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Phenotypic switching in cancer cells has been found to be present across tumor types. Recent
studies on Glioblastoma report a remarkably common architecture of four well-defined phenotypes
coexisting within high levels of intra-tumour genetic heterogeneity. Tumors grown from any cell
type recapitulate the original phenotypic composition. Similar dynamics have been shown to occur
in breast cancer, melanoma and likely across further cancer types. Given the adaptive potential of
phenotypic switching (PHS) strategies, understanding how it drives tumor evolution and how to
break down these architectures is a major priority. Here we model the ecological dynamics behind
PHS. The model is able to reproduce experimental results, and specific conditions for cancer
progression and clearence reveal novel features of plastic tumors and its direct consequences on
therapy resistance. Following our results we discuss transition therapy as a novel scheme to target
not only combined cytotoxicity but also the rates of phenotypic switching.
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I. INTRODUCTION

Phenotypic plasticity is a widespread phenomenon
across the tree of life. From bacteria to multicellular de-
velopment, epigenetic pathways generate a population of
diverse phenotypes from homogeneous, stable genomes
[1-4]. Phenotypic switching (PHS) is a stochastic phe-
nomenon known to maintain population diversity in uni-
cellular organisms as a means to survive in fluctuating
environments [5,6]. This mechanism can also be found
to boost non-genetic heterogeneity in a special multicel-
lular context: cancer cell populations [7]. In this context,
tumors can take advantage of already existing differen-
tiation hierarchies to promote unlimited self-renewal or
senescence and drug resistance with no need of selecting
somatic mutations [8,9].

Phenotypic switching is a source for non-genetic het-
erogeneity in cancer [7,10,11]. The most recent example
comes from Glioblastomas, where tumor cells are found
to organize around four well-defined meta-modules re-
sembling -though aberrant- healthy brain cell lines [12].
This arrangement is highly robust: tumors initiated by
single cells from a biopsy evolve towards the previous
phenotypic composition, regardless of the specific pheno-
type of the original cell, showing that stochastic transi-
tions happen between all of the four phenotypes. Similar
dynamics have been described in breast cancer [13], as
well as in melanoma [14,15] and prostate cancer [16].

The existence of phenotypic plasticity in tumors has
important consequences for therapy. Tumor relapse af-
ter therapy is usually acknowledged to be a consequence
of pre-existing or acquired resistance mutations, present
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FIG. 1 Phenotypic switching in cancer. Genetic analysis
reveals four transitioning phenotypes in Glioblastoma (a) and
thus a set of cancer cell populations (b, after Neftell et al.,
2019). Different transitions occur, linking phenotypes Ck by
means of a matrix of transition rates, as sketched in (c).

in a given subclone that survives and repopulates the tu-
mor (see e.g [17]). This image is often correct, yet further
mechanisms in many therapeutic settings, from stem cell
senescence [18] to immunological editing [19] prove that a
wider scope is key when trying to understand therapeutic
failure. The stochastic nature of switching between rogue
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cellular phenotypes allows robust and plastic tissue archi-
tectures, resulting in an adaptive mechanism that might
be even harder to target [20]. How does this affect ther-
apeutic strategies? Models of phenotypic switching have
helped to explore cancer invasion [21-23] or the possible
role of plasticity in maintaining a resistant phenotypes
[24].

Here we present a toy model to study the character-
istics of phenotypic plasticity in cancer by exploring the
population dynamics of competing replicators exhibiting
transitions among them (Fig. 1). The model allows in
particular to analyze the rise of the switching populations
and the equilibrium conditions for stable heterogeneity,
as well as the requirements to tumor extinction with im-
plications on novel therapeutic approaches.

