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1. Introduction

The counting data can appear in different circumstances. In the univariate configuration, the
Hermite distribution (HD) is a linear combination of the form Y = X; + 2X5, where X; and X, are
independent Poisson random variables. The properties that distinguish the HD is to be flexible when
it comes to modeling counting data that present a multimodality, along with presenting several zeros,
which is called zero-inflation. It also allows modeling data in which the overdispersion is moderate;
that is, the variance is greater than the expected value. It was McKendrick in [9] who modeled a
phagocytic experiment (bacteria count in leukocytes) through the HD, obtaining a more satisfactory
model than with the Poisson distribution. However, in practice, the bivariate count data arise in
several different disciplines and bivariate Hermite distribution (BHD) plays an important role, having
superinflated data. For example, the accident number on two different periods [1].

Testing the goodness of fit (gof) of observations given with a probabilistic model is a
crucial aspect of data analysis. For the univariate case, we have only found a single test of gof,
but for data that come from a generalized Hermite distribution (for a review, see Meintanis and
Bassiakos in [10]), but not from a HD. On the other hand, we did not find literature on gof tests for BHD.

The purpose of this paper is to propose and study a goodness-of-fit test for the bivariate Hermite
Distribution that is consistent.

According to Novoa-Mufioz in [12], the probability generating function (pgf) characterizes
the distribution of a random vector and can be estimated consistently by the empirical probability
generating function (epgf), the proposed test is a function of the epgf. This statistical test compares the
epgf of the data with an estimator of the pgf of the BHD. As it is well known, to establish the rejection
region, we need to know the distribution of the statistic test.

As for finite sample sizes the resulting test statistic is of the Cramér-Von Mises type, it was not
possible to calculate explicitly the distribution of the statistic under null hypothesis. That is why one
uses simulation techniques. Therefore, we decided to use a null approximation of the statistic by using
a parametric bootstrap.

Because the properties of the proposed test are asymptotic (see, for example, [11]) and with the
purpose of evaluating the behavior of the test for sample of finite size, a simulation study was carried
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out.

The present work is ordered as follows. In section 2 we present some preliminary results that will
serve us in the following chapters, the definition of the BHD with some of its properties is also given.
In section 3, the proposed statistic is presented. Section 4 is devoted to showing the bootstrap estimator
and its approximation to the null distribution of the statistic. Section 5 is dedicated to presenting the
results of a simulation study, power of a hypothesis test and the application to a set of real data.

Before ending this section, we introduce some notation: Fj4 ? Fp denotes a mixture

(compounding) distribution where F4 represents the original distribution and Fp the mixing
distribution (i.e., the distribution of §) [2]; all vectors are row vectors and x ' is the transposed
of the row vector x; for any vector x, x; denotes its kth coordinate, and ||x|| its Euclidean norm;
No ={0,1,2,3,...}; I{A} denotes the indicator function of the set A; Py denotes the probability law
of the BHD with parameter 6; Eg denotes expectation with respect to the probability function Py; P,
and E. denote the conditional probability law and expectation, given the data (X1, Y1), ..., (Xu, Ya),

respectively; all limits in this work are taken as 1 — c0; — denotes convergence in distribution; -~
denotes almost sure convergence; let {C, } be a sequence of random variables or random elements
and let € € R, then C;; = O, (n™¢) means that n°C, is bounded in probability, C;, = 0,(n~¢) means

that n°C, L, 0and Cy = 0(n~€) means that n°C, ~%0and H = L? ([0,1]%,0) denotes the separable
Hilbert space of the measurable functions ¢, 0 : [0,1]*> — R such that ||¢||3, = fol fol @%(t) o(t)dt < co.
2. Preliminaries

Several definitions for the BHD have been given (see, for example, Kocherlakota and Kocherlakota
in [7]). In this paper we will work with the following one, which has received more attention in the
statistical literature (see, for example, Papageorgiou et al. in [13]; Kemp et al. in [4]).

Let X = (X3, X») has the bivariate Poisson distribution with the parameters 611, 6A; and dA3 (for
more details of this distribution, see for example, Johnson et al. in [3]), then X /5\ N(p,0?) has the BHD.

