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Abstract: Physics-Informed Neural Networks (PINNSs) represent a rapidly evolving class of scientific
machine learning models that tightly integrate physical laws, typically expressed as partial differential
equations (PDEs), into neural network training. By embedding differential constraints directly into the
loss function, PINNs enable data-efficient, mesh-free, and equation-consistent approximations of com-
plex physical systems. Over the past few years, PINNs have emerged as a compelling framework for a
wide range of forward and inverse problems across disciplines such as fluid dynamics, material science,
electromagnetism, biomechanics, and geophysics. This survey provides a comprehensive and critical
review of the current state of PINNs. We begin by establishing the mathematical foundations and core
architecture of PINNS, illustrating how governing equations, boundary conditions, and measurement
data can be unified within a single learning framework. We then explore recent architectural advances
and algorithmic innovations, including domain decomposition (e.g., XPINNSs), adaptive sampling,
spectral PINNSs, and stochastic extensions, that address challenges related to scalability, convergence,
and uncertainty quantification. Furthermore, we examine benchmark problems, evaluation protocols,
and application-specific customizations that have shaped the empirical development of the field.
The survey also delves deeply into the limitations of existing approaches, including optimization
difficulties, issues in capturing multi-scale and discontinuous phenomena, generalization gaps, and
interpretability concerns. We articulate open research challenges and outline emerging directions such
as operator learning, meta-learning, hybrid neural-simulation frameworks, neurosymbolic PINNS,
and hardware-efficient implementations. By unifying theory, practice, and future vision, this survey
aims to serve as a foundational reference for researchers and practitioners across scientific computing,
applied mathematics, and machine learning. As PINNs continue to evolve, they offer the promise
of enabling a new paradigm of physics-aware, data-driven modeling that is both computationally
efficient and scientifically grounded.

Keywords: physics-informed neural networks (PINNSs); scientific machine learning; partial differential
equations; neural operators; physics-based deep learning; surrogate modeling; inverse problems;
uncertainty quantification; data-driven modeling; computational physics

1. Introduction

The fusion of data-driven learning paradigms with the fundamental laws of physics has emerged
as a transformative approach in scientific machine learning (SciML) [1]. Among the most prominent
and rapidly advancing frameworks in this domain are Physics-Informed Neural Networks (PINNSs), a
class of neural network models designed to integrate physical laws, typically represented as partial
differential equations (PDEs), directly into the training process. Introduced by Raissi et al [2]. (2019),
PINNSs have since witnessed an exponential growth in both academic research and practical applica-
tions, fueled by the urgent need for interpretable, generalizable, and data-efficient machine learning
models in science and engineering [3]. Traditional neural networks excel at function approximation
and pattern recognition tasks, but often struggle when applied to domains characterized by scarce or
noisy data, or where the governing dynamics are well understood but difficult to solve analytically.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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PINNSs address this gap by embedding the residuals of differential equations into the loss function of
a neural network [4]. This enables the network to not only fit available observational data but also
to adhere to the physical laws underlying the data. As such, PINNs provide a compelling solution
to inverse problems, surrogate modeling, and forward simulations across a wide array of disciplines
including fluid mechanics, structural engineering, quantum mechanics, and biomedical imaging [5].
The rise of PINNs can be contextualized within the broader movement towards physics-based learning,
where the goal is to synergistically leverage prior scientific knowledge and data [6]. This hybrid mod-
eling philosophy contrasts with the purely data-driven approaches that dominate contemporary deep
learning and has profound implications for the generalizability, interpretability, and sample efficiency
of neural models [7]. By enforcing physical constraints during training, PINNs can extrapolate more
reliably beyond observed data, inherently obey conservation laws, and exhibit greater robustness to
noise—properties that are indispensable in mission-critical scientific and engineering applications
[8]. PINNs represent a confluence of ideas from computational physics, numerical analysis, and
machine learning [9]. They draw upon automatic differentiation for computing derivatives efficiently,
variational formulations of PDEs for constructing loss functions, and advanced training strategies to
navigate the often stiff optimization landscape that arises from the multi-objective nature of enforcing
both data fidelity and physical consistency. Recent advances in PINNs have extended the framework
to accommodate complex boundary conditions, multi-physics couplings, stochastic differential equa-
tions, and high-dimensional systems, thus significantly broadening their scope and capability [10].
However, despite their promise, PINNs are not without challenges. The training of PINNs can be
notoriously difficult due to issues such as gradient imbalance, stiffness in the optimization landscape,
and sensitivity to hyperparameters. Moreover, the naive inclusion of physical constraints in the loss
function can lead to slow convergence or suboptimal solutions, especially in the presence of complex
or multi-scale dynamics. These limitations have spurred a rich body of research aimed at improving
the theoretical understanding, architectural design, and training methodologies of PINNs [11]. This
survey aims to provide a comprehensive and critical overview of the field of Physics-Informed Neural
Networks. We begin by formalizing the PINN framework and its mathematical foundations, including
the treatment of different types of differential equations (e.g., elliptic, parabolic, hyperbolic), initial
and boundary conditions, and variational principles [12]. We then delve into the diverse landscape of
PINN architectures and training techniques, highlighting innovations such as adaptive loss weighting,
curriculum learning, domain decomposition, and transfer learning [13]. We also discuss the theoretical
underpinnings of PINNSs, including convergence guarantees, expressivity, and error bounds, and
compare them to classical numerical solvers and other hybrid modeling paradigms. In the latter
part of the survey, we review the extensive applications of PINNs across various scientific domains,
categorizing them by problem type and assessing their empirical performance [14]. We also exam-
ine several extensions and generalizations of PINNs, including stochastic PINNSs, operator learning
approaches, and methods incorporating uncertainty quantification [15]. Finally, we identify open
research challenges and future directions, including the integration of PINNs with symbolic regression,
multi-fidelity learning, and reinforcement learning, as well as their deployment in real-time and
large-scale computational environments. In summary, Physics-Informed Neural Networks represent
a significant stride towards the integration of machine learning with the established principles of
scientific modeling [16]. Their ability to embed physical laws into learning algorithms holds the
potential to revolutionize scientific computing, enabling more accurate, efficient, and interpretable
models [17]. Through this survey, we aim to consolidate the current state of the art, foster a deeper
understanding of the underlying principles, and inspire future research at the intersection of physics,
machine learning, and numerical computation.

