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Abstract: Due to constraints in launch platform and cost, the maneuverability of gliding-guided 
projectiles is limited, necessitating a rational design of their trajectory schemes. To reduce the 
sensitivity of trajectory schemes to uncertainties while ensuring compatibility between flight 
schemes and guidance control systems, and fully exploiting the control capability of the projectile, 
a closed-loop robust trajectory planning method is proposed. Models of major uncertain factors and 
states deviation at the control-start point are established. Based on the NIPCE method, the stochastic 
dynamic model is transformed into a high-dimensional deterministic model with PCE coefficients 
as state variables, and the uncertainty propagation law is obtained. A PID algorithm is employed to 
design a tracking guidance law based on position error feedback, and open-loop and closed-loop 
robust trajectory planning models are established accordingly. The optimal control problem is 
solved by transforming it into a nonlinear programming problem using the direct shooting method. 
Simulation results indicate that the NIPCE method can significantly improve the computational 
efficiency of uncertainty propagation while ensuring accuracy. Open-loop robust planning can 
effectively mitigate the sensitivity of gliding trajectories to uncertainties but cannot completely 
eliminate terminal dispersion. Closed-loop robust planning effectively improves control effort 
consumption on the basis of open-loop planning. 

Keywords: gliding-guided projectile; uncertainty; robust planning; trajectory tracking guidance; 
closed-loop feedback 

1. Introduction

Artillery, as a weapon with a long and influential history in warfare, is hailed as the god of war. 
In the modern combat environment, with the advancement of science and technology and the 
innovation of combat concepts, the capability for beyond-visual-range precision strikes has 
increasingly become one of the key indicators of military strength. Artillery systems have gradually 
evolved from purely area-damage weapons to multifunctional strike platforms. Gliding-guided 
projectiles, as a new type of artillery-launched weapon, combine the advantages of both tactical 
missiles and conventional projectiles. They not only offer low cost per shot, rapid response, and 
flexible use but also possess extended range and high strike accuracy, making them one of the focal 
directions in the current development of weaponry and munitions[1]. 

Among the many key technologies in the research of gliding-guided projectiles, trajectory 
planning has always been a core and hot issue. Limited by the stringent requirements of the gun-
launched platform and the harsh dynamic environment during launch, gliding projectiles are small 
in size with limited control fins. The navigation and control devices that can be loaded, as well as the 
overall structural layout of the projectile, have special requirements. Moreover, the projectile usually 
undergoes unpowered flight during the controlled trajectory phase. Consequently, gliding projectiles 
possess a low lift-to-drag ratio and limited maneuverability and anti-interference capabilities, under 
which the rationality of the trajectory design becomes particularly crucial[2]. Addressing this issue, 
Shi conducted an in-depth study on the trajectory characteristics of gliding projectiles using the 
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energy analysis method, forming a relatively complete theoretical system[3]. Building on this, Yi 
planned a range-extension trajectory based on the maximum lift-to-drag ratio as the performance 
indicator[4]. Chen addressed the matching issues of dynamic and static parameters during the flight 
of gliding projectiles and proposed a full-trajectory planning method aimed at minimizing control 
effort as the performance indicator[5]. Following this approach, Xu introduced the concept of a 
composite efficiency factor, taking into account both the gliding efficiency and maneuverability of 
the projectile, and used it as a performance indicator to conduct trajectory design works[6]. The 
evolution of modern warfare has given rise to an increasingly diverse array of combat mission 
requirements, prompting a surge in research directions related to trajectory planning. Yan proposed 
a three-dimensional trajectory planning method for cruise missiles' low-altitude penetration issues 
based on ant colony optimization and Bezier curve optimization, addressing the problems of 
excessive turning points and large turn angles common in traditional methods[7]. He employed 
swarm intelligence algorithms such as the grey wolf optimizer, firefly algorithm, and particle swarm 
optimization for maximizing the maneuver characteristics of cruise missiles, and compared their 
respective advantages and disadvantages[8]. Liu introduced a multi-stage rapid trajectory planning 
algorithm based on sequential convex optimization for the online planning of multi-stage 
trajectories[9]. Beyond planning for individual projectiles, Liu and Pinon separately researched 
collaborative multiple-projectile and 'autonomous actors-artillery collaboration' trajectory 
planning[10,11]. With the advancement of science and technology, cutting-edge technologies like 
neural networks[12] and artificial intelligence[13] are being progressively incorporated into trajectory 
planning processes, demonstrating strong developmental momentum. 

The aforementioned literatures extensively explore the trajectory planning problems from 
various perspectives, focusing primarily on deterministic optimal control issues, however, they do 
not take into account the impact of uncertainties, leading to overly idealized trajectory designs. 
During the actual flight of a projectile, uncertainties exist in the dynamics model, aerodynamic and 
environmental parameters, and states at the control-start point. Planning variables, performance 
indicators, and constraints are closely related to these parameters, and results obtained from 
deterministic models may lead to exceeding variable boundaries, deviations in performance 
indicators, and breaches in constraint conditions. This issue can be mitigated through robust 
planning, which fundamentally aims to minimize the impact of uncertainties on the trajectory 
without eliminating or reducing the sources of uncertainty[14]. In the process of robust planning, it 
is critical to understand the propagation of stochastic disturbances along the trajectory under current 
control commands, necessitating research into quantitative methods for dynamic system 
uncertainties. The Linear Analysis of Covariance (LAC) method, which requires only a single 
integration of the error propagation equation to obtain statistical results akin to those from Monte 
Carlo Simulation (MCS), has been widely applied due to its efficiency in robust planning 
issues[15,16]. However, LAC necessitates linearized models, which can lead to significant 
approximation errors when dealing with highly nonlinear problems. Additionally, robust planning 
based on LAC is sensitive to initial conditions since it reshapes around a reference trajectory, often 
resulting in local optima that prematurely terminate the algorithm[17]. Given the limitations of LAC, 
scholars studying robust planning problems for Unmanned Aerial Vehicles (UAVs) have adopted 
methods based on nonlinear models such as Polynomial Chaos Expansion (PCE)[18–22] and 
Unscented Transform[23–27], enhancing the precision and efficiency of problem-solving. 

