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Abstract 

Reversible cysteine oxidation is a central mechanism of protein regulation, commonly studied 

through advanced redox proteomic workflows that systematically catalogue the redox state of 

thousands of residues. Excitingly, these expansive datasets contain latent information that remains 

largely untapped. In this work, we propose that principles from information theory, signal geometry, 

and chaos theory can reveal hidden meaning within these data—illuminating dynamic regulation, 

molecular memory, and the interplay between order and chaos in redox biology. Drawing on 

concepts such as Shannon entropy, Fisher information, and spectral energy, we show how variability 

and spread in redox signals may reflect structured, condition-specific differences rather than random 

noise. We further define a mathematical basis for a cysteine redox butterfly effect on fractal redox 

manifolds where sensitivity to initial conditions produces chaotic responses. Even simple entropy-

based metrics can uncover coherent patterns in existing datasets, motivating a conceptual shift in 

how redox proteomic data can be analyzed and interpreted. We further propose that oxidation can 

be viewed as a probabilistic signal field shaped by underlying biochemical, spatial, and evolutionary 

constraints. This reframing opens new avenues for extracting insight from existing data and offers a 

conceptual bridge toward future models of redox biology.  
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1. Introduction 

Reversible cysteine residue oxidation redox-regulates biological processes by dynamically 

modifying protein structure and function [1]. These oxidative post-translational modifications (PTMs 

[2–6]) influence protein activity, stability, localization, interactions, and phase [7]—making cysteine 

oxidation a powerful and versatile mechanism of cellular control [8]. Viewed from a systems 

perspective, redox regulation operates like an electrical circuit: the sulfur atom in cysteine functions 

as a live node, continuously reshaped by the flux of oxidizing and reducing equivalents [9]. This 

nodal flux is modulated by a metabolically wired redox module comprising oxidants—reactive 

oxygen species (ROS) like hydrogen peroxide (H₂O₂)—and reductants, including the glutathione 

(GSH) and thioredoxin (Trx) systems [10–12].  

As reviewed elsewhere [13–17], mass spectrometry-based redox proteomics enables a systems-

level readout of this biochemical circuitry by quantifying the percentage oxidation of individual 

cysteine residues across the proteome [18–25]. These residue-resolved oxidation states provide a 

relative, condition-specific map of electron flux throughout the networked circuit [26]—offering a 

powerful lens through which to observe the dynamic output of the upstream redox module [27]. 

These redox proteomic approaches have yielded important insights into signaling pathways [28], 

stress responses [29], aging [18], immunity [30], and disease mechanisms [31]—each shaped by the 

underlying flux of oxidants and reductants [32].  
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Current redox proteomic frameworks largely treat the redox state of each residue as a vector 

with direction and magnitude. These residue-level vectors enable condition-specific changes to be 

analyzed using standard approaches, such as volcano plots. Excitingly, the power of such analyses 

can be amplified by considering the latent information encoded by the ensemble of vectors as a whole. 

This holistic perspective can reveal emergent structure, function, and circuit-level output—features 

of the redox system that may remain hidden when residues are considered in isolation. For example, 

high-dimensional analyses can provide transformative insights—like ordered and chaotic cysteine 

redox state patterns—that may already be latent features in extant datasets [27].  

To reveal latent features, the present review focuses on the analysis and the reinterpretation of 

redox proteomic datasets using high-dimensional, information theory-grounded metrics like 

Shannon entropy [33]. Since the underlying redox biology and proteomic technologies have been 

comprehensively reviewed [34–48], we begin by defining how redox proteomic data are currently 

analyzed and interpreted. We then introduce a set of information-theoretic tools for high-dimensional 

analysis and demonstrate how these concepts can uncover emergent features—including structure, 

symmetry, and chaos [49]. These emergent features enable peptide-centric proteomics to better 

describe cysteine proteoform defined bioelectrical circuits [50]. What follows is a new way of thinking 

and speaking about redox biology. It is a language grounded in the grammar of information theory, 

shaped by chaos, and expressed through dynamic nonlinear systems. 

2. Methods  

Consistent with our previous work [51], all of the python-scripted source codes are available on 

Github at https://github.com/JamesCobley/Redox_information inclusive of requirements, readme, 

and MIT license files. To enable interested readers to implement the analyses described, each script 

is configured for open-sourced google colab jupyter notebook run times. One simply needs to render 

the scripts compatible with the relevant source data.  

For the information theory analysis, we demonstrated proof-of-principle using empirical priors. 

To compute several metrics on empirical priors, we computationally implemented the relevant 

equations on the OxiMouse dataset [18], downloaded from https://oximouse.hms.harvard.edu/. This 

dataset provided the cysteine redox state of residue level vectors in ten different tissues from young 

and old mice. For the purposes of brevity, the present analysis was restricted to analyzing the young 

and old brain data [52,53]. Since a full reanalysis of the raw instrument files was beyond the scope of 

the present work, we used the mean and standard error of the mean to bootstrap the statistical 

testing—as detailed in the legend of each figure.   

For the chaos theory analysis, we demonstrated proof-of-principle using synthetic priors due to 

the limited time-resolved redox proteomic datasets that are presently available. Upon generation of 

the appropriate empirical priors, the equations can be implemented without changing their general 

form—the mathematics is invariant.  

3. Results  

3.1. The Flatland Problem: How Scalar Redox Values Conceal the High-Dimensional Structure of Peptide 

Data 

Redox proteomic datasets usually comprise redox state vectors encoding the direction and 

magnitude of a given state in the percentage basis—from 0 to 100% oxidized—for thousands of 

cysteine residues across one or more conditions [18,54–62]. Typically, these vectors arise from the 

spectral measurement of peptide ensembles bearing light (reduced) and heavy (reversibly oxidized) 

labels—such as isotopically distinct maleimide probes [25,63,64]—at both the MS1 (intact peptide) 

and MS2 (fragment ion) levels [65–70]. Each spectral "read" is therefore an amalgam of binary 0 and 

1 intensities—corresponding to light and heavy modified peptides and their fragments—that 

collectively encode the overall signal for a given peptide. These signals are usually converted into 

percentages following the processing of the raw files using appropriate software like MaxQuant or 
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DIA-NN for data-dependent acquisition (DDA) and data-independent acquisition (DIA) schemes, 

respectively [71–73].  