2. Mathematical Formulation and Framework

Physics-Informed Neural Networks (PINNSs) are designed to solve supervised learning tasks
while simultaneously enforcing physical laws expressed by partial differential equations (PDEs). This
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section formalizes the general PINN framework using rigorous mathematical notation and graphical
representation.

2.1. Problem Setting

Let O C R be a spatial domain with boundary 9, and let [0, T] be a time domain [18]. The goal
is to approximate the solution u(x, t) of a general PDE of the form:

Nu(x,t);0] =0, (x,t)eQx][0,T], (1)
subject to initial and boundary conditions:

u(x,0) =up(x), xeQ, )
u(x,t) =g(x,t), (x,t)€oQrx[0,T]. 3)

Here, N[ is a nonlinear differential operator, and 6 represents any unknown parameters in
the physical model [19]. PINNSs aim to learn an approximation i(x, t; w) parameterized by a neural
network with weights w [9].

2.2. Loss Function Construction

The neural network is trained by minimizing a composite loss function:
E(w) = ArLyesidual + )\b‘cboundary + Ai Lintial, 4)

where each component is defined as:

1y
[’residual = ﬁr Z N[u] (X;, t;) 7 (5)
j=1
1 Ny a2
Linitial = - 2 |#(xj,0) —uo(x}) | , (6)
ij=1
N,
r R o PO N N b 7
boundary — N, u(x]-, ]) g(X]-, ]) : )
=1

Here, {(x]r-, t]’.)}, {(x;i, 0)}, and {(x;’ , t;’)} represent collocation points in the interior, initial, and
boundary domains, respectively [20]. The hyperparameters A,, A;, A, control the relative importance
of each term.

2.3. Architectural Variants

The table below summarizes several prominent variants of PINNSs that address different challenges
such as stiffness, multi-scale features, and uncertainty quantification.

Table 1. Comparison of Common PINN Variants.

Method Core Idea Target Problem Reference

Vanilla PINN | PDE residual in loss General PDEs Raissi et al. (2019)
XPINN Domain decomposition Multi-scale domains Jagtap et al [21]. (2020)
fPINN Fourier features High-frequency solutions | Wang et al. (2021)
UQ-PINN Probabilistic weights Uncertainty quantification | Yang et al. (2021)
hp-PINN Adaptive meshing and depth | Stiff problems Lu et al. (2022)
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2.4. Neural Network Architecture

Figure 1 illustrates the basic structure of a PINN [22]. The network takes as input the space-time
coordinates (x,t) and outputs an approximation #(x,t). The residuals of the governing PDE are
evaluated via automatic differentiation.

[ Input: (x,t) H Dense Layer HOutput: a(x, t) E PDE Residual Loss }

Figure 1. Schematic of a Physics-Informed Neural Network (PINN) architecture. Input coordinates are passed

through several hidden layers to approximate the solution. Automatic differentiation is used to compute PDE
residuals for loss construction.

3. Training Strategies and Optimization Techniques

Despite their conceptual elegance and theoretical appeal, training Physics-Informed Neural
Networks (PINNs) presents significant practical challenges [23]. The interplay between data-driven
loss and physical residuals often results in a multi-objective optimization landscape that is stiff and
highly sensitive to hyperparameters. This section discusses the common issues that arise during
training and the state-of-the-art strategies proposed to overcome them.

3.1. Optimization Challenges

The total loss £ in PINNSs consists of terms of potentially different scales and numerical stiffness
[24]:
L = ArLresidual + Ap Lboundary + AiLinitial-

This formulation introduces a trade-off between learning from data and satisfying the PDE constraints
[25]. In practice, L esidual can dominate or vanish compared to boundary and initial losses, leading to
poor generalization or trivial solutions [26]. Additionally, the gradients of higher-order derivatives in
the PDE residual can cause vanishing or exploding gradients, impeding convergence.

3.2. Gradient Pathologies and Stiffness

Recent work by Wang et al. (2021) and Krishnapriyan et al. (2021) showed that PINNs suffer from
pathological gradient flows. The dominant eigenvalues of the PDE Jacobian may lead to ineffective
updates, a phenomenon termed "gradient pathologies."” These issues become more pronounced in
multi-scale PDEs or problems with steep gradients and sharp interfaces.

3.3. Training Enhancements

To address these limitations, several strategies have been proposed, summarized in Table 2. These
include adaptive loss balancing, residual-based adaptive sampling, curriculum learning, and domain
decomposition methods [27].
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Table 2. Selected Training Enhancements for PINNs.

d0i:10.20944/preprints202504.2577.v1

Strategy Description Reference
Adaptive Weighting | Dynamically adjusts A;, A, A, to balance | Wang et al.
(NTK, GradNorm) gradients or curvature. (2021), Yu et al

[28]. (2022)

Residual-based Sam-
pling (RAR, AS-PINN)

Selects collocation points based on residual
magnitude to improve training focus [29].

Lu et al. (2021)

Curriculum Learning

Trains the model on simpler versions of the
PDE before gradually increasing complex-

ity.

Meng et al
(2020)

Domain Decomposi-
tion (XPINN)

Splits domain into subregions to paral-
lelize and localize training [9].

Jagtap et al
(2020)

Output Normalization

Rescales the PDE solution output for nu-
merical stability during training.

Kissas et al [30].
(2020)

Multi-Fidelity Supervi-
sion

Combines coarse simulations with high-
fidelity data.

Meng et al
(2021)

3.4. Optimization Algorithms

PINNSs are typically trained using first-order optimizers such as Adam, often followed by second-
order optimizers like L-BFGS to refine convergence. The combined strategy is formalized as [31]:

Adam(w, VL), for 0 < k < Kgwitch,
L-BFGS(w, V2L), fork > Kgwitch-

This two-stage approach exploits the fast convergence of L-BFGS while benefiting from Adam’s
stochasticity to escape local minima early in training.

3.5. Training Pipeline Overview

The schematic in Figure 2 outlines the high-level training loop of a typical PINN, including
forward pass, automatic differentiation, loss evaluation, and optimization.