Kocherlakota in [6] got its pgf which is given by
L 2,2
v(t;0) =exp | A + i AT, 1)

where t = (tl,tz), 0 = (]l,Uz,Al,/\z,Afj), A= /\1(t1 — 1) + /\Q(tz — 1) + /\3(t1t2 — 1) and
u> 0'2(/\1' +A3),i=1,2

From the pgf of the BHD, Kocherlakota and Kocherlakota [7] obtained the probability mass
function of the BHD, which is given by

flrs) = T2 2( (1) (2 Retiecstn,

where M(x) is the moment-generating function of the normal distribution, P(x) is a polynomial of
degreerinx, vy = —(A; + Ay + A3) and ¢ = )\1/\2

Remark 1. If A3 = O then the probability function is reduced to

MAS

f(r,s) = M(=A1 = A2) Pris(—A1 — Ap).
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Remark 2. If X is a random vector that is bivariate Hermite distributed with parameter 6 will be denoted
X ~ BH(8), where 6 € ©, and the parameter space is

o= {(y,az,/\l,/\z,/\3) ER/p > 02 (A +A3), A > A3 >0, = 1,2}.

Let X1 = (X11,X12), X2 = (X01,X22),---, Xn = (Xu1, Xn2) be independent and identically
distributed (iid) random vectors defined on a probability space (Q), A, P) and taking values in N3. In
what follows, let

1y X 4 Xip
on(t) = - .Ztl th
i=1
denote the epgf of X1, X>,..., X, for some appropriate W C R2,

In the next section we will develop our statistician and for this the result given below will be
fundamental, whose proof was presented in [11].

Proposition 1. Let Xy, ..., X, be iid from a random vector X = (X1,Xp) € N3. Let v(t) = E(tf1 t§2> be
the pgf of X, defined on W C R?. Let 0 < bj <cj< oo, j=1,2, suchthat Q = [b1,c1] X [ba, 2] C W, then

sup |0, (t) — o(t)] = 0.
teQ

3. The test statistic and its asymptotic null distribution
Let X; = (X11,X12), X2 = (X201, X22),---, Xn = (Xy1, Xy2) be iid from a random vector X =
(X1, X2) € N2. Based on the sample X1, X», ..., X, the objective is to test the hypothesis
Hy : (X1,X3) ~ BH(#), for some 6 € O,
against the alternative
Hj : (X],Xz) e BH(G), Vo € O.

With this purpose, we will recourse to some of the properties of the pgf that allow us to propose
the following statistical test.

According to Proposition 1, a consistent estimator of the pgf is the epgf. If H is true and 8, is a
consistent estimator of 6, then v(t;8,,) consistently estimates the population pgf. Since the distribution
of X = (X1, X3) is uniquely determined by its pgf, v(t), t = (t1,t) € [0,1]?, a reasonable test for
testing Hy should reject the null hypothesis for large values of V., (6,,) defined by

A~ 1 1 A~
Vau@) = [ [ V38w (b, @)

where
Va(t;0) = vn{oa(t) —v(t;0)},

6, =0, (X1,X3,...,Xy) is a consistent estimator of 6 and w(t) is a measurable weight function, such

that w(t) >0, Vt € [0,1)%, and
1 1
/ / w(F)dt < co. @3)
0 Jo

The assumption (3) on w ensures that the double integral in (2) is finite for each fixed n. Now, to
determine what are large values of Vn,w(@n), we must calculate its null distribution, or at least an
approximation to it. Since the null distribution of V,, 5 (6,) is unknown, we first try to estimate it by
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means of its asymptotic null distribution. In order to derive it we will assume that the estimator 8,
satisfies the following regularity condition.

Assumption 1. Under Hy, if 0 = (1, o2, A1, Mg, A3) € © denotes the true parameter value, then

Vn (6, —0) = £(X;;0)+0,(1),

Sl-
D=

Il
—_

where £ : N2 x © —» RS is such that Eg {£ (X1;6)} = 0 and ](8) = E {z (X1;0)" ¢ (X1;9)} < .
Assumption 1 is fulfilled by most commonly used estimators, see [7] and [14].
The next result gives the asymptotic null distribution of V. (6,).
Theorem 1. Let X1,..., X, be iid from X = (Xq,Xa) ~ BH(0). Suppose that Assumption 1 holds. Then
Vi () = [[Wall3, + 0, (1),

where W, (t) = ﬁ Y1 VO(X, 0;t), with

VO(X;,6;t) = £ X2 —u(t;6) {1 + (/\, %/\2,17(151 —1),5(ta — 1), 7(t1t2 — 1)) e (Xi,-e)T} ,
i=1...,n,y=pn + 02 \. Moreover,

A L
Vn,w(en) — Z A]’X%]’; 4)
i>1

where x31, X3,, . . . are independent x* variates with one degree of freedom and the set {A;} are the non-null
eigenvalues of the operator C(0) defined on the function space {t : N§ — R, such that Eg {7?(X)} < 00,V €
©®}, as follows

