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Abstract

Reversible cysteine oxidation is a central mechanism of protein regulation, commonly studied
through advanced redox proteomic workflows that systematically catalogue the redox state of
thousands of residues. Excitingly, these expansive datasets contain latent information that remains
largely untapped. In this work, we propose that principles from information theory, signal geometry,
and chaos theory can reveal hidden meaning within these data—illuminating dynamic regulation,
molecular memory, and the interplay between order and chaos in redox biology. Drawing on
concepts such as Shannon entropy, Fisher information, and spectral energy, we show how variability
and spread in redox signals may reflect structured, condition-specific differences rather than random
noise. We further define a mathematical basis for a cysteine redox butterfly effect on fractal redox
manifolds where sensitivity to initial conditions produces chaotic responses. Even simple entropy-
based metrics can uncover coherent patterns in existing datasets, motivating a conceptual shift in
how redox proteomic data can be analyzed and interpreted. We further propose that oxidation can
be viewed as a probabilistic signal field shaped by underlying biochemical, spatial, and evolutionary
constraints. This reframing opens new avenues for extracting insight from existing data and offers a
conceptual bridge toward future models of redox biology.

Keywords: cysteine; redox; proteomics; information; chaos; proteoform

1. Introduction

Reversible cysteine residue oxidation redox-regulates biological processes by dynamically
modifying protein structure and function [1]. These oxidative post-translational modifications (PTMs
[2-6]) influence protein activity, stability, localization, interactions, and phase [7]—making cysteine
oxidation a powerful and versatile mechanism of cellular control [8]. Viewed from a systems
perspective, redox regulation operates like an electrical circuit: the sulfur atom in cysteine functions
as a live node, continuously reshaped by the flux of oxidizing and reducing equivalents [9]. This
nodal flux is modulated by a metabolically wired redox module comprising oxidants—reactive
oxygen species (ROS) like hydrogen peroxide (H,O,)—and reductants, including the glutathione
(GSH) and thioredoxin (Trx) systems [10-12].

As reviewed elsewhere [13-17], mass spectrometry-based redox proteomics enables a systems-
level readout of this biochemical circuitry by quantifying the percentage oxidation of individual
cysteine residues across the proteome [18-25]. These residue-resolved oxidation states provide a
relative, condition-specific map of electron flux throughout the networked circuit [26] —offering a
powerful lens through which to observe the dynamic output of the upstream redox module [27].
These redox proteomic approaches have yielded important insights into signaling pathways [28],
stress responses [29], aging [18], immunity [30], and disease mechanisms [31] —each shaped by the
underlying flux of oxidants and reductants [32].
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Current redox proteomic frameworks largely treat the redox state of each residue as a vector
with direction and magnitude. These residue-level vectors enable condition-specific changes to be
analyzed using standard approaches, such as volcano plots. Excitingly, the power of such analyses
can be amplified by considering the latent information encoded by the ensemble of vectors as a whole.
This holistic perspective can reveal emergent structure, function, and circuit-level output—features
of the redox system that may remain hidden when residues are considered in isolation. For example,
high-dimensional analyses can provide transformative insights—like ordered and chaotic cysteine
redox state patterns—that may already be latent features in extant datasets [27].

To reveal latent features, the present review focuses on the analysis and the reinterpretation of
redox proteomic datasets using high-dimensional, information theory-grounded metrics like
Shannon entropy [33]. Since the underlying redox biology and proteomic technologies have been
comprehensively reviewed [34-48], we begin by defining how redox proteomic data are currently
analyzed and interpreted. We then introduce a set of information-theoretic tools for high-dimensional
analysis and demonstrate how these concepts can uncover emergent features —including structure,
symmetry, and chaos [49]. These emergent features enable peptide-centric proteomics to better
describe cysteine proteoform defined bioelectrical circuits [50]. What follows is a new way of thinking
and speaking about redox biology. It is a language grounded in the grammar of information theory,
shaped by chaos, and expressed through dynamic nonlinear systems.

2. Methods

Consistent with our previous work [51], all of the python-scripted source codes are available on
Github at https://github.com/JamesCobley/Redox information inclusive of requirements, readme,

and MIT license files. To enable interested readers to implement the analyses described, each script
is configured for open-sourced google colab jupyter notebook run times. One simply needs to render
the scripts compatible with the relevant source data.

For the information theory analysis, we demonstrated proof-of-principle using empirical priors.
To compute several metrics on empirical priors, we computationally implemented the relevant
equations on the OxiMouse dataset [18], downloaded from https://oximouse.hms.harvard.edu/. This

dataset provided the cysteine redox state of residue level vectors in ten different tissues from young
and old mice. For the purposes of brevity, the present analysis was restricted to analyzing the young
and old brain data [52,53]. Since a full reanalysis of the raw instrument files was beyond the scope of
the present work, we used the mean and standard error of the mean to bootstrap the statistical
testing —as detailed in the legend of each figure.

For the chaos theory analysis, we demonstrated proof-of-principle using synthetic priors due to
the limited time-resolved redox proteomic datasets that are presently available. Upon generation of
the appropriate empirical priors, the equations can be implemented without changing their general
form —the mathematics is invariant.

3. Results

3.1. The Flatland Problem: How Scalar Redox Values Conceal the High-Dimensional Structure of Peptide
Data

Redox proteomic datasets usually comprise redox state vectors encoding the direction and
magnitude of a given state in the percentage basis—from 0 to 100% oxidized —for thousands of
cysteine residues across one or more conditions [18,54-62]. Typically, these vectors arise from the
spectral measurement of peptide ensembles bearing light (reduced) and heavy (reversibly oxidized)
labels—such as isotopically distinct maleimide probes [25,63,64] —at both the MS! (intact peptide)
and M$? (fragment ion) levels [65-70]. Each spectral "read" is therefore an amalgam of binary 0 and
1 intensities—corresponding to light and heavy modified peptides and their fragments—that
collectively encode the overall signal for a given peptide. These signals are usually converted into
percentages following the processing of the raw files using appropriate software like MaxQuant or
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DIA-NN for data-dependent acquisition (DDA) and data-independent acquisition (DIA) schemes,
respectively [71-73].

Most current frameworks treat the residue-level redox state as a scalar datapoint—a single
numerical value encoding the degree of oxidation—to enable rigorous statistical comparisons
between conditions. Each scalar is treated as a scale-bounded continuous variable, capable of
assuming any real value within the closed interval [0, 100] [74,75]. These data are typically analyzed
by comparing scalar values between conditions using appropriate statistical tests, such as
independent t-tests for parametric datasets, with corrections applied to control for family-wise error
rates. A common visualization method is the volcano plot, in which the mean oxidation difference
(the delta change) between conditions is plotted as the log, fold-change against a significance metric,
such as the —logio adjusted P-value. This approach captures both the magnitude and direction of
redox shifts and is particularly useful for identifying cysteine residues with significant, condition-
specific perturbations—for instance, in age-associated redox stress response [76-80].

To extract broader biological patterns from the scalar redox data, many studies apply
dimensionality reduction techniques, such as Principal Component Analysis (PCA) [81]. PCA
transforms the original high-dimensional dataset—where each residue is a variable—into a reduced
set of orthogonal axes (principal components) that capture the greatest variance in the data. This
enables the visualization of global structure, such as sample clustering by condition, tissue, or
genotype, while preserving the most informative variation. In parallel, unsupervised clustering
algorithms —such as hierarchical clustering or k-means —are often used to group residues or samples
based on shared redox patterns [27]. These approaches can reveal context-specific clusters, like tissue-
specific oxidation signatures [18,52], helping to identify coherent redox modules across biological
systems [82,83]. Together, PCA and clustering extend scalar analysis beyond univariate comparisons
by revealing coarse-grained structure in the data, forming a conceptual bridge between single-site
analysis and more integrated, systems-level insights.

While scalar-based approaches enable powerful statistical analyses, they also impose a
reductionist structure that can obscure biological meaning, which we term the “flatland problem”.
By treating each cysteine residue as an independent variable, these methods flatten the system
into a residue-centric view, fragmenting the natural continuity of protein-level redox behavior.
This flat projection into low-dimensional space disrupts the coordinated structure of the underlying
redox manifold. In this manifold, each residue belongs to a specific cysteine proteoform —a defined
molecular configuration determined by the redox state of all cysteines in that protein molecule [50].
Hence, clusters or components derived from conventional analyses reflect statistical groupings of
residues, not coherent proteoform dynamics. This disconnect matters: it is proteoforms—not their
disembodied peptides—that enact biology [84-88]. Redox regulation is not merely a collection of
residue shifts [89], but a coordinated molecular choreography that scalar analysis cannot fully resolve
[90-92].

While peptide-level oxidation percentages appear continuous, they are ensemble averages over
discrete molecular states [93-97]. For example, a protein molecule with three cysteines can exist only
in one of four possible proteoform oxidation modes: 0%, 33%, 66%, or 100% [27,50,51,89,98].
However, what we measure is a peptide-level readout—an aggregate signal reflecting a distribution
over these unseen modes [99]. Linear models treat this data as continuous, but the originating system
is fundamentally discrete and combination constrained.

The tension—between continuous analysis and discrete biological configuration—reveals a core
limitation of current frameworks. It invites new models that acknowledge the latent structure of
cysteine proteoforms embedded in high-dimensional state space [51,100]While these proteoforms
are not directly observed in bottom-up mass spectrometry [101-103], peptide measurements are
projections of their redox state distributions. Hence, methods that recognize this structured
embedding are better equipped to recover the coordinated, nonlinear behavior of redox systems [104—
106].
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Nonlinear models from information can chaos theory can be directly applied to peptide-level
oxidation data [107]. Nonlinear models are sensitive to thresholds, feedback loops, bifurcations,
and emergent behaviors [49,98,108]. For example, a small change in oxidation at one cysteine may
lead to a disproportionate structural or functional shift in the protein, particularly if it triggers
allosteric change or destabilizes a critical motif [109-112]. Even without measuring cysteine
proteoforms [89], nonlinear models applied to peptide data can uncover signatures of non-additivity
and non-monotonicity in redox behavior. These models can help to recover the logic of the system:
a redox landscape not governed by smooth gradients but by discrete jumps, state transitions, and
multi-stable basins of behavior [113].

3.2. Conceptual Foundations of Information and Chaos Theory

When seeking to quantify the uncertainty or structure within a signal, Claude Shannon’s 1948
masterpiece [33] introduced a new mathematical framework now known as information theory.
Shannon's goal was to formalize the process of communication—how to transmit messages over
noisy channels with maximal efficiency and minimal error. He defined informational entropy as the
average uncertainty or surprise associated with a set of outcomes. The resulting entropy was not
about the second law of thermodynamics, but about the number of choices available—the
informational richness of a distribution of datapoints in the discrete binary basis [114].

In transcending telecommunications, information theory permeated virtually every branch of
scientific study, including biology [115-117]. It now provides a general language for quantifying
structure, uncertainty, redundancy, and complexity in diverse systems —from neural networks and
genetic sequences to language, learning, and thermodynamics. Central concepts such as mutual
information, Kullback-Leibler divergence, and algorithmic complexity enable precise descriptions of
how patterns emerge, propagate, and are constrained by prior states. This naturally intersects with
Bayesian inference [118], which formalizes how prior knowledge influences probabilistic updates in
light of new data. In essence, information theory reveals how order and unpredictability are balanced
within any probabilistic system, making it a natural partner to dynamical frameworks like chaos
theory that explore how such systems evolve over time [119].

While modeling atmospheric convection in the early 1960’s, Edward Lorenz discovered that
even deterministic systems could behave unpredictably [120]. His seemingly minor rounding error
in initial conditions led to radically different weather simulations—an observation that inspired
chaos theory [121]. Lorenz’s insight revealed that nonlinear dynamical systems, though governed
by deterministic rules, could exhibit sensitive dependence on initial conditions—the “butterfly
effect” [122]. This realization catalyzed the development of advanced mathematical frameworks—
including strange attractors, Lyapunov exponents, and fractals—to characterize the intricate, self-
similar, and often beautiful structures underlying complex dynamical behavior [123-125].

3.3. Shannon Entropy: Quantifying Uncertainty in Redox Distributions

Let the redox proteomic dataset be discretized into percentage oxidized bins, where each bin
defines a given range of peptide oxidation values. For example, 50, 2%-oxidized bins over the [0,100]
interval. Let pi be the proportion of peptide datapoints falling within bin i, such that the sum of all
bins equals 1. Then Shannon entropy (H) becomes:

n

H = —Z pilog,P;
i=1

By binning the redox state into discrete intervals, the continuous oxidation data are converted
into a valid probability distribution which is mathematically justified because Shannon entropy is
defined over discrete outcome spaces. Biologically, the bins correspond to semantically meaningful
states (e.g., 100%-reduced [126-128]). The range of each bin can be adjusted depending on the nature
of the experiment.
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Shannon entropy quantifies the distribution of information—that is, how redox values are
spread across discrete oxidation bins. A uniform distribution corresponds to maximal entropy,
indicating maximal uncertainty or randomness in the oxidation state data. In contrast, a sharp peak
localized to a single bin implies minimal entropy —high predictability and low diversity in cysteine
redox states. Geometrically, entropy reflects the distribution shape: a flat plateau suggests maximal
uncertainty, while a narrow spike reveals an ordered, constrained system.

To capture the information structure embedded within complex, high-dimensional redox
proteomic landscape [129-131], we calculated the Shannon entropy across 5%-oxidation increments
over the 0,100 interval from the 8,183 cysteine residue vectors in young and old mouse brains. Even
though the oxidation of this subset of the proteome decreased by 0.8% from 8.9 in young to 8.1%-
oxidized in old mouse brains, the Shannon entropy increased from 3.884 bits in young to 4.143 bits
in old mouse brains. This ~0.26-bit increase means the distribution of oxidation levels across the
~8,000 cysteine sites are more dispersed —geometrically spread—in aging brains (Figure 1).
Bootstrapping from the SEM revealed this was a significant and appreciable effect (Cohen’s d =10.6).

Per-Site Shannon Entropy
1e—16+43.70347e—9 Brain (n sites=8183)

| ——— ———p—

Entropy (bits)
9]

> A —A_

Young Old
Age

Figure 1. Per-Site Shannon Entropy in Mouse Brain, Young vs. Old (n = 8 183 sites). As generated by a script,
the plot shows the distribution of per-site Shannon entropies (in bits) computed from five simulated replicates
per cysteine site. Replicates were drawn from a normal distribution using each site’s reported mean oxidation
percentage and SEM (o = SEM+5), then binned into 20 equal intervals across [0,100] to calculate entropy. To
assess uncertainty, we bootstrapped the pooled entropy —flattening all simulated replicates across sites—and
repeated the simulation 1000 x, yielding robust estimates of the overall entropy for young vs. old brains. The

clear upward shift in entropy for old mice indicates increased heterogeneity of cysteine oxidation states with

age.

3.4. Mutual Information: Quantifying Shared Information Between Redox States

Let the same discretized redox state from section 3.3 define a random variable X taking values
x=1,....n for each oxidation bin, and let A be a binary variable, such as age were A€
{young, old}. Denote the joint probability

Pxa = Pr(X =x,A= a),
and the marginals
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P, =Zx,a, B, =ZPx,a,
a zZ

so that Y, 4 Py = 1. The mutual information /(X; A) in bits is defined by
n

Px,a

PPy

G =Y Y pelog,
x=1 a€{young,old}
By discretizing oxidation into bins, we obtain a valid discrete joint distribution {P,,}. Mutual

information measures the reduction in uncertainty about A (e.g., age) gained by observing the

oxidation bin X:

e I(X;A) = 0 (the minimum) bits if X and A are statistically independent—knowing oxidation
gives no clue to age.

e I(X;A) = 1 (the maximum) bits if and only if oxidation perfectly predicts age (each bin occurs
in only one age group).