II. PHENOTYPIC SWITCHING DYNAMICS

In this section we explore several features exhibited by
different versions of a toy model of cancer cell populations
exhibiting PHS. Our goal is to provide some basic bounds
to the response of these systems to therapies acting on
the switching dynamics and how they relate with the
action of cytotoxic or targeted agents. Ecological models
of heterogeneous cancer populations can be represented
by means of a set of replicator equations [25]. Consider
a set of N phenotypes, where C = (C1, ..., CN ). The i-th
cancer cell type population will change in time following:

dCi

dt
= Γi(C)Ci +

∑
k 6=i

ωkiCk −
∑
k 6=i

ωikCi − Ciφ(C) (1)

with (i, k = 1, ..., N). Here Γi(C) indicates the func-
tional form of the replication rate associated with the
i−th clone, which in general will be a nonlinear func-
tion of clone or tumor size [26]. The three last terms
in the rhs correspond to (1) the phenotypic transitions
from other phenotypes to phenotype Ci (i. e. Ck → Ci)
(2) the complementary transitions from Ci to the rest (i.
e. Ci → Ck) and (3) an outflow term that allows intro-
ducing competition effects and limited resources. Specif-
ically, if we impose

∑
k Ck = 1, i. e. a constant popula-

tion constraint (CPC), the explicit form of φ can be cal-
culated. The previous set of equations can be re-written
as follows:

dCi

dt
=

Γi(C)−
∑
k 6=i

ωik

Ci+
∑
k 6=i

ωkiCk−Ciφ(C) (2)

where we have aggregated those terms affecting Ci. In
this way we can appreciate the fact that, because of phe-
notypic switching, the effective growth rate of Ci involves
a trade-off between intrinsic replication and the likeli-
hood that it shifts to a different cell type. Moreover
a negative balance leading to a potentially decreasing
growth of Ci can be counterbalanced by the net inflow
from the rest of the phenotypes. Most models of cancer
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FIG. 2 Bifurcation diagram for the reduced N = 2 PHS
model with two strains, as defined by equation (5) where the
C1 population is analyzed under CPC. This diagram repre-
sents the fixed points C∗

1 against the transition rate ω21. A
critical switching threshold is defined here for a given ωc

21

separating a heterogeneous phase (gray) from a homogeneous
one. Here r1 = 1, r2 = 3/2 and ω12 = 1/2, which gives a
critical value ω21 = 1.0 (equation 8).

growth consider constant replication rates associated to
each phenotype and as a first approximation we also start
by considering this case (i. e. Γi(C) = ri).

What is the impact of PHS on potential therapeutic
approximations grounded on cytotoxic drugs? Are there
novel attractors or alternative pathways to avoid targeted
death? Relevant insight can be obtained by considering
a minimal system, where a finite set of cancer clones
replicate at rate ri, defined as the effective difference
ri = bi−di between birth bi and death di rates, and that
can be negative when cytotoxic therapy is effective (in-
creasing death beyond birth, see Fig. 3a). In this section
we consider the simplest models of PHS in cancer pop-
ulations with both limited and unlimited growth. While
this first allows to show the presence of tipping points as-
sociated to switching rates, the later allows deriving basic
relations concerning the cost of using transition therapy.

A. Any starting cell can recapitulate the original
phenotypic composition

Experimental evidence in cancer populations exhibit-
ing PHS shows that a secondary tumor evolves to the
original phenotypic distribution of the primary malig-
nancy, regardless of the initiating cell type [12,13]. This
is an interesting outcome of PHS: the system has the po-
tential to reliably restore population diversity in a pre-
dictable fashion. Instead of heterogeneity driven by so-
matic mutation, we have here a surrogate of developmen-
tal dynamics driven by epigenetic changes. The mathe-
matical approach and its consequences are easily derived
considering a population of two switchers (N = 2) under
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FIG. 3 Transition therapy. Targeting a single phenotype in a switching tumor (A). Cancer elimination hardly results from
single targeted therapies if resistant populations and switching are at place (B). The addition of a therapy that increases the
rate at which the resistant phenotype C1 transitions to the targeted one C2 can completely eliminate the tumor by draining
type-1 cells (C).

CPC [6].

dC1

dt
= (r1 − w12)C1 + w21C2 − C1φ(C) (3)

dC2

dt
= w12C1 + (r2 − w21)C2 − C1φ(C) (4)

This equation reduces to a simple competition model
when ωij = 0. The winning population is decided by
the highest ri.