Most current frameworks treat the residue-level redox state as a scalar datapoint—a single 

numerical value encoding the degree of oxidation—to enable rigorous statistical comparisons 

between conditions. Each scalar is treated as a scale-bounded continuous variable, capable of 

assuming any real value within the closed interval [0, 100] [74,75]. These data are typically analyzed 

by comparing scalar values between conditions using appropriate statistical tests, such as 

independent t-tests for parametric datasets, with corrections applied to control for family-wise error 

rates. A common visualization method is the volcano plot, in which the mean oxidation difference 

(the delta change) between conditions is plotted as the log₂ fold-change against a significance metric, 

such as the –log₁₀ adjusted P-value. This approach captures both the magnitude and direction of 

redox shifts and is particularly useful for identifying cysteine residues with significant, condition-

specific perturbations—for instance, in age-associated redox stress response [76–80].  

To extract broader biological patterns from the scalar redox data, many studies apply 

dimensionality reduction techniques, such as Principal Component Analysis (PCA) [81]. PCA 

transforms the original high-dimensional dataset—where each residue is a variable—into a reduced 

set of orthogonal axes (principal components) that capture the greatest variance in the data. This 

enables the visualization of global structure, such as sample clustering by condition, tissue, or 

genotype, while preserving the most informative variation. In parallel, unsupervised clustering 

algorithms—such as hierarchical clustering or k-means—are often used to group residues or samples 

based on shared redox patterns [27]. These approaches can reveal context-specific clusters, like tissue-

specific oxidation signatures [18,52], helping to identify coherent redox modules across biological 

systems [82,83]. Together, PCA and clustering extend scalar analysis beyond univariate comparisons 

by revealing coarse-grained structure in the data, forming a conceptual bridge between single-site 

analysis and more integrated, systems-level insights. 

While scalar-based approaches enable powerful statistical analyses, they also impose a 

reductionist structure that can obscure biological meaning, which we term the “flatland problem”. 

By treating each cysteine residue as an independent variable, these methods flatten the system 

into a residue-centric view, fragmenting the natural continuity of protein-level redox behavior. 

This flat projection into low-dimensional space disrupts the coordinated structure of the underlying 

redox manifold. In this manifold, each residue belongs to a specific cysteine proteoform—a defined 

molecular configuration determined by the redox state of all cysteines in that protein molecule [50]. 

Hence, clusters or components derived from conventional analyses reflect statistical groupings of 

residues, not coherent proteoform dynamics. This disconnect matters: it is proteoforms—not their 

disembodied peptides—that enact biology [84–88]. Redox regulation is not merely a collection of 

residue shifts [89], but a coordinated molecular choreography that scalar analysis cannot fully resolve 

[90–92].  

While peptide-level oxidation percentages appear continuous, they are ensemble averages over 

discrete molecular states [93–97]. For example, a protein molecule with three cysteines can exist only 

in one of four possible proteoform oxidation modes: 0%, 33%, 66%, or 100% [27,50,51,89,98]. 

However, what we measure is a peptide-level readout—an aggregate signal reflecting a distribution 

over these unseen modes [99]. Linear models treat this data as continuous, but the originating system 

is fundamentally discrete and combination constrained.  

The tension—between continuous analysis and discrete biological configuration—reveals a core 

limitation of current frameworks. It invites new models that acknowledge the latent structure of 

cysteine proteoforms embedded in high-dimensional state space [51,100]While these proteoforms 

are not directly observed in bottom-up mass spectrometry [101–103], peptide measurements are 

projections of their redox state distributions. Hence, methods that recognize this structured 

embedding are better equipped to recover the coordinated, nonlinear behavior of redox systems [104–

106]. 
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Nonlinear models from information can chaos theory can be directly applied to peptide-level 

oxidation data [107]. Nonlinear models are sensitive to thresholds, feedback loops, bifurcations, 

and emergent behaviors [49,98,108]. For example, a small change in oxidation at one cysteine may 

lead to a disproportionate structural or functional shift in the protein, particularly if it triggers 

allosteric change or destabilizes a critical motif [109–112]. Even without measuring cysteine 

proteoforms [89], nonlinear models applied to peptide data can uncover signatures of non-additivity 

and non-monotonicity in redox behavior. These models can help to recover the logic of the system: 

a redox landscape not governed by smooth gradients but by discrete jumps, state transitions, and 

multi-stable basins of behavior [113].  

3.2. Conceptual Foundations of Information and Chaos Theory 

When seeking to quantify the uncertainty or structure within a signal, Claude Shannon’s 1948 

masterpiece [33] introduced a new mathematical framework now known as information theory. 

Shannon's goal was to formalize the process of communication—how to transmit messages over 

noisy channels with maximal efficiency and minimal error. He defined informational entropy as the 

average uncertainty or surprise associated with a set of outcomes. The resulting entropy was not 

about the second law of thermodynamics, but about the number of choices available—the 

informational richness of a distribution of datapoints in the discrete binary basis [114]. 

In transcending telecommunications, information theory permeated virtually every branch of 

scientific study, including biology [115–117]. It now provides a general language for quantifying 

structure, uncertainty, redundancy, and complexity in diverse systems—from neural networks and 

genetic sequences to language, learning, and thermodynamics. Central concepts such as mutual 

information, Kullback–Leibler divergence, and algorithmic complexity enable precise descriptions of 

how patterns emerge, propagate, and are constrained by prior states. This naturally intersects with 

Bayesian inference [118], which formalizes how prior knowledge influences probabilistic updates in 

light of new data. In essence, information theory reveals how order and unpredictability are balanced 

within any probabilistic system, making it a natural partner to dynamical frameworks like chaos 

theory that explore how such systems evolve over time [119]. 