A high I(X;A) indicates that certain redox-state intervals are strongly age-specific, revealing
cysteine sites whose oxidation patterns carry significant “age information.” Conversely, alow I(X; A)
implies that, despite any shifts in mean or variance, the oxidation distributions for young vs. old
overlap so extensively that a single measurement scarcely informs on age. The latter is the case (0.001
bits) when mutual information is applied globally to the cysteine redox proteomic vectors in young
and old mouse brains due to the statistical dependence of X and A in each oxidation bin (Figure 2).

Joint Histogram: Brain Oxidation vs. Age

old

Age Group

Young

0.0 0.2 0.4 0.6 0.8 1.0
Mean Oxidation (%)

Figure 2. Joint histogram of brain oxidation bins vs. age. As generated by a script, the heatmap shows counts
of cysteine sites binned by mean oxidation percentage (20 bins across 0-100 %) on the x-axis and age group
(Young, Old) on the y-axis. Despite a modest shift in average redox state (8.9 % — 8.1 %), the two marginal
distributions overlap almost completely —each oxidation interval contains similar numbers of young and old

site. Hence, their mutual information is near 0.

Like the other metrics, mutual information can be computed per pathway or site. Hence, we
performed a site-wise analysis using a script to identify 100 cystienes exhibiting the greatest delta
change between young and old, pinpointing potential brain-specific aging biomarkers, which
increased the mutual information bits by an order of magnitude (from 0.001 to 0.014 bits). The top
ten sites yeilded an mutual infromation score of 0.693 bits. For example, the delta change for Cys59
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in Acyl-coenzyme A thioesterase THEM4 was 98.8%. The resultant mutual information score of 0.693
bits renders the site highly predicitve of age.

3.5. Kullback-Liebler Divergence: Quantifying the Geometric Difference Between Redox State Distributions
in Information Space

Let redox proteomic data from two conditions like control and H20:-treated [132] be discretized
into the same percentage-oxidized bins, such that P = {P;} represents the baseline condition (e.g.,
control) and Q = {Q;} represents the perturbed state (e.g., H20:). Each Pi and Qi denotes the
proportion of peptides falling into bin 7, normalized such that }; P; = ), Q; = 1. The Kullback-Leibler
(KL) divergence from Q to P is defined as:

Dy (P 11 Q) = Z pilog; (z_)
i=1 '

This equation formalizes the informational cost of assuming distribution Q compared to P. KL
divergence captures how much the cysteine redox state has changed across the full distributional
structure when the system is perturbed. Geometrically, KL divergence measures how one probability
distribution shape differs from another in information space. Unlike Euclidean distance, it is
asymmetric Dk, (P || Q) # Dk, (Q || P), preserving the temporal or causal directionality of cysteine
redox state changes.

Consistent with Figure 2, the site-wise KL score for most of the 8,183 peptide vectors was 0.000
bits, indicating that no information is gained or lost across the majority of sites in old compared to
young mice (Figure 3). These zero scores suggest minimal redistribution of oxidized peptides.
However, 1,014 (12.4%) of the cysteine vectors displayed a nonzero KL divergence, such that the data
displayed a bimodal distribution with a large peak at 0 and a nontrivial peak at 30-35 bits.

For example, the KL divergence score for Cys59 in peptidyl-prolyl cis-trans isomerase NIMA-
interacting 1 (PIN1) was 34.21 bits. This reflects complete non-overlap between its young and old
oxidation distributions. In young brains, Cys59 averages 6.8 % * 0.56 % oxidation, while in Old it
shifts to 0.97 % + 0.25 %, with the two tight SEM-derived replicate clouds each falling into distinct
histogram bins. A KL of ~34 bits arises because DQ =~ 10~? in the wrong bin, driving p log,(p/
q) to ~log,(10%).

Biologically, this “all-or-nothing” change signals a re-parameterization of Cys59’s redox state
with age: its oxidation profile in old mice carries maximal information relative to young (i.e., perfect
separation), even though the absolute change in percent oxidation may seem modest.
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Distribution of Per-Site KL Divergences
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Figure 3. Distribution of per cysteine Kullback-Leibler (KL) divergence in the brains young compared to old
mice. As generated using a script, each residue oxidation probability distribution (P: control; Q: case) was
discretized into equal bins and KL divergence Dxi(P//Q) was calculated in bits. Most peptides exhibit minimal
divergence, suggesting stable redox profiles, while a subset shows substantial shifts under perturbation. The
dashed line indicates the mean KL divergence across all peptides (4.2403 bits), quantifying the average
informational cost of assuming the perturbed state distribution given the baseline. Note the extreme bimodal

distribution of the dataset.

3.6. Fisher Information Metric: Quantifying the Geometry of Curved Redox State Manifolds

Let the redox peptide oxidation data be characterized by a probability distribution p(x;0), where
0 is a parameter (or vector of parameters) that defines the shape or structure of the distribution—
such as a mean oxidation state across peptides. The Fisher Information metric (FIM, I(6) quantifies
how much information the data carries about this parameter, which can be formalized as:

)
1(0) =E Kglog,p(x; 9)) 2]

FIM describes how sharply a system responds to perturbations like exercise [133-141]. For
instance, two distributions with the same mean oxidation might differ in how tightly they are
concentrated around that mean [142]. Hence, the FIM captures this second-order structure —the local
curvature of the data landscape. Geometrically, the FIM defines a Riemannian geometry on the space
of probability distributions. It introduces curvature to the informational manifold: distributions that
are more sensitive to parameter shifts lie on steeper, more curved regions, whereas robust or flat
distributions lie in shallower area. These redox state data-derived manifolds can be described in
terms of geometric distances and angles.

Interpretationally, high FIM values might correspond to tipping points, where small redox
shifts drastically reconfigure the proteomic landscape (e.g., triggering signal response thresholds
[143-145]). Conversely, flat regions with low Fisher Information may indicate robust zones [146-
148], where cysteine redox state changes are dynamically buffered —“homeo-dynamics” [149].
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The global FIM —dimensionless squared Hellinger distance (range 0-2) —was 0.1887, signifying
that the overall surface between the cysteine redox state vectors in young compared to old mouse
brains was mostly flat—small geodesic—across the oxidation bins (Figure 4). Interpretationally, this
is consistent with the mutual information (0.001 bits) score and the substantial peak at 0 in the KL
divergence distribution.

However, one can observe tall peaks in some binds, especially at intermediate oxidation states
(30-60%-oxidized). At these vector points in the overall high dimensional manifold, the geodesic
distance between the young and old is considerable, denoting a reconfiguration of the landscape.
Specifically, the curvature is near maximal at 660%, meaning this bin contributs substantially to the
overall FIM score.

Fisher Information Surface over Redox 6

o, 60
X/datiOn) 80

16(8ung vs Young

Figure 4. Fisher Information Surface over Redox 0. As generated using a script, this 3D plot shows the Fisher
Information Metric between Young and Old brain cysteine oxidation distributions, discretized into equal-width
bins (0-100 %). The “Young vs Young” comparison (front plane) is flat at zero, confirming no self-distance. In
contrast, the “Young vs Old” surface exhibits sharp peaks at intermediate oxidation levels (around 35-45 % and
a secondary bump near 75-85 %), indicating those bins contribute most strongly to the statistical distance
(geodesic) between age groups. The low information at extremes (0-10 % and 90-100 %) reflects minimal age-

dependent change at very reduced or fully oxidized states.

3.7. Fisher-Rao Distance: Quantifying the Distance Between Curved Redox Manifolds

Let the redox peptide oxidation data be characterized by a probability distribution p(x;0), where
0 parameterizes a family of redox states. While the FIM describes the local curvature around a single
distribution, the Fisher-Rao distance (drr) measures the true path length between two such
distributions on the curved statistical manifold. Formally, this geodesic—the shortest path length —
distance is defined as:
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61
drr(61,0;) =L \1(8)66

Fisher-Rao distance defines the true informational displacement between redox states—
accounting not just for the magnitude of redox change, but for how the statistical curvature of the
system warps that change. Two distributions might appear close in Euclidean metrics, yet lie far apart
on the information manifold if one lies in a steep, sensitive region and the other in a flat, buffered
one.

Geometrically, the Fisher—Rao distance measures the shortest possible path between redox states
while honoring the manifold’s internal curvature—akin to walking over a hill instead of cutting
through it. This defines the “true” distance between redox states in terms of the system’s sensitivity
to change—where a greater distance indicates the systems not only differ in their values but their
geometry.

Interpretationally, large Fisher—Rao distances between conditions (e.g., healthy vs. diseased
[150]) may signify deep structural shifts in the system. Small Fisher-Rao distances, by contrast, may
reflect smooth adaptation—a curved, minimal transition within a robust regulatory space.

Computing the Fisher-Rao distances in young and old mouse brains revealed an overall distance
of 0.4399 radians maps to 25 degrees between two cysteine oxidation distance, signifying moderate
angular separation (Figure 5). A maximum distance of 3.14 radians would indicate maximal
separation. Hence, the angular separation of the distributions is more convergent than divergent.

Local Fisher-Rao Contributions over Oxidation Bins

3.10
3.05
3.00
2.95
80 100
)

Figure 5. Local Fisher-Rao Contributions over Oxidation Bins. As generated using a script, the “Young vs

Young vs Old -

2arccos y PiQ;

Young vs Young

6;

0 20 40 60
Mean Oxidation (%

Young” row is uniformly colored (~3.08 radians) because comparing identical distributions yields a constant
minimal contribution in each bin. In contrast, the “Young vs Old” row peaks in the 10-20 % and 20-30 %
oxidation bins (bright yellow), indicating those intermediate oxidation levels carry the greatest local geodesic
distance between age groups. Cooler colors toward the extremes (0-10 % and 90-100 %) show minimal local

distance, consistent with negligible age-dependent change in those redox state. .

The nonzero score indicates a degree of separation concentrated around the intermediate
oxidation bins, particularly 20-30%-oxidized. Hence, subsets of the cysteine proteome do undergo
substantial reparameterization, effectively defining a local reshaping of the manifold at specific
points.

3.8. Distinguishing Order from Chaos in Time-Resolved Redox Dynamics

Let the redox proteome be measured across a time series —such as sequential timepoints under
altered mitochondrial function, circadian cycles, or developmental transitions [151-163]. This
temporally resolved data introduces a new analytic axis: how the system evolves, not just where it
is. The temporal trajectory of the cysteine redox state may exhibit patterns that are:
¢ Ordered—following predictable or quasi-linear dynamics.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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e Chaotic—diverging over time due to small differences in the initial conditions.

e Hybrid—a cysteine redox system where orderly and chaotic behaviors coexist either across
different subsystems, within different time windows, or as structured chaos near low-
dimensional attractors.

Chaos theory provides a mathematical framework to distinguish between these regimes by
characterizing the underlying attractor structure of the dynamical system (Figure 6). Here, the redox
trajectory is treated as an evolving signal in phase space, and we ask: Does it converge to a stable pattern,
cycle through predictable states, or exhibit sensitive dependence on initial conditions?

To distinguish between these behavioral regimes, we draw from a set of mathematically
grounded metrics in nonlinear dynamics. These tools quantify whether redox trajectories evolve
stably, diverge chaotically, or settle into structured attractors. These tools capture distinct signatures
of complexity: Lyapunov exponents quantify divergence of nearby trajectories, recurrence analysis
detects hidden periodicities and long-range dependencies, correlation dimension characterizes the
geometry of the underlying attractor, and bifurcation analysis reveals phase transitions triggered by
small parametric shifts [164-169]. Table 1 summarizes each metric, its mathematical formulation, and
its interpretation in the context of peptide-resolved proteomics, such as time-resolved cell cycle or
signaling analyses [23,170-172].

Table 1. Summary of key chaos theory metrics, inclusive of the mathematical tool, peptide-level equations, and

the biological interpretation.

Metric Mathematical tool Equation (peptide level) Biological interpretation
Exponential Positive values denote redox

Lyapunov divergence of nearby A = lim(t - )(1/)In(lIEX®)[I/I6X,I) shifts diverging over time.

exponent (A) trajectories. © Negative values denote
converging or stable trajectories.
. Cor.rela’aon ) . Redox states oscillate about
Attractor dimension (D2) via Dy = lim( > 0)][logC(#)/loge] nonlinear basins with fractal
geometry  Grassberger-Proaccia where C(¢) is the corrlation sum self-similar structure. ’
algorithm.

Kolmogorov-Sinai The dynamic generation of

Entropy . . , , information reflects continually

; (KS) or approximate ~ ApEn(m,r,N) = ®'m’ (r) — ®'m+ 1’ (r) . .
production redox remodeling of the peptide

Entropy (ApEn). L
oxidation state.

Recurrence Detects long-range memory,

State quantification R(G,j) =0 (e = ||lxi — x;|) hidden periodicity, and/or

recurrence analysis (RQA), Where © is the Heaviside function structured noise in cysteine

Poincaré maps. oxidation datasets

Delay-coordinate Can reveal whether small redox

Bifurcation  bifurcation diagram changes trigger shape transitions

Xn+1 = f(Xy; 1), scan over u (e.g., ROS flux)

detection with control in cysteine oxidation—phase
parameter. space shifts.
Delay embedding Can reveal the stretching and
Phase-space . . 1 . . L
. with topological X: = [Xe, Xee1, X 27, X;_(m—1)7] € R™  folding that is characteristic of
remodeling . .
analysis. chaotic attractors.

Notes: xt is the cysteine redox state (e.g., %-oxidation) of a given peptide at time ¢. 0X(t) and dX0 are
small perturbations in peptide oxidation trajectories. m is embedding dimension; t is time delay; p is
a control parameter (e.g., ROS flux). The equations can be computed peptide-wise, then aggregated

across peptides or protein.
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Figure 6. Bifurcation and Recurrence Reveal Emergent Redox Chaos in Synthetic Systems. Left: Bifurcation
diagram of a logistic map modeling cysteine oxidation under increasing control parameter (u), representing
external redox input such as ROS flux. The system transitions from a single fixed point (ordered behavior) into
periodic oscillations, and ultimately chaotic dynamics as p increases. These bifurcations emulate how redox
systems can exhibit critical transitions where small parameter changes drive disproportionate shifts in the
proteoform state distribution. Right: Recurrence plot of a synthetic redox signal over time. The top-left region
shows regular, periodic recurrence patterns—indicative of stable or oscillatory redox behavior—whereas the
lower-right region becomes irregular and fragmented, reflecting transition to chaos. This transition captures the
coexistence of order and disorder, consistent with redox hybrid attractors. Such plots reveal hidden periodicity,
long-range memory, and the emergence of structured noise within redox trajectories, supporting the concept of

“strange oxi-attractors”.

At the peptide level, these tools allow us to treat nonlinear cysteine redox dynamics as an
evolving informational signal trajectory in a high-dimensional state space [98]. These signal
trajectories can fold and stretch like a shape being continually remodeled. The resulting shapes—
patterns —can exhibit instability and a memory. These measures offer a generative map of how redox
perturbations propagate, whether they resolve into ordered recovery or spiral into new basin
attractors, which we term strange oxi-attractors.

