the pgf of X, defined on W ⊆ R2. Let 0 ≤ bj ≤ cj < ∞, j = 1, 2, such that Q = [b1, c1]× [b2, c2] ⊆W, then

sup
t∈Q
|vn(t)− v(t)| a.s.−→ 0.

3. The test statistic and its asymptotic null distribution

Let X1 = (X11, X12), X2 = (X21, X22), . . . , Xn = (Xn1, Xn2) be iid from a random vector X =

(X1, X2) ∈ N2
0. Based on the sample X1, X2, . . . , Xn, the objective is to test the hypothesis

H0 : (X1, X2) ∼ BH(θ), for some θ ∈ Θ,

against the alternative
H1 : (X1, X2) � BH(θ), ∀θ ∈ Θ.

With this purpose, we will recourse to some of the properties of the pgf that allow us to propose
the following statistical test.

According to Proposition 1, a consistent estimator of the pgf is the epgf. If H0 is true and θ̂n is a
consistent estimator of θ, then v(t; θ̂n) consistently estimates the population pgf. Since the distribution
of X = (X1, X2) is uniquely determined by its pgf, v(t), t = (t1, t2) ∈ [0, 1]2, a reasonable test for
testing H0 should reject the null hypothesis for large values of Vn,w(θ̂n) defined by

Vn,w(θ̂n) =
∫ 1

0

∫ 1

0
V2

n (t; θ̂n)w(t)dt, (2)

where
Vn(t; θ) =

√
n {vn(t)− v(t; θ)} ,

θ̂n = θ̂n(X1, X2, . . . , Xn) is a consistent estimator of θ and w(t) is a measurable weight function, such
that w(t) ≥ 0, ∀t ∈ [0, 1]2, and ∫ 1

0

∫ 1

0
w(t)dt < ∞. (3)

The assumption (3) on w ensures that the double integral in (2) is finite for each fixed n. Now, to
determine what are large values of Vn,w(θ̂n), we must calculate its null distribution, or at least an
approximation to it. Since the null distribution of Vn,w(θ̂n) is unknown, we first try to estimate it by
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means of its asymptotic null distribution. In order to derive it we will assume that the estimator θ̂n

satisfies the following regularity condition.

Assumption 1. Under H0, if θ = (µ, σ2, λ1, λ2, λ3) ∈ Θ denotes the true parameter value, then

√
n
(
θ̂n − θ

)
=

1√
n

n

∑
i=1

` (X i; θ) + oP(1),

where ` : N2
0 ×Θ −→ R5 is such that Eθ {` (X1; θ)} = 0 and J(θ) = Eθ

{
` (X1; θ)> ` (X1; θ)

}
< ∞.

Assumption 1 is fulfilled by most commonly used estimators, see [7] and [14].

The next result gives the asymptotic null distribution of Vn,w(θ̂n).

Theorem 1. Let X1, . . . , Xn be iid from X = (X1, X2) ∼ BH(θ). Suppose that Assumption 1 holds. Then

Vn,w(θ̂n) = ||Wn||2H + oP(1),

where Wn(t) = 1√
n ∑n

i=1 V0(X i, θ; t), with

V0(X i, θ; t) = tXi1
1 tXi2

2 − v(t; θ)

{
1 +

(
λ,

1
2

λ2, η(t1 − 1), η(t2 − 1), η(t1t2 − 1)
)
` (X i; θ)>

}
,

i = 1, . . . , n, η = µ + σ2λ. Moreover,

Vn,w(θ̂n)
L−→∑

j≥1
λjχ

2
1j, (4)

where χ2
11, χ2

12, . . . are independent χ2 variates with one degree of freedom and the set {λj} are the non-null
eigenvalues of the operator C(θ) defined on the function space {τ : N2

0 → R, such that Eθ

{
τ2(X)

}
< ∞, ∀θ ∈

Θ}, as follows
C(θ)τ(x) = Eθ{h(x, Y ; θ)τ(Y)},

where

h(x, y; θ) =
∫ 1

0

∫ 1

0
V0(x; θ; t)V0(y; θ; t)w(t)dt. (5)

Proof. By definition, Vn,w(θ̂n) = ‖Vn(θ̂n)‖2
H . Note that

Vn(t; θ̂n) =
1√
n

n

∑
i=1

V(X i; θ̂n; t), with V(X i; θ; t) = tXi1
1 tXi2

2 − v(t; θ). (6)