C(0)t(x) = Eg{h(x,Y;0)T(Y)},

where .
h(x,y;0) = /O /0 VO(x;0; 1)V (y; 6; t)w(t)dt. )

Proof. By definition, V.. (8,) = ||V (61) 1. Note that
N 1 & ~ X X
Vo (t;0,) = vn Y V(X 0:t), with V(X;;0;t) = 177152 —o(t;0). (6)
iz

By Taylor expansion of V(X; 0,; t) around 0, =0,
~ 1 & 12 ~
Va(t:0n) = —= Y V(X56:0) + = Y QW(X5;0:1) V(8 — 0) " + g, (7)
Vvn i i3
where g, = ﬁ(én -0)Y, Q(z)(Xi;g; t) (9,1 -0)T, 0 = ab, + (1—a)f, forsome 0 < o < 1,

QW (x; 0; 1) is the vector of the first derivatives and Q(?) (x; 9; ) is the matrix of the second derivatives
of V(x;9;t) with respect to 9.

d0i:10.20944/preprints202010.0016.v1
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Thus, considering (3) results

EG{HQ}” (Xl,-e,-t)Hi} <o, j=1,2,...,5 ®)

H

< LZEQ D’Q](.l)(Xl;G;t)Hi] ~0, j=1,2,...,5.

Using the Markov inequality and (8), we have

o[l

n

Z Xl,(9 £) {Q}l)(Xl;G;t)}

=1

ne
Then,
n
Y Qe Tk {QU (00

)

where Ep { Q) (X1;01) } = —o(£:0) (4, 3A% (k1 = 1), p(t2 = 1), (112 = 1) ).
As ||gnl|l = 0,(1), then using Assumption 1, (7) can be written as
Vu(t;0,) = Su(t0) + su,

where ||s, ||y = 0,(1), and

(1) .0 T
S ( \/*Z[ XIIGt +E9{Q (Xllelt)}e(Xlle) i|
On the other hand, observe that

1S, (6 y|2 = ):Zh X;, X;;0),

11]

where h(x,y;0) is defined in (5) and satisfies h(x,y;0) = h(y,x;0), Eg {hz(Xl,Xz;(-))} < oo,
Ep{|h(X1,X1;0)|} < oocand Eg{h(X;,X2;0)} = 0. Thus, from Theorem 6.4.1.B in Serfling [16],

L
15:(0)12 5 Y A3,
=1

where x%,,x3,,... and the set {A;} are as defined in the statement of the Theorem. In particular,
||Sn(9)||i = Op(1), which implies (4).
O

The asymptotic null distribution of V,, ,(8,) depends on the unknown true value of the parameter
0, therefore, in practice, they do not provide a useful solution to the problem of estimating the null
distribution of the respective statistical tests. This could be solved by replacing 6 with 8.

But a greater difficulty is to determine the sets {A;};>1, most of the cases, calculating the
eigenvalues of an operator is not a simple task and in our case, we must also obtain the expression
h(x,y;6), which is not easy to find, since it depends on the function £, which usually does not have a
simple expression.
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Thus, in the next section we consider another way to approximate the null distribution of the
statistical test, the parametric bootstrap method.

4. The bootstrap estimator

An alternative way to estimate the null distribution is through the parametric bootstrap method.

Let X1,..., X, be iid taking values in N%. Assume that 8, = 9n(X1,. .., Xn) €0.LetX73,..., X
be iid from a population with distribution BH(0,,), given X1, ..., X,,, and let Vi, (6};) be the bootstrap
version of anw(én) obtained by replacing X3, ..., X, and 6, = én(Xl,. .., Xyn) by Xj,...,X; and
é,’; =0, (X7,...,X;), respectively, in the expression of V;, 4 (én). Let P, denote the bootstrap conditional
probability law, given Xj,...,X,. In order to show that the bootstrap consistently estimate the
null distribution of V;, ;,(8,) we will assume the following assumption, which is a bit stronger than
Assumption 1.

Assumption 2. Assumption 1 holds and the functions € and | satisfy,

(1) supgeg, Eo [[1€CCO)IPT{[I€(X; )| > 9}] — 0, as v — oo, where ® C © is an open
neighborhood of 6.
(2) £(X;0) is continuous as function of O at O = 0 and J(9) is finite V9 € ©y.

As stated after Assumption 1, Assumption 2 is not restrictive since it is fulfilled by commonly
used estimators.

The next theorem shows that the bootstrap distribution of Vj, ;,(6,;) consistently estimates its null
distribution.