While modeling atmospheric convection in the early 1960’s, Edward Lorenz discovered that 

even deterministic systems could behave unpredictably [120]. His seemingly minor rounding error 

in initial conditions led to radically different weather simulations—an observation that inspired 

chaos theory [121]. Lorenz’s insight revealed that nonlinear dynamical systems, though governed 

by deterministic rules, could exhibit sensitive dependence on initial conditions—the “butterfly 

effect” [122]. This realization catalyzed the development of advanced mathematical frameworks—

including strange attractors, Lyapunov exponents, and fractals—to characterize the intricate, self-

similar, and often beautiful structures underlying complex dynamical behavior [123–125].  

3.3. Shannon Entropy: Quantifying Uncertainty in Redox Distributions 

Let the redox proteomic dataset be discretized into percentage oxidized bins, where each bin 

defines a given range of peptide oxidation values. For example, 50, 2%-oxidized bins over the [0,100] 

interval. Let pi be the proportion of peptide datapoints falling within bin i, such that the sum of all 

bins equals 1. Then Shannon entropy (H) becomes: 

𝐻 =  − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑃𝑖

𝑛

𝑖=1

 

By binning the redox state into discrete intervals, the continuous oxidation data are converted 

into a valid probability distribution which is mathematically justified because Shannon entropy is 

defined over discrete outcome spaces. Biologically, the bins correspond to semantically meaningful 

states (e.g., 100%-reduced [126–128]). The range of each bin can be adjusted depending on the nature 

of the experiment.  
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Shannon entropy quantifies the distribution of information—that is, how redox values are 

spread across discrete oxidation bins. A uniform distribution corresponds to maximal entropy, 

indicating maximal uncertainty or randomness in the oxidation state data. In contrast, a sharp peak 

localized to a single bin implies minimal entropy—high predictability and low diversity in cysteine 

redox states. Geometrically, entropy reflects the distribution shape: a flat plateau suggests maximal 

uncertainty, while a narrow spike reveals an ordered, constrained system.  

To capture the information structure embedded within complex, high-dimensional redox 

proteomic landscape [129–131], we calculated the Shannon entropy across 5%-oxidation increments 

over the 0,100 interval from the 8,183 cysteine residue vectors in young and old mouse brains. Even 

though the oxidation of this subset of the proteome decreased by 0.8% from 8.9 in young to 8.1%-

oxidized in old mouse brains, the Shannon entropy increased from 3.884 bits in young to 4.143 bits 

in old mouse brains. This ~0.26-bit increase means the distribution of oxidation levels across the 

~8,000 cysteine sites are more dispersed—geometrically spread—in aging brains (Figure 1). 

Bootstrapping from the SEM revealed this was a significant and appreciable effect (Cohen’s d = 10.6).  

 

Figure 1. Per-Site Shannon Entropy in Mouse Brain, Young vs. Old (n = 8 183 sites). As generated by a script, 

the plot shows the distribution of per-site Shannon entropies (in bits) computed from five simulated replicates 

per cysteine site. Replicates were drawn from a normal distribution using each site’s reported mean oxidation 

percentage and SEM (σ = SEM·√5), then binned into 20 equal intervals across [0,100] to calculate entropy. To 

assess uncertainty, we bootstrapped the pooled entropy—flattening all simulated replicates across sites—and 

repeated the simulation 1000 ×, yielding robust estimates of the overall entropy for young vs. old brains. The 

clear upward shift in entropy for old mice indicates increased heterogeneity of cysteine oxidation states with 

age. 

3.4. Mutual Information: Quantifying Shared Information Between Redox States 

Let the same discretized redox state from section 3.3 define a random variable 𝑋 taking values 

𝑥 =  1, . . . . 𝑛  for each oxidation bin, and let 𝐴  be a binary variable, such as age were 𝐴 ∈

 {𝑦𝑜𝑢𝑛𝑔, 𝑜𝑙𝑑}. Denote the joint probability  

𝑝𝑥,𝑎 = 𝑃𝑟(𝑋 = 𝑥, 𝐴 =  𝑎), 

and the marginals  
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𝑃𝑥 = ∑ 𝑥, 𝑎,   𝑃𝑎 = ∑ 𝑃𝑥, 𝑎,

𝑧𝑎

 

so that ∑ 𝑃𝑥,𝑎 = 1𝑥,𝑎 . The mutual information 𝐼(𝑋; 𝐴) in bits is defined by 

𝐼(𝑋; 𝐴) = ∑ ∑ 𝑝𝑥,𝑎𝑙𝑜𝑔2

𝑃𝑥,𝑎

𝑃𝑥𝑃𝑎
𝑎∈{𝑦𝑜𝑢𝑛𝑔,𝑜𝑙𝑑}

𝑛

𝑥=1

 

By discretizing oxidation into bins, we obtain a valid discrete joint distribution {𝑃𝑥,𝑎} . Mutual 

information measures the reduction in uncertainty about A (e.g., age) gained by observing the 

oxidation bin X:  

• 𝐼(𝑋; 𝐴)  =  0 (the minimum) bits if X and A are statistically independent—knowing oxidation 

gives no clue to age. 

• 𝐼(𝑋; 𝐴)  =  1 (the maximum) bits if and only if oxidation perfectly predicts age (each bin occurs 

in only one age group). 

A high 𝐼(𝑋; 𝐴) indicates that certain redox‐state intervals are strongly age‐specific, revealing 

cysteine sites whose oxidation patterns carry significant “age information.” Conversely, a low 𝐼(𝑋; 𝐴) 

implies that, despite any shifts in mean or variance, the oxidation distributions for young vs. old 

overlap so extensively that a single measurement scarcely informs on age. The latter is the case (0.001 

bits) when mutual information is applied globally to the cysteine redox proteomic vectors in young 

and old mouse brains due to the statistical dependence of X and A in each oxidation bin (Figure 2).  