By Taylor expansion of V(X i; θ̂n; t) around θ̂n = θ,

Vn(t; θ̂n) =
1√
n

n

∑
i=1

V(X i; θ; t) +
1
n

n

∑
i=1

Q(1)(X i; θ; t)
√

n(θ̂n − θ)> + qn, (7)

where qn = 1
2
√

n (θ̂n − θ)∑n
i=1 Q(2)(X i; θ̃; t) (θ̂n − θ)>, θ̃ = αθ̂n + (1 − α)θ, for some 0 < α < 1 ,

Q(1)(x; ϑ; t) is the vector of the first derivatives and Q(2)(x; ϑ; t) is the matrix of the second derivatives
of V(x; ϑ; t) with respect to ϑ.
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Thus, considering (3) results

Eθ

{∥∥∥Q(1)
j (X1; θ; t)

∥∥∥2

H

}
< ∞, j = 1, 2, . . . , 5. (8)

Using the Markov inequality and (8), we have

Pθ

∥∥∥∥∥ 1
n

n

∑
i=1

Q(1)
j (X i; θ; t)− Eθ

{
Q(1)

j (X1; θ; t)
}∥∥∥∥∥

H

> ε


≤ 1

n ε2 Eθ

[∥∥∥Q(1)
j (X1; θ; t)

∥∥∥2

H

]
→ 0, j = 1, 2, . . . , 5.

Then,
1
n

n

∑
i=1

Q(1)(X i; θ; t) P−→ Eθ

{
Q(1)(X1; θ; t)

}
,

where Eθ

{
Q(1)(X1; θ; t)

}
= −v(t; θ)

(
λ, 1

2 λ2, η(t1 − 1), η(t2 − 1), η(t1t2 − 1)
)

.

As ‖qn‖H = oP(1), then using Assumption 1, (7) can be written as

Vn(t; θ̂n) = Sn(t; θ) + sn,

where ‖sn‖H = oP(1), and

Sn(t; θ) =
1√
n

n

∑
i=1

[
V(X i; θ; t) + Eθ

{
Q(1)(X1; θ; t)

}
` (X i; θ)>

]
.

On the other hand, observe that

‖Sn(θ)‖2
H =

1
n

n

∑
i=1

n

∑
j=1

h(X i, X j; θ),

where h(x, y; θ) is defined in (5) and satisfies h(x, y; θ) = h(y, x; θ), Eθ

{
h2(X1, X2; θ)

}
< ∞,

Eθ {|h(X1, X1; θ)|} < ∞ and Eθ {h(X1, X2; θ)} = 0. Thus, from Theorem 6.4.1.B in Serfling [16],

‖Sn(θ)‖2
H

L−→ ∑
j≥1

λj χ2
1j ,

where χ2
11, χ2

12, . . . and the set {λj} are as defined in the statement of the Theorem. In particular,
‖Sn(θ)‖2

H = OP(1), which implies (4).

The asymptotic null distribution of Vn,w(θ̂n) depends on the unknown true value of the parameter
θ, therefore, in practice, they do not provide a useful solution to the problem of estimating the null
distribution of the respective statistical tests. This could be solved by replacing θ with θ̂.

But a greater difficulty is to determine the sets {λj}j≥1, most of the cases, calculating the
eigenvalues of an operator is not a simple task and in our case, we must also obtain the expression
h(x, y; θ), which is not easy to find, since it depends on the function `, which usually does not have a
simple expression.
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Thus, in the next section we consider another way to approximate the null distribution of the
statistical test, the parametric bootstrap method.

4. The bootstrap estimator

An alternative way to estimate the null distribution is through the parametric bootstrap method.

Let X1, . . . , Xn be iid taking values in N2
0. Assume that θ̂n = θ̂n(X1, . . . , Xn) ∈ Θ. Let X∗1 , . . . , X∗n

be iid from a population with distribution BH(θ̂n), given X1, . . . , Xn, and let V∗n,w(θ̂
∗
n) be the bootstrap

version of Vn,w(θ̂n) obtained by replacing X1, . . . , Xn and θ̂n = θ̂n(X1, . . . , Xn) by X∗1 , . . . , X∗n and
θ̂∗n = θ̂n(X∗1 , . . . , X∗n), respectively, in the expression of Vn,w(θ̂n). Let P∗ denote the bootstrap conditional
probability law, given X1, . . . , Xn. In order to show that the bootstrap consistently estimate the
null distribution of Vn,w(θ̂n) we will assume the following assumption, which is a bit stronger than
Assumption 1.