Theorem 2. Let X1,..., X, be iid from a random vector X = (X1, Xp) € N3. Suppose that Assumption 2
holds and that 8,, = 6 + o(1), for some 6 € @. Then

sup [P {V;0(67) < x} = Py {Vi(f) < x}] 25 0,
xeR
Proof. By definition, V;w(éZ) = v (9;) szy with

V(X70t)

1=

* A% 1
Vy (t;en) = ﬁ ’
i

I
—

and V(X;6; t) defined in (6).

Following similar steps to those given in the proof of Theorem 1 it can be seen that
Viiw(05) = [[Wi |13, + op, (1), where W;i (t) is defined as W, () with X; and 6 replaced by X} and 6,
respectively.

To derive the result, first we will check that assumptions (i)—(iii) in Theorem 1.1 of Kundu et al.
[8] hold.

Observe that

Yi(h) = f%mu)
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where .
Yyi(t) = N VOXF;0,1), i=1,...,n,
Clearly E. {Y,;} = 0and E. {||Y,; ||,2{} < 0. Let K, be the covariance kernel of Y;; , which by
SLLN satisfies

Ky (u,v) = E{Y; (u)Y, (0)}
= E, {VO(X{;én;u)VO(X;‘;én;v)}
L {VO(Xl;G;u)VO(Xl;G;v)} = K(u,0).

Moreover, let Z be zero-mean Gaussian process on H whose operator of covariance C is
characterized by

<Cf/ h)u = covu (<Z/f>’H' <Z/ h>7{)
= o1 K(u,v)f(u)h(v)w(u)w(v)dudo.
0,1
From the central limit theorem in Hilbert spaces (see, for example, van der Vaart and Wellner
[17]), it follows that Y, = ﬁ Y, VOX;6;t) L Zon ‘H, when the data are iid from the random
vector X ~ HB(0).

Let C, denote the covariance operator of Y;; and let {¢; : k > 0} be an orthonormal basis of .
Let f,h € H, by dominated convergence theorem,

nlgr.}o (Cnex,er),, = nlglgo oals Ky (1, v)er(u)e;(v)w(u)w(v)dudo
= <Cek, 81>H.

Setting ay; = (Cey, ¢;),, in the aforementioned Theorem 1.1, this proves that condition (i) holds.
To verify condition (ii), by using monotone convergence theorem, Parseval’s relation and dominated
convergence theorem, we get

[e9)

nlgr;lo](;)@nek,ek)% = ﬂlg&k;]/[o,l]‘i Ky (u,v)er(u)ex(v)w(u)w(v)dudo

[e9)

- k;)/[orm K(u,v)e(u)ex(v)w(u)w(v)dudo = Y " (Cey, er),,

k=0
=) ag=), Ee{<Z,€k>il} = EG{HZH;Z[} < oo
k=0 k=0
To prove condition (iii), we first notice that
Yoo < S i=1 Vn, where 0 < M
K¢ ni,q)“fﬁ,z— ,...,n, Vn, where 0 < M < oco.

From the above inequality, for each fixed ¢ > 0,

E. [(Yiee)2 T{(Yiveehy| > e}] =o0.
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for sufficiently large n. This proves condition (iii). Therefore, Y;; L4 Zin H, a:s. Now the result
follows from the continuous mapping theorem.
O

From Theorem 2, the test function

e = U V(0 > v
v 0, otherwise,

or equivalently, the test that rejects Hy when p* = P*{V,f,w(é,’;) > Vs < a, is asymptotically correct
in the sense that when Hj is true, lim Py(¥}, = 1) = a, where v}, ,, = inf{x : P,(V;,(6;) > x) < a}
is the « upper percentile of the bootstrap distribution of Vi, (8,,) and V,p, is the observed value of the
test statistic.

5. Numerical results and Discussion

According to Novoa-Mufioz and Jiménez-Gamero in [11], the properties of the statistic V}, 4 (én)
are asymptotic, that is, such properties describe the behavior of the test proposed for large samples. To
study the goodness of the bootstrap approach for samples of finite size, a simulation experiment was
carried out. In this section we describe this experiment and provide a summary of the results that
have been obtained.

All computer calculations made in this paper were carried out through the use of programs
written in the R language [15].
To calculate V;, () it is necessary to give an explicit form to the weight function w. Here the
following is taken into account
w(t;ay,a0) = ]2, )

Observe that the only restrictions that have been imposed on the weight function are that w be
positive almost everywhere in [0, 1]? and the established in (3). The function w(t;ay,a5) given in (9)
meets these conditions whenever a; > —1,i = 1,2. Hence

. 1 41
oy
n,w(n) nO 0

It was not possible to find an explicit form of the statistic V}; 4 (9n), for which, its calculation was used
the curvature package of R [15] to calculate it.

