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Abstract: Thanks to Light Detection and Ranging (LiDAR), autonomous vehicles are able to detect
different objects in their environment and measure the distance between them. This device gives an
unmanned ground vehicle the ability to see its surroundings in real time. However, the accuracy of
LiDAR can be reduced, especially in rainy weather, fog, urban smog and the like. These factors can
have disastrous consequences as it increases errors in the vehicle's control computer. The aim of this
research was to determine the most appropriate LiDAR frequency for autonomous vehicles,
depending on the distance to them and scanning frequency in various weather conditions, therefore
it is based on empiric data obtained by using the RoboPeak A1M8 LiDAR. The results obtained in
rainy conditions are compared with the same ones in clear weather, using stochastic methods. A
direct influence of both the frequencies used and the rain on the accuracy of the LIDAR measurements
was found. Range measurement errors increase in rainy weather; as the scanning frequency increases,
the results become more accurate but capture a smaller number of object points. The higher
frequencies lead to about five times less error at the farthest distances compared to the lower
frequencies.

Keywords: autonomous vehicle; RoboPeak A1MS8 laser scanner; LIDAR; distance; stochastic methods

1. Introduction

Autonomous vehicles are one of the most rapidly developing areas of transport, where the latest
technologies and achievements in sensors, artificial intelligence and information technologies are
concentrated [1-3]. It is expected that the latest technologies in this field and the development of new
driving functions will have a positive impact on the economic, natural and social environment [4-7],
according to the work of large scientific teams, experienced engineers as well as students and even
junior researchers.

The system of autonomous vehicles needs to detect various objects in the environment and at
the same time evaluate distances, usually using a laser range finder (hereafter referred to as LiDAR)
[8,9]. This device is considered one of the most important because it gives an unmanned ground
vehicle the ability to see its surroundings in real time.

The accuracy of modern LiDAR distance measurements is relatively low. Ongoing work in this
area will correct this drawback and, according to the authors of the paper [10-12], this improvement
in LiDAR will allow it to be used in even more applications.

There are 6 factors that generally affect the return signal and adversely affect the results, and
they can be divided into the following groups: false detection of various objects (cars, pedestrians or
other infrastructure), noise in the optical unit or detector amplifier, electromagnetic interference, too
high signal level in the receiver circuit, ground relief reflections and false detections in changing
weather conditions [13,14]. Additional factors (such as driving parameters and the type of surface
being scanned) also affect the accuracy of LiDAR readings.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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To date, there has been little research evaluating the accuracy of LiDAR performance in
autonomous vehicles. Most of it focuses on LIDAR applications for unmanned aerial vehicles (UAVs).
However, some conclusions on LiDAR accuracy can be drawn from the analysis of such studies.

For example, [15-18] states that LiDAR research data cannot replace traditional distance
measurements when centimeter or even millimeter accuracy is required. Similarly, [19] found that
the accuracy of a LIDAR mounted on a UAV reached 10 cm or more when the LiDAR was 50 m away
from the object.

Various LiDAR result processing algorithms [20], such as iterative closed point (ICP) algorithms,
generalized ICP algorithms and normal distributions transform (NDT) algorithms, have been
proposed to improve measurement accuracy [13,21-23]. However, the use of such algorithms
requires a large number of points, which is not always available.

One of the few studies on the accuracy of LIDAR in cars is presented in [24], where the Pro-SiVIC
LiDAR was investigated by simulating normal weather conditions and using a laser beam with the
following parameters: wavelength A = 905 nm, pulse energy 1.6 pJ, pulse duration 16 ns, divergence
0.07°. The results obtained show how the signal-to-noise ratio (SNR) changes as a function of the
distance between the sensor and the car. It can be seen that the SNR values are higher when the signal
is reflected by the car body. This is due to the nature of the metal material, which can reflect more
than plastic or semi-transparent objects such as glass. Signal intensity decreases with distance
according to Lambert's law of light absorption. The LiDAR receiver can also detect the return signal
from objects with strong reflective properties (e.g., metal surfaces) at long range (190 m). The
detection range can be extended by increasing the laser power or reducing the beam divergence.