Assumption 2. Assumption 1 holds and the functions ` and J satisfy,

(1) supϑ∈Θ0
Eϑ

[
‖`(X; ϑ)‖2 I {‖`(X; ϑ)‖ > γ}

]
−→ 0, as γ → ∞, where Θ0 ⊆ Θ is an open

neighborhood of θ.
(2) `(X; ϑ) is continuous as function of ϑ at ϑ = θ and J(ϑ) is finite ∀ϑ ∈ Θ0.

As stated after Assumption 1, Assumption 2 is not restrictive since it is fulfilled by commonly
used estimators.

The next theorem shows that the bootstrap distribution of Vn,w(θ̂n) consistently estimates its null
distribution.

Theorem 2. Let X1, . . . , Xn be iid from a random vector X = (X1, X2) ∈ N2
0. Suppose that Assumption 2

holds and that θ̂n = θ + o(1), for some θ ∈ Θ. Then

sup
x∈R

∣∣P∗ {V∗n,w(θ̂
∗
n) ≤ x

}
− Pθ

{
Vn,w(θ̂n) ≤ x

}∣∣ a.s.−→ 0.

Proof. By definition, V∗n,w(θ̂
∗
n) = ‖V∗n (θ̂∗n)‖2

H , with

V∗n (t; θ̂∗n) =
1√
n

n

∑
i=1

V(X∗i ; θ̂∗n; t)

and V(X; θ; t) defined in (6).

Following similar steps to those given in the proof of Theorem 1 it can be seen that
V∗n,w(θ̂

∗
n) = ‖W∗n‖2

H + oP∗(1), where W∗n (t) is defined as Wn(t) with X i and θ replaced by X∗i and θ̂n,
respectively.

To derive the result, first we will check that assumptions (i)–(iii) in Theorem 1.1 of Kundu et al.
[8] hold.

Observe that

Y∗n (t) =
n

∑
i=1

Y∗ni(t)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2020                   doi:10.20944/preprints202010.0016.v1

https://doi.org/10.20944/preprints202010.0016.v1


7 of 14

where
Y∗ni(t) =

1√
n

V0(X∗i ; θ̂n; t), i = 1, . . . , n,

Clearly E∗
{

Y∗ni
}
= 0 and E∗

{
‖Y∗ni‖2

H

}
< ∞. Let Kn be the covariance kernel of Y∗n , which by

SLLN satisfies

Kn(u, v) = E∗{Y∗n (u)Y∗n (v)}

= E∗
{

V0(X∗1 ; θ̂n; u)V0(X∗1 ; θ̂n; v)
}

a.s.−→ Eθ

{
V0(X1; θ; u)V0(X1; θ; v)

}
= K(u, v).

Moreover, let Z be zero-mean Gaussian process on H whose operator of covariance C is
characterized by

〈C f , h〉H = cov (〈Z , f 〉H , 〈Z , h〉H )

=
∫
[0,1]4

K(u, v) f (u)h(v)w(u)w(v)dudv.

From the central limit theorem in Hilbert spaces (see, for example, van der Vaart and Wellner

[17]), it follows that Yn = 1√
n ∑n

i=1 V0(X i; θ; t) L−→ Z on H, when the data are iid from the random
vector X ∼ HB(θ).

Let Cn denote the covariance operator of Y∗n and let {ek : k ≥ 0} be an orthonormal basis of H.
Let f , h ∈ H, by dominated convergence theorem,

lim
n→∞

〈Cnek, el〉H = lim
n→∞

∫
[0,1]4

Kn(u, v)ek(u)el(v)w(u)w(v)dudv

= 〈Cek, el〉H .

Setting akl = 〈Cek, el〉H in the aforementioned Theorem 1.1, this proves that condition (i) holds.
To verify condition (ii), by using monotone convergence theorem, Parseval’s relation and dominated
convergence theorem, we get

lim
n→∞

∞

∑
k=0
〈Cnek, ek〉H = lim

n→∞

∞

∑
k=0

∫
[0,1]4

Kn(u, v)ek(u)ek(v)w(u)w(v)dudv

=
∞

∑
k=0

∫
[0,1]4

K(u, v)ek(u)ek(v)w(u)w(v)dudv =
∞

∑
k=0
〈Cek, ek〉H

=
∞

∑
k=0

akk =
∞

∑
k=0

Eθ

{
〈Z , ek〉2H1

}
= Eθ

{
‖Z‖ 2

H

}
< ∞.