 

Figure 2. Joint histogram of brain oxidation bins vs. age. As generated by a script, the heatmap shows counts 

of cysteine sites binned by mean oxidation percentage (20 bins across 0–100 %) on the x-axis and age group 

(Young, Old) on the y-axis. Despite a modest shift in average redox state (8.9 % → 8.1 %), the two marginal 

distributions overlap almost completely—each oxidation interval contains similar numbers of young and old 

site. Hence, their mutual information is near 0. 

Like the other metrics, mutual information can be computed per pathway or site. Hence, we 

performed a site-wise analysis using a script to identify 100 cystienes exhibiting the greatest delta 

change between young and old, pinpointing potential brain-specific aging biomarkers, which 

increased the mutual information bits by an order of magnitude (from 0.001 to 0.014 bits). The top 

ten sites yeilded an mutual infromation score of 0.693 bits. For example, the delta change for Cys59 
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in Acyl-coenzyme A thioesterase THEM4 was 98.8%. The resultant mutual information score of 0.693 

bits renders the site highly predicitve of age.  

3.5. Kullback-Liebler Divergence: Quantifying the Geometric Difference Between Redox State Distributions 

in Information Space 

Let redox proteomic data from two conditions like control and H2O2-treated [132] be discretized 

into the same percentage-oxidized bins, such that 𝑃 = {𝑃𝑖} represents the baseline condition (e.g., 

control) and 𝑄 = {𝑄𝑖}  represents the perturbed state (e.g., H2O2). Each Pi and Qi denotes the 

proportion of peptides falling into bin i, normalized such that ∑ 𝑃𝑖 = ∑ 𝑄𝑖 = 1. The Kullback-Leibler 

(KL) divergence from Q to P is defined as: 

𝐷𝐾𝐿(𝑃 ‖ 𝑄) = ∑ 𝑝𝑖𝑙𝑜𝑔2 (
𝑝𝑖

𝑞𝑖
)

𝑛

𝑖= 1

 

This equation formalizes the informational cost of assuming distribution Q compared to P. KL 

divergence captures how much the cysteine redox state has changed across the full distributional 

structure when the system is perturbed. Geometrically, KL divergence measures how one probability 

distribution shape differs from another in information space. Unlike Euclidean distance, it is 

asymmetric 𝐷𝐾𝐿(𝑃 ‖ 𝑄) ≠ 𝐷𝐾𝐿(𝑄 ‖ 𝑃), preserving the temporal or causal directionality of cysteine 

redox state changes. 

Consistent with Figure 2, the site-wise KL score for most of the 8,183 peptide vectors was 0.000 

bits, indicating that no information is gained or lost across the majority of sites in old compared to 

young mice (Figure 3). These zero scores suggest minimal redistribution of oxidized peptides. 

However, 1,014 (12.4%) of the cysteine vectors displayed a nonzero KL divergence, such that the data 

displayed a bimodal distribution with a large peak at 0 and a nontrivial peak at 30-35 bits.  

For example, the KL divergence score for Cys59 in peptidyl-prolyl cis-trans isomerase NIMA-

interacting 1 (PIN1) was 34.21 bits. This reflects complete non-overlap between its young and old 

oxidation distributions. In young brains, Cys59 averages 6.8 % ± 0.56 % oxidation, while in Old it 

shifts to 0.97 % ± 0.25 %, with the two tight SEM-derived replicate clouds each falling into distinct 

histogram bins. A KL of ~34 bits arises because 𝐷𝑄 ≈ 10−9 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑟𝑜𝑛𝑔 𝑏𝑖𝑛, 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑝 𝑙𝑜𝑔2(𝑝/

𝑞) 𝑡𝑜 ~𝑙𝑜𝑔2(109). 

Biologically, this “all-or-nothing” change signals a re-parameterization of Cys59’s redox state 

with age: its oxidation profile in old mice carries maximal information relative to young (i.e., perfect 

separation), even though the absolute change in percent oxidation may seem modest.  
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Figure 3. Distribution of per cysteine Kullback–Leibler (KL) divergence in the brains young compared to old 

mice. As generated using a script, each residue oxidation probability distribution (P: control; Q: case) was 

discretized into equal bins and KL divergence DKL(P∣∣Q) was calculated in bits. Most peptides exhibit minimal 

divergence, suggesting stable redox profiles, while a subset shows substantial shifts under perturbation. The 

dashed line indicates the mean KL divergence across all peptides (4.2403 bits), quantifying the average 

informational cost of assuming the perturbed state distribution given the baseline. Note the extreme bimodal 

distribution of the dataset. 

3.6. Fisher Information Metric: Quantifying the Geometry of Curved Redox State Manifolds 

Let the redox peptide oxidation data be characterized by a probability distribution p(x;θ), where 

θ is a parameter (or vector of parameters) that defines the shape or structure of the distribution—

such as a mean oxidation state across peptides. The Fisher Information metric (FIM, I(θ) quantifies 

how much information the data carries about this parameter, which can be formalized as: 

𝛪(𝜃) = 𝔼 [(
𝛿

𝛿𝜃
𝑙𝑜𝑔, 𝑝(x; 𝜃)) 2] 

FIM describes how sharply a system responds to perturbations like exercise [133–141]. For 

instance, two distributions with the same mean oxidation might differ in how tightly they are 

concentrated around that mean [142]. Hence, the FIM captures this second-order structure—the local 

curvature of the data landscape. Geometrically, the FIM defines a Riemannian geometry on the space 

of probability distributions. It introduces curvature to the informational manifold: distributions that 

are more sensitive to parameter shifts lie on steeper, more curved regions, whereas robust or flat 

distributions lie in shallower area. These redox state data-derived manifolds can be described in 

terms of geometric distances and angles.  