In summary, reflective objects with flat metal surfaces such as trucks, cars and road signs can be
detected at a distance of more than 100 meters under normal weather conditions: For motorcycles
and pedestrians, the maximum detection distance is lower because there are fewer or no metal
surfaces. The signal decays exponentially as the distance between the LiDAR and the vehicle
increases. With a dense distribution of water particles in the atmosphere (rain, fog), the signal
amplitude decreases rapidly, and the range of detectable distance decreases many times. As a result,
it can be difficult to maintain a safe distance between vehicles in poor visibility [25], and it would be
difficult to control the situation if, for example, an oncoming vehicle suddenly brakes
[10,15,19,21,22,24].

Thus, the purpose of this research is to determine the most appropriate LiDAR frequency for
autonomous vehicles, depending on the distance to them, as well as evaluating various weather
conditions.

2. Influence of Weather Conditions on Data Analysis

Both rain and fog consist of tiny water droplets that scatter the energy of the laser beam. The
backscattering in a single water droplet can be modelled as the scattering of an electromagnetic wave
by a dielectric sphere of diameter D and refractive index n, which depends on the wavelength. A
statistical distribution of water droplets with different diameters D can be used to model rain and
fog. The probability of a laser transmitter hitting a droplet of diameter D is assumed to be N(D). It is
assumed that there is only inelastic dissipation, i.e., light scattered by water droplets is not scattered
by another droplet and no energy is converted to another wavelength. In this case, the attenuation of
the signal in the atmosphere, i.e., the extinction coefficient o and the backscatter coefficient g:

= % [ D*Qexr (D) - N(D)dD, )

B=% [, D*Qs(D) N(D)dD, 2)

here D is the droplet diameter [mm], N(D) is the probability of hitting a water drop with a diameter
of D.

An experimental computer simulation [24] showed that the accuracy of the results obtained in
the case of the Velodyne VLP-16 LiDAR in an environment with different obstacles and different rain
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intensities is affected by factors such as the reflection coefficient of body surfaces. The simulation
used ODOA (Obstacle Detection and Avoidance) algorithms, which are used in the safety functions
of today's Advanced Driver Assistance Systems (ADAS). This safe driving system automates the
vehicle, ensuring safety and minimising driver error. It is also shown that as the rain intensity
increases, the number of points scanned after a scan cycle decreases. At the same time, the resulting
point cloud map is severely degraded.

At a rain intensity of less than 17 mm/h (i.e., heavy to moderate rain [26]), there was no strong
effect on the obstacle detection distance. As the rain intensity increases, the maximum detectable
distance decreases by 5-6 metres.

It is obvious that as the rate of rain increases, the number of possible readable point’s decreases
and the environmental point cloud is affected.

The data obtained from the experiments must be evaluated by statistical analysis, as this allows
evaluating such factors as data reliability (errors), correlation, etc. One of these is root mean square
error (RMS), which is used as a measure of the difference between the true (or expected) values and
the obtained values:

(©)

here x, is the expected value, x; is the obtained value, 7 is the number of measurements.

Another parameter, which is used for statistical empiric data analysis, is correlation coefficient
p, which shows the strength and direction of the relationship between variables, i.e., how similar the
measurements of two or more variables are. This analysis helps to optimize the data set and is
expressed through:

Cov(x,y)
Rpxy=M, (4)

ox0y

here p,, is the Pearson correlation coefficient, Cod(x,y) is the covariance of quantities x and y, o,

Ro = ’Z(xi—ll)zl (5)
n-1

w== (6)

and o, are standard deviations (variance):

here x; — u is the deviation of the individual result from the arithmetic mean.

The normal distribution, also known as Gaussian distribution, is a type of probability
distribution for a real-valued random variable, where small deviations occur more frequently than
large ones. A probability density function PDF is used to find the probability that a value of a random
variable will occur within a given range of values:

_(-w?

207, )

1
e
oV2n

feor(x) =

The cumulative distribution function (CDF) is used to calculate the cumulative probability, and
it means that a random variable will acquire a value less than or equal to it:

feor () =@ (%), )

g

here @ is the cumulative distribution function of the normal distribution. In this paper, CDF is used
for graphical evaluation of the experimental results.