To prove condition (iii), we first notice that

|〈Y∗ni, ek〉H | ≤
M√

n
, i = 1, . . . , n, ∀n, where 0 < M < ∞.

From the above inequality, for each fixed ε > 0,

E∗
[
〈Y∗ni, ek〉2H I {|〈Y∗ni, ek〉H | > ε}

]
= 0.
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for sufficiently large n. This proves condition (iii). Therefore, Y∗n
L−→ Z in H, a.s. Now the result

follows from the continuous mapping theorem.

From Theorem 2, the test function

Ψ∗V =

{
1, if V∗n,w(θ̂

∗
n) ≥ v∗n,w,α,

0, otherwise,

or equivalently, the test that rejects H0 when p∗ = P∗{V∗n,w(θ̂
∗
n) ≥ Vobs} ≤ α, is asymptotically correct

in the sense that when H0 is true, lim Pθ(Ψ∗V = 1) = α, where v∗n,w,α = inf{x : P∗(V∗n,w(θ̂
∗
n) ≥ x) ≤ α}

is the α upper percentile of the bootstrap distribution of Vn,w(θ̂n) and Vobs is the observed value of the
test statistic.

5. Numerical results and Discussion

According to Novoa-Muñoz and Jiménez-Gamero in [11], the properties of the statistic Vn,w(θ̂n)

are asymptotic, that is, such properties describe the behavior of the test proposed for large samples. To
study the goodness of the bootstrap approach for samples of finite size, a simulation experiment was
carried out. In this section we describe this experiment and provide a summary of the results that
have been obtained.

All computer calculations made in this paper were carried out through the use of programs
written in the R language [15].

To calculate Vn,w(θ̂n) it is necessary to give an explicit form to the weight function w. Here the
following is taken into account

w(t; a1, a2) = ta1
1 ta2

2 . (9)

Observe that the only restrictions that have been imposed on the weight function are that w be
positive almost everywhere in [0, 1]2 and the established in (3). The function w(t; a1, a2) given in (9)
meets these conditions whenever ai > −1, i = 1, 2. Hence

Vn,w(θ̂n) = n
∫ 1

0

∫ 1

0

[
n

∑
i=1

tXi1
1 tXi2

2 − exp
(

µ̂λ̂ +
1
2

σ̂2λ̂2
)]2

ta1
1 ta2

2 dt1dt2.

It was not possible to find an explicit form of the statistic Vn,w(θ̂n), for which, its calculation was used
the curvature package of R [15] to calculate it.

5.1. Simulated data

In order to approximate of the null distribution of the statistic Vn,w(θ̂n) for finite-size samples
samples of size 30 , 50 and 70 from a BH(θ), for θ = (µ, σ2, λ1, λ2, λ3), using the pgf (1), with λ3 = 0
were utilised. The combinations of parameters were chosen in such a way that µ > σ2(λi +λ3), i = 1, 2.

The selected values of the other parameters were µ ∈ {1.0, 1.5, 2.0}, σ2 ∈ {0.8, 1.0},
λ1 ∈ {0.10, 0.25, 0.50, 0.75, 1.00} and λ2 ∈ {0.20, 0.25, 0.50, 0.75}.

The selected values of λ1 and λ2 were not greater than 1 since the Hermite distribution is
characterized as being zero-inflated.

To estimate the parameter θ we use the maximum likelihood method given in Kocherlakota and
Kocherlakota [7]. Then we approximated the bootstrap p−values of the proposed test with weight
function given in (9) for (a1, a2) ∈ {(0, 0), (1, 0), (0, 1), (1, 1), (5, 1), (1, 5), (5, 5)} and we generate
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Table 1. Simulation results for the probability of type I error for a1 = 0 and a2 = 0.

