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Abstract:

The article derives the probability for lethal recessive alleles in the case of recessive
disadvantage or advantage. It is shown that recessive advantage of a lethal gene can be
detected by the ratio of heterozygotes and homozygotes. This demonstrates that higher 1Q of
certain ethnic groups cannot be explained by recessive advantage of lethal genes. The article
shows that lethal genes can survive in the population if some lineages of families have much
more children than the average.

1. Introduction

Lethal recessive alleles are gene alleles, which either are lethal for a homozygote, or were so
in past centuries. They cause rare serious diseases including Cystic Fibrosis (carrier frequency
1/24 in Northern Europeans, see [1]), Tay-Sachs disease (1/29 Ashkenazi Jews [2]), Gaucher
disease (1/18 in Ashkenazi Jews [3]), a-Thalessemia (1/25 Chinese and SE Asians [4]), B-
Thalessemia (1/30 Greeks and Italians [5]). Most of these diseases can be caused by several
different mutations, but the disease is expressed by a homozygote of a single mutated allele.
In the past a homozygote of a lethal allele died before reaching the reproductive age, thus two
mutated alleles carried by a homozygote were removed from the gene pool in every
generation. We would expect that such deadly diseases became less frequent in each
generation and they would vanish after a certain time and consequently the lethal alleles we
now can observe must have been created relatively recently. Yet this is not the case: the age
of the most common allele causing Cystic Fibrosis is estimated as 52,000 years. There must
be some mechanism keeping these extremely harmful alleles in the gene pool.

One proposal is that a heterozygote of the mutated allele has a selective advantage.
When the heterozygous genotype has a higher relative  fitness than either of
the homozygous dominant and homozygous recessive genotype, it is called as heterozygote
advantage. When the heterozygote advantage is caused by single locus, it is called as
overdominance [6][7]. This is a specific condition where the the set of observable
characteristics/traits (pheontype) of the heterozygote lies outside the phenotypical range of
both homozygous parents. Heterozygote advantage often results in increased function of any
biological quality in a hybrid offspring, also known as heterosis. It has been found by
comparing various measures of dominance and overdominance that majority of such cases
arise when due to the masking of deleterious recessive alleles by wild-type alleles(although
in rice this is caused due to overdominance[7]).

The classical case of a heterozygote advantage is the Sickle Cell disease. This is
caused by presence of two incompletely recessive alleles. The name of the disease comes
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from the fact that red blood cells of the person suffering when exposed to low-oxygen
conditions lose their healthy round shape and become sickle-shaped. This deformed cells later
get lodged in blood vessels which causes oxygen deficiency in various parts of the body. This
disease is not quite lethal for a homozygote but causes a serious illness. The disease has the
carrier frequency 1/10 in African Americans [8] and relatively higher carrier frequencies in
areas where malaria occurs than in areas without this infective disease. It has been
demonstrated that a heterozygote of the Sickle Cell disease has partial immunity towards
malaria [9][10]. However, heterozygote advantage has not been sufficiently well
demonstrated for any of the mentioned recessive lethal alleles, though it has been suggested,
for instance, that Cystic Fibrosis gives partial protection against diseases involving loss of
body fluid, typically due to diarrhea like cholera [11], typhoid [12] and the Ashkenazi Jewish
diseases may offer a cognitive advantage for a heterozygote [13]. The explanation of the
persistence of recessive lethal alleles by a heterozygote advantage is weak, and in this analysis
it will be shown that this explanation cannot be correct since it would lead to a different ratio
between the disease prevalence and the carrier frequency than what is observed.

The second proposal for an explanation is a founder effect followed by a genetic drift.
The founder effect is the loss of genetic variation that occurs when a new population is
established by a very small number of individuals from a larger population as defined by
Ernst Mayr in 1942 [14]. The new population will be both genotypically and phenotypically
different, from the parent population from which it is derived. This effect genarally occurs
when a small proportion of a polulation which does not represent genetically the population
from where they come establish themselves in a new area [15][16]. The founder effect in rare
cases leads to the speciation and subsequent evolution of new species [17]. This new
population will show increased sensitivity to genetic drift (the change of an existing alelle
frequency in a population due to the random sampling) due to its small population. It is of
course possible that among a small number of founders several have the same rare disease and
in this way the mutated alleles become enriched in the population. A genetic drift, especially
in small populations, can still increase the frequency of mutated alleles. It can either lead to
gene variants to disappear completely and thereby reduce genetic variation or rare alleles to
become much more frequent. The problem with this explanation is that such a process would
be very unlikely e.g. in the case of the main allele of Cystic Fibrosis (CF). It will be shown in
this analysis that a recessive lethal allele would vanish from the population in 50 generations
unless there is a mechanism keeping it in the population. A generation is about 30 years. The
main allele of CF is 52,000 years old [18]. That is about 30 times longer than the time for the
allele to disappear. We should assume that a founder effect occurred some 30 times. As such a
founder effect must be a quite rare event it cannot have a probability very close to 1. This
probability, what-ever it is, raised to power 30 gives a number very close to zero. There is a
nano-scale chance that a sequence of 30 founder effects could be the correct explanation why
the CF allele still is there.