3. Methodology of the Experiments

The RoboPeak A1MS laser rangefinder from Slamtec Co. Ltd. was selected for the experimental
research. The system of this device can perform a 360-degree environmental scanning at a range of
up to 12 meters, with a standard rotation of range finder module (laser spot onto the target); the
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reflected light falls on the receiver element at an angle depending on the distance. AP is the geometric
relationship between the two laser spot positions (initial and shifted due to the object displacement)
and the corresponding image displacement in the detector d. The device has the following optical
characteristics: wavelength A =795 nm, laser power is 5 mW, pulse duration 300 us [27]. I and I” are
the optical paths from the object to the receiver before and after object shift. Whereas angle ¢ is the
angle between the laser beam and the receiver imaging optics axis.

All figures and tables should be cited in the main text as Figure 1, Table 1, etc.

T, Detector

~

R S

Figure 1. Principle of the laser triangulation sensor. The red line represents the focused illumination laser beam.
The magenta lines represent the image of laser spot beam through the lens to the sensor's detector. The detector

tilt satisfies the Scheimpflug condition [28].

Table 1. The results of the experiment at clear conditions and a distance d of 1 m.

i, number of

d, m f, Hz points di=1matm  RMSean, MM Gppean, MM
2 49 0,944 44,467 7,837
2,6 29 0,971 23,097 5,946
1 3,5 21 0,975 20,081 6,671
43 17 0,987 8,564 3,796
55 13 0,998 4,809 4,393
7 10 0,996 4,589 2,886

The light source is a low power (<5 mW) infrared laser controlled by modulated pulses. In
addition, this model has integrated high-speed environmental image acquisition and processing
hardware. The system can take 2000 measurements per second and process the measurement data to
create a two-dimensional point map. The resolution of RoboPeak A1MS8 can reach up to 1% of the
actual measuring distance. A belt attached to the electric motor pulley drives the unit that scans the
environment.

Experiments are carried out in both clear (no rain) and rainy conditions by scanning a reference
object (target, stationary sphere of 135 mm diameter) at different frequencies and storing the
surrounding map data on the computer using the RP-LiDAR frame grabber software program.
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After scanning at a distance d, the target is moved, and the measurements are repeated at the
next position. By repeating this process 6 times, measurements are taken in a distance range of 1 to 6
m. In this way, measurements are taken every 1 m up to the limit distance d», at which the measured
object is just fuzzily recognised.

3.1. Test in Clear Weather Conditions

The setup used for the experimental evaluation of the LiDAR sensor performance in clear
weather conditions is shown in Figure 2. The legend in the right part of the figure explains the
symbols used for detailed understanding.

Fl = | | | | | B LiDAR
L._J r“J I l I I I O Object
L d 1| Other place
of ohiect

I Fixed distance
marl 1

dn

""" - Direction I

Figure 2. Test scheme in clear weather conditions. (LiDAR rotation frequency: 2; 2.6; 3.5; 4.3; 5.5; 7 Hz; distances
d: 1to 6 m, every 1 m; target is a stationary placed sphere of 135 mm diameter).

The measurement data, collected in this configuration, are shown as statistics in Table 1 for the
distance set as d=1 m and in Table 2 for the set distance of d» of 6 m, which is mentioned also in the
first column of both tables as distance d [m] to the object under investigation. Beside this f is the
scanning frequency [Hz], i is the number of the captured shape points of the object, di-1 [m] is the
distance [m] actually measured to the closest point of the target (which is considered as an obstacle
in real use, so shortest distance is the critical one), RMS,;; is the mean square error of measurements,
and 0,4 is the dispersion of measurements.

Calculations of the RMS (Formula 3) have revealed that the highest distance errors occurred
when using a scanning frequency of 2 Hz, while the lowest ones were obtained at 5.5 or 7 Hz (Table
1). Although at the closest distance (1 m) a scanning frequency of 5.5 or 7 Hz cause about 9 times
smaller errors compared to the errors recorded at the longest distance (6 m), also here the errors are
still 6 times smaller using high scanning frequencies compared to the case of just 2 Hz.

In these investigations, a clear dependence of the distance variation on the scanning frequency
has been observed; the distances are most accurate in the range of higher frequencies of 5.5 and 7 Hz
(Table 1, Figure 3).
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Figure 3. Restored images of the object at a distance d = 1 m, at different scanning frequencies resulting in
different amounts of image points (x-coordinate is the distance to left and right from central LiDAR fixed

position).