n = 30 n = 50 n = 70

θ α=0.05 α=0.1 α=0.05 α=0.1 α=0.05 α=0.1

(1.0,0.8,0.10,0.20,0.00) 0.012 0.053 0.029 0.069 0.037 0.081
(1.0,0.8,0.25,0.25,0.00) 0.027 0.067 0.037 0.064 0.043 0.094
(1.0,0.8,0.50,0.20,0.00) 0.016 0.062 0.046 0.073 0.047 0.087
(1.0,0.8,0.50,0.50,0.00) 0.025 0.063 0.042 0.076 0.044 0.091
(1.5,1.0,0.50,0.50,0.00) 0.010 0.064 0.035 0.078 0.042 0.089
(1.5,1.0,0.50,0.75,0.00) 0.010 0.065 0.036 0.084 0.041 0.084
(1.5,1.0,0.75,0.25,0.00) 0.017 0.071 0.038 0.087 0.043 0.088
(1.5,1.0,1.00,0.25,0.00) 0.027 0.076 0.039 0.090 0.042 0.092
(2.0,1.0,0.25,0.75,0.00) 0.017 0.067 0.038 0.082 0.047 0.089
(2.0,1.0,0.50,0.25,0.00) 0.011 0.067 0.037 0.088 0.045 0.091
(2.0,1.0,0.75,0.25,0.00) 0.029 0.070 0.035 0.087 0.043 0.089

B = 500 bootstrap samples.

The above procedure was repeated 1000 times and the fraction of the estimated p−values that
were found to be less than or equal to 0.05 and 0.10, which are the estimates type I error probabilities
for α = 0.05 and 0.1.

The results obtained are presented in Tables 1-7 for the different pairs (a1, a2). In each table, the
established order was growing in µ and σ2, and for each new µ increasing values in λ1, and in each
new λ1, increasing values for λ2. From these results we can conclude that the parametric bootstrap
method provides good approximations to the null distribution of the Vn,w(θ̂n) in most of the cases
considered.

It is seen that the values of a1 and a2 of the weight function affects bootstrap estimates of p−values.
From the tables it is clear that the bootstrap p−values are increasingly approaching the nominal

value as n increases. These approximations are better when a1 = a2. In particular, when a1 = a2 are
small (less than 5), then the bootstrap p-values are approached from the left (below) to the nominal
value, otherwise it happens when a1 = a2 are fairly large values (greater or equal to 5). Table 4 is the
one that shows the best results, being the weight function with a1 = a2 = 1 which presents the best
p−values estimates.

Unfortunately we could not find a closed form for our statistic Vn,w(θ̂n), so to calculate it we used
the curvature package of the software R [15]. This had a serious impact on the computation time since
the simulations were increased in their execution time by at least 30%.

5.2. The power of a hypothesis test

To study the power we repeated the previous experiment for samples of size n = 50 and for the
weight function we used the values of a1 and a2 that yielded the best results in the study of type I error.
The alternative distributions we use are detailed below:

• bivariate binomial distribution BB(m; p1, p2, p3), where p1 + p2 − p3 ≤ 1, p1 ≥ p3, p2 ≥ p3 and
p3 > 0,

• bivariate Poisson distribution BP(λ1, λ2, λ3), where λ1 > λ3, λ2 > λ3 > 0,

• bivariate logarithmic series distribution BLS(λ1, λ2, λ3), where 0 < λ1 + λ2 + λ3 < 1,

• bivariate negative binomial distribution BNB(ν; γ0, γ1, γ2), where ν ∈ N, γ0 > γ2, γ1 > γ2 and
γ2 > 0,
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Table 2. Simulation results for the probability of type I error for a1 = 1 and a2 = 0.

n = 30 n = 50 n = 70

θ α=0.05 α=0.1 α=0.05 α=0.1 α=0.05 α=0.1

(1.0,0.8,0.10,0.20,0.00) 0.010 0.039 0.025 0.073 0.043 0.088
(1.0,0.8,0.25,0.25,0.00) 0.025 0.073 0.037 0.088 0.041 0.104
(1.0,0.8,0.50,0.20,0.00) 0.027 0.072 0.041 0.083 0.045 0.086
(1.0,0.8,0.50,0.50,0.00) 0.035 0.053 0.042 0.072 0.045 0.101
(1.5,1.0,0.50,0.50,0.00) 0.011 0.064 0.031 0.080 0.038 0.085
(1.5,1.0,0.50,0.75,0.00) 0.019 0.065 0.034 0.078 0.039 0.080
(1.5,1.0,0.75,0.25,0.00) 0.025 0.081 0.038 0.085 0.042 0.084
(1.5,1.0,1.00,0.25,0.00) 0.037 0.074 0.035 0.085 0.040 0.086
(2.0,1.0,0.25,0.75,0.00) 0.027 0.071 0.034 0.082 0.047 0.089
(2.0,1.0,0.50,0.25,0.00) 0.011 0.077 0.031 0.084 0.044 0.086
(2.0,1.0,0.75,0.25,0.00) 0.019 0.080 0.035 0.085 0.044 0.087