After discarding these two common proposals a “new” mechanism is proposed. There
is nothing especially new in this mechanism as such: it is just that certain family lineages tend
to have many children and this alone can in about 8-10 generation produce observed carrier
frequencies for recessive lethal alleles in the population. Still in the present context the
proposal seems to be new as the only mechanisms that usually are suggested are heterozygote
advantage or founder effect with a genetic drift.
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2. Probability Analysis of Mutated Alleles

Genetics of such a system is easy: every mutated allele can be considered separately as
a system of two alleles: the original allele A and the mutated allele a. If the mutated allele
brings neither selective benefits not disadvantages, the relation between the frequency of
homozygote (aa) of allele a and heterozygote (aA) can be calculated from Hardy-Weinberg
equilibrium [19][20]: assuming that the probability of allele a is x, then the probability of A

is (L—x). Thus the probability of two alleles a is x* and it is the probability of a homozygote
aa. In a similar way the probability of a homozygote AA is (1—x)?and consequently the
probability of a heterozygote is 1—x* —(1—x)* = 2x(1—x). Denoting the probability of a
homozygote by g and of heterozygote by p we get g=x*, p =2x(1—x) and the probability
of homozygote AA is 1— p—q = (1-x)*. Eliminating x yields p = Zﬁm whence

1 1 1 1 1 1
q°-(1- p)q+z p’ =0, ng(l— p)—E\/l—Zp :Zp2+Z p?+0(p*). @)

This is the steady state solution of a two allele system assuming that the mutated allele gives
neither advantage not disadvantage, but with a lethal recessive allele homozygote aa naturally
have a major disadvantage. We can model a system, which is not in a steady state by using
recursion formulas. Let p, and g, be the frequencies of heterozygote aA and homozygote aa

respectively in a generationn, thus p, is the carrier frequency and ¢, is the disease
prevalence as a function of time given as number n of generations from the beginning.

Two AA parents will have only AA children. This occurs with probability
(1-p,—q,)* as each parent comes from a pool of AA homozygotes, which has the

probability (1—-p, —q,). Similarly, two aa parents have only aa children and this event has

the probability qnz. The probability of the case of aA having children with AA is
2p,(1-p,—q,). Half of the children will be AA and half aA. Similarly aA-aa has the
probability 2p,q,. Half of the children are aA, half aa. Two aA parents producing children
has the probability p?. Half of these children will be aA, one fourth AA and one fourth aa.
The final case is AA-aa. This event has the probability 21— p, —q,)q, and all children are
heterozygotes aA.

Let us insert two nonnegative parameters « and [ to describe heterozygote

advantage and homozygote disadvantage respectively. These parameters increase or decrease
the number of children for a couple having certain combination of alleles a and A. For a lethal
allele a no heterozygote aa can have children. Thus aa-aa have children of type aa with the

probability Aq,” in the generation n+1 where 8 = 0. Likewise, aa-AA have children, all aA,
with the probability 24(1-p, —q,)q, in the generation n+1 with =0, and aA-aa have
children with the probability 2/4p,q, in the generation n+1 with g =0. There are three

combinations aA-aA, aA-AA and aA-aa, where the heterozygote aA appears but we give the
heterozygote advantage only to the case aA-aA. This is done by modifying the original model
so that if both parents are aA, then they produce more children. We define that the children of
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aA-aA have the probability ap? in the generation n+1, that is, these couples produce «

times as many children than AA-AA couples. Half of these children will be aA, one fourth
AA and one fourth aa.