The number of points that the LiDAR receiver can detect determines the accuracy of the shape
of the object. This number strongly depends on both: the distance to the object and the scanning
frequency of the LiDAR (Figure 4). Here in a first example the silhouette of a person is depicted in a
red frame (magnification right to the complete picture). It is seen very clear that in the case of rain at
the given distance (5 m) the silhouette of a person is difficult to recognize. Although, the most points
of object have been registered at lower frequencies (2 and 2.6 Hz), these frequencies resulted to bigger
loss of distance accuracy (Table 1): when the real distance was 1 m, the LiDAR captured distances of
0.944 m and 0.971 m.

The upper and lower images show the situation without rain and with rain, respectively. A
scanning frequency of 7 Hz was used, with measurements taken at a distance of 5 m. Rain intensity
is 9.84 mm per hour. Rain fell on the person and between him and the LiDAR. The tree was unaffected
by the rain.
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Figure 4. Human silhouette (outlined in red) at 5 m distance from the LiDAR: recognized in the upper image
(without rain) and not detected lower image with rain), while the tree is nearly imaged the same at both

conditions (slightly different viewing angle at the two conditions).

Therefore, there is important to determine an optimal scanning frequency depending on the
distance to the object. For an object at a distance of 6 m the detector can only pick up more than one
reflected signal from that object if a frequency of 4.3 Hz or less is used. This means that at higher
scanning frequencies (5.5 or 7 Hz), the object (again a ball of 135 mm diameter) becomes practically
invisible at this 6 m distance limit; the Slamtec RoboPeak A1M8 LiDAR could only detect 1 point
(Table 2, Figure 5).

Table 2. The results of the experiment under clear conditions and a distance 4 of 6 m.

I, number of

d, m f, Hz points di=imatm  RMS, can, MM Gpeapn, Mm
2 10 5,885 82,033 36,745
2,6 4 5,901 82,820 14,879
6 3,5 3 5,923 80,886 3,402
43 2 5,924 80,662 6,442
55 1 5,982 20,227 -
7 1 5,946 54,173 -
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Figure 5. Restored images of the object at a distance 4 = 6 m.

From this, it can be concluded that there must be an object at the measured distance. This
information is still useful for rough obstacle detection, but no longer for control routines, as the shape
and size information of the object is lost.

3.2. Test in Rainy Weather Conditions

Experiment scenario is similar to clear weather conditions, but it is carried out by causing
artificial rain between the LiDAR transmitter and the object (Figure 6). The artificial rain was placed
next to the sensor, between the sensor and the object.

g LiDAR

Afzdl O Ohbject
TR Other place
~
F. - .-.._.{9 ..... ‘| _______ | | | | of ohiect
- ! I I I 1 Fixed distancs
e mar
dl
o . Direction
an = | Artificial rain
= i source

Figure 6. Test scheme with artificial rain. LIDAR rotation frequency: 2; 2.6; 3.5; 4.3; 5.5; 7 Hz; Distances d: 1 + 6

m, every 1 m; the measured object is a stationary ball of 135 mm diameter; measurement environment — rain

intensity ~ 20 mm/h.

The object was again placed at a distance from 1 to 6 m. The results at distances-l m and 6
m are shown in Tables 3 and 4 respectively.

Table 3. The results with rain at a distance of d=1 m.

I, number of

d, m f, Hz points di=imatm  RMS, can, MM Gpeapn, MM
2 10 0,983 16,739 10,104
2,6 6 0,978 13,658 10,359
1 3,5 6 0,974 16,735 8,589
43 6 0,991 8,050 4,656
5,5 7 0,998 4,418 3,925
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7 4 1,009 8,178 3,256
Table 4. The results for rain at a distance of d =6 m.
I, number of
d, m f, Hz points di=imatm  RMS, can, MM Gpeapn, MM

2 5 5,836 129,825 26,977

2,6 3 5,823 110,360 70,211
3,5 1 5,989 35,633 -
6 4,3 1 6,054 34,449 -
5,5 1 6,052 23,182 -
7 1 5,989 11,225 -

The object at a distance of 1 m is determined very accurately at higher frequencies (5.5 and 7 Hz)
very comparable to the clear weather condition experiment: the reference distance of 1 m has been
measured as 0.998 m and 1.009 m, respectively. At a distance of 6 m, the object becomes invisible at
scanning frequencies of 3.5 Hz or higher, while at frequencies below 2.6 Hz, the object has detected,
but the shape of the object is lost (Table 4). Thus, as the distance increases, scattering of the point the
captured from object becomes larger (Figures 7 and 8).
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Figure 7. Restored images of the object at a distance 4 = 1 m in rainy weather conditions.
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Figure 8. Restored images of the object at a distance d = 6 m in rainy weather conditions.