The aforementioned studies pertain to open-loop robust planning methods, overlooking the 
coupling between the planned trajectory and the guidance control system. In actual conditions, 
deviations caused by various uncertainties are typically mitigated by the guidance control system. 
Consequently, the compatibility between the planned trajectory and the guidance control system 
significantly impacts the effectiveness of mission execution. For UAVs with ample maneuvering 
capability, the performance loss associated with open-loop planning does not pose a substantial issue. 
However, for the gliding projectile with limited rudder control capability and unpowered flight, it is 
critical to minimize losses and fully exploit maneuverability. Therefore, it is necessary to pursue 
research on robust trajectory planning methods that incorporate closed-loop feedback from the 
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guidance control system. Nonetheless, as of now, research addressing this specific problem remains 
insufficient. 

In summary, this paper takes a certain type of gliding-guided projectile as a case study to tackle 
the trajectory planning issue for striking fixed target. To reduce the trajectory's sensitivity to 
uncertainties and enhance the compatibility between the planned trajectory and the guidance control 
system, thereby maximizing its limited control capability, a closed-loop robust trajectory planning 
method based on the concepts of robust optimization and tracking guidance is proposed. Initially, 
the main uncertainties during the actual flight process of the gliding projectile are modeled, and the 
non-invasive polynomial chaos expansion (NIPCE) method is used to obtain quantified propagation 
laws for these uncertainties. Subsequently, based on these propagation results and aiming to 
minimize the terminal dispersion as the performance indicator, open-loop robust trajectory planning 
is carried out, considering the ballistic characteristics of the gliding projectile and related constraints. 
Furthermore, a simple yet effective Proportional-Integral-Differential (PID) controller is employed to 
track the robust optimal trajectory. Based on feedback from the guidance control system, the planning 
approach is extended to a closed-loop format, designing a closed-loop robust optimal trajectory that 
integrates both uncertainty factors and the 'scheme-guidance compatibility'. Finally, through 
numerical simulations in various scenarios and different conditions, the impact of uncertainty 
deviations on the performance of closed-loop guidance is explored. 

2. Models and Methods 

2.1. Dynamic Model of Gliding Ballistic 

To mitigate the adverse effects of factors such as aerodynamic asymmetry and engine thrust 
misalignment, while reducing the cost of the guidance control system, the tail fins of gliding-guided 
projectiles are typically designed with a certain angle of inclination, allowing the projectile to spin 
slowly during flight. Consequently, only pitch and yaw control are required. In the initial design 
process, to facilitate the determination of the gliding projectile's flight trajectory and main flight 
characteristics, its rotational motion around the center of mass is often neglected, treating it as a 
maneuverable point mass for study[28]. This paper is based on the following simplified assumptions. 

Assumption 1. The gliding projectile rotates without inertia. 

Assumption 2. The control system of the gliding projectile works ideally, without errors or delays. 

The aforementioned assumptions posit that when the control mechanisms of the gliding 
projectile deflect, the torque acting on the projectile is in equilibrium at each instant, hence it is termed 
the 'instantaneous equilibrium' assumption. Given its axisymmetric shape, when the total angle of 
attack is not excessively large, the gliding projectile exhibits linear aerodynamic characteristics. 
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In the equations, zδ  and yδ  represent the deflection angles of the pitch and yaw control surfaces, 
respectively. α and β  denote the angle of attack and sideslip of the projectile, with subscript E 
indicating the equilibrium state. zm

α  and ym
β  represent the pitch and yaw static stability 

derivatives, while z
zm
δ  and y

ym
δ  denote the control effectiveness of the pitch and yaw control 

surfaces, respectively.  
Under the instantaneous equilibrium assumption, the control variables for the gliding trajectory 

can be approximated using the angle of attack α  and sideslip β  at equilibrium. Gliding-guided 
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projectiles undergo unpowered flight during the controlled phase, relying on the aerodynamic forces 
acting on the projectile to achieve maneuver of the center of mass. 
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In the equations, xF , yF , and zF  represent the total drag, lift, and lateral force acting on the 

projectile, respectively. 2 / 2q Vρ= denotes the dynamic pressure, ρ is the air density, V is the 
velocity of the projectile, S is the reference area of the projectile, 0xC is the zero-lift drag coefficient, 

ck is the induced drag coefficient, yC
α and zC

β  are the partial derivatives of the lift and lateral force 
coefficients with respect to angle of attack and sideslip, respectively. For axisymmetric shapes,

z yC Cβ α= - . 
The centroid motion model of the gliding trajectory is 
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In the equations, m is the mass of the projectile, g is the gravitational acceleration, θ and ψ are the 
inclination and deflection angle, respectively. x , y and z are the range, altitude and lateral 
displacement of the projectile, respectively. 

Considering that the impact time of the gliding trajectory is free, and the target position to be hit 
is fixed, the range of the projectile is monotonously increasing and bounded in the course of flight. 
In order to facilitate the follow-up analysis, the independent variable of the model is converted from 
time t to range x, so the motion model shown in equation (3) is converted to 
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  (4) 

Remarking the combination of state variables as T[ , , , , , ]V t y zθ ψ=X  and the combination of 
control variables as T[ , ]α β=U , the equation (4) can be expressed as 

( ), ,x=X f X U   (5) 
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2.2. Model of Major Uncertainties 

There exist all kinds of uncertain factors in the actual flight environment, and it is not realistic to 
take them all into consideration. Therefore, this paper selects the following representative uncertain 
factors for research, and models them as the deviation between the real value and the reference value. 

2.2.1. Aerodynamic Parameter Deviation 

Due to the machining errors of the projectile and variations in the ballistic environment, there 
are inevitably differences between the actual flight aerodynamic parameters and the reference values. 
This paper assumes that the deviations of the aerodynamic parameters follow mutually independent 
normal distributions. 
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In the equations, 0xC , yC
α  and zC

β  represent the true values of zero-lift drag coefficient, lift 
coefficient derivative, and lateral force coefficient derivative, respectively. Subscripts d , l and l¢
denote the first letters of drag, lift, and lateral, respectively. dN , lN , and lN ¢  are random numbers 
following a standard normal distribution N(0,1), and dσ , lσ , and lσ ¢  represent the degrees to which 
the above parameters deviate from their reference values. 