Assuming constant population, the competition term
reads φ(C) = r1C1 + r2C2 and since C1 are normalized,
this is in fact the average replication rate, I. e. φ(C) =
〈r〉. Using this result, it is possible to reduce the system
to a one-dimensional ordinary differential equation for
one of the populations, say (C1:

dC1

dt
= γC1(1− C1)− w12C1 (5)

with γ = (r1 − r2 − w21). This model displays two fixed
points, namely C∗1 = 0 (extinction) and the heteroge-
neous point (where both populations persist) given by

C∗1 = 1− w12

γ
(6)

Interestingly, the presence of an heterogeneous attractor
that is not dependent on initial phenotypic composition
can be compared to experimental evidence of cell growth
recapitulating original clonal distributions [12,13]. In
particular, it can be seen that the attractor for popu-
lation distributions, C∗1/C

∗
2 , is consistent with the long-

term stable distribution in the absence of intrinsic com-
petition, C1(t)/C2(t), because the CPC assumption is
equivalent to formulating the model in terms of popu-
lation concentrations (see SM). This result is consistent
both analytically and through computer simulations, so
that the minimal model is able to generate the basic in
vitro properties of phenotypic switching.

The stability analysis of this system shows that this
population will persist (i.e. C∗1 > 0) and any initial con-
dition will recapitulate the whole attractor distribution
provided that

ω21 − ω12 > r2 − r1. (7)

This inequality has an interesting, intuitive interpreta-
tion: C1 will be positive, even if r2 > r1, provided that
the difference between transition rates is larger than the
difference between growth rates, highlighting the ability
of PHS to maintain tumor heterogeneity (Fig. 2). This
allows defining a threshold value: heterogeneity will be
observed when

ωc
21 = ω12 + (r2 − r1) (8)

which determines the threshold condition for the switch-
ing rate ω21 required to sustain C1, being other param-
eters fixed. The basic bifurcation diagram associated to
this model is shown on figure 2. Two phases are in-
dicated. The first is associated to the diverse switch-
ing phenotypes (for ω21 > ωc

21, gray area). Here a sin-
gle attractor exists, which can be reached from any ini-
tial condition. Another, homogeneous phase occurs for
ω21 < ωc

21 where only the fastest replicating population
persists.

The transition defines a tipping point that is deter-
mined (with other parameters fixed) by the rate of re-
covery provided by the PHS mechanism. The diagram is
obtained under unfavorable replication: we use r1 < r2
which, in the absence of PHS, would inevitably lead to
the extinction of C1. The presence of a heterogeneous
phase indicates that one population can rescue the second
from decay and this will have relevant consequences for
therapy thresholds based on treatments affecting switch-
ing rates.
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B. Cytotoxic therapy failure: Transition thresholds for
N = 2 tumor growth

Consider again the simplest scenario of two clones away
from their carrying capacity (assuming no limited re-
sources, i. e. early tumor growth). In order to formulate
this model, we just remove the competition term Ciφ(C)
in the previous equations (3-4). This is a more interest-
ing approach for two reasons: one one hand, the CPC
constraint is lifted and secondly a more realistic scenario
(a growing tumor with no stable states) is taken into ac-
count.

Neglecting nonlinear competition dynamics, we study
the following linear system

dC1

dt
= (r1 − w12)C1 + w21C2 (9)

dC2

dt
= w12C1 + (r2 − w21)C2 (10)

As a linear system, it does not admit a single-population
solution: the tumor either gets extinct or C1(t) and C2(t)
undergo exponential growth. Interestingly, long-term
phenotypic composition C1/C2 is still maintained and in-
dependent from initial conditions (see SM), as observed
in experimental setups [12,13]. Nevertheless, the model
makes possible to show how single-target therapies are
eminently inefficient in targeting switching tumor types.
We know that the (0, 0) attractor is stable if both effec-
tive growth rates are negative. Since ri = bi − di, this
can be true if death rates for both cell types are increased
beyond their birth rates by means of two different drugs.
What happens if only one of the two phenotypes can be
targeted?