It can be clearly seen that the number of points of the detected object decreases, since the field
increases with increasing distance at a constant angle of view, resulting in fewer points being detected
for more distant objects (Tables 1, 2, 3, 4 and Figures 3, 5, 7, 8, correspondingly). This inverse
dependence seen on Figures 9 and 10 for both weather conditions.
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Figure 9. Number of detected point’s vs scanning frequency f [Hz] and measurement distance d [m] without

rain.
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Figure 10. Dependence on the number of detected points on scanning frequency f [Hz] and measurement

distance d [m] in rainy weather conditions.

When the distance increases, the number of points of the detected object decreases significantly.
At a number of detected points per object below five, just the presence of the object and distance to it
is detected, but not its shape and size. The same trend occurs at all scanning frequencies, as also
shown in the following two diagrams.

Such dependencies of the number of points can be approximated very well by these
corresponding equations: without rain (9) and with rain (10):

n= 120.25d—1.006f—(1.169+0.085d), 9)

n, = 14.674d_0'353f_(0'414+0'139d), (10)

here n and nr are the number of detected points without rain and in rainy condition, while d is the
distance from the LiDAR to the object in meters (m), and fis the scanning frequency in hertz (Hz) of
the LiDAR sensor.

Figure 11 shows the correlation between the experimentally detected number of points and the
number of points calculated using the two the formulas (9, 10) for conditions with and without rain.
The correlation coefficients are 0.98 without rain and 0.83 with rain. These strong correlations confirm
the adequacy of both models, formulae 9 and 10, with respect to the experimental results (Figure 11).
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Figure 11. Correlation between calculated and experimental number of detected points obtained from different

scanning frequencies.

Thus, it is possible to predict the number of captured points that the sensor under study can
detect depending on the distance and the LiDAR operating frequency without rain. The results of
this prediction and the comparison with the experimental data are shown in Figure 12 (for clear
weather conditions) and in Figure 13 (for the rain condition).

700

600

6 Hz
7 Hz
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number of points theoretical drawn as lines
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7 8 9 10 11 12
Distance inm ——

number of points experimental drawn as dots

Figure 12. Predicted and experimental number of recorded points depending on distance d [m] and LiDAR

operating frequency f [Hz] in clear weather conditions.
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Figure 13. Predicted and experimental number of recorded points depending on distance d [m] and LiDAR

operating frequency f [Hz] in rainy weather conditions.

It can be concluded that the modeled dependencies and experimental results correspond very
well (Figures 12 and 13). At a LIDAR operating frequency of 1 Hz (in clear weather conditions) the
number of points recorded at the minimum distance of 0.2 m between the sensor and the obstacle is
more than 600, and at the maximum distance of 12 m this number is reduced to 10 (Figure 12).
However, at the maximum LiDAR operating frequency of 10 Hz, it is possible to capture a sufficient
number of points (at least one) at a distance of no more than 5 m (Tables 5 and 6).

Table 5. Predicted number of recorded points as a function of distance 4 [m] and scanning frequency f [Hz] in

clear weather conditions (regarding Figure 12).

d [m] n@2Hz N @3.5 Hz N@7Hz
1 56 22 10
2 29 11 5
3 18 7 3
4 12 4 2
5 7 2 1
6 10 3 1

Table 6. Predictive number of recorded points depending on distance 4 [m] and scanning frequency f [Hz] in

rainy weather conditions (regarding Figure 13).

d [m] n@2Hz N @3.5 Hz N@7Hz
1 10 6 4
2 14 5 4
3 8 2 2
4 5 2 2
5 3 2 1
6 5 1 1
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The object points should no longer be recorded from 3.8 m in rainy weather and when the LIDAR
operating frequency is 10 Hz (Figure 13). The actual values of the measured distance at 1 and 6 m are
0.983 m (clear weather) and 0.978 m (rainy weather) and 5.836 m and 5.823 m respectively. The
influence of the rain is therefore quite small in these measurement conditions. The smallest
measurement errors are obtained with 5.5 or 7 Hz. For example, RMS at 1 m and 5.5 Hz is 4.42 mm,
RMS at 1 m and 7 Hz is 8.18 mm, RMS at 6 m and 5.5 Hz is 27.35 mm, and RMS at 6 m and 7 Hz is
23.93 mm. Thus, in rainy weather conditions, when the measured object is 6 meters away, scanning
frequency of 5.5 Hz ensures about 5-6 times bigger errors (RMS) compared to the case when 2 Hz is
used. So, both the distance to the object and its shape are determined much more accurately in higher
frequencies.