{Initialize Network (-; w)}
¥
Sample Points: {(x, t)}}

¥
{Forward Pass 11(x, t)}

¥

{Automatic Differentiation}
v
{ Compute £ J

{Update Weights}

Figure 2. Training pipeline of a PINN. Training alternates between collocation point sampling, solution prediction,
residual computation via automatic differentiation, and weight updates via optimization.


https://doi.org/10.20944/preprints202504.2577.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 April 2025 d0i:10.20944/preprints202504.2577.v1

60f23

4. Theoretical Foundations and Analysis

While Physics-Informed Neural Networks (PINNs) have demonstrated impressive empirical suc-
cess, understanding their theoretical properties is essential for establishing their reliability, robustness,
and scope of applicability. This section presents a comprehensive overview of the foundational princi-
ples that underpin the behavior of PINNs, including their approximation capabilities, convergence
characteristics, generalization bounds, and fundamental limitations [32]. We also highlight recent
results that connect PINNS to classical numerical schemes and propose open problems in formalizing
their behavior.

4.1. Universal Approximation and PDE Solutions

At the core of the PINN framework lies the universal approximation theorem, which guarantees
that neural networks with sufficient width and depth can approximate any continuous function on
a compact set, given appropriate activation functions. In the context of PDEs, this implies that there
exists a neural network #1(x, t; w) such that:

sup  |d(x, bw) —u*(x,t)] <€,
(x,t)eQx[0,T]

for any € > 0, where u* denotes the true solution to the PDE [33]. However, approximation alone
does not ensure convergence of the training process. In practice, neural networks may fail to recover
u* unless the loss landscape facilitates effective optimization and the PDE constraints are adequately
enforced [34]. Recent theoretical studies have analyzed the representational capacity of PINNs in the
context of Sobolev spaces [35]. For example, Lu et al [36]. (2021) showed that for certain classes of
elliptic and parabolic PDEs, neural networks can approximate the solution with bounded error in the
H' or L? norm [37]. These results provide a bridge between the classical theory of weak solutions and
modern deep learning approximators.

4.2. Error Decomposition and Convergence Guarantees
The total error in a PINN approximation can be decomposed into three components:

*  Approximation error &£;: Due to the finite capacity of the neural network.
e  Optimization error &,: Due to incomplete minimization of the loss function.
*  Generalization error £;: Due to the finite number of training points.

Formally, for a loss functional £ and empirical risk £ over a sample set S, we can write [38]:
| —u*|| < E+E +E, where & = |L()— L(i).

The optimization error &, is often exacerbated by the stiffness of the PDE and the imbalance be-
tween loss components. Adaptive optimization methods, while empirically helpful, lack convergence
guarantees in non-convex, multi-objective settings like PINNs [39]. Recent works, such as those by
Mishra and Molinaro (2022), have started to establish convergence rates under specific conditions,
such as linear PDEs with well-behaved residuals [40].

4.3. Generalization in Function Space

Unlike classical supervised learning, where generalization refers to performance on unseen data,
PINNs must generalize over a continuous function space defined by the PDE’s solution manifold.
This raises the question: How well can a neural network trained on a finite set of collocation points
{(x;, t]')}]«]i 1 generalize to the infinite-dimensional solution space? Babuska et al. (2021) analyzed
this problem using statistical learning theory in Sobolev spaces. They established upper bounds
on the generalization error of PINNs under certain assumptions on the smoothness of the solution
and the distribution of training points [41]. Their findings suggest that dense and adaptively chosen
collocation points can significantly improve generalization, especially in regions with high residual
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variance. Another promising line of work views PINNs through the lens of operator learning. In this
perspective, the network learns not just a function, but an operator mapping from the coefficients
of the PDE to its solution. This interpretation aligns with recent developments in DeepONets and
Fourier Neural Operators (FNOs), which provide theoretical insights into learning solution operators
in Banach spaces [42].

4.4. Comparison with Classical Numerical Methods

A key theoretical question is whether PINNs can match or surpass the performance of traditional
numerical solvers such as finite difference, finite volume, or finite element methods. While PINNs
offer mesh-free solutions and can handle irregular geometries and sparse data, their convergence rates
are not yet as well-characterized as those of classical solvers [43]. The work of Karniadakis et al. (2021)
draws a connection between PINNs and Galerkin methods, showing that under certain conditions, the
PINN loss function can be interpreted as a variational residual, similar to a weak form in the finite
element method. This equivalence provides a foundation for hybrid schemes that combine the best of
both worlds: the flexibility of neural networks and the precision of numerical discretization.

4.5. Limitations and Open Problems
Despite the progress, several theoretical challenges remain open:

®  There is no universal guidance for choosing the collocation point distribution, network architec-
ture, or loss weights that guarantee convergence for arbitrary PDEs [44].

. PINN s often struggle with sharp discontinuities and multi-scale features, where classical solvers
are more robust due to explicit mesh refinement and adaptivity [45].

¢  The impact of network depth and width on approximation accuracy in the presence of stiff
differential operators is not fully understood.

¢ It remains an open question how to formally characterize the solution manifold of complex PDE
systems and how this geometry interacts with the inductive bias of neural networks.

In summary, while PINNSs inherit the expressive power of deep neural networks and introduce
physics-based constraints to improve generalization, their theoretical understanding is still in its early
stages [46]. Ongoing work in approximation theory, optimization landscapes, and statistical learning
is essential to transform PINNs from empirical tools into rigorously grounded methods for scientific
computation [47].

5. Applications Across Scientific and Engineering Domains

The integration of deep learning with domain-specific physical laws has enabled Physics-Informed
Neural Networks (PINNs) to penetrate a wide array of scientific and engineering disciplines. The
data-efficiency, mesh-free nature, and capacity to enforce governing equations without discretization
have made PINNSs an attractive alternative to traditional solvers in scenarios where data is sparse,
boundary conditions are complex, or computational cost is prohibitive [48]. This section surveys
notable application areas where PINNs have demonstrated practical utility, highlighting representative
case studies, model configurations, and domain-specific adaptations [49].