2.2.2. Meteorological Environment Deviation 

The differences between actual meteorology and standard meteorology are mainly manifested 
in the deviations of wind field, temperature, and atmospheric density. The impact of wind field on 
trajectory calculation can be considered as an unmodeled random force, which is compensated by 
the guidance control system. Temperature primarily affects the calculation of speed of sound, thereby 
influencing the flight Mach number, which in turn leads to variations in aerodynamic parameters. 
Therefore, the deviation in temperature can be attributed to the deviation in aerodynamic parameters. 
In summary, this paper models the deviation in meteorological environment as the deviation in 
atmospheric density. The statistical characteristics of the deviation of actual atmospheric density from 
the standard value are related to the altitude y, and the ratio of standard deviation to standard 
atmospheric density can be approximated as 

26629.770.003517e
y

ρσ =   (7) 

Therefore, the actual atmospheric density can be expressed as 

( )1 Nρ ρρ σ ρ= +   (8) 

In the formula, Nρ is a random number obeying the standard normal distribution N(0,1). 

2.2.3. State Deviations at the Control-Start Point 

Before terminal guidance begins, the full trajectory of a gliding guided projectile can be divided 
into four stages: the launching phase, boosting phase, climbing phase, and gliding phase, with the 
first three stages being uncontrolled flight[29]. After the projectile is fired, under the influence of 
various uncertainties, the state values at the control-start point will inevitably deviate from the 
designed trajectory. This paper assumes that the state deviations follow mutually independent 
normal distributions. Remarking T

0 0 0 0 0 0 0[ , , , , , ]V t y zθ ψ=X  as the design value of the trajectory at the 
control-start point, then the actual state at the control-start point can be expressed as 
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  (9) 

In the equations, VN , Nθ , Nψ , tN , yN and zN are random numbers obeying the standard normal 
distribution N(0,1), and Vσ , θσ , ψσ , tσ , yσ  and zσ  represent the standard deviation of each state 
at the control-start point respectively. 

2.3. Uncertainty Propagation of the Gliding Trajectory 

2.3.1. Transformation of the Stochastic Dynamic Model 

Based on the discussion in Section 2.2, the main uncertainties during the flight of a gliding 
projectile can be categorized into two types: parameter uncertainties and initial state uncertainties. 
The dimension of parameter uncertainties 4d =P , while the dimension of initial state uncertainties

6d =X . Therefore, the dimension of uncertainty factors for the entire stochastic dynamic system
10d = . Remarking the random parameters as T[ , , , ]d l l ρσ σ σ σ¢=P  and introduce them into the 

dynamic system shown in Equation (4), then the stochastic dynamic model can be expressed as 

( ), , ,x=X f X U P   (10) 

This paper adopts the NIPCE method based on Gaussian quadrature nodes sampling and 
Weighted Stochastic Response Surface Method (WSRSM)[30] to transform Equation (10) into a high-
dimensional deterministic dynamic model with PCE coefficients as state variables. Setting the order 
of PCE as 2p = , then the number of PCE coefficients corresponding to each state variable after 
expansion is 

( )!
1 66

! !
p d

P
p d
+

+ = =   (11) 

The number of sampling points used for regression is 

( )s 2 1 132n P= + =   (12) 

According to the theory of generalized polynomial chaos, each state variable in formula (10) can 
be expanded in the form of a polynomial. 

( )
0

,  1, 2, ,
P

i ij j
j

X S i dΦ
=

» =å Xξ    (13) 

In the equation, 10Îξ R is a d -dimensional cell array, where each element consists of sn  
Gaussian quadrature sampling points corresponding to the respective uncertain factors. Let the 
univariate orthogonal basis functions corresponding to each uncertain factor in each dimension be 
denoted by ( ),  1, 2, ,j k k dφ ξ =  , then ( )jΦ ξ  represents the orthogonal polynomial function obtained 
by taking tensor products of ( )j kφ ξ . ijS denotes the j-th PCE coefficient of the i-th state variable, and 
the total number of coefficients is 

( )PCE 1 396n d P= + =X   (14) 

For the random parameters which obey the normal distribution, the first-order, one-dimensional 
orthogonal polynomial model can accurately describe the uncertainty[31]. Therefore, each random 
parameter can be expanded in the form of the sum of 2 terms. 

( ) ( )0 0 1 1 ,  1,2, ,i i iP p p i dΦ Φ= + =P P Pξ ξ   (15) 

In the equation, 4ÎPξ R is a dP -dimensional cell array, where each element consists of sn  
Gaussian quadrature sampling points corresponding to the respective uncertain factors. 
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To sum up, the stochastic system shown in formula (10) is transformed into 

( )PCE PCE PCE, , ,x=ΨS F S U P   (16) 

In the formula, 396
PCE ÎS R denotes the PCE coefficients of all state variables, 8

PCE ÎP R denotes 
the PCE coefficients of random parameters. 792ÎF R is the actual response values of sn  sample 
points into the original stochastic system formula (10), and 792 396´ÎΨ R denotes the coefficient matrix 
of the transformed deterministic system which is described in detail as follows. 

Remarking 0 1 s( ) [ ( ), ( ), ( )] , 1,2, ,i i i P i i nΩ Φ Φ Φ= =ξ ξ ξ ξ  ，defining the intermediate matrix as 
6 396( ) ( )i d iΘ Ω´Î = Ä

X
ξ I ξR   (17) 

In the equation, the symbol Ä  denotes the Cronecker product, therefore 

s

T T T T
1 2[ ( ) , ( ) , ( ) ]nΘ Θ Θ=Ψ ξ ξ ξ   (18) 

Considering the different importance of each sample point, the weight vector is 
T792 T T T

s
a total of  items

[ , , , ]
d

ω ω ωÎ =
X

ω R   (19) 

In the formula, ω  denotes the weight corresponding to sn  sample points. 
So far, according to WSRSM, the overdetermined equations shown in formula (16) can be solved 

by weighted least square regression. 