Assume that cell type C1 has a positive replication rate
r1 > 0. The death rate of cell type C2 can be increased by
means of a cytotoxic therapy, so that r2 = b2 − d2 could
shift from be positive to negative (Fig. 3a). The stability
analysis shows that there is a threshold replication rate
for C1,

r∗1 =
w12

1−
(
w21

r2

) (11)

If C1 replicates faster than this threshold level, it will re-
populate the tumor and maintain the targeted population
C2 (Fig. 3b). This is consistent with recent analytical
results from [26] for the progression of a tumor in the
presence of a drug-tolerant phenotype.

The potential therapeutic implications of this result
are straightforward: A single-target therapy might fail if
the other population is able to seed the tumor. For very
strong cytotoxicity, the limit sets at r∗1 = w12: if the resis-
tant population can grow beyond switching it will main-
tain tumor growth and diversity (Fig. 3b). This might
be a clue on why single-target therapies fail at complete
eradication of phenotypic switching tumors. However,
the same result opens a novel therapeutic possibility. If
r1 cannot be targeted, we could increase w12, the rate at

which C1 switches to C2, to drain the replicative pheno-
type into the one we can kill by cytotoxic therapy (Fig.
3c). Can transition rates wij be targeted as novel a ther-
apeutic strategy?

C. Sequential therapy: Multiple phenotypes (N > 2)

We have used the N = 2 case to illustrate the con-
cept of cancer growth with switching and how different
growth-transition tradeoffs can influence the final out-
come. But tumor architectures include more than two co-
existing phenotypes [12,13]. Given a larger system with
N phenotypes that switch stochastically, what are the
effects of sequential therapies? The analytical approach
for N > 2 independent phenotypes becomes harder as we
add dimensions, and results depend on N2 parameters.
However, we can predict the average effect of sequential
targeting by assuming that all phenotypes behave and
respond, on average, in similar ways.
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FIG. 4 Transitions for N=3 phenotypes. For a N = 3
case study, the flow diagram (a) indicates all the transition
and replication rates. In order to determine the requirements
for successful therapy when a cytotoxic drug is used against
C3, a homogeneous model (b) is used.

The problem can be tackled as follows. Let us first con-
sider the N = 3 case, as indicated in figure 3a. In order
to reduce the complexity of our calculations, we consider
a coarse-graining assumption: all replicating and dying
cells do so at equal rates, r+ and r− respectively, and
transition rates between replicating and dying cells are
also homogeneous. This is summarized in figure 3b.

In this scenario, suppose a system with two phenotypes
that replicate at r+ > 0 and hold a dying phenotype
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r− < 0:

dC1

dt
= (r+ − w++ − w+−)C1 + w++C2 + w−+C3 (12)

dC2

dt
= (r+ − w++ − w+−)C2 + w++C1 + w−+C3 (13)

dC3

dt
= (r− − 2w−+)C3 + w+−(C1 + C2) (14)

Let us now indicate by σ+ the total population of repli-
cating cells, I. e. σ+ = C1 + C2 (figure 3b). In this case,
the system reduces to

dσ+
dt

= σ+r+ − σ+w+− + 2w−+C3 (15)

dC3

dt
= C3r− − 2C3w−+ + w+−σ+ (16)

For this two-compartment system, it can be shown that
the minimal threshold for the positive population repli-
cation rate is:

r∗+ =
w+−(

1 + 2
w−+
|r−|

) . (17)

This calculation, under our homogeneity assumptions,
can be done in a systematic way for a switching popula-
tion with of N cell types (see SM). Specifically, we can
consider n+ replicators with a positive effective growth
rate r+ and n− cell types targeted by therapy, so that
their death rate increases beyond birth and b− − d− =
r− < 0.