5.1. Fluid Mechanics and Navier—Stokes Solvers

One of the earliest and most impactful domains where PINNs have shown promise is compu-
tational fluid dynamics (CFD) [50]. The Navier-Stokes equations, which govern fluid motion, are
notoriously difficult to solve due to their nonlinearity and the presence of multiscale structures, turbu-
lence, and complex boundaries [51]. Raissi et al. (2019) applied PINNSs to infer velocity and pressure
tields from limited flow data, successfully recovering full flow fields in canonical problems such as the
lid-driven cavity and flow around a cylinder [52]. Incompressible Navier—Stokes equations take the

form: 5
£+(u~V)u: *VP+VV2U/ V-u=0,
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where u is the velocity field, p is pressure, and v is kinematic viscosity [53]. PINNs approximate both
u and p using neural networks while ensuring that the PDE and continuity equation are satisfied
at collocation points. Subsequent research has extended these ideas to turbulent flows using multi-
network architectures, temporal decomposition, and data assimilation techniques. Chen et al [54].
(2021) introduced a turbulence-aware PINN framework that blends sparse experimental data with
Reynolds-averaged Navier-Stokes (RANS) equations for closure modeling [55].

5.2. Solid Mechanics and Material Modeling

PINNSs have also found significant use in elasticity and plasticity simulations, especially in
problems involving complex geometries or material heterogeneity. The governing PDEs in linear
elasticity, such as:

V-o+f=0, c=C:g ez%(VquVuT),

are well-suited for the PINN framework, with stress—strain relationships embedded directly into
the loss formulation [56]. Haghighat et al [57]. (2020) applied PINNSs to simulate stress fields in
heterogeneous media, such as composites and anisotropic materials. PINNs were also used to discover
material constitutive laws directly from displacement or strain data, opening up new possibilities for
inverse problems in solid mechanics. Recent hybrid approaches combine PINNs with finite element
methods (FEM), yielding hybrid-FEM PINNSs that improve accuracy near boundaries while reducing
computational overhead in bulk regions [58].

5.3. Electromagnetics and Wave Propagation

In electromagnetics, PINNs have been applied to Maxwell’s equations, wave propagation, and
photonic design problems. These applications are particularly well suited to PINNs due to the high
dimensionality and difficulty of mesh generation in complex dielectric geometries [59]. For instance,
the time-domain Maxwell’s equations:

%—EszH—J, %—I::—VXE,
have been modeled using PINNs to simulate electric and magnetic fields in media with spatially
varying permittivity and permeability. Tezuka et al [60]. (2021) used PINNSs to design metasurfaces
and photonic crystals by solving the inverse scattering problem using electromagnetic PDE constraints.
Moreover, the Schrodinger equation, central to quantum wave propagation, has been addressed with
PINNS for applications in quantum control and nanophotonics, demonstrating accurate wavefunction
inference from sparse measurement data.

5.4. Biomedical Applications and Physiology Modeling

The biomedical field offers numerous challenges involving partial differential equations with
irregular domains, noisy measurements, and patient-specific geometries. PINNs have emerged as a
promising tool to model blood flow, electrophysiology, and tissue mechanics from clinical imaging and
sensor data. Kissas et al. (2020) applied PINNs to cardiovascular flows by solving the Navier-Stokes
equations in three-dimensional patient-specific aortic geometries reconstructed from MRI data [61].
Their approach enabled real-time inference of pressure and velocity fields, offering a potential path
toward non-invasive diagnostics [62]. Another area of development is the modeling of electrophysio-
logical dynamics in the heart and brain. By enforcing the monodomain or bidomain models through
PINN architectures, researchers have recovered transmembrane potentials and ionic currents from
surface recordings such as ECG and EEG, effectively transforming sparse sensor data into spatially
resolved field quantities [63].


https://doi.org/10.20944/preprints202504.2577.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 April 2025

9 of 23

5.5. Energy Systems and Geophysical Simulations

PINNSs have been applied in modeling geothermal energy flows, subsurface transport, and seismic
wave propagation—domains where traditional mesh-based methods can be computationally intensive
due to large domain sizes and geological complexity [64]. In geothermal systems, PINNs have been
used to simulate temperature and pressure fields governed by Darcy’s law and advection-diffusion
equations. Shukla et al [29]. (2021) applied PINNS to estimate thermal conductivity and permeability
from sparse well data. Seismic inversion is another critical application where PINNs have provided
robust results. By solving the elastic wave equation with unknown initial and boundary conditions,
PINNSs can reconstruct subsurface velocity models from limited seismic signals, offering an alternative
to computationally expensive adjoint-based methods [14].

5.6. Summary of Application Landscape

Figure 3 visually summarizes the breadth of domains in which PINNs have been applied, along
with the corresponding PDE families and data sources.

[Navier—Stokes] [ Schrbdinger]

Fluid Quantum
Mechanics Mechanics

Diffusion [Elastodynamics ]

Bio- Me Solid
sciences Mechanics

Simulation Experimental Clinical Measurement
data data data data

PINNs have apppelomannsloation damains data source

Figure 3. Application domains of PINNs and associated governing PDEs.

6. Hybrid Architectures and Extensions of PINNs

While the original formulation of Physics-Informed Neural Networks (PINNs) demonstrates a
novel and flexible framework for solving differential equations using neural approximators, numerous
practical limitations have prompted the development of a wide range of extensions and architectural
variants. Chief among these limitations are poor scalability to high-dimensional and stiff PDEs,
degradation of accuracy in long-time simulations, difficulty in handling discontinuities and multi-scale
features, and lack of domain-specific adaptivity [7]. To address these issues, researchers have proposed
hybrid architectures, domain-decomposition strategies, and new classes of operator learning models
that generalize or complement the classical PINN paradigm [65].

6.1. XPINNs: Domain Decomposition for Parallelization

XPINNSs (Extended PINNSs), proposed by Jagtap et al [66]. (2020), are designed to overcome one
of the most pressing limitations of PINNs: their poor scalability to large domains and multi-physics
systems. XPINNs leverage a space-time domain decomposition strategy in which separate neural

d0i:10.20944/preprints202504.2577.v1


https://doi.org/10.20944/preprints202504.2577.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 April 2025 d0i:10.20944/preprints202504.2577.v1

10 of 23

networks are trained in overlapping or non-overlapping subdomains. Each subdomain imposes
continuity conditions at interfaces:

2

7

Lintertace = 110 00) ~ u@ )|+ A 7 () — 7l ()
xel

where I denotes the interface region and u(!), u(2) are solutions in adjacent subdomains [67]. XPINNs
enable distributed training and support problem-specific adaptivity, making them attractive for high-
performance computing applications.