( )
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1T T
s s
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-ì =ïï
í
ï =ïî

H Ψ WΨ Ψ W

S HF S U P
  (20) 

Where 396 792´ÎH R is the regression coefficient matrix and 792 792
s sdiag( )´Î =W ωR  denotes the 

weight matrix. 
By numerical integration of equation (20), the variation of all PCE coefficients with range x  can 

be obtained. The mean μ  and standard deviation σ  of the state variables in the original stochastic 
system can be obtained directly from the PCE coefficients. 

( )
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Where the operator E represents the mathematical expectation. 

2.3.2. Truncation of Chaotic Polynomial Basis 

According to the description in Section 2.3.1, the transformed deterministic system has a total of 
396 state variables, and there are also 132 Gaussian quadrature sampling points used for regression. 
In this problem scale, the computation time for a single uncertainty propagation is acceptable. 
However, in subsequent robust trajectory planning of the gliding projectile, the uncertainty 
propagation module will be repeatedly called during the iterative process. Moreover, the 
convergence speed of optimization algorithms significantly decreases when the number of variables 
is large, leading to a significant reduction in computational efficiency. 

It is known that as the dimension d  of the uncertainty factors increases, the total number of 
terms in the orthogonal polynomials grows exponentially. However, in many problems, not all terms 
in the polynomial expansion are equally important. Typically, only a few variables are involved in 
the important terms of the expansion. In most practical engineering systems, the output response is 
mainly influenced by the input variables and their low-order interaction terms, while the impact of 
higher-order interaction terms is relatively small. 

Considering the above analysis, this paper adopts a maximum interaction restriction truncation 
strategy to directly remove high-order polynomial terms, thereby reducing the computational 
burden. 
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In the full-order PCE model (13), multivariate orthogonal polynomials are constructed by direct 
tensor product. When the PCE order is p , it is necessary that 

,
1

1
  :  

d
d p d

j
j

A pλ
=

ì üï ï= Î ºí ý
ï ïî þ

åλ λ N   (22) 

In the formula, 1 2[ , , , ]dλ λ λ=λ  represents multiple indexes, ,d pA  is a set of multiple indexes, iλ  is 
the order of the base of univariate orthogonal polynomials corresponding to the j-dimensional 
variables in multivariate orthogonal polynomials, and the operator 1×  represents 1-norm. 

The main idea of maximum interaction restriction truncation is to select a low rank subset , ,d p rA  
from the multi-index set defined in formula (22) to ensure not only 1    pλ   but also 0    rλ  . 

{ }
( )

, , ,
0   :  

1 min , 

d p r d pA A

r d p

pì = Î ºï
í
ï <î

λ λ λ 


  (23) 

In the equations, 0λ represents the rank of multiple indexes, r represents the truncation coefficient. 
For the case study in this paper, 10d = and 2p = . Therefore, based on Equation (23), the 

truncation coefficient is set to 1r = . After removing the high-order interaction terms, the number of 
PCE coefficients for each dimension of random variables decreases from 66 at full order to 11. 
Consequently, the total number of state variables in the deterministic dynamic system after 
dimensionality reduction decreases from 396 to 66. The number of Gaussian quadrature sampling 
points used for regression reduces from 132 to 22, representing a reduction of 83.3%. 

2.4. Robust Planning Model of Gliding Trajectories 

2.4.1. Open-Loop Robust Planning 

1. Planning expectation 
With the control variables determined, through the method introduced in Section 2.3 one can 

accurately and efficiently get the propagation laws of uncertainties along the gliding trajectory. This 
is manifested as deviations and dispersion of the trajectory envelope during the flight process and 
terminal states. By incorporating the results of uncertainty propagation into the objective function 
and constraints during trajectory planning, the robustness of the trajectory can be enhanced in the 
iterative process, reducing the sensitivity of the gliding trajectory to random disturbances. 

Theoretically, statistical information about the terminal states of the trajectory can be obtained 
through the PCE agent model, allowing the covariance ellipse of the terminal states to be determined. 
Bringing back the control variables of the robust optimal trajectory to the original stochastic dynamic 
model for open-loop tracking enables the true distribution of the gliding trajectory's terminal position to 
be obtained. By observing the coverage of the theoretical covariance ellipse on the actual terminal position, 
the effectiveness of robust planning can be validated, with the expected results depicted in Figure 1. 

 
Figure 1. Schematic diagram of expected effect of open-loop robust planning for gliding trajectory. 
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2. Dynamics model 
The dynamic model is the deterministic system shown in equation (16) after dimensional 

expansion, the state variables are all PCE coefficients, and the control variables are consistent with 
the original stochastic system. 
3. Constraints 

After considering the influence of uncertain factors, there are numerous results (bounded) of 
flight trajectory under the same open-loop control input. Therefore, the focus of open-loop robust 
planning is not the specific values of the states, but their statistical laws, and the statistical moments 
of state variables should also be considered in the constraints (this paper mainly focuses on the first 
and second order statistical moments, which are mean and variance). 
• Boundary constraints 

According to the analysis in Section 2.2.3, the state deviations at the control-start point obey the 
independent normal distribution. Therefore, the constraints of the mean of initial states are 

( )
( )
( )
( )
( )
( )

0 0

0 0

0 0

0 0

0 0

0 0

E

E

E
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z x z

θ θ
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ì é ù =ë ûï
ï é ù =ï ë û
ï é ù =ï ë ûí é ùï =ë ûï

é ùï =ë ûï
ï é ù =ë ûî

  (24) 

Where 0 0x =  is the x  coordinate at the control-start point. 
In order to ensure the final strike accuracy and strike effect, the constraints on the mean values 

of the terminal states are 

( )
( )
( )

f f min

f T

f T

E  

E

E

 V x V

y x y

z x z

ì é ùë ûï
ï é ù =í ë ûï

é ùï =ë ûî


  (25) 

In the formulas, the subscript f represents the first letter of final, and the subscript T represents the 
first letter of Target, f Tx x= and T T T( , , )x y z represents the fixed target position. 

• Path constraints 
Considering the limited rudder control capability of the gliding projectile, the control constraints 

during flight are 

max

max

 
 

 
 

α α
ββ

ìï
í
ïî


   (26) 

4. Objective function 
For the planned trajectory of a gliding projectile, the dispersion at the terminal position is usually 

used as a criterion to measure its sensitivity to uncertainty, while less attention is paid to the 
dispersion of other terminal states and the state envelope during the flight. Therefore, the objective 
function of the open-loop robust planning is designed as 

( ) ( )o f fmin D DJ y z= +   (27) 

In the formula, the subscript o represents the first letter of open-loop, and the operator D represents 
the variance. 