Small differences in initial cysteine oxidation states can cascade into dramatically different
outcomes. A minute shift in oxidation at a specific site—triggered by the upstream redox module
[173-175]—may push the system across a bifurcation point or into a new attractor basin—a
dissipative structure: the strange oxi-attractor [176].

We define this phenomenon as the cysteine redox butterfly effect. This effect captures the
sensitive dependence to initial conditions in nonlinear systems, which while manifest at the
proteoform level can be recorded in the redox states of peptides. The cysteine redox butterfly effect
explains how noise can become a biological signal —how tiny molecular events can influence fate
decisions, stress responses, or pathogenesis [177-187]. And critically, these changes are not arbitrary.
Hence, cysteine oxidation encodes not only the current biochemical state—but the memory of its
perturbation history, fractally embedded in time.

3.9. Fractal Geometry: Quantifying Scale-Invariant Self-Similar Cysteine Redox State Patterns

Let a peptide level cysteine redox trajectory be conceptualized as a curve evolving in complex
space, where each peptide’s oxidation state is modeled not as a scalar value but as a complex number:
Z(t) = R(t) + i(t)

In this formalism, R(t) € R is the real measured percentage oxidation of the peptide at time
t,and I(t) € R is animaginary component, capturing a latent structure, such as the velocity of the
redox state change, the geometry (e.g., Fisher-Rao distance), or a measure of entropy (e.g.,
approximate entropy or Shannon entropy). This transformation lifts peptide-coded cysteine redox
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dynamics into the complex plane (Cg.q4.,), Where the trajectories—paths in phase space [0,100] —
can generate fractals.

Pioneered by Benoit Mandelbrot [124,125,168,188,189], fractals are geometric structures that
exhibit self-similarity across scales, often governed by recursive rules or nested feedback. Applied
to redox proteomics, fractal analysis asks: Does the oxidation trajectory of a peptide encode recursive or
scale-invariant patterns? Do certain biochemical systems evolve along a fractal manifold in redox space? To
help answer these questions, Table 2 defines a set of mathematically grounded tools for extracting
fractal structure from complex-valued peptide oxidation trajectories. Figure 7 illustrates a synthetic
example of a complex-valued redox signal and its recurrence structure, visually revealing fractal and
recursive motifs in Cgegox-

Table 2. Mathematically grounded tools for fractal analysis in peptide level redox biology.

Metric Mathematical tool Equation (peptide level) Biological interpretation
Estimates geometric Measures how fully the redox
trajectory fills its phase space. A

Box-Counting complexity by

log N (e
Dimension covering the Dg = lim,_, %1/(5)) High Ds suggests a recursive
(D) trajectory in e-sized g filling of the available space—the
boxes. [0,100] interval.
Quantifies the Measures dynamic inflections in
Curvature entropy (S) of Scurve = — Z p(klogp(k;) redox trajectories— capturing
entropy trajectory curvature Where ki is 1o (ltal curvature. looping, spiraling, or sharp
fluctuations. transition behavior.
Measures multi-scale repetition
Fractal Assesses self- Diagonal line structures in 2D recurrence . . o P
ey . . in cysteine oxidation patterns,
recurrence similarity in plots of Z(t); compute fractal dimension of . o
with the ability to capture
score recurrence plots. recurrences.

periodic cycles.

Measures cysteine oxidation

Power-law scaling of dynamics across timescales with

Spectral . Power spectrum P(f)~f~F, where B € (0,2 .
pectr the trajectory pectri (~1 Fe @) the ability to capture nested
fractality . quantifies long-range memory .
frequency domain. cycles or autocorrelation
behavior.
Fractal Redox Signal in Credox Recurrence Plot of Complex Redox Signal

—— Real: Oxidation Level
=== Imaginary: Velocity

Figure 7. Synthetic fractal redox signal in complex redox space Creqox reveals scale-invariant recurrence
structure. Left. Real component (solid blue) represents the synthetic oxidation level R(t)R(t)R(t) over time.
Imaginary component (dashed red) encodes a latent redox variable, here modelled as the temporal derivative of
oxidation (velocity), forming a complex signal Z(t) = R(t) + il(t). Periodic base structure with superimposed

fractal spikes reflects recursive oxidation dynamics and perturbation events. (Right) Recurrence plot of the
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complex signal Z(t), showing repeated trajectory motifs in phase space. The plot reveals nested lattice-like
structures with cross-scale diagonals and loops, consistent with a self-similar and fractal manifold in redox
space. These patterns suggest memory-like dynamics, attractor basins, and long-range temporal correlations

within the redox signal evolution.

These metrics may be applied on a per-peptide basis or aggregated across peptides or pathways
to infer system-wide fractal signatures. These analyses may also be constrained within specific time
windows to isolate localized self-similarity.

Interpretationally, fractal geometry can reveal if and how cysteine oxidation patterns recur, nest,
or stretch over time. A residue signal with a non-integer fractal dimensional value Dp € (1,2),
suggests scale-invariant, and recursive redox dynamics, like a recurrent oxidation-reduction control
cycle gravitating around a basin attractor. The imaginary component in the Cg.4,, expression,
provides analytical flexibility. It can encode temporal derivatives, conformational entropy, of
redox flux sensitivity. As a result, fractal patterns that spiral inward or explode outward can be
produced. Fractal geometry can reveal whether the system or aspects thereof exhibits chaotic
behavior about strange oxi-attractors via the analysis of fractal redox manifolds.

We define a fractal redox manifold as a recursive geometric space where peptide oxidation
states evolve nonlinearly in a conserved self-similar manner. These manifolds may embody a
memory of redox history.

4. Discussion

Ironically, redox biology resists reduction. It defies simple arithmetic. As evidenced by the
failure of the original linear rooted free radical theory of aging [190-194], adding or subtracting
electrons doesn’t yield proportionate cysteine redox state changes. Instead, it can provoke silence or
unleash a cascade. Without violating physics, outputs diverge from inputs. How? Because the
cysteine redox network is not a passive register of electrons. Instead, it is a dynamic, living network.
Actively wiring, perpetually rewiring itself by funneling, channeling, dispersing the electron flux
across sulfur nodes. This sulfur nodal flux dynamically remodels cysteine proteoforms distributions
[27,50,51,89,98,195].

The instantiated now carries a memory. The oxidation state of cysteine—measured via a peptide
level read—holds a record of its past that can offer insights even when the proteoform level
information is inaccessible. These redox states tell us how now can shape the future. The profound
consequence is that divergence from a given state might not be easily reversed by an “antioxidant”
[36,38,196-199]. Even if the antioxidant works as intended [37,40,200], simply curtailing further
oxidation will not provide the electrons needed to reduce what is already oxidized [133,201].

A core operating logic emerges where the flow of electron dynamically shapes and reshapes the
live sulfur nodes of the cysteine proteome. This incessant flow of energy continually generates
entropy by reshaping proteoform matter, structuring their nonlinear dynamics. From the relatively
simple redox reactions that determine these states change dynamics, emerges complex behavior —
hysteresis, order, chaos, and fractals (Figure 8). But, how do we understand this complexity? How do we
differentiate between order and chaos? If needed, can we restore order or provoke redox chaos?
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—— Trajectory 1
0.54 0.65 1 Trajectory 2
—— Trajectory 3
0.60 1 —— Trajectory 4
—— Trajectory 5

0.53

Oxidation Level
Oxidation Level

0.50

0.49 0.30

Time Time

Figure 8. The cysteine redox butterfly effect. A small change in ROS from a redox perturbation (left) provokes
chaotic cysteine proteoforms trajectories in redox phase space (right).

To better understand the structured signals underpinning complex phenotypes like sleep-loss
induced neurodegeneration [202-206], information and chaos theory become indispensable tools for
advancing redox proteomic analyses—even when it is peptides not their proteoforms that are
measured [207-219].
¢ Information theory enables the oxidation state of a peptide to be analyzed and interpreted as an

encoded signal, compressible or not, with measurable entropy. The more irregular, the less
compressible—and paradoxically, the more information it may carry. By quantifying these
dynamics across timepoints and conditions, one can begin to see that redox states are not random
variables —they are deterministic signals with memory, unfolding on a nonlinear manifold.

e Chaos theory offers the interpretive lens. Small redox changes can produce outsized shifts in
oxidation of peptides. This sensitivity to initial conditions defines the redox butterfly effect.
Peptide-level oxidation patterns form trajectories—not just in time, but across a complex redox
phase space, where certain states act as strange oxi-attractor. With tools like approximate
entropy, recurrence quantification, and fractal dimension analysis, these structures are now
computationally accessible, even at the peptide level.

A single oxidation event, once viewed in isolation, can now be seen as part of a larger dynamic
system—a ripple in a structured informational field space. Part of a wider cysteine state pattern
capable of producing redox fractal manifolds. What began as a measurement of oxidation becomes
something else entirely:

A window into the informational and energetic landscape of the cell, where peptide-level data
carries echoes of phase transitions, stability basins, and bifurcation points.

The dual lens of information and chaos theory can make sense of many anomalies. Like how
chaotic attractors in atrial fibrillation demand a shock—not a gentle nudge —to restore rhythm, redox
chaos—or ordered dysregulation —may require a systemic reset. Any reset is unlikely to stem from
the “oxidants bad, antioxidants good” dichotomy [138] as no diseases where “oxidative stress” is
implicated have yet been cured along these lines [220]. These disappointing results evidence how
much current thinking in redox biology breaks down in the face of nonlinear dynamical systems.

So far, virtually every pharmaceutical redox therapy has fallen short. Perhaps, what’s needed
is not amolecule, but a mode —a system-wide coherence. These coherent system states may be better
achieved not by a “blockbuster antioxidant” —however well-designed —but through basic lifestyle
choices [221-223]. As Barry Halliwell remarked [38], they include sleep, diet, exercise. Each one
remodels the energy flowing, matter cycling dynamical logic of the cysteine proteome. For example,
exercise induces nuanced reductive and oxidative cysteine redox state changes [139,223-233] These
physiology-first systems strategies may ultimately be able to cross boundary conditions from order
to chaos or vice versa within subsets of the network.
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5. Conclusion

Erwin Schrodinger, Albert Szent-Gyorgyi and others are widely credited with the idea that
discoveries consist of seeing what everybody else has seen and thinking what nobody else has
thought. In this tradition, we have articulated a novel idea built atop what everybody in the field has
seen— cysteine redox proteomic datasets.

We propose that these datasets can be reinterpreted through the lens of information theory and
chaos theory—not just as static outputs but as signals from dynamic systems, revealing geometry,
structure, and unpredictability in redox biology. From this perspective, a single oxidative shift could
ripple over time crossing the chaotic boundary to a strange oxi-attractor—the cysteine redox
butterfly effect.

Deriving novel insights does not depend on generating new data, but on rethinking what we
already have. Petabytes of existing redox proteomic data can now be interrogated for Shannon
entropy, KL divergence, Fisher information, and chaos signatures, extracting hidden order and
transitions within complex peptide distributions. Hence, we expect these approaches to unlock
latent patterns, enabling not just new discoveries but a shift in how we frame, model, and predict
dynamics in redox biology [234-236].

Information and chaos theory metrics can be applied to virtually every proteomic dataset from
global label-free quantification [237] studies, targeted analyses [238-241], to advanced chemo-
proteomic workflows [242], including reactive cysteine labelling [243-246] and PTMs like
phosphorylation [247,248]. Other oxidative PTMs include methionine oxidation, tyrosine nitration,
and carbonylation at several amino acids, such as lysine [249-260]. We fully expect similar insights
to emerge from their reinterpretation. Hence, scientists across disparate fields can leverage
information and chaos theory to derive novel proteomic insights from preexisting datasets [261].

In conclusion, we have reframed the analysis and interpretation of redox proteomic datasets,
and potentially proteomic datasets at large, using mathematically grounded information and chaos
theory derived metrics. The result is a new of thinking about redox biology —one that embraces the
complexities and emergent properties of nonlinear dynamical systems.

Supplementary Materials: n/a.

Author Contributions: n/a.

Funding: n/a

Institutional Review Board Statement: n/a.
Informed Consent Statement: n/a.

Data Availability Statement: n/a

Acknowledgments: The author thanks Prof. Angus Lamond (The University of Dundee) and the members of
his lab for useful scientific discussions. During the preparation of this manuscript, the authors used ChatGPT
(OpenAl, GPT-4, July 2025) for the purposes of idea refinement, language editing, figure caption ideas, symbolic
visual inspiration, and high-level sound boarding. The tool was also used to provide structural feedback and
enhance clarity during drafting. All content was reviewed, edited, and finalized by the authors, who take full

responsibility for the accuracy and integrity of the publication.

Conflicts of Interest: The author declares no conflicts of interest.

References

1.  Sies, H.; Mailloux, R.J.; Jakob, U. Fundamentals of Redox Regulation in Biology. Nat. Rev. Mol. Cell Biol.
2024, 1-19, doi:10.1038/s41580-024-00730-2.

2. Alcock, L.J.; Perkins, M.V.; Chalker, ]. M. Chemical Methods for Mapping Cysteine Oxidation. Chem Soc Rev
2017, 47, 231-268, doi:10.1039/c7cs00607a.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2120.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2025 d0i:10.20944/preprints202507.2120.v2

17 of 30

3. Paulsen, C.E.; Carroll, K.S. Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for
Discovery. Chem Rev 2013, 113, 4633-4679, doi:10.1021/cr300163e.

4. Gould, N.S; Evans, P.; Martinez-Acedo, P.; Marino, S.M.; Gladyshev, V.N.; Carroll, K.S.; Ischiropoulos, H.
Site-Specific Proteomic Mapping Identifies Selectively Modified Regulatory Cysteine Residues in
Functionally Distinct Protein Networks. Chem Biol 2015, 22, 965-975, d0i:10.1016/j.chembiol.2015.06.010.

5. Wensien, M.; Pappenheim, F.R. von; Funk, L.-M.; Kloskowski, P.; Curth, U.; Diederichsen, U.; Uranga, J.;
Ye, J.; Fang, P.; Pan, K.-T.; et al. A Lysine-Cysteine Redox Switch with an NOS Bridge Regulates Enzyme
Function. Nature 2021, 593, 460-464, doi:10.1038/s41586-021-03513-3.

6.  Zhai, Y.; Chen, L.; Zhao, Q.; Zheng, Z.-H.; Chen, Z.-N.; Bian, H.; Yang, X,; Lu, H.-Y.; Lin, P.; Chen, X; et al.
Cysteine Carboxyethylation Generates Neoantigens to Induce HLA-Restricted Autoimmunity. Science
2023, 379, eabg2482, d0i:10.1126/science.abg2482.

7.  Huang, X,; Chen, S,; Li, W,; Tang, L.; Zhang, Y.; Yang, N.; Zou, Y.; Zhai, X.; Xiao, N.; Liu, W.; et al. ROS
Regulated Reversible Protein Phase Separation Synchronizes Plant Flowering. Nat Chem Biol 2021, 17, 549—
557, d0i:10.1038/s41589-021-00739-0.

8. Lennicke, C.; Cochemé, H.M. Redox Metabolism: ROS as Specific Molecular Regulators of Cell Signaling
and Function. Mol Cell 2021, 81, 3691-3707, d0i:10.1016/j.molcel.2021.08.018.