6.2. cPINNSs: Conservative PINNs for Physical Consistency

Conservative PINNs (cPINNSs), introduced by Mao et al [68]. (2020), are particularly suitable
for PDEs that possess strong conservation laws [69]. While standard PINNs minimize residual
loss functions, they may violate integral conservation properties. cPINNs incorporate integral form
constraints directly into the loss:

u
Leconserve = H/Q (at + V- F(u)) dx

thereby ensuring that global physical laws—such as mass, momentum, or energy conservation—are

2

7

honored throughout the domain [70]. These formulations have shown improved stability in applica-
tions such as shallow water equations and conservation-driven fluid dynamics.

6.3. hpPINNs: Multi-Resolution Refinement Strategies

Multi-scale PDEs—such as those in turbulent flows, porous media, or chemical kinetics—often
contain fine-scale structures that cannot be captured effectively with standard PINNs. hpPINNs
(hierarchical + partitioned PINNs) address this by drawing inspiration from hp-adaptive finite element
methods [71]. The domain is divided into multiple subregions, each associated with a different network
that may vary in depth (h-adaptivity) and width (p-adaptivity). This approach allows for dynamic
refinement in regions with high PDE residuals, using an indicator function:

1(x) = [N ug] ()],

where N is the differential operator. Subdomains with 7(x) above a threshold are split recursively and
assigned higher-capacity networks. This method enables the construction of surrogate solutions with
high local accuracy and global efficiency.

6.4. DeepONets and Neural Operators

While PINNSs focus on learning solutions u (x,t) for a fixed PDE, a growing body of work aims
to learn the operator G that maps inputs (e.g., coefficients, boundary conditions, source terms) to the
solution function:

G:fr—u,

where f may represent initial conditions or PDE parameters. DeepONets (Lu et al., 2021) are among
the earliest operator learning frameworks, designed to approximate nonlinear operators through a
two-branch network:

e The branch net encodes the input function f sampled at sensors {x;}.
*  The trunk net encodes the target location x.
e Theoutputis i(x) = Y1 bi(f)ti(x).
Another prominent class of models is the Fourier Neural Operator (FNO), which performs
convolution in the Fourier domain to learn global interactions. These models have demonstrated
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state-of-the-art performance in learning solution operators of parametric PDEs like the Darcy flow
equation and Navier-Stokes dynamics at high resolution, significantly reducing inference cost.

6.5. Variational, Probabilistic, and Multi-Modal Extensions

Beyond deterministic solvers, several extensions aim to incorporate uncertainty quantification,
stochasticity, and variational principles:

e  Bayesian PINNSs use variational inference or Hamiltonian Monte Carlo to estimate posterior
distributions over the solution u or parameters 6, enabling uncertainty-aware predictions [72].

*  Variational PINNs (VPINNSs) reformulate the training objective as a variational minimization,
inspired by finite element weak formulations:

2

7

LypiNN = Y,
i€V

S M ) () d

where {¢;} are test functions in a Hilbert space.

. Multi-modal PINNSs integrate diverse data modalities—such as pointwise measurements, images,
and boundary sensor arrays—by encoding each modality into a shared latent space before
applying PDE constraints. This is particularly powerful in biomedical imaging and remote
sensing.

6.6. Summary and Design Taxonomy

Table 3 summarizes key PINN extensions along with their core objectives and distinguishing

features.

Table 3. Summary of major PINN extensions and their characteristics.
Extension Key Feature Target Problem
XPINNs Domain decomposition Large-scale, multi-physics
cPINNs Integral conservation loss Conservation laws
hpPINNs Adaptive resolution Multi-scale problems
DeepONets Operator learning Parameterized PDEs
FNOs Global convolution in Fourier space | High-resolution spatiotemporal data
VPINNSs Variational formulation Weak-form PDEs
Bayesian PINNs Posterior inference Uncertainty quantification
Multi-modal PINNs | Data fusion from sensors/images Inverse problems in biomedicine

These innovations collectively expand the reach of physics-informed learning beyond the classical
PINN framework. They address critical bottlenecks in efficiency, accuracy, and flexibility, enabling
more robust and scalable neural PDE solvers for real-world scientific computing.

7. Evaluation, Benchmarks, and Performance Metrics

As the field of physics-informed learning matures, the demand for rigorous, standardized eval-
uation of PINN-based models has become increasingly pronounced. Unlike conventional machine
learning tasks that enjoy well-established benchmarks and metrics (e.g., ImageNet, GLUE), physics-
informed neural networks operate across a diverse array of PDEs, geometries, and scientific do-
mains—making evaluation particularly challenging. In this section, we provide a structured review of
current practices for benchmarking PINNSs, focusing on error metrics, test scenarios, computational
performance, and reproducibility considerations.

7.1. Quantitative Metrics for PINN Evaluation

Evaluation metrics for PINNs are inherently tied to the continuous nature of the underlying PDE
solutions. Below, we list the most common quantitative metrics used across studies:
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e  Relative L? Error:
Up — Utrue ||2
e |
re H Utrue HZ
where 1y is the predicted solution and ue is the ground truth from analytical or high-fidelity
numerical solvers.
¢ Pointwise Residual Error: Measures how well the predicted solution satisfies the governing PDE:

1 M

gres = ﬁr Z‘:Z%L/\/’[ué’](Xi)|2'

where {x;} are collocation points and N is the PDE operator.
e  Boundary Error: Quantifies the deviation at boundaries:

1
5BC:EZ

i=1

up (%) — g,

where g is the specified boundary condition [73].

*  Conservation Loss: For problems with integral conservation laws (e.g., mass, energy), the global
integral of the discrepancy is evaluated.

e  Computation Time and Scalability: Total training time, GPU/CPU utilization, and memory
footprint are critical performance measures, particularly for large-scale applications [74].

In practice, studies often report a mix of these metrics across multiple test scenarios, highlighting
trade-offs between physical fidelity, numerical accuracy, and efficiency.