2.4.2. Closed-Loop Robust Planning 

1. Planning expectation 
Closed-loop robust planning builds upon open-loop planning by incorporating a tracking 

guidance module. It assumes that all uncertainties are biased towards the semi-extreme (which 
means the 1.5σ±  value of each random parameter in this paper). The tracking of robust optimal 
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trajectories provides closed-loop feedback for control variables, thus obtaining control effort 
consumption during the projectile's flight (based on simulation experiences and measured data, the 
condition where all uncertainties are biased to the semi-extreme is quite stringent, making trajectory 
tracking relatively challenging and control effort consumption higher. Adopting such a conservative 
approach during the planning process can generally ensure the smooth progress of closed-loop 
guidance during actual flight). By incorporating control effort consumption as a penalty function into 
the planning objective function, the iterative process can then consider the coupling and matching 
characteristics between the planned trajectory and the guidance system, enabling the planning of a 
closed-loop robust optimal trajectory that balances robustness and feasibility. 
2. Closed-loop guidance based on PID control 

Due to the repeated invocation of the guidance module during the iterative process of closed-
loop planning algorithms, a sufficiently simple and effective trajectory tracking algorithm is 
necessary. In the existing literature, some scholars employed the Linear Quadratic Regulator (LQR) 
algorithm for tracking programmed trajectories[17]. This method involves linearizing the model near 
the reference trajectory, which can lead to significant tracking errors when deviations are large. 
Furthermore, the LQR algorithm requires solving the Riccati equation, increasing the complexity of 
the solution. Based on the aforementioned analysis, this paper utilizes a PID controller with an 
analytic expression that does not rely on the model for tracking the planned trajectory. Let the altitude 
and lateral displacement at the range x on the reference trajectory be denoted as ŷ  and ẑ  

respectively, and the control variables as Û , then the position error of the projectile relative to the 
reference trajectory can be expressed as 

ˆ
ˆ

y

z

e y y
e z z
é ù é ù-
ê ú ê ú= =
ê ú ê ú-ë ûë û

e   (28) 

The closed-loop control commands after feedback modification can be expressed as 

0

c
c P I D

c

ˆ ˆ ˆ  d
x

x

k k k
α α

τ
β β

Δ
Δ

Δ
é ù é ù
ê ú ê ú= = + = + = + + +
ê ú ê ú-ë ûë û

òU U U U U e e e  (29) 

In the formula, the subscript c represents the first letter of closed-loop. Pk , Ik and Dk  represent 
proportional parameter, integral parameter and differential parameter, respectively. The minus sign 
in front of βΔ  item indicates the direction. 

3. Dynamic model and constraints 
The dynamic model and related constraints of closed-loop robust planning are the same as those 

in open-loop planning, which need not be repeated. 
4. Objective function 

Defining the closed-loop control effort consumption of the projectile during flight as 

( )
f

0

2 2
c c c  d

x

x

E xα β= +ò   (30) 

Then the objective function of closed-loop robust planning can be designed as 

c D o cmin J J Eω= +   (31) 

Where Dω  is the weight of the terminal position dispersion. 
The closed-loop robust trajectory planning is a multi-objective optimal control problem. 

Considering that the order of magnitude difference between oJ  and cE  in the calculation example 
is large, in order to achieve the balance of planning emphasis, this paper uses the deterministic 
energy-optimal trajectory without considering random disturbance as the benchmark trajectory to 
make the objective function dimensionless. Remarking the terminal position dispersion of the 
benchmark trajectory after uncertainty propagation as J , the control effort consumption as E , then 
the objective function is converted into 
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o c
c Dmin J EJ

J E
ω= +   (32) 

2.4.3. Flow of Robust Gliding Trajectory Planning 

In summary, the open-loop robust planning problem of gliding trajectory can be described as 
follows: considering the main uncertain factors discussed in Section 2.2 and the high-dimensional 
deterministic dynamic model shown in equation (16), planning the open-loop control commands oU
within a known range 0 f[ , ]x x  based on the current battlefield environment and task requirements. 
After uncertain factors propagate along the gliding trajectory under the action of oU , the flight 
scheme can minimize the objective function shown in equation (27) while satisfying the constraint 
equations (24) to (26). The closed-loop robust planning problem can be described as follows: taking 
the open-loop robust optimal trajectory as the reference trajectory, considering the case where all 
uncertain factors are shifted to semi-extreme, obtaining the feedback-modified closed-loop control 
commands cU  through the PID controller shown in equation (29) and calculating the control effort 
consumption cE , incorporating cE  into the planning objective in the form of penalty functions. 
Using the deterministic energy-optimal trajectory as the benchmark, non-dimensionalizing the 
objective function as shown in equation (32), obtaining the closed-loop robust optimal trajectory 
through a bi-level planning format. The flow chart of gliding trajectory robust planning proposed in 
this paper is shown as Figure 2. 

Control commands Uncertainties Ballistic dynamics

PCE-coefficient dynamicsUncertainty Propagation

Terminal states' dispersion Terminal states' designed values

Converged?

Optimal robust trajectory

Objective function Dynamic modelConstraints

Solve the optimal control problem

Actual control commands

Control effort losses

Dynamic modelReference trajectoryDisturbances

Track the optimal robust trajectory using PID controller

Open-loop robust 
programming

Closed-loop robust 
programming

Update

Dimension      expansion

N

Y

Set semi-extreme values

 
Figure 2. Schematic diagram of the robust planning flow of gliding trajectory. 
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3. Simulation Results and Analysis 

Due to the large number of states in the deterministic system after dimension-expansion and the 
presence of many zero elements in the PCE coefficients, the problem scale is large. Discretizing state 
variables will cause unnecessary computational time consumption. Meanwhile, the uncertainty 
propagation module only needs control input information to obtain the statistical laws of the system 
states that meet the accuracy requirements. Therefore, this paper adopts a direct shooting method 
with only discrete control variables to solve the robust planning problem of gliding trajectory, with 
the number of discrete points N set to 65. The relevant parameters of the projectile and target are 
shown in Table 1, and the parameters related to uncertainty are shown in Table 2. The parameters of 
the PID controller are adjusted and adapted during the simulation process, set to 2

P 1.0 10k -= ´ ,
10

I 1.5 10k -= ´  and 1
D 1.2 10k -= ´ . 