9. Parvez, S;; Long, M.J.C,; Poganik, J.R.; Aye, Y. Redox Signaling by Reactive Electrophiles and Oxidants.
Chem Rev 2018, 118, 8798-8888, d0i:10.1021/acs.chemrev.7b00698.

10. Jones, D.P.; Sies, H. The Redox Code. Antioxid Redox Sign 2015, 23, 734-746, d0i:10.1089/ars.2015.6247.

11. Jones, D.P. Redox Organization of Living Systems. Free Radic. Biol. Med. 2024, 217, 179-189,
doi:10.1016/j.freeradbiomed.2024.03.008.

12.  Feelisch, M.; Cortese-Krott, M.M.; Santolini, J.; Wootton, S.A.; Jackson, A.A. Systems Redox Biology in
Health and Disease. EXCLI J. 2022, 21, 623-646, d0i:10.17179/excli2022-4793.

13. Day, N.J.; Gaffrey, M.J.; Qian, W.-]. Stoichiometric Thiol Redox Proteomics for Quantifying Cellular
Responses to Perturbations. Antioxidants 2021, 10, 499, doi:10.3390/antiox10030499.

14. Li, X,; Gluth, A.; Zhang, T.; Qian, W. Thiol Redox Proteomics: Characterization of Thiol-based Post-
translational Modifications. Proteomics 2023, €2200194, d0i:10.1002/pmic.202200194.

15. Cobley, J.N,; Sakellariou, G.K.; Husi, H.; McDonagh, B. Proteomic Strategies to Unravel Age-Related Redox
Signalling  Defects in  Skeletal Muscle. Free Radical Bio Med 2019, 132, 24-32,
doi:10.1016/j.freeradbiomed.2018.09.012.

16. Kim, H;; Ha, S.; Lee, H.Y.; Lee, K. ROSics: Chemistry and Proteomics of Cysteine Modifications in Redox
Biology. Mass Spectrom Rev 2015, 34, 184208, doi:10.1002/mas.21430.

17.  Burger, N.; Chouchani, E.T. A New Era of Cysteine Proteomics — Technological Advances in Thiol Biology.
Curr. Opin. Chem. Biol. 2024, 79, 102435, d0i:10.1016/j.cbpa.2024.102435.

18. Xiao, H.; Jedrychowski, M.P.; Schweppe, D.K.; Huttlin, E.L.; Yu, Q.; Heppner, D.E.; Li, J.; Long, J.; Mills,
E.L,; Szpyt, ].; et al. A Quantitative Tissue-Specific Landscape of Protein Redox Regulation during Aging.
Cell 2020, 180, 968-983.€24, d0i:10.1016/j.cell.2020.02.012.

19. Li, X;; Day, N.J.; Feng, S.; Gaffrey, M.].; Lin, T.-D.; Paurus, V.L.; Monroe, M.E.; Moore, R.J.; Yang, B.; Xian,
M.; et al. Mass Spectrometry-Based Direct Detection of Multiple Types of Protein Thiol Modifications in
Pancreatic Beta Cells under Endoplasmic Reticulum Stress. Redox Biol 2021, 46, 102111,
doi:10.1016/j.redox.2021.102111.

20. Day, N.J; Kelly, S.S.; Lui, L.; Mansfield, T.A.; Gaffrey, M.].; Trejo, ].B.; Sagendorf, T.J.; Attah, LK.; Moore,
R.J.; Douglas, C.M.; et al. Signatures of Cysteine Oxidation on Muscle Structural and Contractile Proteins
Are Associated with Physical Performance and Muscle Function in Older Adults: Study of Muscle, Mobility
and Aging (SOMMA). Aging Cell 2024, 23, €14094, doi:10.1111/acel.14094.

21. Huang, J.; Staes, A.; Impens, F.; Demichev, V.; Breusegem, F.V.; Gevaert, K.; Willems, P. CysQuant:
Simultaneous Quantification of Cysteine Oxidation and Protein Abundance Using Data Dependent or
Independent Acquisition Mass Spectrometry. Redox Biol. 2023, 67, 102908, doi:10.1016/j.redox.2023.102908.

22.  Anjo, S.I; Melo, M.N.; Loureiro, L.R.; Sabala, L.; Castanheira, P.; Graos, M.; Manadas, B. OXSWATH: An
Integrative Method for a Comprehensive Redox-Centered Analysis Combined with a Generic Differential
Proteomics Screening. Redox Biol. 2019, 22, 101130, doi:10.1016/j.redox.2019.101130.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2120.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2025 d0i:10.20944/preprints202507.2120.v2

18 of 30

23. Behring, ].B.; Post, S. van der; Mooradian, A.D.; Egan, M.].; Zimmerman, M.L; Clements, ]J.L.; Bowman,
G.R; Held, ].M. Spatial and Temporal Alterations in Protein Structure by EGF Regulate Cryptic Cysteine
Oxidation. Sci Signal 2020, 13, eaay7315, doi:10.1126/scisignal.aay7315.

24. Held, ].M. Redox Systems Biology: Harnessing the Sentinels of the Cysteine Redoxome. Antioxid Redox Sign
2020, 32, 659-676, d0i:10.1089/ars.2019.7725.

25. Held, ].M,; Danielson, S.R.; Behring, J.B.; Atsriku, C.; Britton, D.J.; Puckett, R.L.; Schilling, B.; Campisi, ].;
Benz, C.C.; Gibson, B.W. Targeted Quantitation of Site-Specific Cysteine Oxidation in Endogenous Proteins
Using a Differential Alkylation and Multiple Reaction Monitoring Mass Spectrometry Approach. Mol Cell
Proteomics 2010, 9, 1400-1410, doi:10.1074/mcp.m900643-mcp200.

26. Brown, G.C. Bioenergetic Myths of Energy Transduction in Eukaryotic Cells. Front. Mol. Biosci. 2024, 11,
1402910, d0i:10.3389/fmolb.2024.1402910.

27. Cobley, ].N. 50 Shades of Oxidative Stress: A State-Specific Cysteine Redox Pattern Hypothesis. Redox Biol.
2023, 67, 102936, doi:10.1016/j.red0x.2023.102936.

28. Lennicke, C.; Cochemé, HM. Redox Regulation of the Insulin Signalling Pathway. Redox Biol 2021, 42,
101964, doi:10.1016/j.redox.2021.101964.

29. Sies, H. Oxidative Eustress: On Constant Alert for Redox Homeostasis. Redox Biol 2021, 41, 101867,
doi:10.1016/j.red0x.2021.101867.

30. Devant, P.; Borsi¢, E.; Ngwa, EMM.; Xiao, H.; Chouchani, E.T.; Thiagarajah, J.R.; Hafner-Bratkovi¢, I.;
Evavold, C.L.; Kagan, J.C. Gasdermin D Pore-Forming Activity Is Redox-Sensitive. Cell Reports 2023, 42,
112008, doi:10.1016/j.celrep.2023.112008.

31. Cobley, J.N.; Fiorello, M.L.; Bailey, D.M. 13 Reasons Why the Brain Is Susceptible to Oxidative Stress. Redox
Biol 2018, 15, 490-503, d0i:10.1016/j.red0ox.2018.01.008.

32. Sies, H. Dynamics of Intracellular and Intercellular Redox Communication. Free Radic. Biol. Med. 2024, 225,
933-939, doi:10.1016/j.freeradbiomed.2024.11.002.

33. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. ]. 1948, 27, 379-423,
d0i:10.1002/j.1538-7305.1948.tb01338.x.

34. D’Autréaux, B.; Toledano, M.B. ROS as Signalling Molecules: Mechanisms That Generate Specificity in ROS
Homeostasis. Nat Rev Mol Cell Bio 2007, 8, 813-824, d0i:10.1038/nrm2256.

35.  Winterbourn, C.C.; Hampton, M.B. Thiol Chemistry and Specificity in Redox Signaling. Free Radical Bio
Med 2008, 45, 549-561, d0i:10.1016/j.freeradbiomed.2008.05.004.

36. Halliwell, B.; Gutteridge, J. Free Radicals in Biology and Medicine; 2015; Vol. 5th Edition;

37. Murphy, M.P.; Bayir, H.; Belousov, V.; Chang, C.J.; Davies, K.J.A.; Davies, M.].; Dick, T.P.; Finkel, T;
Forman, H.J.; Janssen-Heininger, Y.; et al. Guidelines for Measuring Reactive Oxygen Species and
Oxidative Damage in Cells and in Vivo. Nat Metabolism 2022, 4, 651-662, d0i:10.1038/s42255-022-00591-z.

38. Halliwell, B. Understanding Mechanisms of Antioxidant Action in Health and Disease. Nat. Rev. Mol. Cell
Biol. 2023, 1-21, d0i:10.1038/s41580-023-00645-4.

39. Murphy, M.P.; Holmgren, A.; Larsson, N.-G.; Halliwell, B.; Chang, C.J.; Kalyanaraman, B.; Rhee, S.G,;
Thornalley, P.J.; Partridge, L.; Gems, D.; et al. Unraveling the Biological Roles of Reactive Oxygen Species.
Cell Metab 2011, 13, 361-366, doi:10.1016/j.cmet.2011.03.010.

40. Sies, H.; Belousov, V.V.; Chandel, N.S.; Davies, M.].; Jones, D.P.; Mann, G.E.; Murphy, M.P.; Yamamoto,
M.; Winterbourn, C. Defining Roles of Specific Reactive Oxygen Species (ROS) in Cell Biology and
Physiology. Nat Rev Mol Cell Bio 2022, 1-17, doi:10.1038/s41580-022-00456-z.

41. Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat Rev
Mol Cell Bio 2020, 21, 363-383, doi:10.1038/s41580-020-0230-3.

42. Sies, H. Hydrogen Peroxide as a Central Redox Signaling Molecule in Physiological Oxidative Stress:
Oxidative Eustress. Redox Biol 2017, 11, 613-619, doi:10.1016/j.redox.2016.12.035.

43. Moosmann, B.; Hajieva, P. Probing the Role of Cysteine Thiyl Radicals in Biology: Eminently Dangerous,
Difficult to Scavenge. Antioxidants 2022, 11, 885, doi:10.3390/antiox11050885.

44. Margaritelis, N.V.; Cobley, ].N.; Paschalis, V.; Veskoukis, A.S.; Theodorou, A.A.; Kyparos, A.; Nikolaidis,
M.G. Going Retro: Oxidative Stress Biomarkers in Modern Redox Biology. Free Radical Bio Med 2016, 98, 2—
12, doi:10.1016/j.freeradbiomed.2016.02.005.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2120.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2025 d0i:10.20944/preprints202507.2120.v2

19 of 30

45. Cobley, J.N.; Husi, H. Immunological Techniques to Assess Protein Thiol Redox State: Opportunities,
Challenges and Solutions. Antioxidants 2020, 9, 315, d0i:10.3390/antiox9040315.

46. Cobley, ].N. Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the
Unknown, and the Intriguing. Antioxidants 2020, 9, 933, doi:10.3390/antiox9100933.

47. Margaritelis, N.V.; Cobley, ].N.; Paschalis, V.; Veskoukis, A.S.; Theodorou, A.A.; Kyparos, A.; Nikolaidis,
M.G. Principles for Integrating Reactive Species into in Vivo Biological Processes: Examples from Exercise
Physiology. Cell Signal 2016, 28, 256-271, d0i:10.1016/j.cellsig.2015.12.011.

48. Cobley, ].N.; Margaritelis, N.V.; Chatzinikolaou, P.N.; Nikolaidis, M.G.; Davison, G.W. Ten “Cheat Codes”
for Measuring Oxidative Stress in Humans. Antioxidants 2024, 13, 877, doi:10.3390/antiox13070877.

49. Choudhary, D.; Foster, KR.; Uphoff, S. Chaos in a Bacterial Stress Response. Curr. Biol. 2023, 33, 5404-
5414.€9, doi:10.1016/j.cub.2023.11.002.

50. Cobley, ].N. Oxiforms: Unique Cysteine Residue- and Chemotype-specified Chemical Combinations Can
Produce Functionally-distinct Proteoforms. Bioessays 2023, 45, doi:10.1002/bies.202200248.

51. Cobley, J.N.; Chatzinikolaou, P.N.; Schmidt, C.A. Computational Analysis of Human Cysteine Redox
Proteoforms Reveals Novel Insights., doi:10.1101/2024.09.18.613618.

52. Urrutia, P.J.; Bérquez, D.A. Expanded Bioinformatic Analysis of Oximouse Dataset Reveals Key Putative
Processes Involved in Brain Aging and Cognitive Decline. Free Radic. Biol. Med. 2023, 207, 200-211,
doi:10.1016/j.freeradbiomed.2023.07.018.

53. Li, B.;Ming, H,; Qin, S.; Nice, E.C.; Dong, J.; Du, Z.; Huang, C. Redox Regulation: Mechanisms, Biology and
Therapeutic Targets in Diseases. Signal Transduct. Target. Ther. 2025, 10, 72, doi:10.1038/541392-024-02095-
6.

54. Desai, H.; Andrews, K.H.; Bergersen, K.V.; Ofori, S.; Yu, F.; Shikwana, F.; Arbing, M.A.; Boatner, L.M,;
Villanueva, M.; Ung, N.; et al. Chemoproteogenomic Stratification of the Missense Variant Cysteinome.
Nat. Commun. 2024, 15, 9284, doi:10.1038/s41467-024-53520-x.

55. Yan, T.; Boatner, L.M.; Cui, L.; Tontonoz, P.J.; Backus, K.M. Defining the Cell Surface Cysteinome Using
Two-Step Enrichment Proteomics. JACS Au 2023, 3, 3506-3523, doi:10.1021/jacsau.3c00707.

56. Burton, N.R.; Polasky, D.A.; Shikwana, F.; Ofori, S.; Yan, T.; Geiszler, D.].; Leprevost, F. da V.; Nesvizhskii,
A.L; Backus, KM. Solid-Phase Compatible Silane-Based Cleavable Linker Enables Custom Isobaric
Quantitative Chemoproteomics. J. Am. Chem. Soc. 2023, 145, 21303-21318, doi:10.1021/jacs.3c05797.

57. Desai, HS,; Yan, T.; Yu, F.; Sun, AW; Villanueva, M.; Nesvizhskii, A.I.; Backus, KM. SP3-Enabled Rapid
and High Coverage Chemoproteomic Identification of Cell-State-Dependent Redox-Sensitive Cysteines.
Mol. Cell. Proteom. 2022, 21, 100218, doi:10.1016/j.mcpro.2022.100218.

58. Yan, T.; Desai, H.S.; Boatner, L.M.; Yen, S.L.; Cao, J.; Palafox, M.F.; Jami-Alahmadi, Y.; Backus, K.M. SP3-
FAIMS Chemoproteomics for High-Coverage Profiling of the Human Cysteinome**. ChemBioChem 2021,
22,1841-1851, d0i:10.1002/cbic.202000870.

59. Boatner, L.M.; Palafox, M.F.; Schweppe, D.K.; Backus, K.M. CysDB: A Human Cysteine Database Based on
Experimental Quantitative Chemoproteomics. Cell Chem Biol 2023, d0i:10.1016/j.chembiol.2023.04.004.