7.2. Common Benchmark Problems and Datasets

Several canonical PDEs and synthetic datasets have emerged as de facto benchmarks in the PINN
literature [75]. These allow for direct comparison of model performance and facilitate reproducibility.
Table 4 summarizes commonly used benchmark problems across different domains [76].

Table 4. Representative benchmark problems in the PINN literature.

Problem Equation Context

1D Burgers Equation | 0su + udyu = voxyxu Viscous shocks, nonlinearity
2D Navier-Stokes Incompressible flow equations | Cylinder flow, cavity flow

1D Heat Equation 04Ul = WOy U Diffusion modeling

Wave Equation Opil = 20yl Oscillatory dynamics

Poisson Equation —Au=f Electrostatics, steady-state heat
Darcy Flow —V .- (kVu) = f Subsurface flow, porous media
Schrodinger Eq. i0sth = —Ap+ Vy Quantum systems

In addition to synthetic PDE problems, a growing number of datasets incorporate experimental
data, such as Particle Image Velocimetry (PIV) flows, physiological recordings (e.g., MRI, ECG), and
geophysical sensor data [77].

7.3. Ablation Studies and Model Diagnostics

Modern PINN studies increasingly include ablation experiments to isolate the effects of architec-
tural components, training schedules, and loss weighting schemes [38]. Representative diagnostic axes
include:

*  Activation Function Sensitivity: Comparing tanh, ReLU, GELU, sine activations for convergence
behavior.

*  Network Depth and Width: Impacts expressivity vs. trainability trade-offs.

¢ Gradient Pathologies: Monitoring gradient norms and Hessian spectra to detect vanish-
ing/exploding gradients or stiffness [78].
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e  Loss Weighting Strategies: Empirical comparisons between fixed, dynamic, and adaptive loss
weighting.

Such diagnostics are increasingly supported by automated PINN frameworks such as DeepXDE,
NeuralPDE, and SimNet.

7.4. Reproducibility and Open-Source Benchmarks

The reproducibility of PINN-based research is still an ongoing concern due to the complex
interaction between data, physics constraints, and optimization [79]. Fortunately, several open-source
libraries and community benchmarks have emerged:

¢  DeepXDE (Lu et al.): TensorFlow-based library for solving differential equations with PINNs and
DeepONets.

¢ NeuralPDE.jl (SciML): A Julia-based framework emphasizing scientific machine learning with
strong PDE support.

e  PINNBench: A curated benchmark suite with standardized problem definitions, metrics, and
logging.

*  NSFnets, PhyCRNet: PyTorch-based specialized PINN variants for fluid dynamics and conserva-
tion laws.

These toolkits help standardize experiments, track performance, and facilitate adoption in cross-
domain studies [80]. In addition, platforms like Weights & Biases and MLFlow are being integrated for
hyperparameter tracking and reproducibility audits [81].

7.5. Challenges in Evaluation and Future Needs

Despite progress, several challenges persist in benchmarking PINNs:

1. Lack of Standard Baselines: Results across papers are often not directly comparable due to
differing training protocols, data sampling schemes, and evaluation regions.

2. Inconsistent Reporting: Studies may report only error metrics, omitting critical training diagnos-
tics such as convergence time or gradient behavior.

3. No Ground Truth for Real-World Inverse Problems: In many scientific applications, the exact
solution is unknown, making surrogate benchmarking difficult [82].

4.  Neglected Generalization Metrics: PINNs are rarely evaluated on their ability to generalize
across PDE parameters, geometries, or domains—an important aspect for true operator learning.

There is a growing push toward community-defined evaluation protocols, complete with chal-
lenge datasets, cross-lab comparisons, and formal reproducibility checklists—akin to initiatives in
NLP and computer vision. Such efforts will be instrumental in benchmarking PINNs rigorously and
ensuring robust scientific contributions.

8. Challenges, Limitations, and Open Problems

Despite the remarkable promise and growing adoption of Physics-Informed Neural Networks
(PINNSs), the field faces several formidable challenges that hinder its widespread applicability in
scientific and engineering workflows. These challenges span across optimization theory, numerical
analysis, generalization behavior, and system integration [75]. In this section, we offer a comprehensive
critique of the known limitations of PINNs and identify open research questions that require resolution
for the field to mature.

8.1. Optimization Landscape and Training Instabilities

One of the most persistent challenges in training PINNSs is the difficulty of optimizing the
composite loss function, which blends data fitting with differential equation residuals. This typically
leads to ill-conditioned and non-convex loss surfaces. Empirical studies have demonstrated that:
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e  The PDE residual component of the loss may exhibit high stiffness, leading to vanishing gradients
in early layers (gradient pathologies).

e  The loss terms may have significantly different magnitudes, necessitating sophisticated loss
balancing or dynamic reweighting schemes (e.g., NTK-based weights, adaptive residual weighting).

*  Overparameterized networks often converge to poor minima that satisfy the data terms but
poorly approximate the solution manifold.

Recent works have attempted to address these issues via curriculum learning, residual-based
adaptive sampling, Sobolev training, and second-order optimizers, yet no universally robust method
exists. Theoretical understanding of the optimization dynamics in PINNs remains limited, especially
in high dimensions.

8.2. Expressivity and Approximation Theory

While universal approximation theorems guarantee that neural networks can represent PDE
solutions under ideal conditions, the ability of PINNs to approximate complex, multi-scale, or discon-
tinuous solutions remains in question [83]. In particular:

1.  PINNSs struggle to capture sharp gradients, shocks, or discontinuities, such as those found in
hyperbolic PDEs and multiphase flows.

2. In multi-scale problems (e.g., turbulent flow), the global nature of the neural representation may
smooth out fine-grained features unless explicitly encoded using hierarchical or Fourier-based
structures.

3. There is a lack of a priori error bounds or convergence guarantees for PINNs under general
conditions.

Efforts such as hpPINNs, wavelet neural operators, and local basis PINNs have shown promise,
but the formal approximation theory for PINNs—particularly in the presence of PDE singulari-
ties—remains an open research frontier [84].

8.3. Scalability and High-Dimensional PDEs

The scalability of PINNs to high-dimensional and long-time simulation problems is another major
bottleneck [85]. While traditional mesh-based solvers suffer from the curse of dimensionality due to
exponential growth in grid points, PINNs are expected to offer mesh-free alternatives. However, in
practice:

e The number of collocation points and gradient evaluations increases steeply with the problem
size.

e  The memory and compute cost of automatic differentiation (AD) becomes prohibitive for complex
PDE systems with many variables[18,86].