1

N |

2
&222)] #1152 dtydto.

n
Z ti(“ t?iz —exp (ﬁ;\ +
i=1

5.1. Simulated data

In order to approximate of the null distribution of the statistic Vi, (8,) for finite-size samples
samples of size 30 , 50 and 70 from a BH(6), for § = (1, 0%, A1, A2, A3), using the pgf (1), with A3 = 0
were utilised. The combinations of parameters were chosen in such a way that u > 02(A; + A3),i = 1,2.

The selected values of the other parameters were u € {1.0,1.5,2.0}, ¢> € {0.8,1.0},
A € {0.10,0.25,0.50,0.75,1.00} and A, € {0.20,0.25,0.50,0.75}.

The selected values of A1 and A, were not greater than 1 since the Hermite distribution is
characterized as being zero-inflated.

To estimate the parameter 8 we use the maximum likelihood method given in Kocherlakota and
Kocherlakota [7]. Then we approximated the bootstrap p—values of the proposed test with weight
function given in (9) for (a1,42) € {(0,0),(1,0),(0,1),(1,1),(5,1),(1,5),(5,5)} and we generate
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Table 1. Simulation results for the probability of type I error for a; = 0 and a; = 0.

n =30 n =>50 n=70
0 a=0.05 a=0.1 «a=0.05 «a=0.1 «=0.05 «=0.1

(1.0,0.8,0.10,0.20,0.00)  0.012  0.053  0.029 0.069 0.037 0.081
(1.0,0.8,0.25,0.25,0.00)  0.027 0.067 0.037 0.064 0.043 0.094
(1.0,0.8,0.50,0.20,0.00) 0.016  0.062 0.046 0.073 0.047 0.087
(1.0,0.8,0.50,0.50,0.00)  0.025 0.063 0.042 0.076 0.044 0.091
(1.5,1.0,0.50,0.50,0.00)  0.010 0.064 0.035 0.078 0.042 0.089
(1.5,1.0,0.50,0.75,0.00)  0.010 0.065 0.036 0.084 0.041 0.084
(1.5,1.0,0.75,0.25,0.000  0.017 0.071 0.038 0.087 0.043 0.088
(1.5,1.0,1.00,0.25,0.00)  0.027 0.076  0.039 0.090 0.042 0.092
(2.0,1.0,0.25,0.75,0.000  0.017 0.067 0.038 0.082 0.047 0.089
(2.0,1.0,0.50,0.25,0.00) 0.011  0.067 0.037 0.088 0.045 0.091
(2.0,1.0,0.75,0.25,0.00)  0.029 0.070 0.035 0.087 0.043 0.089

B = 500 bootstrap samples.

The above procedure was repeated 1000 times and the fraction of the estimated p—values that
were found to be less than or equal to 0.05 and 0.10, which are the estimates type I error probabilities
for « = 0.05 and 0.1.

The results obtained are presented in Tables 1-7 for the different pairs (a1,4;). In each table, the
established order was growing in y and 02, and for each new y increasing values in A1, and in each
new Ay, increasing values for Ay. From these results we can conclude that the parametric bootstrap
method provides good approximations to the null distribution of the V;, ;,(8,) in most of the cases
considered.

It is seen that the values of a1 and a; of the weight function affects bootstrap estimates of p—values.

From the tables it is clear that the bootstrap p—values are increasingly approaching the nominal
value as 1 increases. These approximations are better when a; = a. In particular, when a; = a; are
small (less than 5), then the bootstrap p-values are approached from the left (below) to the nominal
value, otherwise it happens when a1 = a, are fairly large values (greater or equal to 5). Table 4 is the
one that shows the best results, being the weight function with a; = a, = 1 which presents the best
p—values estimates.

Unfortunately we could not find a closed form for our statistic V}, (én), so to calculate it we used
the curvature package of the software R [15]. This had a serious impact on the computation time since
the simulations were increased in their execution time by at least 30%.