By aggregating the two different populations in σ+
and σ− compartments, the problem of a tumor with N
switching phenotypes can be studied (see SM). It can
be shown that the minimal growth rate for the positive
replicators to sustain the tumor is

r∗+(n+, n−) = n−
w+−(

1 + n+
w−+

|b− − d−|

) . (18)

This result provides a lower bound to the requirements
for transition therapy for can be translated into glioblas-
toma therapy design. Complete cancer eradication can
happen if all phenotypes are targeted. Targeting less
than four phenotypes can prove useless if the other cell
types maintain diversity by replicating faster than (3).
Through sequential targeted therapy, we can increase n−
by one and decrease n+ accordingly. This results in a
nonlinear increase in the pressure to maintain diversity
and growth (Fig. 4). This is a specially relevant result
here, since it provides a rough estimate of the potential
obstacles to cytotoxic therapy posed by the presence of
switching.

III. DISCUSSION

Several considerations on therapy design arise directly
from the previous results (and our simplifying assump-

FIG. 5 Sequential therapy efficiency. Replicating phe-
notypes (empty circles) maintain drug-targeted phenotypes
(gray) through stochastic switching. Therapy targeting
sequentially a four-phenotypes architecture increases non-
linearly the cost of maintaining diversity by resistant cells
(continuous line, equation displayed in the inset). Stochastic
Gillespie simulations result in a certain degree of deviation,
where extinction can eventually happen for values of r > r+.
Filled dots indicate the value for which 95% of the compu-
tational experiments result in population extinction, with er-
rors bars indicating 5% deviations from this value (see SM for
computational details).

tions). A well-adapted population can maintain non-
adapted cell types, provided replication and transition
rates are tuned accordingly. Evidence for skewness in ex-
perimental transition rate values [13] could indicate their
evolution towards enhancing well-adapted phenotypes.
PHS offers an alternative pathway to cancer heterogene-
ity and consequent drug resistance [20,24,27]. Target-
ing a PHS-based malignancy need to take into account
this result. Single-phenotype strategies are likely to fail,
steering tumor evolution towards other phenotypes in-
stead of providing a cure.

Instead, what is to be tackled is diversity itself: if only
one phenotype can be targeted, the model indicates that
others can be drained by increasing the rates at which
they transition to the dying one. Therapeutic strategies
that target differentiation pathways are already in place
[28], and much is known about dedifferentiation and re-
programming across cell types [29,30]. Clinical and ex-
perimental evidence points to differentiation-regulating
genes as potential targets of transition therapy. An exam-
ple would be TBX3 affecting inter-phenotype switching
in breast cancer cell lines [13]. Epigenetic drugs targeting
DNA methylation are nowadays a therapeutic opportu-
nity [31,32], and combinatorial antibody libraries as reg-
ulators of cell fate [33] or stem cell transdifferentation
[34] might provide further options to induce phenotypic
transdifferentation as a therapeutic strategy.
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When more than two phenotypes coexist it is likely
that several cell types have evolved oncogenic advan-
tage. Our approach indicates that sequential targeting
of phenotypes increases non-linearly the pressure for tu-
mor survival. Drug combination targeting several cell
types together with transition rates to drain non-targeted
phenotypes could result in increased benefits for patient
survival.

Sequential therapy schemes are known to drive tumor
evolution by inducing pressures that drive clonal selec-
tion [35]. Even in tumors where phenotypes show self-
renewal capacity after cytotoxic therapy, our modeling
approach is a predictive tool for the resulting phenotypic
trajectories. Since we can compute the stable phenotypic
composition for any combination of parameters, knowing
how they change after therapy results in a quantitative
prediction of the new tumor state.

This can prove helpful to understand tumor evolution
after each drug [36]. It has been studied for clonal evo-
lution tumor schemes [37], but accumulated knowledge
indicates that epigenetic plasticity introduces novel con-
ditions for eradication of resistant cell types [27]. The
ability to push the system towards equilibria predicted
by our model puts forward the opportunity of directing
evolution to pre-sensitize the tumor to a second drug [38].
Following the notion of cancer attractors and combina-
tion therapy [39], acting on transition rates offers new
ways of thinking in how to tackle cancer heterogeneity
under PHS under a more ”developmental” view. Future
extensions might need to be considered, including gene
network regulation, spatially explicit structure, niche ar-
chitecture and tissue hierarchy. Each extra layer will un-
doubtedly modify our basic bounds, but we conjecture
that the ways PHS influence tumor responses will be ba-
sically the same.
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