Table 3. Simulation results for the probability of type I error for a1 = 0 and a2 = 1.

n = 30 n = 50 n = 70

θ α=0.05 α=0.1 α=0.05 α=0.1 α=0.05 α=0.1

(1.0,0.8,0.10,0.20,0.00) 0.014 0.044 0.029 0.067 0.043 0.088
(1.0,0.8,0.25,0.25,0.00) 0.028 0.068 0.039 0.079 0.042 0.084
(1.0,0.8,0.50,0.20,0.00) 0.019 0.063 0.042 0.083 0.057 0.092
(1.0,0.8,0.50,0.50,0.00) 0.029 0.063 0.045 0.075 0.054 0.089
(1.5,1.0,0.50,0.50,0.00) 0.011 0.066 0.039 0.079 0.042 0.089
(1.5,1.0,0.50,0.75,0.00) 0.013 0.070 0.043 0.082 0.043 0.087
(1.5,1.0,0.75,0.25,0.00) 0.017 0.081 0.042 0.089 0.043 0.092
(1.5,1.0,1.00,0.25,0.00) 0.037 0.086 0.045 0.091 0.045 0.093
(2.0,1.0,0.25,0.75,0.00) 0.047 0.077 0.048 0.084 0.047 0.089
(2.0,1.0,0.50,0.25,0.00) 0.014 0.077 0.037 0.089 0.043 0.093
(2.0,1.0,0.75,0.25,0.00) 0.027 0.080 0.041 0.097 0.044 0.096

Table 4. Simulation results for the probability of type I error for a1 = 1 and a2 = 1.

n = 30 n = 50 n = 70

θ α=0.05 α=0.1 α=0.05 α=0.1 α=0.05 α=0.1

(1.0,0.8,0.10,0.20,0.00) 0.016 0.073 0.024 0.086 0.048 0.092
(1.0,0.8,0.25,0.25,0.00) 0.032 0.058 0.037 0.088 0.049 0.091
(1.0,0.8,0.50,0.20,0.00) 0.024 0.064 0.043 0.085 0.048 0.089
(1.0,0.8,0.50,0.50,0.00) 0.033 0.072 0.043 0.086 0.049 0.093
(1.5,1.0,0.50,0.50,0.00) 0.030 0.072 0.038 0.088 0.046 0.090
(1.5,1.0,0.50,0.75,0.00) 0.033 0.071 0.042 0.084 0.047 0.098
(1.5,1.0,0.75,0.25,0.00) 0.036 0.097 0.039 0.097 0.049 0.099
(1.5,1.0,1.00,0.25,0.00) 0.039 0.088 0.046 0.090 0.049 0.093
(2.0,1.0,0.25,0.75,0.00) 0.031 0.087 0.044 0.092 0.048 0.099
(2.0,1.0,0.50,0.25,0.00) 0.035 0.068 0.039 0.081 0.047 0.093
(2.0,1.0,0.75,0.25,0.00) 0.037 0.080 0.045 0.088 0.049 0.096
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Table 5. Simulation results for the probability of type I error for a1 = 1 and a2 = 5.

n = 30 n = 50 n = 70

θ α=0.05 α=0.1 α=0.05 α=0.1 α=0.05 α=0.1

(1.0,0.8,0.10,0.20,0.00) 0.014 0.037 0.032 0.075 0.051 0.093
(1.0,0.8,0.25,0.25,0.00) 0.023 0.074 0.053 0.090 0.060 0.113
(1.0,0.8,0.50,0.20,0.00) 0.036 0.101 0.062 0.110 0.064 0.117
(1.0,0.8,0.50,0.50,0.00) 0.023 0.080 0.042 0.107 0.063 0.109
(1.5,1.0,0.50,0.50,0.00) 0.022 0.081 0.037 0.111 0.046 0.108
(1.5,1.0,0.50,0.75,0.00) 0.039 0.095 0.048 0.108 0.056 0.108
(1.5,1.0,0.75,0.25,0.00) 0.034 0.108 0.048 0.107 0.054 0.108
(1.5,1.0,1.00,0.25,0.00) 0.037 0.107 0.059 0.109 0.054 0.107
(2.0,1.0,0.25,0.75,0.00) 0.048 0.106 0.056 0.108 0.054 0.106
(2.0,1.0,0.50,0.25,0.00) 0.025 0.107 0.047 0.108 0.045 0.108
(2.0,1.0,0.75,0.25,0.00) 0.043 0.107 0.045 0.107 0.043 0.106