5.2. The power of a hypothesis test

To study the power we repeated the previous experiment for samples of size n = 50 and for the
weight function we used the values of a1 and a, that yielded the best results in the study of type I error.
The alternative distributions we use are detailed below:

e bivariate binomial distribution BB(m; p1, p2, p3), where p1 + po — p3 < 1, p1 > p3, p2 > p3 and
p3 > 0,

e bivariate Poisson distribution BP(A1, A3, A3), where Ay > A3, Ay > Az >0,

e bivariate logarithmic series distribution BLS(A1, A3, A3), where 0 < A; + Ay + A3 < 1,

e bivariate negative binomial distribution BNB(v; yo, 71, 72), where v € N, 49 > 792,71 > 72 and
72 >0,
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Table 2. Simulation results for the probability of type I error for a; = 1 and ay = 0.

n =230 n =50 n=70
0 «=0.05 «a=0.1 «=0.05 «a=0.1 «=0.05 «a=0.1

(1.0,0.8,0.10,0.20,0.00)  0.010  0.039  0.025 0.073 0.043 0.088
(1.0,0.8,0.25,0.25,0.00)  0.025 0.073 0.037 0.088 0.041 0.104
(1.0,0.8,0.50,0.20,0.00)  0.027 0.072 0.041 0.083 0.045 0.086
(1.0,0.8,0.50,0.50,0.00)  0.035 0.053 0.042 0.072 0.045 0.101
(1.5,1.0,0.50,0.50,0.00)  0.011 0.064 0.031 0.080 0.038 0.085
(1.5,1.0,0.50,0.75,0.00)  0.019 0.065 0.034 0.078 0.039 0.080
(1.5,1.0,0.75,0.25,0.00)  0.025 0.081 0.038 0.085 0.042 0.084
(1.5,1.0,1.00,0.25,0.00) 0.037 0.074 0.035 0.085 0.040 0.086
(2.0,1.0,0.25,0.75,0.000  0.027 0.071 0.034 0.082 0.047 0.089
(2.0,1.0,0.50,0.25,0.000 0.011 0.077 0.031 0.084 0.044 0.086
(2.0,1.0,0.75,0.25,0.000 0.019 0.080 0.035 0.085 0.044 0.087

Table 3. Simulation results for the probability of type I error for a; = 0 and ap = 1.

n =30 n =50 n=70
0 «=0.05 «a=0.1 «=0.05 «a=0.1 «a=0.05 «a=0.1

(1.0,0.8,0.10,0.20,0.00) 0.014 0.044 0.029 0.067 0.043 0.088
(1.0,0.8,0.25,0.25,0.00)  0.028 0.068 0.039 0.079 0.042 0.084
(1.0,0.8,0.50,0.20,0.000  0.019 0.063 0.042 0.083 0.057 0.092
(1.0,0.8,0.50,0.50,0.00)  0.029  0.063 0.045 0.075 0.054 0.089
(1.5,1.0,0.50,0.50,0.00)  0.011 0.066  0.039 0.079 0.042 0.089
(1.5,1.0,0.50,0.75,0.000  0.013 0.070 0.043 0.082 0.043 0.087
(1.5,1.0,0.75,0.25,0.000  0.017 0.081 0.042 0.089 0.043 0.092
(1.5,1.0,1.00,0.25,0.00)  0.037 0.086 0.045 0.091 0.045 0.093
(2.0,1.0,0.25,0.75,0.000  0.047 0.077 0.048 0.084 0.047 0.089
(2.0,1.0,0.50,0.25,0.000 0.014 0.077 0.037 0.089 0.043 0.093
(2.0,1.0,0.75,0.25,0.00)  0.027 0.080 0.041 0.097 0.044 0.096

Table 4. Simulation results for the probability of type I error for sy = 1and ap = 1.

n =230 n =50 n=70
0 «=0.05 a=0.1 «a=0.05 «a=0.1 «=0.05 «a=0.1

(1.0,0.8,0.10,0.20,0.00) 0.016  0.073 0.024 0.08  0.048 0.092
(1.0,0.8,0.25,0.25,0.00) 0.032 0.058 0.037 0.088 0.049 0.091
(1.0,0.8,0.50,0.20,0.00)  0.024 0.064 0.043 0.08 0.048 0.089
(1.0,0.8,0.50,0.50,0.00) 0.033 0.072 0.043 0.08 0.049 0.093
(1.5,1.0,0.50,0.50,0.00)  0.030  0.072 0.038 0.088 0.046  0.090
(1.5,1.0,0.50,0.75,0.00)  0.033 0.071 0.042 0.084 0.047 0.098
(1.5,1.0,0.75,0.25,0.00)  0.036  0.097 0.039 0.097 0.049 0.099
(1.5,1.0,1.00,0.25,0.00) 0.039  0.088 0.046 0.090 0.049 0.093
(2.0,1.0,0.25,0.75,0.00)  0.031 0.087 0.044 0.092 0.048 0.099
(2.0,1.0,0.50,0.25,0.00) 0.035 0.068 0.039 0.081 0.047 0.093
(2.0,1.0,0.75,0.25,0.00)  0.037 0.080 0.045 0.088 0.049 0.096
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Table 5. Simulation results for the probability of type I error for a; = 1 and ap = 5.