Interpretationally, high FIM values might correspond to tipping points, where small redox 

shifts drastically reconfigure the proteomic landscape (e.g., triggering signal response thresholds 

[143–145]). Conversely, flat regions with low Fisher Information may indicate robust zones [146–

148], where cysteine redox state changes are dynamically buffered—“homeo-dynamics” [149].  
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The global FIM—dimensionless squared Hellinger distance (range 0-2)—was 0.1887, signifying 

that the overall surface between the cysteine redox state vectors in young compared to old mouse 

brains was mostly flat—small geodesic—across the oxidation bins (Figure 4). Interpretationally, this 

is consistent with the mutual information (0.001 bits) score and the substantial peak at 0 in the KL 

divergence distribution. 

However, one can observe tall peaks in some binds, especially at intermediate oxidation states 

(30-60%-oxidized). At these vector points in the overall high dimensional manifold, the geodesic 

distance between the young and old is considerable, denoting a reconfiguration of the landscape. 

Specifically, the curvature is near maximal at θ60%, meaning this bin contributs substantially to the 

overall FIM score.  

 

Figure 4. Fisher Information Surface over Redox θ. As generated using a script, this 3D plot shows the Fisher 

Information Metric between Young and Old brain cysteine oxidation distributions, discretized into equal‐width 

bins (0–100 %). The “Young vs Young” comparison (front plane) is flat at zero, confirming no self‐distance. In 

contrast, the “Young vs Old” surface exhibits sharp peaks at intermediate oxidation levels (around 35–45 % and 

a secondary bump near 75–85 %), indicating those bins contribute most strongly to the statistical distance 

(geodesic) between age groups. The low information at extremes (0–10 % and 90–100 %) reflects minimal age‐

dependent change at very reduced or fully oxidized states. 

3.7. Fisher-Rao Distance: Quantifying the Distance Between Curved Redox Manifolds 

Let the redox peptide oxidation data be characterized by a probability distribution p(x;θ), where 

θ parameterizes a family of redox states. While the FIM describes the local curvature around a single 

distribution, the Fisher–Rao distance (dFR) measures the true path length between two such 

distributions on the curved statistical manifold. Formally, this geodesic—the shortest path length—

distance is defined as: 
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𝑑𝐹𝑅(𝜃1, 𝜃2)  =  ∫ √𝛪(𝜃)𝛿𝜃
𝜃1

𝜃2

 

Fisher–Rao distance defines the true informational displacement between redox states—

accounting not just for the magnitude of redox change, but for how the statistical curvature of the 

system warps that change. Two distributions might appear close in Euclidean metrics, yet lie far apart 

on the information manifold if one lies in a steep, sensitive region and the other in a flat, buffered 

one.  

Geometrically, the Fisher–Rao distance measures the shortest possible path between redox states 

while honoring the manifold’s internal curvature—akin to walking over a hill instead of cutting 

through it. This defines the “true” distance between redox states in terms of the system’s sensitivity 

to change—where a greater distance indicates the systems not only differ in their values but their 

geometry. 

Interpretationally, large Fisher–Rao distances between conditions (e.g., healthy vs. diseased 

[150]) may signify deep structural shifts in the system. Small Fisher–Rao distances, by contrast, may 

reflect smooth adaptation—a curved, minimal transition within a robust regulatory space.  

Computing the Fisher-Rao distances in young and old mouse brains revealed an overall distance 

of 0.4399 radians maps to 25 degrees between two cysteine oxidation distance, signifying moderate 

angular separation (Figure 5). A maximum distance of 3.14 radians would indicate maximal 

separation. Hence, the angular separation of the distributions is more convergent than divergent.  

 

Figure 5. Local Fisher–Rao Contributions over Oxidation Bins. As generated using a script, the “Young vs 

Young” row is uniformly colored (~3.08 radians) because comparing identical distributions yields a constant 

minimal contribution in each bin. In contrast, the “Young vs Old” row peaks in the 10–20 % and 20–30 % 

oxidation bins (bright yellow), indicating those intermediate oxidation levels carry the greatest local geodesic 

distance between age groups. Cooler colors toward the extremes (0–10 % and 90–100 %) show minimal local 

distance, consistent with negligible age‐dependent change in those redox state. . 

The nonzero score indicates a degree of separation concentrated around the intermediate 

oxidation bins, particularly 20-30%-oxidized. Hence, subsets of the cysteine proteome do undergo 

substantial reparameterization, effectively defining a local reshaping of the manifold at specific 

points.    

3.8. Distinguishing Order from Chaos in Time-Resolved Redox Dynamics 

Let the redox proteome be measured across a time series—such as sequential timepoints under 

altered mitochondrial function, circadian cycles, or developmental transitions [151–163]. This 

temporally resolved data introduces a new analytic axis: how the system evolves, not just where it 

is. The temporal trajectory of the cysteine redox state may exhibit patterns that are: 

• Ordered—following predictable or quasi-linear dynamics. 
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• Chaotic—diverging over time due to small differences in the initial conditions. 

• Hybrid—a cysteine redox system where orderly and chaotic behaviors coexist either across 

different subsystems, within different time windows, or as structured chaos near low-

dimensional attractors.  

Chaos theory provides a mathematical framework to distinguish between these regimes by 

characterizing the underlying attractor structure of the dynamical system (Figure 6). Here, the redox 

trajectory is treated as an evolving signal in phase space, and we ask: Does it converge to a stable pattern, 

cycle through predictable states, or exhibit sensitive dependence on initial conditions? 