Table 6. Simulation results for the probability of type I error for a1 = 5 and a2 = 1.

n = 30 n = 50 n = 70

θ α=0.05 α=0.1 α=0.05 α=0.1 α=0.05 α=0.1

(1.0,0.8,0.10,0.20,0.00) 0.015 0.040 0.032 0.062 0.042 0.081
(1.0,0.8,0.25,0.25,0.00) 0.034 0.076 0.045 0.101 0.048 0.104
(1.0,0.8,0.50,0.20,0.00) 0.028 0.084 0.048 0.073 0.053 0.089
(1.0,0.8,0.50,0.50,0.00) 0.028 0.069 0.045 0.079 0.054 0.098
(1.5,1.0,0.50,0.50,0.00) 0.019 0.071 0.035 0.078 0.042 0.099
(1.5,1.0,0.50,0.75,0.00) 0.044 0.104 0.048 0.098 0.056 0.104
(1.5,1.0,0.75,0.25,0.00) 0.027 0.107 0.038 0.105 0.046 0.103
(1.5,1.0,1.00,0.25,0.00) 0.037 0.117 0.043 0.112 0.060 0.107
(2.0,1.0,0.25,0.75,0.00) 0.037 0.112 0.039 0.108 0.054 0.108
(2.0,1.0,0.50,0.25,0.00) 0.026 0.077 0.034 0.109 0.055 0.109
(2.0,1.0,0.75,0.25,0.00) 0.034 0.116 0.045 0.107 0.056 0.105

Table 7. Simulation results for the probability of type I error for a1 = 5 and a2 = 5.

n = 30 n = 50 n = 70

θ α=0.05 α=0.1 α=0.05 α=0.1 α=0.05 α=0.1

(1.0,0.8,0.10,0.20,0.00) 0.017 0.035 0.032 0.065 0.050 0.089
(1.0,0.8,0.25,0.25,0.00) 0.027 0.077 0.034 0.081 0.043 0.084
(1.0,0.8,0.50,0.20,0.00) 0.030 0.086 0.042 0.087 0.048 0.104
(1.0,0.8,0.50,0.50,0.00) 0.013 0.069 0.030 0.076 0.045 0.105
(1.5,1.0,0.50,0.50,0.00) 0.016 0.063 0.035 0.078 0.046 0.087
(1.5,1.0,0.50,0.75,0.00) 0.019 0.085 0.061 0.089 0.054 0.094
(1.5,1.0,0.75,0.25,0.00) 0.031 0.071 0.053 0.102 0.047 0.098
(1.5,1.0,1.00,0.25,0.00) 0.037 0.086 0.049 0.104 0.052 0.102
(2.0,1.0,0.25,0.75,0.00) 0.015 0.087 0.057 0.098 0.055 0.101
(2.0,1.0,0.75,0.25,0.00) 0.040 0.097 0.054 0.102 0.053 0.102
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Table 8. Simulation results for the power. The values are in the form of percentages, rounded to the
nearest integer.