n =30 n =50 n=170
0 «=0.05 a=0.1 a=0.05 «=0.1 «=0.05 «a=0.1

(1.0,0.8,0.10,0.20,0.00)  0.014 0.037 0.032 0.075 0.051 0.093
(1.0,0.8,0.25,0.25,0.00)  0.023 0.074 0.053 0.090 0.060 0.113
(1.0,0.8,0.50,0.20,0.00) 0.036  0.101  0.062 0.110 0.064 0.117
(1.0,0.8,0.50,0.50,0.00)  0.023 0.080 0.042 0.107 0.063 0.109
(1.5,1.0,0.50,0.50,0.00)  0.022 0.081 0.037 0.111 0.046 0.108
(1.5,1.0,0.50,0.75,0.00)  0.039  0.095 0.048 0.108 0.056  0.108
(1.5,1.0,0.75,0.25,0.00)  0.034 0.108 0.048 0.107 0.054 0.108
(1.5,1.0,1.00,0.25,0.000  0.037 0107 0.059 0.109 0.054 0.107
(2.0,1.0,0.25,0.75,0.00) 0.048 0.106  0.056 0.108 0.054 0.106
(2.0,1.0,0.50,0.25,0.00)  0.025 0.107 0.047 0.108 0.045 0.108
(2.0,1.0,0.75,0.25,0.00)  0.043 0107 0.045 0.107 0.043 0.106

Table 6. Simulation results for the probability of type I error for a; = 5and ap = 1.

n =30 n =50 n=170
0 «=0.05 a=0.1 «a=0.05 «=0.1 «=0.05 «a=0.1

(1.0,0.8,0.10,0.20,0.000  0.015 0.040 0.032 0.062 0.042 0.081
(1.0,0.8,0.25,0.25,0.00) 0.034 0.076 0.045 0.101 0.048 0.104
(1.0,0.8,0.50,0.20,0.00)  0.028 0.084 0.048 0.073 0.053 0.089
(1.0,0.8,0.50,0.50,0.00) 0.028 0.069 0.045 0.079 0.054 0.098
(1.5,1.0,0.50,0.50,0.000 0.019 0.071 0.035 0.078 0.042 0.099
(1.5,1.0,0.50,0.75,0.00)  0.044 0.104 0.048 0.098 0.056 0.104
(1.5,1.0,0.75,0.25,0.00)  0.027 0.107 0.038 0.105 0.046 0.103
(1.5,1.0,1.00,0.25,0.000  0.037 0117 0.043 0.112 0.060 0.107
(2.0,1.0,0.25,0.75,0.000  0.037 0112 0.039 0.108 0.054 0.108
(2.0,1.0,0.50,0.25,0.00) 0.026  0.077 0.034 0.109 0.055 0.109
(2.0,1.0,0.75,0.25,0.000 0.034 0.116 0.045 0.107 0.056 0.105

Table 7. Simulation results for the probability of type I error for a; = 5and ap = 5.

n =230 n =50 n=170
0 «=0.05 a=0.1 «a=0.05 «a=0.1 «=0.05 «a=0.1

(1.0,0.8,0.10,0.20,0.00)  0.017 0.035 0.032 0.065 0.050 0.089
(1.0,0.8,0.25,0.25,0.00)  0.027 0.077 0.034 0.081 0.043 0.084
(1.0,0.8,0.50,0.20,0.00)  0.030  0.086 0.042 0.087 0.048 0.104
(1.0,0.8,0.50,0.50,0.00)  0.013  0.069 0.030 0076 0.045 0.105
(1.5,1.0,0.50,0.50,0.00) 0.016  0.063 0.035 0.078 0.046  0.087
(1.5,1.0,0.50,0.75,0.00)  0.019 0.085 0.061 0.089 0.054 0.094
(1.5,1.0,0.75,0.25,0.00)  0.031 0.071 0.053 0.102 0.047 0.098
(1.5,1.0,1.00,0.25,0.00) 0.037 0.086 0.049 0.104 0.052 0.102
(2.0,1.0,0.25,0.75,0.00)  0.015 0.087 0.057 0.098 0.055 0.101
(2.0,1.0,0.75,0.25,0.00)  0.040 0.097 0.054 0.102 0.053 0.102



https://doi.org/10.20944/preprints202010.0016.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 October 2020 doi:10.20944/preprints202010.0016.v1

12 of 14

Table 8. Simulation results for the power. The values are in the form of percentages, rounded to the
nearest integer.