60. Yan, T.; Palmer, A.B.; Geiszler, D.J.; Polasky, D.A.; Boatner, L.M.; Burton, N.R.; Armenta, E.; Nesvizhskii,
A.I; Backus, K.M. Enhancing Cysteine Chemoproteomic Coverage through Systematic Assessment of Click
Chemistry Product Fragmentation. Anal Chem 2022, 94, 3800-3810, doi:10.1021/acs.analchem.1c04402.

61. Huang, H.; Petersen, M.H.; Ibafiez-Vea, M.; Lassen, P.S.; Larsen, M.R,; Palmisano, G. Simultaneous
Enrichment of Cysteine-Containing Peptides and Phosphopeptides Using a Cysteine-Specific Phosphonate
Adaptable Tag (CysPAT) in Combination with Titanium Dioxide (TiO2) Chromatography*. Mol. Cell.
Proteom. 2016, 15, 3282-3296, d0i:10.1074/mcp.m115.054551.

62. Leichert, L.I.; Gehrke, F.; Gudiseva, H.V.; Blackwell, T.; Ilbert, M.; Walker, A.K.; Strahler, J.R.; Andrews,
P.C; Jakob, U. Quantifying Changes in the Thiol Redox Proteome upon Oxidative Stress in Vivo. Proc
National Acad Sci 2008, 105, 8197-8202, doi:10.1073/pnas.0707723105.

63. Chouchani, E.T.; Methner, C.; Nadtochiy, S.M.; Logan, A.; Pell, V.R; Ding, S.; James, A.M.; Cochemé, HM.;
Reinhold, J.; Lilley, K.S.; et al. Cardioprotection by S-Nitrosation of a Cysteine Switch on Mitochondrial
Complex I. Nat Med 2013, 19, 753-759, d0i:10.1038/nm.3212.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2120.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2025 d0i:10.20944/preprints202507.2120.v2

20 of 30

64. Chouchani, E.T.; James, AM.; Fearnley, LM,; Lilley, K.S.; Murphy, M.P. Proteomic Approaches to the
Characterization of Protein Thiol Modification. Curr Opin Chem Biol 2011, 15, 120-128,
doi:10.1016/j.cbpa.2010.11.003.

65. Sinha, A.; Mann, M. A Beginner’s Guide to Mass Spectrometry-Based Proteomics. Biochem. 2020, 42, 64—69,
doi:10.1042/bi020200057.

66. Aebersold, R; Mann, M. Mass Spectrometry-Based Proteomics. Nature 2003, 422, 198-207,
doi:10.1038/nature01511.

67. Steen, H.; Mann, M. The Abc’s (and Xyz’'s) of Peptide Sequencing. Nat Rev Mol Cell Bio 2004, 5, 699-711,
do0i:10.1038/nrm1468.

68. He, F.; Aebersold, R.; Baker, M.S; Bian, X.; Bo, X.; Chan, D.W.; Chang, C.; Chen, L.; Chen, X,; Chen, Y.-J.; et
al. m-HuB: The Proteomic Navigator of the Human Body. Nature 2024, 636, 322-331, doi:10.1038/s41586-
024-08280-5.

69. Guo, T, Steen, J.A.,; Mann, M. Mass-Spectrometry-Based Proteomics: From Single Cells to Clinical
Applications. Nature 2025, 638, 901-911, doi:10.1038/541586-025-08584-0.

70. Aebersold, R.; Mann, M. Mass-Spectrometric Exploration of Proteome Structure and Function. Nature 2016,
537, 347-355, d0i:10.1038/nature19949.

71.  Cox, J.; Mann, M. MaxQuant Enables High Peptide Identification Rates, Individualized p.p.b.-Range Mass
Accuracies and Proteome-Wide Protein Quantification. Nat. Biotechnol. 2008, 26, 1367-1372,
doi:10.1038/nbt.1511.

72. Demichev, V.; Messner, C.B.; Vernardis, S.I.; Lilley, K.S.; Ralser, M. DIA-NN: Neural Networks and
Interference Correction Enable Deep Proteome Coverage in High Throughput. Nat. Methods 2020, 17, 41—
44, doi:10.1038/s41592-019-0638-x.

73. Lou, R;Cao, Y.;Li, S; Lang, X.; Li, Y.; Zhang, Y.; Shui, W. Benchmarking Commonly Used Software Suites
and Analysis Workflows for DIA Proteomics and Phosphoproteomics. Nat. Commun. 2023, 14, 94,
doi:10.1038/s41467-022-35740-1.

74. Pillay, C.S.; Eagling, B.D.; Driscoll, S.R.E.; Rohwer, ].M. Quantitative Measures for Redox Signaling. Free
Radical Bio Med 2016, 96, 290-303, do0i:10.1016/j.freeradbiomed.2016.04.199.

75. Buettner, G.R.; Wagner, B.A.; Rodgers, V.G.J]. Quantitative Redox Biology: An Approach to Understand the
Role of Reactive Species in Defining the Cellular Redox Environment. Cell Biochem Biophys 2013, 67, 477—
483, d0i:10.1007/s12013-011-9320-3.

76. Cobley, ].N.; Moult, P.R.; Burniston, J.G.; Morton, J.P.; Close, G.L. Exercise Improves Mitochondrial and
Redox-Regulated Stress Responses in the Elderly: Better Late than Never! Biogerontology 2015, 16, 249264,
doi:10.1007/s10522-014-9546-8.

77. Cobley, ].N.; Sakellariou, G.K.; Owens, D.]J.; Murray, S.; Waldron, S.; Gregson, W.; Fraser, W.D.; Burniston,
J.G.; Iwanejko, L.A.; McArdle, A; et al. Lifelong Training Preserves Some Redox-Regulated Adaptive
Responses after an Acute Exercise Stimulus in Aged Human Skeletal Muscle. Free Radical Bio Med 2014, 70,
23-32, doi:10.1016/j.freeradbiomed.2014.02.004.

78.  Stretton, C.; Pugh, J.N.; McDonagh, B.; McArdle, A.; Close, G.L.; Jackson, M.]. 2-Cys Peroxiredoxin
Oxidation in Response to Hydrogen Peroxide and Contractile Activity in Skeletal Muscle: A Novel Insight
into Exercise-Induced Redox Signalling? Free Radical Bio Med 2020, 160, 199-207,
doi:10.1016/j.freeradbiomed.2020.06.020.

79. Pugh, ].N.; Stretton, C.; McDonagh, B.; Brownridge, P.; McArdle, A.; Jackson, M.J.; Close, G.L. Exercise
Stress Leads to an Acute Loss of Mitochondrial Proteins and Disruption of Redox Control in Skeletal
Muscle of Older Subjects: An Underlying Decrease in Resilience with Aging? Free Radical Bio Med 2021, 177,
88-99, doi:10.1016/j.freeradbiomed.2021.10.003.

80. McDonagh, B.; Sakellariou, G.K.; Smith, N.T.; Brownridge, P.; Jackson, M.]. Differential Cysteine Labeling
and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging. J. Proteome
Res. 2014, 13, 5008-5021, d0i:10.1021/pr5006394.

81. Shinn, M. Phantom Oscillations in Principal Component Analysis. Proc. Natl. Acad. Sci. 2023, 120,
€2311420120, doi:10.1073/pnas.2311420120.

82. Kitano, H. Computational Systems Biology. Nature 2002, 420, 206-210, d0i:10.1038/nature01254.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2120.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2025 d0i:10.20944/preprints202507.2120.v2

21 of 30

83. Hartwell, L.H.; Hopfield, J.J.; Leibler, S.; Murray, A.W. From Molecular to Modular Cell Biology. Nature
1999, 402, C47-C52, doi:10.1038/35011540.

84. Smith, L.M.; Kelleher, N.L.; Linial, M.; Goodlett, D.; Langridge-Smith, P.; Goo, Y.A.; Safford, G.; Bonilla*,
L.; Kruppa, G.; Zubarev, R.; et al. Proteoform: A Single Term Describing Protein Complexity. Nat Methods
2013, 10, 186-187, d0i:10.1038/nmeth.2369.

85. Smith, L.M.; Kelleher, N.L. Proteoforms as the next Proteomics Currency. Science 2018, 359, 1106-1107,
doi:10.1126/science.aat1884.

86. Carbonara, K.; Andonovski, M.; Coorssen, J.R. Proteomes Are of Proteoforms: Embracing the Complexity.
Proteomes 2021, 9, 38, d0i:10.3390/proteomes9030038.

87. Coorssen, ].R.; Padula, M.P. Proteomics —The State of the Field: The Definition and Analysis of Proteomes
Should Be Based in Reality, Not Convenience. Proteomes 2024, 12, 14, doi:10.3390/proteomes12020014.

88. Alfaro, J.A.; Bohlander, P.; Dai, M; Filius, M.; Howard, C.J.; Kooten, X.F. van; Ohayon, S.; Pomorski, A,;
Schmid, S.; Aksimentiev, A.; et al. The Emerging Landscape of Single-Molecule Protein Sequencing
Technologies. Nat Methods 2021, 18, 604-617, d0i:10.1038/s41592-021-01143-1.

89. Cobley, ].N. Exploring the Unmapped Cysteine Redox Proteoform Landscape. Am. . Physiol.-Cell Physiol.
2024, doi:10.1152/ajpcell.00152.2024.

90. Parkies, S.L.;Lind, D.J.; Pillay, C.S. Emerging Trends for the Regulation of Thiol-Based Redox Transcription
Factor Pathways. Biochemistry 2025, doi:10.1021/acs.biochem.5c00268.

91. Jacquel, B.; Kav¢i¢, B.; Aspert, T.; Matifas, A.; Kuehn, A.; Zhuravlev, A ; Byckov, E.; Morgan, B.; Julou, T,;
Charvin, G. A Trade-off between Stress Resistance and Tolerance Underlies the Adaptive Response to
Hydrogen Peroxide. Cell Syst. 2025, 101320, doi:10.1016/j.cels.2025.101320.

92. Lind, DJ; Naidoo, K.C,; Tomalin, L.E.; Rohwer, J.M.; Veal, E.A; Pillay, C.S. Quantifying Redox
Transcription Factor Dynamics as a Tool to Investigate Redox Signalling. Free Radic. Biol. Med. 2024, 218,
16-25, doi:10.1016/j.freeradbiomed.2024.04.004.

93. Smith, L.M.; Thomas, P.M.; Shortreed, M.R.; Schaffer, L.V.; Fellers, R.T.; LeDuc, R.D.; Tucholski, T.; Ge, Y.;
Agar, ].N.; Anderson, L.C,; et al. A Five-Level Classification System for Proteoform Identifications. Nat.
Methods 2019, 16, 939-940, doi:10.1038/s41592-019-0573-x.

94. Bamberger, C.; Martinez-Bartolomé, S.; Montgomery, M.; Pankow, S.; Hulleman, J.D.; Kelly, ] W_; Yates,
J.R. Deducing the Presence of Proteins and Proteoforms in Quantitative Proteomics. Nat. Commun. 2018, 9,
2320, d0i:10.1038/s41467-018-04411-5.

95. Aebersold, R.; Agar, ].N.; Amster, L].; Baker, M.S.; Bertozzi, C.R.; Boja, E.S.; Costello, C.E.; Cravatt, B.F.;
Fenselau, C.; Garcia, B.A.; et al. How Many Human Proteoforms Are There? Nat Chem Biol 2018, 14, 206—
214, doi:10.1038/nchembio.2576.

96. Marx, V. Inside the Chase after Those Elusive Proteoforms. Nat. Methods 2024, 1-6, d0i:10.1038/s41592-024-
02170-4.

97. Bludau, I; Aebersold, R. Proteomic and Interactomic Insights into the Molecular Basis of Cell Functional
Diversity. Nat. Rev. Mol. Cell Biol. 2020, 21, 327-340, doi:10.1038/s41580-020-0231-2.

98. Cobley, ].N.; Chatzinikolaou, P.N.; Schmidt, C.A. The Nonlinear Cysteine Redox Dynamics in the I-Space:
A Proteoform-Centric =~ Theory  of Redox  Regulation.  Redox  Biol. 2025, 103523,
doi:10.1016/j.redox.2025.103523.

99. Hansen, R.E; Roth, D.; Winther, J.R. Quantifying the Global Cellular Thiol-Disulfide Status. Proc National
Acad Sci 2009, 106, 422-427, doi:10.1073/pnas.0812149106.

100. Cobley, J.N.; Noble, A.; Guille, M. Cleland Immunoblotting Unmasks Unexpected Cysteine Redox
Proteoforms., doi:10.1101/2024.09.18.613741.

101. Melani, R.D.; Gerbasi, V.R.; Anderson, L.C.; Sikora, ].W.; Toby, T.K.; Hutton, J.E.; Butcher, D.S.; Negrao, F.;
Seckler, H.S.; Srzenti¢, K.; et al. The Blood Proteoform Atlas: A Reference Map of Proteoforms in Human
Hematopoietic Cells. Science 2022, 375, 411-418, doi:10.1126/science.aaz5284.

102. Smith, L.M.; Agar, ].N.; Chamot-Rooke, J.; Danis, P.O.; Ge, Y.; Loo, J.A.; Pasa-Toli¢, L.; Tsybin, Y.O,;
Kelleher, N.L.; Proteomics, T.C. for T.-D. The Human Proteoform Project: Defining the Human Proteome.
Sci Adv 2021, 7, eabk0734, doi:10.1126/sciadv.abk0734.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2120.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2025 d0i:10.20944/preprints202507.2120.v2

22 of 30

103. Roberts, D.S.; Loo, J.A.; Tsybin, Y.O.; Liu, X.; Wu, S.; Chamot-Rooke, J.; Agar, ].N.; Pasa-Toli¢, L.; Smith,
L.M.; Ge, Y. Top-down Proteomics. Nat. Rev. Methods Prim. 2024, 4, 38, doi:10.1038/s43586-024-00318-2.

104. Burnum-Johnson, K.E.; Conrads, T.P.; Drake, R.R;; Herr, A.E.; Iyengar, R.; Kelly, R.T.; Lundberg, E.;
MacCoss, M.].; Naba, A.; Nolan, G.P.; et al. New Views of Old Proteins: Clarifying the Enigmatic Proteome.
Mol Cell Proteomics 2022, 21, 100254, doi:10.1016/j.mcpro.2022.100254.

105. Su, P.; Hollas, M.A.R; Pla, I.; Rubakhin, S.; Butun, F.A.; Greer, ].B.; Early, B.P.; Fellers, R.T.; Caldwell, M.A;
Sweedler, J.V; et al. Proteoform Profiling of Endogenous Single Cells from Rat Hippocampus at Scale. Nat.
Biotechnol. 2025, 1-5, doi:10.1038/s41587-025-02669-x.

106. Plubell, D.L.; Kill, L.; Webb-Robertson, B.-].; Bramer, L.M.; Ives, A.; Kelleher, N.L.; Smith, L.M.; Montine,
T.J.; Wu, C.C; MacCoss, M.J. Putting Humpty Dumpty Back Together Again: What Does Protein
Quantification Mean in Bottom-Up Proteomics? ]. Proteome Res. 2022, 21, 891-898,
doi:10.1021/acs.jproteome.1c00894.

107. Pace, P.E.; Fu, L.; Hampton, M.B.; Winterbourn, C.C. Redox Proteomic Analysis of H202 -Treated Jurkat
Cells and Effects of Bicarbonate and Knockout of Peroxiredoxins 1 and 2. Free Radic. Biol. Med. 2025, 227,
221-232, doi:10.1016/j.freeradbiomed.2024.10.314.