The obtained measured distance values after simulating in this case at a distance of 1 m are
strongly linearly correlated, as the calculated Pearson correlation coefficient is equal to 0.81 (formula
4). An obtained correlation coefficient is 0.49 at a distance of 6 m, so it is assumed that the existing
correlation between the measurements is moderately strong. In this case, the evaluation of the results
includes measurements only at 2 and 2.6 Hz.

Figures 14 and 15 reveal the dependence of RMS variation on distance d [m] at different LIDAR
operating frequencies f [Hz]. A quite large dispersion of results is observed (Figures 14 and 15), i.e.
lower accuracy of the approximating formulas 11 and 12:

RMS = 495.17f_3'101d(0'310f_0'708) (11)
RMS, = 59.681f~1159¢(0133/-0.01) (12)
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Figure 14. RMS vs distance d [m] for different LIDAR operating frequencies f [Hz]: (a) clear weather; (b) rainy
weather conditions.

Calculation of the RMS shows that the largest error occurs at a scanning frequency of 2 Hz (RMS
at 1 m measuring distance is 16.74 mm and at 4 m 123.43 mm). In this case the correlation coefficients
are 0.61 in clear weather and 0.73 in rain. In last case (formula 12) the correlation coefficient is strong
compared to the case without rain (formula 11) where the correlation is only moderate. Furthermore,
when assessing the correlation at different frequencies, a strong correlation only occurs at higher
LiDAR operating frequencies (> 5 Hz) (Figure 14).

A full RMS prediction was attempted for clear and rainy weather conditions (Figures 15 (a) and
(b), correspondingly).
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Figure 15. RMS vs distance d [m]: (a) clear weather; (b) rainy weather conditions.

An interesting trend about the different nature of the RMS depending on the frequency range
can be seen in Figure 15. As long as the frequencies are < 6 Hz, the RMS variation with increasing
distance d varies significantly up to a distance of 3 m, but as the distance increases further, the RMS
increase is already smaller (stabilization behavior). Meanwhile, at higher frequencies (f > 6 Hz), the
RMS increase is almost linear with gradients; the higher the frequency, the higher the gradient. This
particular behavior results in a lower RMS for distances up to about 6 m when using higher
frequencies (6 Hz and above), while at longer distances lower scanning frequencies (below 6 Hz)
provide a lower RMS. This should be considered when making practical measurements.

4. Further Investigations Using the Experimental Data

Correlation analysis can reveal the correspondence between measured and real values. At a
measurement distance of 1 m the actual values for the spherical shape have a linear dependence
(values from the LiDAR sensor and geometric values), as shown in Figure 16 (a), since the calculated
Pearson correlation coefficient is equal to 0.97. The evaluation of the results is performed at a distance
of 6 m (Figure 16 (b)), but the data at 5.5 and 7 Hz are not included, since only one point of the
observed object is recorded at these frequencies. Again, for the evaluated frequencies a linear
correlation was found.
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Figure 16. Scatter diagram under clear weather conditions: (a) d =1 m; (b) d = 6 m.
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Obviously, the LiDAR scan frequency and distance to the object directly determine the
measurement accuracy. The correlation coefficient is calculated based on the average value of the
measurements using different scan rates; 0.84 is obtained at a distance of 6 m, which is lower
compared to a distance of 1 m, but the correlation is still quite high (Figure 17).
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Figure 17. Standard deviation without rain and with rain: at distances of 1 m; (b) d = 2 m, correspondingly.