Alternative V(0,0) V(1,0) V(1,1) V(1,5) V(5,5)
BB(1; 0.41, 0.02, 0.01) 87 81 89 81 85
BB(1; 0.41, 0.03, 0.02) 85 82 88 80 86
BB(2; 0.61, 0.01, 0.01) 93 84 98 83 92
BB(1; 0.61, 0.03, 0.02) 95 89 100 87 95
BB(2; 0.71, 0.01, 0.01) 94 86 100 85 93
BP(1.00, 1.00, 0.25) 85 76 89 77 82
BP(1.00, 1.00, 0.50) 84 77 91 72 85
BP(1.00, 1.00, 0.75) 87 75 92 73 83
BP(1.50, 1.00, 0.31) 87 77 93 75 87
BP(1.50, 1.00, 0.92) 86 76 92 77 87
BLS(0.25, 0.15, 0.10) 94 85 98 86 95
BLS(5d/7, d/7, d/7)∗ 91 85 100 84 90
BLS(3d/4, d/8, d/8)∗ 90 86 100 84 90
BLS(7d/9, d/9, d/9)∗ 94 86 100 83 93
BLS(0.51, 0.01, 0.02) 90 83 98 83 91
BNB(1; 0.92, 0.97, 0.01) 93 87 96 85 92
BNB(1; 0.97, 0.97, 0.01) 92 86 95 85 92
BNB(1; 0.97, 0.97, 0.02) 94 88 100 89 93
BNB(1; 0.98, 0.98, 0.01) 92 84 97 85 92
BNB(1; 0.99, 0.99, 0.01) 91 84 96 83 91
BNTA(0.21; 0.01, 0.01, 0.98) 93 86 98 85 92
BNTA(0.24; 0.01, 0.01, 0.98) 95 87 100 85 95
BNTA(0.26; 0.01, 0.01, 0.97) 93 85 97 86 93
BNTA(0.26; 0.01, 0.01, 0.98) 94 85 98 86 94
BNTA(0.28; 0.01, 0.01, 0.97) 93 86 96 86 94
BPP(0.31; (0.2, 0.2, 0.1), (1.0, 1.0, 0.9)) 76 70 82 72 77
BPP(0.31; (0.2, 0.2, 0.1), (1.0, 1.2, 0.9)) 77 71 84 71 76
BPP(0.32; (0.2, 0.2, 0.1), (1.0, 1.0, 0.9)) 78 71 84 71 76
BPP(0.33; (0.2, 0.2, 0.1), (1.0, 1.0, 0.9)) 78 70 85 70 77
BPP(0.33; (0.2, 0.2, 0.1), (1.0, 1.1, 0.9)) 76 71 83 70 78
∗ d = 1− exp(−1) ≈ 0.63212.

• bivariate Neyman type A distribution BNTA(λ; λ1, λ2, λ3), where 0 < λ1 + λ2 + λ3 ≤ 1,

• bivariate Poisson distribution mixtures of the form pBP(θ) + (1− p)BP(λ), where 0 < p < 1,
denoted by BPP(p; θ, λ).

Table 8 displays the alternatives considered and the estimated power for nominal significance level
α = 0.05. Analyzing this table we can conclude that all the considered tests, denoted by V(a1,a2)

, are
able to detect the alternatives studied and with a good power, giving better results in cases where
a1 = a2. The best result was achieved for a1 = a2 = 1, as expected, as occurred in the study of type I
error.

5.3. Real data set

Now, the proposed test will be applied to a real data set. The data set comprises the number of
accidents in two different years presented in [7]. Where X is the accident number of the first period
and Y the accident number of the second period. Table 9 shows the real data set.

The p−value obtained from the statistic Vn,w(θ̂n) of the proposed test, with a1 = 1 and a2 = 0
applied to the real values is 0.838, therefore, we decided not to reject the null hypothesis, that is, the
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Table 9. Real data of X accident number in a period and Y of another period.

X
0 1 2 3 4 5 6 7 Total

0 117 96 55 19 2 2 0 0 291
1 61 69 47 27 8 5 1 0 218
2 34 42 31 13 7 2 3 0 132

Y 3 7 15 17 7 3 1 0 0 49
4 3 3 1 1 2 1 1 1 13
5 2 1 0 0 0 0 0 0 3
6 0 0 0 0 1 0 0 0 1
7 0 0 0 1 0 0 0 0 1

Total 224 226 150 68 23 11 5 1 708

data seem to have a BHD. This is consistent with the results presented by Kemp and Papageorgiou in
[5], who performed the goodness-of-fit test χ2 obtaining a p−value of 0.3078.

Author Contributions: Conceptualization, N.F.; methodology, N.F. and G.P.; software, N.F. and G.P.; validation,
N.F. and G.P.; formal analysis, N.F. and G.P.; investigation, N.F. and G.P.; resources, N.F.; data curation, G.P.;
writing–original draft preparation, N.F. and G.P.; writing–review and editing, N.F. and G.P.; visualization, N.F.
and G.P. . All authors have read and agreed to the published version of the manuscript.

Funding: IThe authors would like to thank research projects DIUBB 172409 GI/C, DIUBB 192408 2/R and Fondo
de Apoyo a la Participación a Eventos Internacionales (FAPEI) at Universidad del Bío-Bío, Chile.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

HD Hermite distribution
BHD Bivariate Hermite Distribution
gof Testing the goodness of fit
pgf probability generating function
epgf empirical probability generating function
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