To distinguish between these behavioral regimes, we draw from a set of mathematically 

grounded metrics in nonlinear dynamics. These tools quantify whether redox trajectories evolve 

stably, diverge chaotically, or settle into structured attractors. These tools capture distinct signatures 

of complexity: Lyapunov exponents quantify divergence of nearby trajectories, recurrence analysis 

detects hidden periodicities and long-range dependencies, correlation dimension characterizes the 

geometry of the underlying attractor, and bifurcation analysis reveals phase transitions triggered by 

small parametric shifts [164–169]. Table 1 summarizes each metric, its mathematical formulation, and 

its interpretation in the context of peptide-resolved proteomics, such as time-resolved cell cycle or 

signaling analyses [23,170–172].  

Table 1. Summary of key chaos theory metrics, inclusive of the mathematical tool, peptide-level equations, and 

the biological interpretation. 

Metric Mathematical tool Equation (peptide level) Biological interpretation 

Lyapunov 

exponent (λ) 

Exponential 

divergence of nearby 

trajectories. 

𝜆 =  𝑙𝑖𝑚(𝑡 → ∞)(1/𝑡)𝐼𝑛(‖𝛿𝑋(𝑡)‖/‖𝛿𝑋𝑜‖) 

Positive values denote redox 

shifts diverging over time. 

Negative values denote 

converging or stable trajectories.  

Attractor 

geometry 

Correlation 

dimension (D2) via 

Grassberger-Proaccia 

algorithm. 

𝐷2 = 𝑙𝑖𝑚(𝜀 → 0)[𝑙𝑜𝑔𝐶(𝜀)/𝑙𝑜𝑔𝜀] 

𝑤ℎ𝑒𝑟𝑒 𝐶(𝜀) 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑢𝑚 

Redox states oscillate about 

nonlinear basins with fractal, 

self-similar structure. 

Entropy 

production 

Kolmogorov-Sinai 

(KS) or approximate 

Entropy (ApEn). 

𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = Φ ′m′ (r)  −  Φ′m + 1′ (r) 

The dynamic generation of 

information reflects continually 

redox remodeling of the peptide 

oxidation state. 

State 

recurrence 

Recurrence 

quantification 

analysis (RQA), 

Poincaré maps. 

𝑅(𝑖, 𝑗) =⊝ (𝜀 − ‖𝑥𝑖 − 𝑥𝑗‖) 

Where ⊝ is the Heaviside function 

Detects long-range memory, 

hidden periodicity, and/or 

structured noise in cysteine 

oxidation datasets 

Bifurcation 

detection 

Delay-coordinate 

bifurcation diagram 

with control 

parameter. 

𝑋𝑛+1 = 𝑓(𝑋𝑛; 𝜇), scan over 𝜇 (e.g., ROS flux) 

Can reveal whether small redox 

changes trigger shape transitions 

in cysteine oxidation—phase 

space shifts. 

Phase-space 

remodeling 

Delay embedding 

with topological 

analysis. 

𝑋𝑡 = [𝑋𝑡, 𝑋𝑡−𝜏, 𝑋𝑡−2𝜏. . . , 𝑋𝑡−(𝑚−1)𝜏] ∈ ℝ 𝑚 

Can reveal the stretching and 

folding that is characteristic of 

chaotic attractors.  

Notes: xt is the cysteine redox state (e.g., %-oxidation) of a given peptide at time t. δX(t) and δX0 are 

small perturbations in peptide oxidation trajectories. m is embedding dimension; τ is time delay; μ is 

a control parameter (e.g., ROS flux). The equations can be computed peptide-wise, then aggregated 

across peptides or protein. 
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Figure 6. Bifurcation and Recurrence Reveal Emergent Redox Chaos in Synthetic Systems. Left: Bifurcation 

diagram of a logistic map modeling cysteine oxidation under increasing control parameter (μ), representing 

external redox input such as ROS flux. The system transitions from a single fixed point (ordered behavior) into 

periodic oscillations, and ultimately chaotic dynamics as μ increases. These bifurcations emulate how redox 

systems can exhibit critical transitions where small parameter changes drive disproportionate shifts in the 

proteoform state distribution.  Right: Recurrence plot of a synthetic redox signal over time. The top-left region 

shows regular, periodic recurrence patterns—indicative of stable or oscillatory redox behavior—whereas the 

lower-right region becomes irregular and fragmented, reflecting transition to chaos. This transition captures the 

coexistence of order and disorder, consistent with redox hybrid attractors. Such plots reveal hidden periodicity, 

long-range memory, and the emergence of structured noise within redox trajectories, supporting the concept of 

“strange oxi-attractors”. 

At the peptide level, these tools allow us to treat nonlinear cysteine redox dynamics as an 

evolving informational signal trajectory in a high-dimensional state space [98]. These signal 

trajectories can fold and stretch like a shape being continually remodeled. The resulting shapes—

patterns—can exhibit instability and a memory. These measures offer a generative map of how redox 

perturbations propagate, whether they resolve into ordered recovery or spiral into new basin 

attractors, which we term strange oxi-attractors.  

Small differences in initial cysteine oxidation states can cascade into dramatically different 

outcomes. A minute shift in oxidation at a specific site—triggered by the upstream redox module 

[173–175]—may push the system across a bifurcation point or into a new attractor basin—a 

dissipative structure: the strange oxi-attractor [176].  

We define this phenomenon as the cysteine redox butterfly effect. This effect captures the 

sensitive dependence to initial conditions in nonlinear systems, which while manifest at the 

proteoform level can be recorded in the redox states of peptides. The cysteine redox butterfly effect 

explains how noise can become a biological signal—how tiny molecular events can influence fate 

decisions, stress responses, or pathogenesis [177–187]. And critically, these changes are not arbitrary. 

Hence, cysteine oxidation encodes not only the current biochemical state—but the memory of its 

perturbation history, fractally embedded in time.  