108. Ivancevic, V.G, Ivancevic, T.T. Ricci Flow and Nonlinear Reaction-Diffusion Systems in Biology,
Chemistry, and Physics. Nonlinear Dyn. 2011, 65, 35-54, doi:10.1007/s11071-010-9872-6.

109. Heppner, D.E.; Dustin, C.M.; Liao, C.; Hristova, M.; Veith, C.; Little, A.C.; Ahlers, B.A.; White, S.L.; Deng,
B.; Lam, Y.-W; et al. Direct Cysteine Sulfenylation Drives Activation of the Src Kinase. Nat Commun 2018,
9, 4522, d0i:10.1038/s41467-018-06790-1.

110. Wani, R;; Qian, J.; Yin, L.; Bechtold, E.; King, S.B.; Poole, L.B.; Paek, E.; Tsang, A.W.; Furdui, C.M. Isoform-
Specific Regulation of Akt by PDGF-Induced Reactive Oxygen Species. Proc National Acad Sci 2011, 108,
10550-10555, doi:10.1073/pnas.1011665108.

111. Su, Z; Burchfield, ].G.; Yang, P.; Humphrey, S.J.; Yang, G.; Francis, D.; Yasmin, S.; Shin, S.-Y.; Norris, D.M.;
Kearney, A.L.; et al. Global Redox Proteome and Phosphoproteome Analysis Reveals Redox Switch in Akt.
Nat Commun 2019, 10, 5486, doi:10.1038/s41467-019-13114-4.

112. Zhang, J.; Ali, M.Y.; Chong, H.B.; Tien, P.-C.; Woods, ].; Noble, C.; Vornbdumen, T.; Orduluy, Z.; Possemato,
A.P.; Harry, S.; et al. Oxidation of Retromer Complex Controls Mitochondrial Translation. Nature 2025, 1-
11, doi:10.1038/s41586-025-08756-y.

113. Huang, J.; Co, HK.; Lee, Y.; Wu, C.; Chen, S. Multistability Maintains Redox Homeostasis in Human Cells.
Mol. Syst. Biol. 2021, 17, €10480, doi:10.15252/msb.202110480.

114. Feinstein, A. A New Basic Theorem of Information Theory. Trans. IRE Prof. Group Inf. Theory 1954, 4, 2-22,
doi:10.1109/tit.1954.1057459.

115. Nunn, A.V.W.; Guy, G.W.; Bell, ].D. The Quantum Mitochondrion and Optimal Health. Biochem. Soc. Trans.
2016, 44, 1101-1110, doi:10.1042/bst20160096.

116. Waltermann, C.; Klipp, E. Information Theory Based Approaches to Cellular Signaling. Biochim. Biophys.
Acta (BBA) - Gen. Subj. 2011, 1810, 924-932, doi:10.1016/j.bbagen.2011.07.009.

117. Lu, Y.R,; Tian, X,; Sinclair, D.A. The Information Theory of Aging. Nat. Aging 2023, 3, 1486-1499,
doi:10.1038/s43587-023-00527-6.

118. Malakoff, D. Bayes Offers a “New” Way to Make Sense of Numbers. Science 1999, 286, 1460-1464,
doi:10.1126/science.286.5444.1460.

119. Crutchfield, J.P.; Young, K. Inferring Statistical Complexity. Phys. Rev. Lett. 1989, 63, 105-108,
doi:10.1103/physrevlett.63.105.

120. Lorenz, E.N. Deterministic Nonperiodic Flow. ]. Atmos. Sci. 1963, 20, 130-141, doi:10.1175/1520-
0469(1963)020<0130:dnf>2.0.co;2.

121. Gleick, J. Chaos: Making the New Science; Penguin Books, 2008; ISBN 9780143113454.

122. Lorenz, E.N. Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set off a Tornado in Texas. In
Proceedings of the merican Association for the Advancement of Science; Washington DC, 1972.

123. Feigenbaum, M.]. Quantitative Universality for a Class of Nonlinear Transformations. J. Stat. Phys. 1978,
19, 25-52, d0i:10.1007/bf01020332.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2120.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2025 d0i:10.20944/preprints202507.2120.v2

23 of 30

124. Mandelbrot, B.B. Fractals in Physics: Squig Clusters, Diffusions, Fractal Measures, and the Unicity of Fractal
Dimensionality. J. Stat. Phys. 1984, 34, 895-930, doi:10.1007/bf01009448.

125. Mandelbrot, B.B. Fractal Geometry: What Is It, and What Does It Do? Proc. R. Soc. Lond. A Math. Phys. Sci.
1989, 423, 3-16, doi:10.1098/rspa.1989.0038.

126. Gutteridge, ].M.C.; Halliwell, B. Mini-Review: Oxidative Stress, Redox Stress or Redox Success? Biochem
Bioph Res Co 2018, 502, 183-186, d0i:10.1016/j.bbrc.2018.05.045.

127. Halliwell, B. Biochemistry of Oxidative Stress. Biochemical Society Transactions 2007.

128. Paulsen, C.E.; Truong, T.H.; Garcia, F.J.; Homann, A.; Gupta, V.; Leonard, S.E.; Carroll, K.S. Peroxide-
Dependent Sulfenylation of the EGFR Catalytic Site Enhances Kinase Activity. Nat Chem Biol 2012, 8, 57—
64, doi:10.1038/nchembio.736.

129. Go, Y.-M.; Chandler, ].D.; Jones, D.P. The Cysteine Proteome. Free Radical Bio Med 2015, 84, 227-245,
doi:10.1016/j.freeradbiomed.2015.03.022.

130. Go, Y.-M.; Roede, J.R.; Walker, D.I;; Duong, D.M.; Seyfried, N.T.; Orr, M.; Liang, Y.; Pennell, K.D.; Jones,
D.P. Selective Targeting of the Cysteine Proteome by Thioredoxin and Glutathione Redox Systems*. Mol
Cell Proteomics 2013, 12, 3285-3296, d0i:10.1074/mcp.m113.030437.

131. Moan, N.L.; Clement, G.; Maout, S.L.; Tacnet, F.; Toledano, M.B. The Saccharomyces Cerevisiae Proteome
of Oxidized Protein Thiols CONTRASTED FUNCTIONS FOR THE THIOREDOXIN AND
GLUTATHIONE PATHWAYS*. ] Biol Chem 2006, 281, 1042010430, doi:10.1074/jbc.m513346200.

132. Reest, J. van der; Lilla, S.; Zheng, L.; Zanivan, S.; Gottlieb, E. Proteome-Wide Analysis of Cysteine Oxidation
Reveals Metabolic Sensitivity to Redox Stress. Nat Commun 2018, 9, 1581, d0i:10.1038/s41467-018-04003-3.

133. Cobley, J.N.; Close, G.L.; Bailey, D.M.; Davison, G.W. Exercise Redox Biochemistry: Conceptual,
Methodological and Technical Recommendations. Redox Biol 2017, 12, 540-548,
doi:10.1016/j.redox.2017.03.022.

134. Cobley, J.N. Oxidative Stress. 2020, 447-462, d0i:10.1016/b978-0-12-818606-0.00023-7.

135. Cobley, J.N.; Davison, G.W. Oxidative Eustress in Exercise Physiology. 2022, 11-22,
doi:10.1201/9781003051619-2.

136. Cobley, James.N.; Davison, G.W. Oxidative Eustress in Exercise Physiology; CRC Press, 2022; ISBN
9781003051619.

137. Cobley, ].N.; Margaritelis, N.V.; Morton, J.P.; Close, G.L.; Nikolaidis, M.G.; Malone, J.K. The Basic
Chemistry of Exercise-Induced DNA Oxidation: Oxidative Damage, Redox Signaling, and Their Interplay.
Front Physiol 2015, 6, 182, doi:10.3389/fphys.2015.00182.

138. Nikolaidis, M.G.; Margaritelis, N.V. Free Radicals and Antioxidants: Appealing to Magic. Trends Endocrinol.
Metab. 2023, doi:10.1016/j.tem.2023.06.001.

139. Nikolaidis, M.; Margaritelis, N.; Matsakas, A. Quantitative Redox Biology of Exercise. Int. ]. Sports Med.
2020, 41, 633—645, doi:10.1055/a-1157-9043.

140. Margaritelis, N.V.; Chatzinikolaou, P.N.; Chatzinikolaou, A.N.; Paschalis, V.; Theodorou, A.A.; Vrabas, I.S,;
Kyparos, A.; Nikolaidis, M.G. The Redox Signal: A Physiological Perspective. IUBMB Life 2022, 74, 2940,
doi:10.1002/iub.2550.

141. Margaritelis, N.V.; Cobley, ].N.; Nastos, G.G.; Papanikolaou, K.; Bailey, S.].; Kritsiligkou, P.; Nikolaidis,
M.G. “Unlocking Athletic Potential: Exploring Exercise Physiology from Mechanisms to Performance”:
Evidence-Based Sports Supplements: A Redox Analysis. Free Radic. Biol. Med. 2024, 224, 62-77,
doi:10.1016/j.freeradbiomed.2024.08.012.

142. Ursini, F.; Maiorino, M.; Forman, H.J. Redox Homeostasis: The Golden Mean of Healthy Living. Redox Biol
2016, 8, 205-215, doi:10.1016/j.redox.2016.01.010.

143. Marinho, H.S.; Real, C.; Cyrne, L.; Soares, H.; Antunes, F. Hydrogen Peroxide Sensing, Signaling and
Regulation of Transcription Factors. Redox Biol 2014, 2, 535-562, doi:10.1016/j.redox.2014.02.006.

144. Antunes, F.; Brito, P.M. Quantitative Biology of Hydrogen Peroxide Signaling. Redox Biol 2017, 13, 1-7,
doi:10.1016/j.redox.2017.04.039.

145. Meng, J.; Lv, Z.; Wang, Y.; Chen, C. Identification of the Redox-Stress Signaling Threshold (RST): Increased
RST Helps to Delay Aging in C. Elegans. Free Radical Bio Med 2021, 178, 54-58,
doi:10.1016/j.freeradbiomed.2021.11.018.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2120.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2025 d0i:10.20944/preprints202507.2120.v2

24 of 30

146. Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu Rev Biochem 2016, 86, 1-34, doi:10.1146/annurev-
biochem-061516-045037.

147. Sies, H. Oxidative Stress: A Concept in Redox Biology and Medicine. Redox Biol 2015, 4, 180-183,
doi:10.1016/j.redox.2015.01.002.

148. Sies, H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants 2020, 9, 852,
d0i:10.3390/antiox9090852.

149. Lloyd, D.; Aon, M.A; Cortassa, S. Why Homeodynamics, Not Homeostasis? Sci. World |. 2001, 1, 133-145,
doi:10.1100/tsw.2001.20.

150. Forman, H.J.; Zhang, H. Targeting Oxidative Stress in Disease: Promise and Limitations of Antioxidant
Therapy. Nat Rev Drug Discov 2021, 1-21, doi:10.1038/s41573-021-00233-1.

151. Robb, E.L.; Gawel, ].M.; Aksentijevi¢, D.; Cochemé, HM.; Stewart, T.S.; Shchepinova, M.M.; Qiang, H;
Prime, T.A.; Bright, T.P.; James, A.M.; et al. Selective Superoxide Generation within Mitochondria by the
Targeted Redox Cycler MitoParaquat. Free Radical Bio Med 2015, 89, 883-894,
doi:10.1016/j.freeradbiomed.2015.08.021.

152. Booty, L.M.; Gawel, ].M.; Cvetko, F.; Caldwell, S.T.; Hall, A.R.; Mulvey, J.F.; James, A.M.; Hinchy, E.C,;
Prime, T.A; Arndt, S; et al. Selective Disruption of Mitochondrial Thiol Redox State in Cells and In Vivo.
Cell Chem Biol 2019, 26, 449-461.e8, d0i:10.1016/j.chembiol.2018.12.002.

153. Sidlauskaite, E.; Gibson, ].W.; Megson, I.L.; Whitfield, P.D.; Tovmasyan, A.; Batinic-Haberle, I.; Murphy,
M.P.; Moult, P.R.; Cobley, ].N. Mitochondrial ROS Cause Motor Deficits Induced by Synaptic Inactivity:
Implications for Synapse Pruning. Redox Biol 2018, 16, 344-351, doi:10.1016/j.red0x.2018.03.012.

154. Murphy, M.P. How Mitochondria Produce Reactive Oxygen Species. Biochem ] 2009, 417, 1-13,
doi:10.1042/bj20081386.

155. Cho, C.-S.; Yoon, H.]J.; Kim, J.Y.; Woo, H.A_; Rhee, S.G. Circadian Rhythm of Hyperoxidized Peroxiredoxin
II Is Determined by Hemoglobin Autoxidation and the 20S Proteasome in Red Blood Cells. Proc National
Acad Sci 2014, 111, 12043-12048, doi:10.1073/pnas.1401100111.

156. O'Neill, J.S.; Ooijen, G. van; Dixon, L.E.; Troein, C.; Corellou, F.; Bouget, F.-Y.; Reddy, A.B.; Millar, A.J.
Circadian Rhythms Persist without Transcription in a FEukaryote. Nature 2011, 469, 554-558,
doi:10.1038/nature09654.

157. Pei, J.-F.; Li, X.-K,; Li, W.-Q.; Gao, Q.; Zhang, Y.; Wang, X.-M.; Fu, ].-Q.; Cui, S.-S.; Qu, ].-H.; Zhao, X.; et al.
Diurnal Oscillations of Endogenous H202 Sustained by P66Shc Regulate Circadian Clocks. Nat Cell Biol
2019, 21, 1553-1564, doi:10.1038/s41556-019-0420-4.

158. Amponsah, P.S.; Yahya, G.; Zimmermann, J.; Mai, M.; Mergel, S.; Miihlhaus, T.; Storchova, Z.; Morgan, B.
Peroxiredoxins Couple Metabolism and Cell Division in an Ultradian Cycle. Nat Chem Biol 2021, 17, 477-
484, d0i:10.1038/s41589-020-00728-9.

159. Bazopoulou, D.; Knoefler, D.; Zheng, Y.; Ulrich, K.; Oleson, B.].; Xie, L.; Kim, M.; Kaufmann, A.; Lee, Y.-T,;
Dou, Y.; et al. Developmental ROS Individualizes Organismal Stress Resistance and Lifespan. Nature 2019,
576, 301-305, doi:10.1038/s41586-019-1814-y.

160. Cobley, ].N. Synapse Pruning: Mitochondrial ROS with Their Hands on the Shears. Bioessays 2018, 40,
1800031, doi:10.1002/bies.201800031.

161. Foyer, C.H.; Wilson, M.H.; Wright, M.H. Redox Regulation of Cell Proliferation: Bioinformatics and Redox
Proteomics Approaches to Identify Redox-Sensitive Cell Cycle Regulators. Free Radical Bio Med 2018, 122,
137-149, doi:10.1016/j.freeradbiomed.2018.03.047.

162. Henau, S.D.; Pages-Gallego, M.; Pannekoek, W.-J.; Dansen, T.B. Mitochondria-Derived H202 Promotes
Symmetry Breaking of the C. Elegans Zygote. Dev Cell 2020, 53, 263-271.e6, doi:10.1016/j.devcel.2020.03.008.