The reason for not giving a heterozygote advantage to the case aA-aa is that as we are
mostly interested in lethal allele a, £ is zero and aA-aa have no children. It does not matter if

we multiply zero by any « . The reason why we do not give a heterozygote advantage to aA-
AA is that it is not possible to find a steady state solution for small p if we do so and the

carrier frequency p for recessive lethal alleles is on the range of 1/25. Consider what would

happen if we multiply the number of children of aA-AA couples by « . The leading term of
p for the number of heterozygote children is obtained from children of the couples aA-AA

and it would be ap as the leading term of %az p(1l- p—q), here always qoc p>. The two
leading terms of p for the number of AA children are obtained from AA-AA and aA-AA
couples and the terms would be 1-(2—a)p from (1-p-q)? +%a2 p(l—p-q). If the

system is in a steady state, then ratio of aA children to AA children must be the same as the

P ap
1-p 1-2-a)p
ignored O(p?) terms. This equation can only be satisfied if p is close to %. So, for recessive
lethal alleles we cannot give recessive advantage to the case aA-AA.

ration of aA parents to AA parents. Thus where = indicates that we

It is rather natural to give a recessive advantage to the case aA-aA. In the case aA-AA
no children is a homozygote of the type aa and in the past the parents cannot have known that
one of them is a carrier, but for the case aA-aA the situation is different: one fourth of their
children die young. The parents may have tried to compensate this situation by having more
children. This is mathematically a heterozygote advantage even though a heterozygote has no
real gain from one copy of the lethal allele. However, as will be seen, here is a surprise. We
may initially think that if aA-aA parents simply have 4/3 times as many children as AA-AA
parents, then they have effectively compensated to the lethal allele, but this is not so. The
steady state requires that the number of aA heterozygotes stays the same from parents to
children and a lethal allele removes the children of AA-aa, which is the second largest term of
p contribution to the number of aA children and has the leading term 2qoc p? from
2q(l— p—q). Indeed, to compensate B =0 it will be seen that we need o ~3. It sounds

unrealistic that aA-aA couples would have had in the past three times as many children as
AA-AA couples, but that is what the following calculation shows for a steady state solution
and the idea in recessive advantage is that it is a steady state solution: loss of heterozygotes
aA because of the lethal homozygote is compensated by more children because of recessive
advantage.

If o = =1 we have the original system and we get the Hardy-Weinberg equilibrium.
If a=1, =0 the system cannot be in a steady state. The allele a is decreasing in each

generation and we can estimate how fast the allele is removed from the population to
undetectable frequencies. If g =0, there is a value a which gives a steady state solution.

Then « is greater than 1 and it is the heterozygote advantage. Naturally we could select g

greater than one and study homozygote advantage, but this is not done in the present analysis.
The scaled recursion equations from generation n to generation n+1 are:
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1(1 (2
Uy = ;(Zapﬁ + plo? + pnqn)j

1 1
P =g(pn == P, + 5] + B2, — 297 - pnqn)j

where the scaling factor s is the total probability
s=1+(a-1)p? -2q, +q + f(2q, - q?). ©)

Dividing by s assures that the total probability of equations (2), which is 1 in the generation
n, stays as 1 in the generation n+1. Assigning o = f =1 yields s=1 and

1
02 = 0oy + Pol, 7 p; =0.

We can see that the system has a steady state solution p,,, =p, =p, d,, =9, =q giving
the Hardy-Weinberg equilibrium (1). If « =1, =0 there is no steady state solution. We

will make a simple approximation of the solution. To make it simple, we will not scale the
equations as in (2) by dividing the equations withs. Then forex =1, =0 they are

1 1 4
qml:Zpﬁ pn+1=§p§+(1— Py =0y )P, - )

If p, is small to start with at n=0, scaling by dividing with s makes little difference. We

will assume that p, is so small that O(p;) terms can be ignored. The equation for p,,
reduces to

Pri = Py~ P
n+l_pn 2pn

This equation is approximately solved by

-+ ()
N 2N

which satisfies

In order to use this solution, N , the total number of generations must be so large that N° is
ignorable. As the carrier frequency p, is on the range of 1/25 for most recessive lethal

alleles, N > 25 should be enough. The constant C in (5) is fixed by the initial value for p,, .
Indeed, from (5) follows that
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3 2 D = 2
2pst+n ° 2pt-n’

Pn

Necessarily 2p;* —n must be larger than zero in the second equation. It is just stating the
condition that p, is decreasing in each generation and cannot have been higher than one in
generation zero. Thus, if the allele a is still detectable at carrier frequency p, in the

generation n, there is a maximum number of generations it can have been decreasing. For
Cystic Fibrosis p, has the value 1/24 today. Consequently n must be smaller than 48. That
means some 1450 years. The solution is approximation and cannot give precise values. Yet
the age 52,000 years for the main allele of CF is too much at odds with this approximation. As
promised in the beginning, this mathematical argument shows that some kind of mechanism
must keep recessive lethal alleles in the population. Else we would only see relatively recent
lethal mutations.