As can be seen in Figure 17 (a and b), the lower the scanning frequency, the larger the errors
(RMS). The largest data discrepancy occurs when using a 2 Hz scanning frequency, which is very
pronounced at a distance of 2 m (Figure 17, (b)). Except for the case where the object is 1 m away and
7 Hz is used for scanning, the influence of rain causes greater measurement errors than in clear
weather conditions (Figure 17); this tendency is particularly evident at lower frequencies and as the
distance from the measured object increases. In addition, the 3.5 Hz measurements in clear weather
conditions are only slightly more accurate than the 2 Hz case. This trend is clearly observed when
scanning at higher frequencies, with the results approaching the steeper shape of the theoretical CDF
curve (Figure 18).
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Figure 18. Normal distribution CDF measured and theoretical values at a distance of 1 m for scanning frequency
fof 2 Hz and 7 Hz.

This means that when scanning at a frequency of 7 Hz, the dispersion of measurements becomes
minimal and the measurement results are more reliable (Figure 18).

The beam emitted by the LiDAR is refracted when it passes through a water droplet; it changes
direction and the sensor cannot receive it. It was observed that the refraction increases with increasing
distance between the LiDAR and the scanned object, because in this case more raindrops refract the
laser beam and effectively separate the LIDAR from the scanned object. This leads to sampling errors.
It was found that when scanning a sphere with a diameter of 135 mm or less at a distance of more
than 5 m, only one point is recorded due to limited visibility.

5. Discussions

Based on this study of the performance of a commercially available LiDAR sensor, important
conclusions can be drawn about the most appropriate use of the sensor in various weather conditions
when measuring the distance to an object.

As for the performance of the actual Velodyne VLP-16 LiDAR sensor, the following can be
summarized: the most accurate readings at a 1 m distance in clear weather conditions are obtained
using the higher scan frequencies of 5.5 and 7 Hz. At a 135 mm diameter sphere test object, distances
of 0.998 m and 0.996 m are measured respectively. Although more object points are collected at lower
frequencies (2 and 2.6 Hz), the distance accuracy is reduced (distances of 0.944 m and 0.971 m are
obtained), however the shape of the test object was better recognised. In figures the scanning
frequency of 5.5 or 7 Hz allows to obtain about 9 times smaller errors compared to 2 Hz. When
measuring the same object at a distance of 6-7 m, the errors also increase for the higher scan
frequencies, but they are still 6 times smaller compared to the 2 Hz frequency already mentioned.
Therefore it is recommended to use the highest possible scanning frequency for object identification
in clear weather conditions.

When measuring the 1 metre distance with higher frequencies (5.5 and 7 Hz) in rainy conditions,
the readings were still quite accurate (0.998 m and 1.009 m respectively). However, as the distance to
the object increases, the scattering of the measurement points increases significantly, as the raindrops
changes the normal environmental conditions and introduce errors due to the refraction
phenomenon described above. It has been found that the test object becomes invisible at larger
distances when scanning frequencies of 3.5 Hz and higher are used. Using frequencies lower than 2.6
Hz, even at longer distances, the test object can still be detected, but shape recognition is lost.

Comparing the results in clear and rainy conditions shows the same qualitative behaviour,
which can be generalized for LiDAR sensors: increasing the scan frequency results in more accurate
distance data, but in this case a smaller number of object points are recorded, and shape recognition
is reduced or even lost. The direct influence of rain on reducing the accuracy of LiDAR readings is
also evident in the data, which can be explained by the reflection of laser light.

Based on this study carried out on static objects and in different environmental conditions, it
would be worthwhile to conduct research on the detection of a moving object, taking into account
the rapidly changing coordinates of this test object. For this purpose, and based on the results
collected and discussed in this paper, the authors propose the application of an adaptive LiDAR
frequency selection algorithm that would depend on the weather conditions and the speed and
distance of object.

Beyond the concrete results of this study, it can be stated that a method was developed to
characterise modern range sensors based on different operating principles (e.g. time-of-flight sensors
[29]) under different environmental conditions and the data evaluation required for this. This should
be addressed in further work.
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Abbreviations

The following abbreviations are used in this manuscript:

LiDAR Light Detection and Ranging

ICP Iterative Closed Point

NDT Normal Distributions Transform
SNR Signal to Noise Ratio

UAV Unmanned Aerial Vehicle

ODOA Obstacle Detection and Avoidance
ADAS Advanced Driver Assistance Systems

RMS Mean Square Error
CDEF Cumulative Distribution Function
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