163. Cobley, J.; Noble, A.; Bessell, R.; Guille, M.; Husi, H. Reversible Thiol Oxidation Inhibits the Mitochondrial
ATP Synthase in Xenopus Laevis Oocytes. Antioxidants 2020, 9, 215, doi:10.3390/antiox9030215.

164. LYAPUNOV, A.M. The General Problem of the Stability of Motion. Int. J. Control 1992, 55, 531-534,
doi:10.1080/00207179208934253.

165. Wolf, A.; Swift, ].B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov Exponents from a Time Series.
Phys. D: Nonlinear Phenom. 1985, 16, 285-317, d0i:10.1016/0167-2789(85)90011-9.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2120.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2025 d0i:10.20944/preprints202507.2120.v2

25 of 30

166. Eckmann, J.-P.; Ruelle, D. Ergodic Theory of Chaos and Strange Attractors. Rev. Mod. Phys. 1985, 57, 617—
656, doi:10.1103/revmodphys.57.617.

167. Pincus, S.M. Approximate Entropy as a Measure of System Complexity. Proc. Natl. Acad. Sci. 1991, 88, 2297—
2301, doi:10.1073/pnas.88.6.2297.

168. Grassberger, P.; Procaccia, I. Characterization of Strange Attractors. Phys. Rev. Lett. 1982, 50, 346-349,
doi:10.1103/physrevlett.50.346.

169. Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence Plots for the Analysis of Complex Systems.
Phys. Rep. 2007, 438, 237-329, doi:10.1016/j.physrep.2006.11.001.

170. Kirova, D.G.; Judasova, K.; Vorhauser, J.; Zerjatke, T.; Leung, ].K.; Glauche, I.; Mansfeld, J. A ROS-
Dependent Mechanism Promotes CDK2 Phosphorylation to Drive Progression through S Phase. Dev Cell
2022, 57, 1712-1727, doi:10.1016/j.devcel.2022.06.008.

171. Vorhauser, J.; Roumeliotis, T.I.; Leung, J.K.; Coupe, D.; Yu, L.; Bohlig, K.; Nadler, A.; Choudhary, J.S,;
Mansfeld, J. Cell Cycle-Dependent S-Sulfenyl Proteomics Uncover a Redox Switch in P21-CDK Feedback
Governing the Proliferation-Senescence Decision. bioRxiv 2024, 2024.09.14.613007,
doi:10.1101/2024.09.14.613007.

172. Henriquez-Olguin, C.; Gallero, S.; Reddy, A.; Persson, K.W.; Schlabs, F.L.; Voldstedlund, C.T,;
Valentinaviciute, G.; Meneses-Valdés, R.; Sigvardsen, C.M.; Kiens, B.; et al. Revisiting Insulin-Stimulated
Hydrogen Peroxide Dynamics Reveals a Cytosolic Reductive Shift in Skeletal Muscle. Redox Biol. 2025, 82,
103607, doi:10.1016/j.redox.2025.103607.

173. Winterbourn, C.C. Reconciling the Chemistry and Biology of Reactive Oxygen Species. Nat Chem Biol 2008,
4,278-286, d0i:10.1038/nchembio.85.

174. Winterbourn, C.C.; Peskin, A.V.; Kleffmann, T.; Radi, R.; Pace, P.E. Carbon Dioxide/Bicarbonate Is
Required for Sensitive Inactivation of Mammalian Glyceraldehyde-3-Phosphate Dehydrogenase by
Hydrogen Peroxide. Proc National Acad Sci 2023, 120, €2221047120, doi:10.1073/pnas.2221047120.

175. Dickinson, B.C.; Chang, C.J. Chemistry and Biology of Reactive Oxygen Species in Signaling or Stress
Responses. Nat Chem Biol 2011, 7, 504-511, doi:10.1038/nchembio.607.

176. Prigogine, 1. Dissipative Structures, Dynamics and Entropy. Int. |. Quantum Chem. 1975, 9, 443-456,
doi:10.1002/qua.560090854.

177. Manford, A.G.; Rodriguez-Pérez, F.; Shih, K.Y.; Shi, Z.; Berdan, C.A.; Choe, M.; Titov, D.V.; Nomura, D.K,;
Rape, M. A Cellular Mechanism to Detect and Alleviate Reductive Stress. Cell 2020, 183, 46-61.e21,
doi:10.1016/j.cell.2020.08.034.

178. Noguchi, N.; Saito, Y.; Niki, E. Actions of Thiols, Persulfides, and Polysulfides as Free Radical Scavenging
Antioxidants. Antioxidants Redox Signal 2022, 0, doi:10.1089/ars.2022.0191.

179. Byrne, D.P.; Shrestha, S.; Galler, M.; Cao, M.; Daly, L.A.; Campbell, A.E.; Eyers, C.E.; Veal, E.A.; Kannan,
N.; Eyers, P.A. Aurora A Regulation by Reversible Cysteine Oxidation Reveals Evolutionarily Conserved
Redox Control of Ser/Thr Protein Kinase Activity. Sci Signal 2020, 13, eaax2713,
doi:10.1126/scisignal.aax2713.

180. Kalinichenko, A.L.; Jappy, D.; Solius, G.M.; Maltsev, D.I.; Bogdanova, Y.A.; Mukhametshina, L.F.; Sokolov,
R.A.; Moshchenko, A.A.; Shaydurov, V.A.; Rozov, A.V,; et al. Chemogenetic Emulation of Intraneuronal
Oxidative Stress Affects Synaptic Plasticity. Redox Biol 2023, 60, 102604, d0i:10.1016/j.redox.2023.102604.

181. Akter, S,; Fu, L.; Jung, Y.; Conte, M.L.; Lawson, J.R.; Lowther, W.T.; Sun, R;; Liu, K.; Yang, J.; Carroll, K.S.
Chemical Proteomics Reveals New Targets of Cysteine Sulfinic Acid Reductase. Nat Chem Biol 2018, 14,
995-1004, doi:10.1038/s41589-018-0116-2.

182. Montero, L.; Okraine, Y.V.; Orlowski, J.; Matzkin, S.; Scarponi, I.; Miranda, M.V.; Nusblat, A.; Gottifredi,
V.; Alonso, L.G. Conserved Cysteine-Switches for Redox Sensing Operate in the Cyclin-Dependent Kinase
Inhibitor ~P21(CIP/KIP) Protein Family. Free Radic. Biol. Med. 2024, 224, 494-505,
doi:10.1016/j.freeradbiomed.2024.09.013.

183. Mills, E.L.; Harmon, C.; Jedrychowski, M.P.; Xiao, H.; Gruszczyk, A.V.; Bradshaw, G.A.; Tran, N.; Garrity,
R.; Laznik-Bogoslavski, D.; Szpyt, ].; et al. Cysteine 253 of UCP1 Regulates Energy Expenditure and Sex-
Dependent Adipose Tissue Inflammation. Cell Metab 2021, doi:10.1016/j.cmet.2021.11.003.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2120.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2025 d0i:10.20944/preprints202507.2120.v2

26 of 30

184. Ruiz, D.G.; Sandoval-Perez, A.; Rangarajan, A.V.; Gunderson, E.L.; Jacobson, M.P. Cysteine Oxidation in
Proteins: Structure, Biophysics, and Simulation. Biochemistry 2022, 61, 2165-2176,
doi:10.1021/acs.biochem.2c00349.

185. Gobl, C.; Morris, V.K.; Dam, L. van; Visscher, M.; Polderman, P.E.; Hartlmiiller, C.; Ruiter, H. de; Hora, M.;
Liesinger, L.; Birner-Gruenberger, R.; et al. Cysteine Oxidation Triggers Amyloid Fibril Formation of the
Tumor Suppressor P16INK4A. Redox Biol 2020, 28, 101316, doi:10.1016/j.redox.2019.101316.

186. Burgoyne, J.R.; Madhani, M.; Cuello, F.; Charles, R.L.; Brennan, J.P.; Schroder, E.; Browning, D.D.; Eaton,
P. Cysteine Redox Sensor in PKGIa Enables Oxidant-Induced Activation. Science 2007, 317, 1393-1397,
doi:10.1126/science.1144318.

187. Bodnar, Y. Lillig, C.H. Cysteinyl and Methionyl Redox Switches: Structural Prerequisites and
Consequences. Redox Biol. 2023, 65, 102832, doi:10.1016/j.red0x.2023.102832.

188. Gao, J.; Newberry, M. Fractal Scaling and the Aesthetics of Trees. arXiv 2024, doi:10.48550/arxiv.2402.13520.

189. Bannink, T. Buhrman, H. Quantum Pascal’s Triangle and Sierpinski’s Carpet. arXiv 2017,
d0i:10.48550/arxiv.1708.07429.

190. Harman, D. Aging: A Theory Based on Free Radical and Radiation Chemistry. | Gerontology 1956, 11, 298—
300, doi:10.1093/geron;j/11.3.298.

191. Harman, D. Origin and Evolution of the Free Radical Theory of Aging: A Brief Personal History, 1954—
2009. Biogerontology 2009, 10, 773, doi:10.1007/s10522-009-9234-2.

192. Meo, S.D.; Venditti, P. Evolution of the Knowledge of Free Radicals and Other Oxidants. Oxidative Med.
Cell. Longev. 2020, 2020, 9829176, d0i:10.1155/2020/9829176.

193. Gladyshev, V.N. The Free Radical Theory of Aging Is Dead. Long Live the Damage Theory! Antioxid. Redox
Signal. 2014, 20, 727-731, d0i:10.1089/ars.2013.5228.

194. Finkel, T.; Holbrook, N.J. Oxidants, Oxidative Stress and the Biology of Ageing. Nature 2000, 408, 239-247,
doi:10.1038/35041687.

195. Cobley, J.; Chatzinikolaou, P.N.; Schmidt, C.A. Non-Linear Cysteine Redox Proteoform Dynamics in the I-
Space: A Novel Theory of Redox Regulation. 2024, d0i:10.2139/ssrn.5047335.

196. Gutteridge, ]. M.C.; Halliwell, B. Antioxidants: Molecules, Medicines, and Myths. Biochem Bioph Res Co 2010,
393, 561-564, doi:10.1016/j.bbrc.2010.02.071.

197. Halliwell, B. Reflections of an Aging Free Radical. Free Radic Biology Medicine 2020, 161, 234-245,
doi:10.1016/j.freeradbiomed.2020.10.010.

198. Murphy, M.P. Antioxidants as Therapies: Can We Improve on Nature? Free Radical Bio Med 2014, 66, 20—
23, doi:10.1016/j.freeradbiomed.2013.04.010.

199. Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.;
Oettrich, J.; Ruskovska, T.; et al. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid. Redox Signal.
2015, 23, 11441170, doi:10.1089/ars.2015.6317.

200. Williamson, J.; Hughes, C.M.; Cobley, ].N.; Davison, G.W. The Mitochondria-Targeted Antioxidant MitoQ,
Attenuates Exercise-Induced Mitochondrial DNA Damage. Redox Biol 2020, 36, 101673,
doi:10.1016/j.red0x.2020.101673.

201. Cobley, ].N.; McHardy, H.; Morton, J.P.; Nikolaidis, M.G.; Close, G.L. Influence of Vitamin C and Vitamin
E on Redox Signaling: Implications for Exercise Adaptations. Free Radical Bio Med 2015, 84, 65-76,
doi:10.1016/j.freeradbiomed.2015.03.018.

202. Halliwell, B. Reactive Oxygen Species and the Central Nervous System. ]. Neurochem. 1992, 59, 1609-1623,
doi:10.1111/j.1471-4159.1992.tb10990.x.

203. Halliwell, B. Oxidative Stress and Neurodegeneration: Where Are We Now? |. Neurochem. 2006, 97, 1634—
1658, d0i:10.1111/j.1471-4159.2006.03907 .x.

204. Vaccaro, A.; Dor, Y.K.; Nambara, K.; Pollina, E.A; Lin, C.; Greenberg, M.E.; Rogulja, D. Sleep Loss Can
Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell 2020, 181, 1307-1328.e15,
doi:10.1016/j.cell.2020.04.049.

205. Rorsman, H.O.; Miiller, M.A,; Liu, P.Z,; Sanchez, L.G.; Kempf, A.; Gerbig, S.; Spengler, B.; Miesenbock, G.
Sleep Pressure Accumulates in a Voltage-Gated Lipid Peroxidation Memory. Nature 2025, 641, 232-239,
doi:10.1038/s41586-025-08734-4.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2120.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2025 d0i:10.20944/preprints202507.2120.v2

27 of 30

206. Kempf, A.; Song, S.M.; Talbot, C.B.; Miesenbock, G. A Potassium Channel [-Subunit Couples
Mitochondrial Electron Transport to Sleep. Nature 2019, 568, 230234, doi:10.1038/s41586-019-1034-5.

207. Cobley, ].N.; Noble, A; Jimenez-Fernandez, E.; Moya, M.-T.V.; Guille, M.; Husi, H. Catalyst-Free Click
PEGylation Reveals Substantial Mitochondrial ATP Synthase Sub-Unit Alpha Oxidation before and after
Fertilisation. Redox Biol 2019, 26, 101258, d0i:10.1016/j.redox.2019.101258.

208. Tuncay, A.; Noble, A.; Guille, M.; Cobley, ].N. RedoxiFluor: A Microplate Technique to Quantify Target-
Specific Protein Thiol Redox State in Relative Percentage and Molar Terms. Free Radical Bio Med 2022, 181,
118-129, doi:10.1016/j.freeradbiomed.2022.01.023.

209. Tuncay, A.; Crabtree, D.R.; Muggeridge, D.J.; Husi, H.; Cobley, ].N. Performance Benchmarking
Microplate-Immunoassays for Quantifying Target-Specific Cysteine Oxidation Reveals Their Potential for
Understanding Redox-Regulation and Oxidative Stress. Free Radical Bio Med 2023, 204, 252-265,
doi:10.1016/j.freeradbiomed.2023.05.006.

210. Po, A.; Eyers, C.E. Top-Down Proteomics and the Challenges of True Proteoform Characterization. J.
Proteome Res. 2023, 22, 3663-3675, d0i:10.1021/acs.jproteome.3c00416.

211. Cao, M.; Day, A.M.; Galler, M.; Latimer, H.R.; Byrne, D.P.; Foy, T.W.; Dwyer, E.; Bennett, E.; Palmer, J.;
Morgan, B.A,; et al. A Peroxiredoxin-P38 MAPK Scaffold Increases MAPK Activity by MAP3K-
Independent Mechanisms. Mol. Cell 2023, 83, 3140-3154.e7, d0i:10.1016/j.molcel.2023.07.018.

212. Donnelly, D.P.; Rawlins, C.M.; DeHart, C.J.; Fornelli, L.; Schachner, L.F.; Lin, Z; Lippens, J.L.; Aluri, K.C,;
Sarin, R.; Chen, B.; et al. Best Practices and Benchmarks for Intact Protein Analysis for Top-down Mass
Spectrometry. Nat. Methods 2019, 16, 587-594, d0i:10.1038/s41592-019-0457-0.

213. Timp, W.; Timp, G. Beyond Mass Spectrometry, the next Step in Proteomics. Sci Adv 2020, 6, eaax8978,
doi:10.1126/sciadv.aax8978.

214. Siuti, N.; Kelleher, N.L. Decoding Protein Modifications Using Top-down Mass Spectrometry. Nat. Methods
2007, 4, 817-821, doi:10.1038/nmeth1097.