No more elaborated argument against a founder effect and genetic drift than was given
in the beginning will be offered, but the possibility of heterozygote advantage will be
analyzed. This advantage means that for # =0 there is « >1 that keeps the lethal allele in the

population. Over all these generations the lethal allele has not replaced the healthy allele but
has a rather small carrier frequency. This means that the system must be in a steady state and
frequencies of p, and q,do not any more depend on n. We set p,,=p,=0p,

.., =0, =qin (2) and solve « from both equations:

_p*+pa-pa®-p* - A3pq- pa® - 2q+29°) (6)

G

,_ 4=’ =20° +q°+ (¢’ +4° — pa)
.
P’

Eliminating « gives an third order equation of qwith parameters # and p

o

6
%(1+3ﬂ)q3—(1+2ﬂ—3ﬂp—%(1—ﬂ) p)qz ©

1 , 1 1 15 1 5,
J{(Eﬂgjp —Z(3+5,3)+§(,3+1)j(1+zp _Zp =0.

A third order equation has an exact solution, but it is inconvenient. Assuming that p is small,

g oc p® is so small that the term g° can be ignored and as an approximation, we get a second
order equation for q. The solution has a square root, which can be expanded as a power series
of p, which is assumed small. In order to see what size of an error we are introducing by

dropping the third order term q°, we can do this approximation for g =1. When g=1


https://doi.org/10.20944/preprints202105.0751.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2021 doi:10.20944/preprints202105.0751.v1

equation (7) reduces to (1) and yields the exact solution of Hardy and Weinberg. In our
approximation we get by setting £ =1 in (7) the third order equation

.
2q3+q2(3p—3)+q[gp2—2p+1j+%p3—%p2=o (7)

which we approximate with a second order equation, solve it and expand to a power series of
p . The result is

1 2 3 2 5
=—pl+p+— +0
a=,p ( p+p j (p”)
while the Hardy-Weinberg solution expanded as a power series yields

1 1 1 5
q=2-p)-2y1-2p =Zp2(1+ P+, pz}+0(p5)

The difference is O(p*) and ignorable for realistic values if p for recessive lethal alleles.
Thus, the approximation is sufficiently good for our purposes, but if p is larger, this method
must be used with care. For arbitrary S the approximation gives (toO(p*), which is the
highest precision we can get)

1 2A 3p+,0-5) g o
qzzpz(l—l—j 14| —2 - pt+0(p)
+2p3 1+2p 1+,B—A
2
Where
A=t ((1-3p-p2+3p7 +2p%),
(B+1)°

1 2 3 £ pb 5 6

B_W(—1—6ﬁ-13ﬂ 168> ~54* +318° +10°).

Let us evaluate the solution (8) for some values of 5 :

If #=1,then A=B=0, q=%p2+%p3+O(p4):0.25p2+0.25p3+0(p4).

If 3=0,then A=B=-1, q:%p2+% p®+0(p*)=0.75p* +1.06 p* + O(p*).

45 1487
If #=2,then A=— B=——, q=0.1575p% +0.11p° + O(p*).
B a1 g p p (p")

Heterozygote advantage « can be solved by inserting £ and the approximation of q into (6).
For gq=c,p®+c,p®+0O(p?)equation (6) gives a = 4c, +4(c, — Ac,) p+O(p?):

If B=1, a =1+0(p?) (in this case the exact solution for ¢ is 1.)