¢  Training time grows nonlinearly with input dimension, limiting use in climate models, molecular
dynamics, or plasma physics where d > 6.

Emerging solutions include dimensionality reduction via autoencoders, latent PINNs, domain
decomposition (XPINNSs), and distributed training. However, truly scalable PINN solvers for high-
dimensional PDEs remain elusive.

8.4. Data-Physics Conflicts and Label Inconsistency

In real-world settings, observational data may be noisy, sparse, or inconsistent with the governing
equations [87]. PINNSs are often tasked with simultaneously fitting data and satisfying PDE constraints,
which leads to a trade-off known as the data-physics conflict. This conflict manifests in:

e Opverfitting to noisy or incorrect labels at the expense of physical fidelity.

e Inability to resolve model discrepancies due to unmodeled physics, missing terms, or coarse
discretization.

e Instability in inverse problems where the ground truth is ill-posed or ambiguous.
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Probabilistic PINNSs, adversarial training, and robust loss functions (e.g., Huber loss) have been
proposed to mitigate this issue, but there is still a lack of principled frameworks for uncertainty-aware,
conflict-resolving PINN training [88].

8.5. Generalization and Transfer Learning in PDE Settings

Unlike standard machine learning tasks, where generalization is evaluated over data distributions,
generalization in PINNSs is far more nuanced [89]. Critical open questions include:

1.  How do PINNs generalize to new geometries, boundary conditions, or PDE coefficients not seen
during training?

2. Can pretrained PINNSs on a family of PDEs be fine-tuned efficiently (e.g., transfer learning) [31]?

3. How robust are PINNSs to small perturbations in input conditions or model parameters?

Recent advances in operator learning (e.g., DeepONets, FNOs) offer partial answers by explicitly
learning mappings between function spaces, but robust generalization across PDE families remains a
largely unsolved problem.

8.6. Interpretability and Physical Insight

Although PINNSs are rooted in physics, their internal representations are still black-box neural
networks with limited interpretability [90]. This poses a barrier for domain experts who seek to extract
scientific insights, identify causal mechanisms, or debug model failures. Key concerns include:

*  Lack of explainable diagnostics to assess which parts of the domain violate physical constraints
[91].
e  Difficulty in identifying spurious correlations learned from biased training data.
e Absence of uncertainty quantification in most deterministic PINN models [92].
Interpretable PINNS, sparsity-promoting architectures, symbolic regression hybrids, and physics-
guided attention mechanisms are promising directions, but are still in their infancy.

8.7. Integration into Scientific Workflows

Finally, the integration of PINNs into end-to-end scientific pipelines remains an open challenge.
In practice, deploying PINNs requires:

e  Careful preprocessing (e.g., geometry parameterization, boundary encoding).
e  Tuning of numerous hyperparameters and loss schedules [93].
e  Compatibility with existing solvers, simulators, and data standards [94].

Efforts like SciML, Modulus, and UQ-enhanced frameworks aim to close this gap, but significant
engineering and tooling work is still needed to make PINNs plug-and-play for practicing scientists
and engineers.

8.8. Summary of Limitations and Research Gaps

To consolidate the above discussion, we summarize the major limitations and research needs of
current PINN methodologies in Table 5.

Table 5. Summary of limitations and open problems in PINNS.

Category Limitation / Open Problem
Optimization Stiff PDE loss, imbalance, gradient pathologies
Approximation | Difficulty modeling discontinuities or fine scales

Scalability Poor performance on high-dimensional, long-time simula-
tions
Data Conflict Instability due to noisy or conflicting measurements

Generalization | Weak transfer to unseen PDEs, geometries, conditions
Interpretability | Black-box nature limits scientific insight
Deployment Complex setup and integration into existing workflows



https://doi.org/10.20944/preprints202504.2577.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 April 2025 d0i:10.20944/preprints202504.2577.v1

16 of 23

Addressing these challenges requires interdisciplinary advances across numerical analysis, ma-
chine learning, applied physics, and software systems. As the field evolves, these limitations serve not
as deterrents but as rich research directions for developing the next generation of physics-informed
learning systems.

9. Future Directions and Opportunities

The development of Physics-Informed Neural Networks (PINNs) marks a fundamental shift in
how machine learning can interact with and leverage scientific knowledge. Despite their challenges,
PINNSs have established a foundation upon which next-generation scientific computing frameworks
can be built. In this section, we articulate a vision for future research by highlighting emerging
opportunities and interdisciplinary directions that promise to extend the capabilities, applicability, and
theoretical robustness of PINN-based models [18].

9.1. Hybrid Modeling: Bridging Data and Simulation

One promising direction is the construction of hybrid models that combine data-driven learning
with traditional simulation techniques [95]. While PINNs offer a fully neural approach, many scientific
applications benefit from domain-specific solvers. Hybrid strategies could:

e  Embed numerical solvers as differentiable modules within deep architectures (e.g., physics-
informed recurrent solvers).

e  Use PINNSs to correct or augment coarse-grid solvers, serving as learned subgrid models or
data-driven closures [96].

e Couple PINNs with classical methods such as finite elements (FEM) or boundary element methods
(BEM) in multi-resolution or multi-physics setups [97].

These approaches allow practitioners to retain the guarantees of classical methods while benefiting
from the flexibility and expressiveness of neural networks.

9.2. Probabilistic and Bayesian PINNs

Most current PINNSs are deterministic, providing point estimates of the solution [98]. However,
scientific decision-making often requires calibrated uncertainty estimates [99]. Future work can explore:

*  Bayesian formulations of PINNs using stochastic variational inference or Hamiltonian Monte
Carlo.

*  Deep ensembles or dropout-based Bayesian approximations to capture epistemic uncertainty.

e PINNS as priors in probabilistic graphical models for inverse problems [100].

Such approaches could unlock the potential of PINNs in safety-critical domains, including
medicine, aerospace, and climate forecasting [101].

9.3. Operator Learning and Meta-Learning for PINNs

A foundational advance in recent years is the shift from learning solutions to learning opera-
tors—that is, mappings from problem setup to solution space [102]. This perspective enables:

*  Meta-learning across PDE families, geometries, or boundary conditions, where a PINN model
can adapt rapidly to new tasks [103].