3.9. Fractal Geometry: Quantifying Scale-Invariant Self-Similar Cysteine Redox State Patterns 

Let a peptide level cysteine redox trajectory be conceptualized as a curve evolving in complex 

space, where each peptide’s oxidation state is modeled not as a scalar value but as a complex number: 

𝑍(𝑡)  =  𝑅(𝑡)  +  𝑖𝐼(𝑡) 

In this formalism, 𝑅(𝑡) ∈ ℝ is the real measured percentage oxidation of the peptide at time 

t, and 𝐼(𝑡)  ∈ ℝ is an imaginary component, capturing a latent structure, such as the velocity of the 

redox state change, the geometry (e.g., Fisher-Rao distance), or a measure of entropy (e.g., 

approximate entropy or Shannon entropy). This transformation lifts peptide-coded cysteine redox 
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dynamics into the complex plane (ℂ𝑅𝑒𝑑𝑜𝑥), where the trajectories—paths in phase space [0,100]—

can generate fractals.  

Pioneered by Benoit Mandelbrot [124,125,168,188,189], fractals are geometric structures that 

exhibit self-similarity across scales, often governed by recursive rules or nested feedback. Applied 

to redox proteomics, fractal analysis asks: Does the oxidation trajectory of a peptide encode recursive or 

scale-invariant patterns? Do certain biochemical systems evolve along a fractal manifold in redox space? To 

help answer these questions, Table 2 defines a set of mathematically grounded tools for extracting 

fractal structure from complex-valued peptide oxidation trajectories. Figure 7 illustrates a synthetic 

example of a complex-valued redox signal and its recurrence structure, visually revealing fractal and 

recursive motifs in ℂ𝑅𝑒𝑑𝑜𝑥. 

Table 2. Mathematically grounded tools for fractal analysis in peptide level redox biology. 

Metric Mathematical tool Equation (peptide level) Biological interpretation 

Box-Counting 

Dimension 

(D(B)) 

Estimates geometric 

complexity by 

covering the 

trajectory in 𝜀-sized 

boxes. 

𝐷𝐵 = 𝑙𝑖𝑚𝜀→0

𝑙𝑜𝑔 𝑁 (𝜀)

𝑙𝑜𝑔(1/𝜀)
 

Measures how fully the redox 

trajectory fills its phase space. A 

High DB suggests a recursive 

filling of the available space—the 

[0,100] interval. 

Curvature 

entropy 

Quantifies the 

entropy (S) of 

trajectory curvature 

fluctuations. 

𝑆𝑐𝑢𝑟𝑣𝑒 =  − ∑ 𝑝(𝑘𝑖)𝑙𝑜𝑔𝑝(𝑘𝑖)
𝑖

 

Where ki is local curvature. 

Measures dynamic inflections in 

redox trajectories—capturing 

looping, spiraling, or sharp 

transition behavior.  

Fractal 

recurrence 

score 

Assesses self-

similarity in 

recurrence plots. 

Diagonal line structures in 2D recurrence 

plots of Z(t); compute fractal dimension of 

recurrences. 

Measures multi-scale repetition 

in cysteine oxidation patterns, 

with the ability to capture 

periodic cycles. 

Spectral 

fractality 

Power-law scaling of 

the trajectory 

frequency domain. 

Power spectrum 𝑃(𝑓)~𝑓−𝛽, where 𝛽 ∈  (0,2) 

quantifies long-range memory 

Measures cysteine oxidation 

dynamics across timescales with 

the ability to capture nested 

cycles or autocorrelation 

behavior.   

 

 

Figure 7. Synthetic fractal redox signal in complex redox space ℂRedox reveals scale-invariant recurrence 

structure. Left. Real component (solid blue) represents the synthetic oxidation level R(t)R(t)R(t) over time. 

Imaginary component (dashed red) encodes a latent redox variable, here modelled as the temporal derivative of 

oxidation (velocity), forming a complex signal 𝑍(𝑡)  =  𝑅(𝑡)  +  𝑖𝐼(𝑡). Periodic base structure with superimposed 

fractal spikes reflects recursive oxidation dynamics and perturbation events. (Right) Recurrence plot of the 
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complex signal Z(t), showing repeated trajectory motifs in phase space. The plot reveals nested lattice-like 

structures with cross-scale diagonals and loops, consistent with a self-similar and fractal manifold in redox 

space. These patterns suggest memory-like dynamics, attractor basins, and long-range temporal correlations 

within the redox signal evolution. 

These metrics may be applied on a per-peptide basis or aggregated across peptides or pathways 

to infer system-wide fractal signatures. These analyses may also be constrained within specific time 

windows to isolate localized self-similarity.  

Interpretationally, fractal geometry can reveal if and how cysteine oxidation patterns recur, nest, 

or stretch over time. A residue signal with a non-integer fractal dimensional value 𝐷𝐵  ∈ (1,2) , 

suggests scale-invariant, and recursive redox dynamics, like a recurrent oxidation-reduction control 

cycle gravitating around a basin attractor. The imaginary component in the ℂ𝑅𝑒𝑑𝑜𝑥  expression, 

provides analytical flexibility. It can encode temporal derivatives, conformational entropy, of 

redox flux sensitivity. As a result, fractal patterns that spiral inward or explode outward can be 

produced. Fractal geometry can reveal whether the system or aspects thereof exhibits chaotic 

behavior about strange oxi-attractors via the analysis of fractal redox manifolds.  

We define a fractal redox manifold as a recursive geometric space where peptide oxidation 

states evolve nonlinearly in a conserved self-similar manner. These manifolds may embody a 

memory of redox history.  

4. Discussion 

Ironically, redox biology resists reduction. It defies simple arithmetic. As evidenced by the 

failure of the original linear rooted free radical theory of aging [190–194], adding or subtracting 

electrons doesn’t yield proportionate cysteine redox state changes. Instead, it can provoke silence or 

unleash a cascade. Without violating physics, outputs diverge from inputs. How? Because the 

cysteine redox network is not a passive register of electrons. Instead, it is a dynamic, living network. 

Actively wiring, perpetually rewiring itself by funneling, channeling, dispersing the electron flux 

across sulfur nodes. This sulfur nodal flux dynamically remodels cysteine proteoforms distributions 

[27,50,51,89,98,195].  