Alternative V(O,O) V(l,O) V(l,l) V(1,5) V(5,5)
BB(l; 0.41,0.02, 0.01) 87 81 89 81 85
BB(l; 0.41,0.03, 0.02) 85 82 88 80 86
BB(Z; 0.61,0.01, 0.01) 93 84 98 83 92
BB(1;0.61,0.03,0.02) 95 89 100 87 95
BB(Z; 0.71,0.01, 0.01) 94 86 100 85 93
BP(l.OO, 1.00, 0.25) 85 76 89 77 82
BP(l.OO, 1.00,0.50) 84 77 91 72 85
BP(l.OO, 1.00,0.75) 87 75 92 73 83
BP(1.50, 1.00, 0.31) 87 77 93 75 87
BP(1.50, 1.00, 0.92) 86 76 92 77 87
BLS(O.25, 0.15, 0.10) 94 85 98 86 95
BLS(5d/7,d/7,4/7)* 91 85 100 84 90
BLS(3d/4,d4/8,4/8)* 90 86 100 84 90
BLS(7d/9,d/9,d/9)* 94 86 100 83 93
BLS(0.51,0.01,0.02) 90 83 98 83 91
BNB(1;0.92,0.97,0.01) 93 87 96 85 92
BNB(1;097,0.97,0.01) 2 8 95 8 92
BNB(l,' 0.97,0.97, 0.02) 94 88 100 89 93
BNB(1;0.98,0.98,0.01) 92 84 97 85 92
BNB(1;0.99,0.99,0.01) 91 84 96 83 91
BNTA(0.21;0.01,0.01,0.98) 93 86 98 85 92
BNTA(O.24; 0.01,0.01, 098) 95 87 100 85 95
BNTA (0.26,’ 0.01,0.01, 0.97) 93 85 97 86 93
BNTA(0.26;0.01,0.01,0.98) 94 85 98 86 94
BNTA(O.ZS; 0.01,0.01, 0.97) 93 86 96 86 94

BPP(0.31;(0.2,0.2,0.1), (1.0,1.0,0.9)) 76 70 82 72 77
BPP(0.31;(0.2,0.2,0.1),(1.0,1.2,0.9)) 77 71 84 71 76
BPP(0.32; (0.2,0.2,0.1),(1.0,1.0,0.9)) 78 71 84 71 76
BPP(0.33;(0.2,0.2,0.1),(1.0,1.0,0.9)) 78 70 85 70 77
BPP(0.33;(0.2,0.2,0.1),(1.0,1.1,0.9)) 76 71 83 70 78

*d=1—exp(—1) =~ 0.63212.

e bivariate Neyman type A distribution BNTA(A; A1, Ay, Az), where 0 < Aj + Ay + A3 <1,

e bivariate Poisson distribution mixtures of the form pBP(0) + (1 — p)BP(A), where 0 < p < 1,
denoted by BPP(p;6, 7).

Table 8 displays the alternatives considered and the estimated power for nominal significance level

« = 0.05. Analyzing this table we can conclude that all the considered tests, denoted by V/ , are

a1,2)
able to detect the alternatives studied and with a good power, giving better results in cases where
a1 = ay. The best result was achieved for 1y = 4, = 1, as expected, as occurred in the study of type I

error.

5.3. Real data set

Now, the proposed test will be applied to a real data set. The data set comprises the number of
accidents in two different years presented in [7]. Where X is the accident number of the first period
and Y the accident number of the second period. Table 9 shows the real data set.

The p—value obtained from the statistic Vn,w(én) of the proposed test, witha; = 1and a; =0
applied to the real values is 0.838, therefore, we decided not to reject the null hypothesis, that is, the
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Table 9. Real data of X accident number in a period and Y of another period.

X
0 1 2 3 4 5 6 7 Total
0 117 96 55 19 2 2 0 0 291
1 61 69 47 27 8 5 1 0 218
2 34 42 31 13 7 2 3 0 132
Y 3 7 15 17 7 3 1 0 O 49
4 3 3 1 1 2 1 1 1 13
5 2 1 0 0 0 0 0 O 3
6 0 0 0 0 1 0 0 O 1
7 0 0 0 1 0 0 0 O 1
Total 224 226 150 68 23 11 5 1 708

data seem to have a BHD. This is consistent with the results presented by Kemp and Papageorgiou in
[5], who performed the goodness-of-fit test x> obtaining a p—value of 0.3078.
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BHD Bivariate Hermite Distribution
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