If =0, a=3+4.24p+0(p?).
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If =2, «=0.63-0.82p+0(p?).
We see that in all cases q oc p?, but the coefficient is different. For all recessive lethal alleles
the values announced in literature for the disease prevalence g are related to the carrier
frequency p in the way that is very close to the Hardy-Weinberg equilibrium

4 4

In some cases this may be a result of measuring only the disease prevalence and calculating
the carrier frequency from the Hardy-Weinberg formula, but at least [1] contains direct
measurements of carrier frequencies and announces also how many homozygote cases the test
sample contained. The sample in [1] is sufficiently large for measuring the carrier frequency,
while it may be too small for estimating the disease prevalence in the sample. There
fortunately are better values for the disease prevalence. There are certain problems arising
from the composition of the samples in [1], but the results seem to fit to the Hardy-Weinberg

R . 1
equilibrium, or to the exact non-steady state un-scaled solution q =Z p> when B=0,a=1.

The difference between these solutions and the steady state scaled solution for
L =0,a~3with q=0.75p* +1.06p* is so large that it should be seen in the sample of [1].
Consequently, the explanation of persistence of recessive lethal alleles because of
heterozygote advantage must be discarded. It can also be questioned if recessive advantage is
the only mechanism in the Sickle Cell disease. In that disease recessive advantage is a likely
cause, but not necessarily the only cause for the observed carrier frequency.

The final contribution of this analysis is a proposal of a mechanism that can explain
why recessive lethal alleles do not disappear. The argument is based on a simple model,
which is not in every respect realistic, but illustrates the mechanism sufficiently well. The
idea is that many family lineages tended in the past to have about the same number of children
over several generations. Thus, there were family lineages where most women had a large
number of children, and the number could be higher than what was customary in the general
population. The proportion of people in a population originating from these family lineages
grows over generations and if one such lineage included carriers of rare diseases, the carrier
frequency of the population grows.

3. Markov Model of Recessive Lethal Alleles

The model is a Markov model, which is constructed to be easy to analyze. Let s, ; be
the fraction of the population of generation n being born into a family of j girls who grow
old enough to reproduce. This implies that the state (n,j), which has the state probability s, ;,

contains also women born into a family where both the mother and father were heterozygote
and more than j girls were born but homozygote died before reaching the reproductive age.

Naturally, the recessive disease is not the only reason why children die before reaching the
reproductive age. Most families faced this situation.

For the model we take a birth and death process:
1 . . . .
Sn+l,j = S_{(l_ (J _1)1 - (J +1)/u)sn,j + (J _1)ﬂ“sn,j—1 + (J +l)lusn,j+l}'

n
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Here s, is the scaling factor to get the total probability to remain at one. The term
(J—=14as, ., describes women, who were born into a family of j—1 daughters who grow up
to reproduce, but who themselves have | daughters. The parameter A describes the
probability of having one daughter more than the mother, while the multiplier j—1 indicates
that all j—1 daughters have this decision to make. In a similar way, the term (j+1)us, ;,,
describes women, who were born into a family of j+1 daughters who grow up to reproduce,
but who themselves have j daughters. The parameter x describes the probability of having
one daughter less than the mother, while the multiplier j+1 indicates that all j+1 daughters
have this decision to make. The remaining term (1-(j-1)A4-(j+1)u)s,; describes those
women who have the same number of daughters as their mother.

Assuming that the system is in a steady state, the flow in and out of state (n,j) are
equal:

(J _1)15n,j—1 = jlusnvj

yielding the solution
_G-Da, _(G-DG-2 1 5 L1 g __ A ©)
oM i (-)72 T ’ H

n,j

The scaling factor s, is the sum of the state probabilities:

S © N o0 R
n — ZE_O'H = o‘lJ.Zo"’ldO' :o"l‘[—l do=-0c"In(1-0).
Sn,l =L J = l-o

Setting s, =1 fixes

s ——_ 9 _ o (10)
" n(l-0) In(1/(1-0))

As s, =1 the recursion simplifies to
Snia = A= -DA=(j+Dw)s,; + (1 =DAs, ;4 +(J + 1185, ;4 (11)

The average number of girls in generation n (women in generationn+1) is

=, . = 1 o
Av=>js . =Y olls =
JZ_;J " JZ; " 1-0 In(1/1-0))

In distant history human population growth was very small. In this simple model Av=1
corresponds to a population with zero growth, that is, one daughter implies two children in
average. This value for Av gives a small & and we can determine o from a power series
expansion of the logarithm:
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1= ! 1 :l+la+0(0'2)

o*+;a2 +0(c?)

so if Av=1, then o =0, but we cannot select o =0 because then the system does not reach
the steady state solution that was calculated before. In order to reach it, 4 and x must be

positive. Let us set o =0.1. Then Av=1.055, which is very close to zero growth. The total
fertility rate is the double of Av, 2.1, and it is very close to the minimum for sustaining a
population. We can also notice that the value o =0.72 gives Av=2.02 implying about 4
children per woman, that is 2.3% annual growth and 30 years (=one generation) doubling
time. Before modern times such growth rates were a rarity.