The instantiated now carries a memory. The oxidation state of cysteine—measured via a peptide 

level read—holds a record of its past that can offer insights even when the proteoform level 

information is inaccessible. These redox states tell us how now can shape the future. The profound 

consequence is that divergence from a given state might not be easily reversed by an “antioxidant” 

[36,38,196–199]. Even if the antioxidant works as intended [37,40,200], simply curtailing further 

oxidation will not provide the electrons needed to reduce what is already oxidized [133,201].  

A core operating logic emerges where the flow of electron dynamically shapes and reshapes the 

live sulfur nodes of the cysteine proteome. This incessant flow of energy continually generates 

entropy by reshaping proteoform matter, structuring their nonlinear dynamics. From the relatively 

simple redox reactions that determine these states change dynamics, emerges complex behavior—

hysteresis, order, chaos, and fractals (Figure 8). But, how do we understand this complexity? How do we 

differentiate between order and chaos? If needed, can we restore order or provoke redox chaos? 
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Figure 8. The cysteine redox butterfly effect. A small change in ROS from a redox perturbation (left) provokes 

chaotic cysteine proteoforms trajectories in redox phase space (right). 

To better understand the structured signals underpinning complex phenotypes like sleep-loss 

induced neurodegeneration [202–206], information and chaos theory become indispensable tools for 

advancing redox proteomic analyses—even when it is peptides not their proteoforms that are 

measured [207–219].  

• Information theory enables the oxidation state of a peptide to be analyzed and interpreted as an 

encoded signal, compressible or not, with measurable entropy. The more irregular, the less 

compressible—and paradoxically, the more information it may carry. By quantifying these 

dynamics across timepoints and conditions, one can begin to see that redox states are not random 

variables—they are deterministic signals with memory, unfolding on a nonlinear manifold. 

• Chaos theory offers the interpretive lens. Small redox changes can produce outsized shifts in 

oxidation of peptides. This sensitivity to initial conditions defines the redox butterfly effect. 

Peptide-level oxidation patterns form trajectories—not just in time, but across a complex redox 

phase space, where certain states act as strange oxi-attractor. With tools like approximate 

entropy, recurrence quantification, and fractal dimension analysis, these structures are now 

computationally accessible, even at the peptide level. 

A single oxidation event, once viewed in isolation, can now be seen as part of a larger dynamic 

system—a ripple in a structured informational field space. Part of a wider cysteine state pattern 

capable of producing redox fractal manifolds. What began as a measurement of oxidation becomes 

something else entirely: 

A window into the informational and energetic landscape of the cell, where peptide-level data 

carries echoes of phase transitions, stability basins, and bifurcation points. 

The dual lens of information and chaos theory can make sense of many anomalies. Like how 

chaotic attractors in atrial fibrillation demand a shock—not a gentle nudge—to restore rhythm, redox 

chaos—or ordered dysregulation—may require a systemic reset. Any reset is unlikely to stem from 

the “oxidants bad, antioxidants good” dichotomy [138] as no diseases where “oxidative stress” is 

implicated have yet been cured along these lines [220]. These disappointing results evidence how 

much current thinking in redox biology breaks down in the face of nonlinear dynamical systems. 

So far, virtually every pharmaceutical redox therapy has fallen short. Perhaps, what’s needed 

is not a molecule, but a mode—a system-wide coherence. These coherent system states may be better 

achieved not by a “blockbuster antioxidant”—however well-designed—but through basic lifestyle 

choices [221–223]. As Barry Halliwell remarked [38], they include sleep, diet, exercise. Each one 

remodels the energy flowing, matter cycling dynamical logic of the cysteine proteome. For example, 

exercise induces nuanced reductive and oxidative cysteine redox state changes [139,223–233] These 

physiology-first systems strategies may ultimately be able to cross boundary conditions from order 

to chaos or vice versa within subsets of the network.  
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5. Conclusion 

Erwin Schrodinger, Albert Szent-Györgyi and others are widely credited with the idea that 

discoveries consist of seeing what everybody else has seen and thinking what nobody else has 

thought. In this tradition, we have articulated a novel idea built atop what everybody in the field has 

seen—cysteine redox proteomic datasets.  

We propose that these datasets can be reinterpreted through the lens of information theory and 

chaos theory—not just as static outputs but as signals from dynamic systems, revealing geometry, 

structure, and unpredictability in redox biology. From this perspective, a single oxidative shift could 

ripple over time crossing the chaotic boundary to a strange oxi-attractor—the cysteine redox 

butterfly effect.  

Deriving novel insights does not depend on generating new data, but on rethinking what we 

already have. Petabytes of existing redox proteomic data can now be interrogated for Shannon 

entropy, KL divergence, Fisher information, and chaos signatures, extracting hidden order and 

transitions within complex peptide distributions. Hence, we expect these approaches to unlock 

latent patterns, enabling not just new discoveries but a shift in how we frame, model, and predict 

dynamics in redox biology [234–236]. 

Information and chaos theory metrics can be applied to virtually every proteomic dataset from 

global label-free quantification [237] studies, targeted analyses [238–241], to advanced chemo-

proteomic workflows [242], including reactive cysteine labelling [243–246] and PTMs like 

phosphorylation [247,248]. Other oxidative PTMs include methionine oxidation, tyrosine nitration, 

and carbonylation at several amino acids, such as lysine [249–260]. We fully expect similar insights 

to emerge from their reinterpretation. Hence, scientists across disparate fields can leverage 

information and chaos theory to derive novel proteomic insights from preexisting datasets [261]. 

In conclusion, we have reframed the analysis and interpretation of redox proteomic datasets, 

and potentially proteomic datasets at large, using mathematically grounded information and chaos 

theory derived metrics. The result is a new of thinking about redox biology—one that embraces the 

complexities and emergent properties of nonlinear dynamical systems.  
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