Table 1. Parameters related to the projectile and target. 

Parameter Value Parameter Value Parameter Value 
/ kgm  44.5 0xC  0.4 max / degα  10 

2/ mS  0.0133 yC
α  12 max / degβ  5 

T T T( , , ) / kmx y z  (40,0,10) ck  35 1
f min / (m s )V -×  200 

Table 2. Parameters related to uncertainties. 

Parameter Value Parameter Value Parameter Value 
dσ  0.0167 lσ  0.0167 lσ ¢  0.0167 

1
0 / (m s )V -×  400 0 / degθ  0 0 / degψ  0 

1/ (m s )Vσ -×  20 / degθσ  2 / degψσ  1 
0 / st  0 0 / kmy  12.5 0 / kmz  0 

/ stσ  0.5 / kmyσ  0.5 / kmzσ  0.5 

3.1 Uncertainty Propagation of Gliding Trajectory under Specified Control Commands 

When uncertainty factors are not considered, conducting trajectory planning based on 
minimizing control effort consumption as the objective function can yield the deterministic optimal 
control commands Û , which is not detailed in this paper. To verify the effectiveness and superiority 
of the NIPCE method proposed in this paper, according to the discussion in Section 2.3, substituting 
Û  into the high-dimensional system equation (16) for uncertainty propagation, the simulation 
results are shown in Figure 3 (where the symbols ( )μ ×  and ( )σ ×  represent the mean value and 
standard deviation of the state variables, the black dotted lines in the figures represent the constraint 
thresholds of the state variables, and in the legend, FOPCE and COPCE respectively denote the full-
order PCE and cutoff-order PCE). 
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Figure 3. Uncertainty propagation results of gliding trajectory under specified control commands. (a) 
mean value of the velocity; (b) standard deviation of the velocity; (c) mean value of the inclination 
angle; (d) standard deviation of the inclination angle; (e) mean value of the deflection angle; (f) 
standard deviation of the deflection angle; (g) mean value of the flight time; (h) standard deviation of 
the flight time; (i) mean value of the altitude; (j) standard deviation of the altitude; (k) mean value of 
the lateral displacement; (l) standard deviation of the lateral displacement. 

From the results in Figure 3(a), (i), and (k), it is obvious that under the influence of various 
uncertain factors, the mean value of state at the end of the trajectory violates the constraint conditions 
indicated in equation (25). From Figure 3(j) and (l), it is observed that there is a significant dispersion 
in the terminal position of the trajectory. Therefore, robust planning of the gliding trajectory is 
required to modify the deviations in state and reduce the impact of uncertainty factors. Furthermore, 
by observing all subplots in Figure 3, it is noted that the results of the FOPCE method are highly 
consistent with the MCS results. When using the basis-truncation strategy (corresponding to the 
COPCE method) to eliminate high-order polynomial terms, the standard deviations of the termsV , 
θ  and ψ  with relatively high nonlinearity (Figure 3(b), (d), (f)) in Equation (4) show some deviation 
from the MCS results, but within an acceptable range of accuracy. The deviation occurs only during 
intermediate processes, with the statistical characteristics at the end of the trajectory remaining 
unaffected. This analysis illustrates that the NIPCE method proposed in this paper is competent for 
quantifying the uncertainties of gliding trajectories, and in subsequent robust planning processes, a 
truncated PCE model can be used instead of a full-order PCE model to enhance computational 
efficiency. 

The simulation in this paper is based on a personal computer with 4 cores CPU E3-1230 V2 
3.30GHz. The calculation times of single uncertainty propagation of the gliding trajectory using 
different methods on the MATLAB 2022b platform are shown in Table 3. 

Table 3. Calculation times of single uncertainty propagation of the gliding trajectory using different 
methods. 

Uncertainty Quantification Method Calculation time / s 
MCS 45.69 

Parallel MCS 7.14 
FOPCE 1.46 
COPCE 0.23 

The results from Table 3 indicate that compared to the MCS method, the FOPCE method can 
significantly improve computational efficiency while ensuring accuracy. The FOPCE method with 
single-core computation takes less time than MCS with multi-core parallel computation, achieving a 
reduction of 79.5% in time consumption. Employing a basis-truncation strategy to remove 
unnecessary high-order cross-terms can further reduce problem scale and computational time, 
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facilitating the optimization process of robust planning. Under single-core computation the same, the 
computation time of COPCE is reduced by 84.2% compared to FOPCE. 

3.2 Open-Loop Robust Planning 

Based on the discussion in section 2.4.1, using the deterministic effort-optimal control commands 
Û  as the initial value for iteration, the open-loop robust planning results of the gliding trajectory are 
shown in Figure 4 (in the legend, DEO-Trj represents the results of uncertainty propagation along the 
trajectory under the influence of Û , and ORO-Trj represents the uncertainty propagation results of 
the open-loop robust optimal control commands oU ). 
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Figure 4. Open-loop robust planning results of gliding trajectory. (a) mean value of the velocity; (b) 
standard deviation of the velocity; (c) mean value of the inclination angle; (d) standard deviation of 
the inclination angle; (e) mean value of the deflection angle; (f) standard deviation of the deflection 
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angle; (g) mean value of the flight time; (h) standard deviation of the flight time; (i) mean value of the 
altitude; (j) standard deviation of the altitude; (k) mean value of the lateral displacement; (l) standard 
deviation of the lateral displacement; (m) angle of attack; (n) angle of sideslip. 