*  Learning parameterized PDE solvers as reusable surrogates that generalize beyond single simula-
tions.

* Incorporating differentiable optimization or bilevel learning into the PINN framework for PDE-
constrained problems.

Operator learning frameworks such as DeepONets, Fourier Neural Operators (FNOs), and Green’s
function-based architectures will likely serve as foundational building blocks in this direction.
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9.4. Geometry-Aware and Mesh-Compatible Architectures

Scientific domains often feature complex geometries (e.g., aircraft, organs, porous media) where
Euclidean coordinates are inadequate [104]. Future advances in geometry-aware PINNs may include:

e  Using graph neural networks (GNNs) or mesh-based convolutions to process non-Euclidean
domains.

*  Incorporating spectral methods or manifold learning to represent irregular geometries.

* Leveraging symmetry and invariance principles (e.g., gauge symmetries, Lie groups) to inform
network architecture.
This would allow PINNSs to be deployed natively on CAD geometries, anatomical meshes, or

finite-volume domains, enhancing applicability in engineering and biomedical contexts [105].

9.5. Neurosymbolic and Interpretable PINNs

A key long-term goal is the ability to extract interpretable, symbolic knowledge from trained
PINNSs [106]. Bridging symbolic regression, causal discovery, and deep learning, future work may:

®  Develop sparse PINN architectures that can recover underlying governing equations (e.g., Sparse
Identification of Nonlinear Dynamics—SINDy).

e  Combine neural representations with logic rules or physics ontologies for mixed-symbolic reason-
ing.

e Enable interactive tools for domain experts to query, interpret, and validate PINN behaviors [107].

Such efforts align with broader goals in neurosymbolic Al and human-centric scientific discovery.

9.6. Hardware-Aware and Real-Time PINNs

Deploying PINNSs in real-world environments often demands real-time inference and low-latency
computation. Future research should consider:

*  Model compression and quantization techniques for edge deployment [108].
e  Efficient inference on hardware accelerators such as GPUs, TPUs, FPGAs, or neuromorphic chips.
*  Asynchronous or distributed training strategies for massive simulations and multi-agent settings
[109].
This opens pathways to using PINNs in cyber-physical systems, digital twins, and real-time
control loops[32,110].

9.7. Standardization and Community Infrastructure

To foster robust progress, the field would benefit from systematic efforts to build shared infras-
tructure, including:

*  Public benchmark suites with reproducible pipelines and baseline models.

*  Domain-specific extensions of PINN toolkits (e.g., for electromagnetics, fluid dynamics, or medical
physics) [111].

*  Common standards for dataset formats, geometry representation, and loss function design.

*  Collaborative platforms for crowdsourced model development and cross-lab evaluations [112].

Lessons from the evolution of NLP and vision suggest that such infrastructure catalyzes both
rigor and innovation.

9.8. Cross-Disciplinary Integration and Education

Finally, the success of PINNs hinges on deeper integration between communities—machine
learning researchers, physicists, engineers, mathematicians, and domain scientists. This calls for:

¢ Interdisciplinary curricula and workshops to bridge technical vocabularies and methodological

gaps.
¢  Inclusion of PINNs in graduate courses on scientific computing, ML for physics, and data-driven
engineering.
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e  Joint research initiatives and funding programs that support long-horizon, high-risk ideas.

By uniting diverse perspectives, the community can create learning systems that are not only
data-efficient but also physically meaningful, computationally robust, and broadly useful.

10. Conclusions and Outlook

Physics-Informed Neural Networks (PINNs) have emerged as a powerful and conceptually
elegant framework that bridges the gap between data-driven machine learning and physics-based
modeling. By embedding physical laws directly into the learning process through differential equa-
tion constraints, PINNs offer a compelling alternative to traditional black-box approaches, enabling
solutions that are consistent with underlying scientific principles even in the absence of dense data.

In this survey, we have provided a comprehensive and structured overview of the PINN landscape,
from foundational theory and architectural paradigms to recent extensions, benchmarks, and use
cases. We have critically examined their mathematical formulation, computational techniques, and
practical implementations, highlighting the interdisciplinary richness and evolving maturity of the
field. We have also offered a detailed discussion of the limitations that currently hinder PINNs’
performance, particularly in terms of optimization stability, expressivity in complex PDE regimes,
generalization, and interpretability. Furthermore, we have articulated a forward-looking research
agenda that emphasizes probabilistic modeling, operator learning, symbolic reasoning, hybrid solvers,
and real-world deployment.

It is increasingly evident that PINNs represent not merely a method but a paradigm shift in
scientific computing. As neural architectures become more physics-aware, and physical models become
more learning-compatible, we move closer to a new generation of solvers that are simultaneously
data-efficient, physically faithful, and capable of reasoning under uncertainty. In this regard, PINNs sit
at the convergence of several exciting research trends: differentiable programming, neural operators,
surrogate modeling, and scientific discovery.

The success of PINNs in diverse domains—ranging from fluid mechanics to biomedical imag-
ing—demonstrates their versatility. Yet, their widespread deployment in critical applications will
depend on further advances in both theory and engineering. These include developing robust train-
ing algorithms, formulating new loss formulations for multi-scale physics, improving scalability on
complex geometries, and designing architectures that generalize across PDE families. Equally impor-
tant is the need for better tools, open benchmarks, and community infrastructure that can accelerate
collaborative progress and ensure reproducibility.

Looking ahead, we envision PINNs playing a central role in reshaping scientific workflows:
enabling simulation-augmented experimentation, facilitating real-time control and optimization, and
even uncovering new physical laws. As the boundaries between data, equations, and computation
continue to blur, PINNs and their extensions will serve as a vital engine for future discoveries. The
journey from data to insight—from partial observations to complete physical understanding—will
increasingly be powered by learning algorithms grounded not only in statistics, but in the timeless
symmetries and structures of the physical world.

In conclusion, while much work remains, the promise of physics-informed learning is profound.
With continued interdisciplinary effort and rigorous development, PINNs may well form the backbone
of the next generation of scientific modeling, transforming not only how we solve equations—but how
we do science itself.
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