Selecting o does not fix 4 and u, only their relation, and the absolute values of A
and u are important for determining the average number of descendants in the nth generation
for a family, which started with j children at the generation zero. This is obviously so because
if A =u=0 all daughters of the family lineage will have j daughters reaching the productive
age. Then the number of women grows as j" and the population as 2j". We cannot select
A= u =0, because that implies that after some time the whole population grows as 2j",
where j is the highest number of daughters any woman of the zero generation had. However,
we can set 4 and x to small positive values. Doing so, we can estimate the number of female
descendants of a single woman of the zero generation having j daughters, who reach the
reproductive age.

If A and x are small, it is sufficient to calculate only one or two state changes from
one j value to another in the whole run of generations from 0 to n. In the beginning all
probability is in the state (0,j), i.e., s,; =1. No state changes gives the following contribution
to (n,j):

Snjo =@=(-DA-(j+D)"sy; =@-(j-DA-(j+Ds)". (12)

If there is only one state change in the run, there is no contribution to (n,j), while from two
state changes there are. The state can change from (m,j) to (m+1,j+ 1) and back from (r,j+ 1)
to (r+1,j) giving second order contributions to

Sujan = (DAY A= (-2 (1 +DR)™ 3A-(1-22- i)™,

r=m+1

Sy = 104D 0= (-DA- (1 + D)™ 3 A= j2-(j+2p)"".

r=m+l

For simplicity we ignore from now on the second order contributions. Thus, (12) is the
approximation of the state probability of s, .. The (first order) approximations of the state

probabilities s, ; , and s are respectively

n,j+1

Sn,j1 = Luzn:(l—(j “DA-(J+Du)"A-(j-2)A - ju)™™"

m=0

10
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Sups = DA~ (1-DA (1 + D)@ JA (i + D)™

m=0

The number of female descendants with j daughters of the one woman in the zero generation
is approximated by
Num; = j"A-(j-DA-(j+Dw)"

If 2 and x are very small, we can ignore even the first order terms and keep only this term.

It is essentially j". Including male descendants, the woman has 2" descendants and if the

woman was a carrier, half of the descendants are carriers of the lethal allele. As the total
population has negligible growth, the carrier frequency of the population reaches relatively
high levels because of this exponential growth. This exponential growth does not continue

infinitely. It stops when n is on the range of (j(1+ ). We may estimate that this n could
be about 10 by the following reasoning.

Human female has a upper limit for number of children probably around 16, but very
large families, where children grow up to have their own children, must have been rare. We
probably can ignore families with more than 4 daughters. For j=4 daughters n=10

generations of growth approximated by j"(1—nj(1+ w)) gives about 1 million female
descendants to the generation n, that is two million people. If A+ u=A1+0c7") =111 (we

have selected o =0.1) is sufficiently much smaller than (nj)™ =1/40, the growth is almost

exponential. That means that A <1/440, which is small but not necessarily impossible in this
simple model. It very much depends on the value selected for o .Two millions is 4%, that is
1/25, of 50 million, which in the past was a large population. We see that in ten generations
observed carrier frequencies can be reached by a family lineage which has 8 children per
woman. For j =3 ten generations of growth produces 118,000 people. It is about 4% of 3

million. That is a more typical size that a population, which today has diseases caused by
recessive lethal alleles, may have had 300 years (=10 generations) ago. For j=2 we get

2000 people in 10 generations, for j =1 the number stays at one and the case j =0 there are
no daughters.

Assuming that the woman, who starts this family line at the generation zero, is a
typical member of the larger population, the probability for her to have j daughters living to

a reproductive age is
1 o 1

cl"———=>—0¢o
] In(1/1-0)) ]

Multiplying this probability by the number of descendants in the generation n =10 and
summing over the values j =0,...,4 yields the average number of descendants:

Descendants =0+1+ %O.l. 2000 + %O.l2 -118,000 + %0.13 -2,000,000 =994

The woman was a heterozygote for a lethal allele having the carrier frequency p with the
probability p . We may assume that her husband mostly was AA, as a is a rare allele. Thus,
half of her children were carriers. Half of the children are boys and we may assume for
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simplicity that all boys were AA and all girls aA. This way it is not necessary to track the
boys. All daughters in all generations are therefore carriers in this calculation. If the woman of
the zero generation was a carrier, she produced 994 carriers to the 10 generation.