Based on Figure 4(a), (i) and (k), the open-loop robust planning corrects the bias in the mean 
value of terminal states of the trajectory, ensuring compliance with the constraints outlined in 
Equation (25). Figure 4(a), (g), (i) and (k) show that the curvature in the middle section of the robust 
optimal trajectory increases compared to the reference trajectory, resulting in reduced projectile 
velocity and a longer flight time. This implies that increasing the mid-trajectory curvature enhances 
the robustness of the planned trajectory, aligning with the conclusions drawn using the LAC method 
in reference[2]. Figure 4(j) and (l) reveal that the open-loop robust planning significantly reduces the 
dispersion at the trajectory's terminal point, with standard deviations of altitude and lateral deviation 
decreasing by 23.6% and 35.3%, respectively. This effectively minimizes the sensitivity of the planned 
trajectory to uncertainties. However, as observed in Figure 4(m) and (n), the control commands of 
the robust optimal trajectory significantly increase compared to the reference trajectory, indicating 
that the trajectory's robustness is achieved at the expense of additional control effort consumption. 
Moreover, the results demonstrate that the projectile remains at control saturation for a considerable 
period, posing significant challenges to subsequent guidance control system design. If the deviation 
of uncertainties is substantial, a gliding projectile with limited maneuverability may fail to track the 
planned trajectory, leading to mission failure. Therefore, considering the alignment between the 
planned trajectory and the guidance control system during planning and conducting closed-loop 
robust trajectory planning research holds significant practical importance. 

To further validate the effectiveness of the open-loop robust planning, the robust optimal control 
commands oU  are applied to the original stochastic dynamics model expressed in Equation (4) for 
10,000 Monte Carlo simulations. The comparison between the actual distribution of the terminal 
positions of the gliding trajectory and the theoretical covariance ellipse is illustrated in Figure 5. 

-6 -4 -2 0 2 4
4
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16
 Terminal Position by MCS
 Theoretical Covariance Ellipse
 Target Position

z f 
/ k

m

yf / km  
Figure 5. Open-loop tracking results of robust optimal control commands. 

As from the results in Figure 5, it can be indicated that by the theoretical covariance ellipse 
adequately encompasses the actual terminal positions the of the trajectory, with the target located at 
the center of the ellipse, results consistent with the planning expectations in Section 2.4.1 (It should 
be pointed out that there is a situation where the altitude y is negative at the terminal position of the 
trajectory in the figure, which is not an erroneous result, but a statistical law obtained by the model 
through uncertainty propagation when the independent variable is x. Through subsequent closed-
loop robust planning, the projectile will precisely hit the target). However, due to the limited control 
capabilities of the projectile and the absence of closed-loop feedback from a guidance control system, 
the open-loop robust planning still exhibits some dispersion at the terminal phase, even with 
minimized objective function. This analysis underscores the necessity of pursuing research in closed-
loop robust planning. 
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3.3 Closed-Loop Robust Planning 

Based on the discussion in Section 2.4.2, considering the scenario where uncertainties are skewed 
to the semi-extreme values, a PID controller is used to track the open-loop robust optimal trajectory, 
providing closed-loop feedback for control commands. The closed-loop control effort consumption 
is calculated and incorporated into the objective function. This paper employs the weight of terminal 
position dispersion Dω  in Equation (32) as the basis for distinguishing the following three scenarios. 

Scenario 1： D 0ω = ，which indicates that the terminal dispersion is allowed, only the state 
deviations are modified, and the control effort consumption is minimized. 

Scenario 2： D 1ω = ，which means that both terminal dispersion and control effort consumption 
are taken into consideration, and both are equally important. 

Scenario 3： D 5ω = ，which means taking both the terminal dispersion and the control effort 
consumption into consideration, but the former is more important. 

The results of closed-loop robust planning of gliding trajectory in different scenarios are shown 
in Figure 6. 
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Figure 6. Closed-loop robust planning results of gliding trajectory. (a) velocity; (b) inclination angle; 
(c) deflection angle; (d) flight time; (e) altitude; (f) lateral displacement; (g) angle of attack; (h) angle 
of sideslip. 

From the results in Figure 6, it is evident that with the introduction of a guidance control module, 
the closed-loop robust planning outcome is no longer a statistical law. The projectile, under the 
influence of the guidance law, precisely hits the target, eliminating terminal dispersion. Even under 
relatively stringent deviation conditions, the projectile still manages to track the reference trajectory 
with minimal control saturation (It can be imagined that with smaller deviations, the projectile's 
control effort consumption would be lower). This proves the effectiveness and superiority of closed-
loop planning. 

As the terminal dispersion weight Dω  increases, the curvature in the middle section of the 
closed-loop robust optimal trajectory correspondingly increases, gradually approaching the open-
loop robust optimal trajectory (as shown in Figure 4(i) and 4(k)), and the control commands also 
increase accordingly. It can be inferred that when Dω  is sufficiently large, the proportion of control 
effort consumption in the objective function Equation (32) will approach zero. The closed-loop robust 
planning will degenerate into open-loop robust planning, and the closed-loop robust optimal 
trajectory will converge to the open-loop robust optimal trajectory. 

In order to compare the results in different scenarios more intuitively, the specific values of each 
item in the closed-loop planning objective function Equation (32) are shown in Table 4. 

Table 4. Values of each item in the closed-loop planning objective function in different scenarios. 

Scenario Dω  o /J J  c /E E  cJ  

1 0 0.9568 1.2306 1.2306 
2 1 0.7844 1.4558 2.2402 
3 5 0.5557 1.7715 4.5499 

From the results in Table 4, it is evident that when considering only the correction of state 
deviation without accounting for terminal dispersion of the trajectory, the difference in control effort 
consumption compared to the deterministic optimal trajectory is relatively small. As Dω  increases, 
the robustness of the trajectory improves, accompanied by a corresponding increase in control effort 
consumption. Therefore, for gliding-guided projectiles, a trade-off needs to be made between robust 
optimality and energy optimality, fully exploiting their limited control capabilities to maximize 
comprehensive performance. 

3.4 The Influence of the Uncertain factors' Deviation Degree on Closed-Loop Guidance 

In the process of closed-loop robust trajectory planning, all uncertain factors are biased to the 
semi-extreme situation, which is a conservative approach. According to relevant simulation 
experiences and measured data, the degree of deviation of each random parameter during the actual 
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flight of the gliding projectile is not the same. Therefore, based on the degree of deviation of uncertain 
factors, this paper distinguishes the following four conditions. 