215. Tentori, A.M.; Yamauchi, K.A.; Herr, A.E. Detection of Isoforms Differing by a Single Charge Unit in
Individual Cells. Angewandte Chemie Int Ed 2016, 55, 12431-12435, d0i:10.1002/anie.201606039.

216. Brown, K.A.; Melby, J.A.; Roberts, D.S.; Ge, Y. Top-down Proteomics: Challenges, Innovations, and
Applications in Basic and Clinical Research. Expert Rev. Proteom. 2020, 17, 719-733,
doi:10.1080/14789450.2020.1855982.

217. Chen, B.; Brown, K.A.; Lin, Z.; Ge, Y. Top-Down Proteomics: Ready for Prime Time? Anal Chem 2018, 90,
110-127, doi:10.1021/acs.analchem.7b04747.

218. Ansong, C.; Wu, S;; Meng, D.; Liu, X.; Brewer, H.M.; Kaiser, B.L.D.; Nakayasu, E.S.; Cort, ].R.; Pevzner, P.;
Smith, R.D.; et al. Top-down Proteomics Reveals a Unique Protein S-Thiolation Switch in Salmonella
Typhimurium in Response to Infection-like Conditions. Proc National Acad Sci 2013, 110, 10153-10158,
do0i:10.1073/pnas.1221210110.

219. Kelleher, N.L.; Lin, H.Y.; Valaskovic, G.A.; Aaserud, D.J.; Fridriksson, E.K.; McLafferty, F.W. Top Down
versus Bottom Up Protein Characterization by Tandem High-Resolution Mass Spectrometry. J. Am. Chem.
Soc. 1999, 121, 806-812, d0i:10.1021/ja973655h.

220. Azzi, A. Oxidative Stress: What Is It? Can It Be Measured? Where Is It Located? Can It Be Good or Bad?
Can It Be Prevented? Can It Be Cured? Antioxidants 2022, 11, 1431, doi:10.3390/antiox11081431.

221. Cobley, ].N.; Bartlett, ].D.; Kayani, A.; Murray, S.W.; Louhelainen, J.; Donovan, T.; Waldron, S.; Gregson,
W.; Burniston, J.G.; Morton, ].P.; et al. PGC-1a Transcriptional Response and Mitochondrial Adaptation to
Acute Exercise Is Maintained in Skeletal Muscle of Sedentary Elderly Males. Biogerontology 2012, 13, 621-
631, doi:10.1007/s10522-012-9408-1.

222. Cobley, J.N.; Sakellariou, G.K.; Murray, S.; Waldron, S.; Gregson, W.; Burniston, ]J.G.; Morton, J.P,;
Iwanejko, L.A.; Close, G.L. Lifelong Endurance Training Attenuates Age-Related Genotoxic Stress in
Human Skeletal Muscle. Longev Heal 2013, 2, 11, d0i:10.1186/2046-2395-2-11.

223. Ostrom, E.L.; Traustadéttir, T. Aerobic Exercise Training Partially Reverses the Impairment of Nrf2
Activation in Older Humans. Free Radic. Biol. Med. 2020, 160, 418-432,
doi:10.1016/j.freeradbiomed.2020.08.016.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2120.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2025 d0i:10.20944/preprints202507.2120.v2

28 of 30

224. Noble, A.; Guille, M.; Cobley, ].N. ALISA: A Microplate Assay to Measure Protein Thiol Redox State. Free
Radical Bio Med 2021, 174, 272-280, d0i:10.1016/j.freeradbiomed.2021.08.018.

225. Muggeridge, D.J.; Crabtree, D.R.; Tuncay, A.; Megson, L.L.; Davison, G.; Cobley, ].N. Exercise Decreases
PP2A-Specific Reversible Thiol Oxidation in Human Erythrocytes: Implications for Redox Biomarkers. Free
Radical Bio Med 2022, 182, 73-78, doi:10.1016/j.freeradbiomed.2022.02.019.

226. Kramer, P.A.; Duan, J.; Gaffrey, M.].; Shukla, A.K.; Wang, L.; Bammler, T.K,; Qian, W.-].; Marcinek, D.J.
Fatiguing Contractions Increase Protein S-Glutathionylation Occupancy in Mouse Skeletal Muscle. Redox
Biol. 2018, 17, 367-376, d0i:10.1016/j.red0x.2018.05.011.

227. Davies, K.J.A. Adaptive Homeostasis. Mol. Asp. Med. 2016, 49, 1-7, d0i:10.1016/j.mam.2016.04.007.

228. Henriquez-Olguin, C.; Meneses-Valdes, R.; Jensen, T.E. Compartmentalized Muscle Redox Signals
Controlling Exercise Metabolism — Current State, Future Challenges. Redox Biol 2020, 35, 101473,
doi:10.1016/j.redox.2020.101473.

229. Henriquez-Olguin, C.; Knudsen, J.R.; Raun, S.H.; Li, Z.; Dalbram, E.; Treebak, ].T.; Sylow, L.; Holmdahl, R.;
Richter, E.A.; Jaimovich, E.; et al. Cytosolic ROS Production by NADPH Oxidase 2 Regulates Muscle
Glucose Uptake during Exercise. Nat Commun 2019, 10, 4623, doi:10.1038/541467-019-12523-9.

230. Henriquez-Olguin, C.; Meneses-Valdes, R.; Kritsiligkou, P.; Fuentes-Lemus, E. From Workout to Molecular
Switches: How Does Skeletal Muscle Produce, Sense, and Transduce Subcellular Redox Signals? Free Radic.
Biol. Med. 2023, 209, 355-365, doi:10.1016/j.freeradbiomed.2023.10.404.

231. Margaritelis, N.V. Personalized Redox Biology: Designs and Concepts. Free Radic. Biol. Med. 2023, 208, 112—
125, doi:10.1016/j.freeradbiomed.2023.08.003.

232. Xia, Q.; Casas-Martinez, J.C.; Zarzuela, E.; Mufioz, ], Miranda-Vizuete, A.; Goljanek-Whysall, K.;
McDonagh, B. Peroxiredoxin 2 Is Required for the Redox Mediated Adaptation to Exercise. Redox Biol 2023,
60, 102631, d0i:10.1016/j.red0x.2023.102631.

233. Margaritelis, N.V.; Kyparos, A.; Paschalis, V.; Theodorou, A.A.; Panayiotou, G.; Zafeiridis, A.; Dipla, K,;
Nikolaidis, M.G.; Vrabas, 1.S. Reductive Stress after Exercise: The Issue of Redox Individuality. Redox Biol.
2014, 2, 520-528, doi:10.1016/j.redox.2014.02.003.

234. Goulev, Y.; Morlot, S.; Matifas, A.; Huang, B.; Molin, M.; Toledano, M.B.; Charvin, G. Nonlinear Feedback
Drives Homeostatic Plasticity in H202 Stress Response. eLife 2017, 6, €23971, doi:10.7554/elife.23971.

235. Pillay, C.S.; Rohwer, ].M. Computational Models as Catalysts for Investigating Redoxin Systems. Essays
Biochem. 2024, doi:10.1042/ebc20230036.

236. Huang, B.K,; Sikes, H.D. Quantifying Intracellular Hydrogen Peroxide Perturbations in Terms of
Concentration. Redox Biol 2014, 2, 955-962, d0i:10.1016/j.redox.2014.08.001.

237. Ammar, C.; Schessner, J.P.; Willems, S.; Michaelis, A.C.; Mann, M. Accurate Label-Free Quantification by
DirectLFQ to Compare Unlimited Numbers of Proteomes. Mol. Cell. Proteom. 2023, 22, 100581,
doi:10.1016/j.mcpro.2023.100581.

238. Picotti, P.; Aebersold, R. Selected Reaction Monitoring—Based Proteomics: Workflows, Potential, Pitfalls
and Future Directions. Nat Methods 2012, 9, 555-566, d0i:10.1038/nmeth.2015.

239. Burniston, J.G.; Kenyani, J.; Gray, D.; Guadagnin, E.; Jarman, I.H.; Cobley, ].N.; Cuthbertson, D.J.; Chen, Y.-
W.; Wastling, ] M.; Lisboa, P.J.; et al. Conditional Independence Mapping of DIGE Data Reveals PDIA3
Protein Species as Key Nodes Associated with Muscle Aerobic Capacity. | Proteomics 2014, 106, 230245,
doi:10.1016/j.jprot.2014.04.015.

240. Malik, Z.A.; Cobley, ].N.; Morton, J.P.; Close, G.L.; Edwards, B.J.; Koch, L.G.; Britton, S.L.; Burniston, J.G.
Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a
Candidate Biomarker of Aerobic Capacity. Proteomes 2013, 1, 290-308, doi:10.3390/proteomes1030290.

241. Cobley, J.N.; Malik, Z.Ab.; Morton, J.P.; Close, G.L.; Edwards, B.].; Burniston, J].G. Age- and Activity-
Related Differences in the Abundance of Myosin Essential and Regulatory Light Chains in Human Muscle.
Proteomes 2016, 4, 15, d0i:10.3390/proteomes4020015.

242. Burger, N.; Mittenbiihler, M.].; Xiao, H.; Shin, S.; Wei, S.M.; Henze, E.K.; Schindler, S.; Mehravar, S.; Wood,
D.M.; Petrocelli, J.J.; et al. The Human Zinc-Binding Cysteine Proteome. Cell 2025, 188, 832-850.e27,
doi:10.1016/j.cell.2024.11.025.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2120.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2025 d0i:10.20944/preprints202507.2120.v2

29 of 30

243. Backus, KM.; Correia, B.E.; Lum, KM.; Forli, S.; Horning, B.D.; Gonzalez-Paez, G.E.; Chatterjee, S.;
Lanning, B.R.; Teijaro, J.R,; Olson, A.J.; et al. Proteome-Wide Covalent Ligand Discovery in Native
Biological Systems. Nature 2016, 534, 570-574, doi:10.1038/nature18002.

244. Weerapana, E.; Wang, C.; Simon, G.M.; Richter, F.; Khare, S.; Dillon, M.B.D.; Bachovchin, D.A.; Mowen, K.;
Baker, D.; Cravatt, B.F. Quantitative Reactivity Profiling Predicts Functional Cysteines in Proteomes. Nature
2010, 468, 790-795, doi:10.1038/nature09472.

245. Cravatt, B.F.; Simon, G.M.; III, J.R.Y. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature
2007, 450, 991-1000, doi:10.1038/nature06525.

246. Kemper, E.K; Zhang, Y.; Dix, M.M.; Cravatt, B.F. Global Profiling of Phosphorylation-Dependent Changes
in Cysteine Reactivity. Nat Methods 2022, 19, 341-352, d0i:10.1038/s41592-022-01398-2.

247. Suskiewicz, M.J. The Logic of Protein Post-translational Modifications (PTMs): Chemistry, Mechanisms
and Evolution of Protein Regulation through Covalent Attachments. BioEssays 2024, 46, 2300178,
doi:10.1002/bies.202300178.

248. Lancaster, N.M.; Sinitcyn, P.; Forny, P.; Peters-Clarke, T.M.; Fecher, C.; Smith, A.]J.; Shishkova, E.; Arrey,
T.N.; Pashkova, A.; Robinson, M.L.; et al. Fast and Deep Phosphoproteome Analysis with the Orbitrap
Astral Mass Spectrometer. Nat. Commun. 2024, 15, 7016, d0i:10.1038/s41467-024-51274-0.

249. Davies, M.]. Methionine Oxidation Products as Biomarkers of Oxidative Damage to Proteins and
Modulators of Cellular Metabolism and Toxicity. Redox Biochem. Chem. 2025, 12, 100052,
doi:10.1016/j.rbc.2025.100052.

250. Davies, M.]. Protein Oxidation and Peroxidation. Biochem | 2016, 473, 805-825, d0i:10.1042/bj20151227.

251. He, D.; Feng, H.; Sundberg, B.; Yang, J.; Powers, J.; Christian, A.H.; Wilkinson, J.E.; Monnin, C.; Avizonis,
D.; Thomas, C.J.; et al. Methionine Oxidation Activates Pyruvate Kinase M2 to Promote Pancreatic Cancer
Metastasis. Mol Cell 2022, 82, 3045-3060.e11, doi:10.1016/j.molcel.2022.06.005.

252. Lin, S; Yang, X,; Jia, S.; Weeks, A.M.; Hornsby, M.; Lee, P.S.; Nichiporuk, R.V.; Iavarone, A.T.; Wells, J.A ;
Toste, F.D.; et al. Redox-Based Reagents for Chemoselective Methionine Bioconjugation. Science 2017, 355,
597-602, doi:10.1126/science.aal3316.

253. Bartesaghi, S.; Radi, R. Fundamentals on the Biochemistry of Peroxynitrite and Protein Tyrosine Nitration.
Redox Biol. 2018, 14, 618-625, d0i:10.1016/j.redox.2017.09.009.

254. Radi, R. Interplay of Carbon Dioxide and Peroxide Metabolism in Mammalian Cells. | Biol Chemn 2022,
102358, doi:10.1016/j.jbc.2022.102358.

255. Radi, R. Oxygen Radicals, Nitric Oxide, and Peroxynitrite: Redox Pathways in Molecular Medicine. Proc
National Acad Sci 2018, 115, 5839-5848, doi:10.1073/pnas.1804932115.

256. Sultana, R.; Butterfield, D.A. Identification of the Oxidative Stress Proteome in the Brain. Free Radic. Biol.
Med. 2011, 50, 487-494, doi:10.1016/j.freeradbiomed.2010.11.021.

257. Butterfield, D.A.; Halliwell, B. Oxidative Stress, Dysfunctional Glucose Metabolism and Alzheimer
Disease. Nat Rev Neurosci 2019, 20, 148-160, doi:10.1038/s41583-019-0132-6.

258. Sultana, R.; Butterfield, D.A. Oxidative Modification of Brain Proteins in Alzheimer’s Disease: Perspective
on Future Studies Based on Results of Redox Proteomics Studies. J. Alzheimer’s Dis. 2013, 33, S243-5251,
doi:10.3233/jad-2012-129018.

259. Bettinger, ].Q.; Simon, M.; Korotkov, A.; Welle, K.A.; Hryhorenko, J.R.; Seluanov, A.; Gorbunova, V;
Ghaemmaghami, S. Accurate Proteomewide Measurement of Methionine Oxidation in Aging Mouse
Brains. J. Proteome Res. 2022, 21, 1495-1509, doi:10.1021/acs.jproteome.2c00127.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2120.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2025

30 of 30

260. Aledo, J.C.; Aledo, P. Susceptibility of Protein Methionine Oxidation in Response to Hydrogen Peroxide
Treatment-Ex Vivo versus In Vitro: A Computational Insight. Antioxidants 2020, 9, 987,
d0i:10.3390/antiox9100987.

261. Dai, C.; Pfeuffer, J.; Wang, H.; Zheng, P.; Kill, L.; Sachsenberg, T.; Demichev, V.; Bai, M.; Kohlbacher, O,;
Perez-Riverol, Y. Quantms: A Cloud-Based Pipeline for Quantitative Proteomics Enables the Reanalysis of
Public Proteomics Data. Nat. Methods 2024, 21, 1603-1607, doi:10.1038/s41592-024-02343-1.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2120.v2
http://creativecommons.org/licenses/by/4.0/