At the same time the number of heterozygotes aA decreases by a considerable factor. Since
S =0, the couples AA-aa do not exist and they do not produce 2q(1— p —q) = 2q carriers.

The couples aA-aa also do not exist, but their contribution is of the order O(p®). From (2) we
can see what is missing if o =1, £ = 0to the steady state solution « = #=1. The carrier

frequency decreases in each generation by a fraction

1
1-=
2 Pn

As 10 generations is a short time, p, does not change very much and we can estimate that the
change is about

p— p(l—lO% pj

If p isoriginally about 1/25=0.04, it decreases to about 0.032. At the same time we get 993

new carriers. In order 0.8% of the population (0.04-0.032) to be 993, the population size
should be 124,125.

This is of course a very simple conceptual model and cannot be fully realistic. Yet it
shows that if family lineages have a practice of getting the same number of children to
adulthood as their parents did, which is about the same as making the same number of
children, then it creates a pump, which increases the number of heterozygotes and can balance
the loss of heterozygotes due to the death of homozygotes. Is there any reason to think that
there were such practices in the past? The age of the main allele of Cystic Fibrosis, unless the
dating will be revised, takes us back to the Stone Age. Hunter-gatherer societies usually have
few children because many children restrict the mobility of women. As Hunter-gatherer
women get pregnant in a normal way, such societies practice infanticide: only one child, who
cannot walk alone, can be nursed by a woman. This implies that the time between children is
typically 3-5 years. As a woman reaches maturity at around 15 years and the life length was
around 35 years, a woman could raise 4-6 children, but as such societies tend to be violent,
few lived long. Usually only tribal chiefs had more wives, often 2-4, and consequently more
children, but that does not increase female fertility. It seems that there was no possibility for
families with a large number of children, which is required by the mechanism proposed here.
However, this may be a too fast judgment. There could have been areas and times when food
was abundant, women could be semi-sedentary and nurse the children, or something else.

From the time of sedentary habitation, first in the Levant already before agriculture, family
sizes could grow and families with 6 to 8 children were more like a rule in agricultural
societies. Still the population grew very slowly, much below 1% annually. These facts can be
combined by an assumption that most children did not reach the reproductive age, or that
many adults died young, were widowed, taken to slavery, or for some other reason did not
raise a large family. Some family lineages did and the gene pool probably was all the time
changing with more fertile lineages replacing less fertile ones. Some may see here a place for
natural selection, some only a play of chance. Such a situation explains why some religions
gained support much easier than lends support to the forces of natural selection. Fertility cults
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and later patriarchic religions, which forbade infanticide, created family lineages which
produced many children. Such lineages grew to represent the majority of the society.

Can this be a better explanation to the puzzle of Ashkenazi Jewish intelligence, pondered in
[13]. Probably not for intelligence, but it may explain their collection of rare genetic diseases.
Ashkenazi Jews had for about 800 years population growth rate about 1.4% annually. It was
much higher than in the host society. A high growth rate implies large families and while
1.4% per year (50 years doubling time) means only doubling in two generations (setting the
female generation to 25 years for simplicity), which is 2.8 children per woman, some family
lineages almost certainly grew much faster. The pump mechanism described here could have
contributed to keeping recessive lethal alleles in the population. It could also make non-lethal,
even advantageous, alleles more common, but this is not the topic of the present analysis. In
any case, the mechanism was not simply recessive advantage if understood in a simple way
that heterozygote had more children grown to the reproductive age.

A positive side in this is that as family sizes today are small in developed countries,
such a pump mechanism cannot work. Recessive lethal alleles would be purged out of the
population, unless modern medicine makes them non-lethal and the removal mechanism is
blocked. That this can be so may be shown by Finns not having Cystic Fibrosis even though
Finns have a large portion of genes from European Western Hunter Gatherers, who
presumably had this disease as it is common in Northern Europe. If Finns had smaller
families, the disease was purged out. Interestingly, the same mechanism may slow down
evolution, but that topic I will leave to another time.
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