Condition 1: The deviations of uncertain factors are all set to corresponding 3σ+  values to 
simulate the upper bound of the extreme deviation situation. 

Condition 2: The deviations of uncertain factors are alternately set to the corresponding σ+  and 
σ-  values to simulate the actual flight environment. 

Condition 3: The deviations of uncertain factors are all set to corresponding 3σ-  values to 
simulate the lower bound of the extreme deviation situation.  

Condition 4: Except for the velocity deviation at the control-start point set to Vσ- , the deviations 
of other uncertain factors are still set to the corresponding 3σ-  values. Condition 4 serves as an 
additional control group for Condition 3. 

Taking Scenario 3 in Section 3.3 as an example, using the closed-loop guidance law based on the 
PID controller designed in this paper, the tracking effects of the gliding projectile on the planned 
trajectory under different conditions are shown in Figure 7 (Ref-Trj in the legend represents the 
reference trajectory, Act-Trj represents the actual trajectory, and the suffix C is used to distinguish 
conditions). 

  
(a) (b) 

Figure 7. Tracking performance of the gliding projectile on the planned trajectory under different 
conditions. (a) altitude; (b) lateral displacement. 

The results from Figure 7 indicate that under different conditions, the projectile has successfully 
tracked the planned trajectory in the lateral plane, while the tracking situation in the longitudinal 
plane is relatively complex. Specifically, the tracking performance of the projectile trajectory is 
marginal under Condition 1, good under Condition 2, and under both Condition 3 and Condition 4 
the projectile fails to track the planned trajectory. It can be inferred that based on the PID controller 
designed in this paper, the lateral tracking of the gliding projectile is easier compared to altitude 
tracking, the degree of deviation of uncertain factors leads to different effects on trajectory tracking. 
To further compare and analyze the influence of uncertain factor deviations on closed-loop guidance, 
the tracking performance of the planned trajectory under different conditions in different scenarios 
is shown in Table 5 (where ✓ indicates good tracking performance, × indicates tracking failure, and 
△ indicates marginal tracking performance). 

Table 5. Closed-loop guidance situations under different conditions in different scenarios. 

Condition Scenario 1  Scenario 2  Scenario 3  
1 ✓ ✓ △ 
2 ✓ ✓ ✓ 
3 × × × 
4 ✓ △ × 
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The analysis in Section 3.3 reveals that the robustness of the planned trajectory increases from 
Scenario 1 to Scenario 3, with both the trajectory curvature and projectile flight time increasing 
sequentially, while the control margin of the projectile decreases accordingly. Therefore, based on the 
results in Table 5, it can be inferred that within a reasonable deviation range, the closed-loop guidance 
law designed in this study is most sensitive to changes in the projectile velocity deviation at the 
control-start point. When the velocity value is too large (Condition 1), for Scenarios 1 and 2 with 
relatively high control margins, the projectile can accurately track the planned trajectory through 
proper control. However, for Scenario 3 with insufficient control margin, the tracking performance is 
marginal. When velocity deviation at the control-start point is reasonable and other parameter 
deviations are similar to real-world conditions (Condition 2), the projectile in different scenarios can 
precisely track the planned trajectory. When the value of velocity is too small (Condition 3), the 
effective range of the projectile decreases, making it impossible to hit the target or track the planned 
trajectory. When the velocity is reduced by a normal amount but other parameter deviations are 
significant (Condition 4), the tracking performance of the projectile on the desired trajectory is 
negatively correlated with the control margin. In summary, to achieve good closed-loop guidance 
effects, the projectile velocity at the control-start point should not be lower than the design value of 
the reference trajectory, nor should it deviate significantly from the design value. Therefore, to 
alleviate the design pressure on the guidance control system, when planning the full trajectory of a 
gliding projectile, it is a good choice to slightly increase the design value of the projectile velocity at 
the control-start point. 

4. Conclusions 

This paper addresses the trajectory planning problem of gliding-guided projectiles with low 
maneuverability attacking fixed target. In order to reduce the sensitivity of the planned trajectory to 
uncertainties, enhance the compatibility between the planned trajectory and the guidance control 
system, and fully exploit its limited control capability, a closed-loop robust trajectory planning 
method based on the NIPCE method and PID controller is proposed. Numerical simulations are 
conducted using direct shooting method. The simulation results indicate that: 
1. When quantifying uncertainty propagation, compared to the traditional MCS method, the 

NIPCE-based method in this paper significantly enhances computational efficiency while 
ensuring accuracy. On the MATLAB simulation platform, FOPCE under single-core 
computation reduces the time by 79.5% compared to MCS under multi-core parallel 
computation. By removing unnecessary high-order cross terms using the basis truncation 
strategy, COPCE reduces the problem size by 83.3% and decreases computation time by 84.2%, 
facilitating robust planning. 

2. Open-loop robust planning can effectively reduce the sensitivity of gliding projectile trajectories 
to uncertainties. However, due to the limited control capability of the gliding projectile and the 
lack of closed-loop feedback from a guidance control system, even with minimized objective 
function, open-loop robust planning cannot eliminate terminal dispersion. Increasing curvature 
in the middle section of the trajectory improves the robustness of the planned trajectory but 
consumes additional control effort. Blindly pursuing robust optimality can lead to projectile 
control saturation, which is detrimental to the compatibility between the planned trajectory and 
the guidance control system. 

3. For gliding-guided projectiles, a trade-off between robust optimality and control effort 
optimality is necessary. Closed-loop robust planning considers the impact of uncertainties and 
the coupling between the planned trajectory and the guidance control system. It enhances 
trajectory robustness while effectively reducing control effort consumption. 

4. Within a reasonable deviation range, based on the PID controller designed in this paper, the 
closed-loop guidance law is most sensitive to changes in projectile velocity at the control-start 
point. To achieve optimal trajectory tracking, the projectile velocity at the control-start point 
should not be lower than the design value and should not deviate significantly from it. 
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The closed-loop robust trajectory planning method proposed in this paper considers the 
compatibility between the planned trajectory and the guidance control system on the basis of existing 
open-loop planning methods. This method helps to fully exploit the limited control capability of the 
gliding projectile, achieve maximize comprehensive performance, and can provide a reference for 
related research and engineering applications. 
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