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Abstract: Modern cloud-IoT infrastructures face increasingly sophisticated and diverse cyber threats that
challenge traditional detection systems in terms of scalability, adaptability, and explainability. In this paper,
we introduce (H-DIR)? a hybrid entropy-based framework designed to detect and mitigate anomalies in large-
scale, heterogeneous networks. The framework combines Shannon entropy analysis with Associated Random
Neural Networks (ARNN) and integrates semantic reasoning through RDF/SPARQL, all embedded within a
distributed Apache Spark pipeline.We validate (H-DIR)?on three critical attack scenarios—SYN Flood (TCP),
DAO-DIO (RPL), and NTP amplification (UDP)—using real-world datasets. The system achieves a mean
detection latency of 247 ms and an AUC of 0.978 for SYN Floods. For DAO-DIO manipulations, it increases packet
delivery ratio from 81.2% to 96.4% (p < 0.01), and for NTP amplification, it reduces peak load by 88%. The
framework scales vertically to millions of endpoints and horizontally across datasets exceeding 10 TB.All code,
datasets, and Docker images are publicly released to support full reproducibility. By coupling adaptive neural
inference with semantic explainability, (H-DIR)? provides a scalable and transparent approach to cloud-loT
cybersecurity, establishing a baseline for future developments in edge-aware and zero-day threat detection.

Keywords: hybrid distributed information retrieval; entropy-based anomaly detection; associated random
neural network; RDF/SPARQL explainability; cloud-IoT security; sub-second detection latency; semantic-
adaptive cyber defense

1. Introduction

Modern cloud-IoT infrastructures are increasingly vulnerable to sophisticated protocol-level threats,
ranging from volumetric attacks such as TCP SYN floods to semantic manipulations of routing protocols.
Recent studies emphasize the importance of monitoring the expected behavior of IoT devices and
implementing advanced security mechanisms to detect and mitigate such attacks. [9]

To tackle this heterogeneity, we propose the Hybrid—Dynamic Information Risk framework, (H-DIR)?2,
which fuses a Hybrid Distributed Information Retrieval (H-DIR) architecture [24] with dynamic, entropy-
driven risk mitigation.

The Hybrid Distributed Information Retrieval (H-DIR) architecture is a layered, semantic-aware
framework designed to enhance data interoperability and retrieval in Cloud-IoT environments [24]. It
integrates big data tools (e.g., Apache Spark), semantic web technologies (e.g.,, RDF/SPARQL), and
neural-based analytics (e.g.,, LSTMs, GRUs) to process heterogeneous sensor data streams [24]. By
leveraging hybrid query mechanisms that combine structured (SQL) and unstructured (semantic)
formats, H-DIR enables advanced reasoning over environmental and operational telemetry. [24]

Building upon the semantic and hybrid query foundations of H-DIR [24], the (H-DIR)? framework
extends the architecture by integrating dynamic threat detection and response mechanisms.
Specifically, it introduces a six-stage processing pipeline that includes entropy-based anomaly scoring,
real-time feature vectorization, and adaptive modeling through neural techniques. While H-DIR

primarily addressed semantic interoperability, (H-DIR)2 brings the system into the cybersecurity
domain by incorporating concepts such as Network Attack Graphs [10] and deep learning for threat
propagation analysis [15]. The framework exploits distributed computing (e.g., Apache Spark) for scalable
telemetry ingestion and leverages RDF/SPARQL semantics for explainable decision-making [2]. This
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architectural evolution enables vertical scalability over millions of endpoints and horizontal scalability
for multi-terabyte streams 1.

This work aims to evaluate the effectiveness of the (H-DIR)? framework in detecting and mitigating
cyber threats in complex cloud-IoT infrastructures. We focus on representative attacks such as SYN Floods,
DAO-DIO routing

Table 1. Core components of the (H-DIR)? framework.

Component Function within the pipeline

Entropy-based detec-Computes Shannon entropy per window and raises agnostic alarms for zero-day
vectors [7]. tor

Apache Spark /Distributed micro-batch analytics sustaining terabyte-scale

streams [29]. Spark SQL

Adaptive  Random Online learning that converts traffic features into probabilistic Network-Attack
Graphs [6]. Neural Network

RDF/SPARQL layer Serialises each packet as triples, enabling rule-based reasoning and
explainability [17].

Wireshark +Packet capture and high-intensity replay test-bed for controlled

experiments. Minikube

anomalies, and UDP-based amplification vectors. Our methodology combines entropy-based threat
modeling [22] with graph learning techniques for dynamic risk inference [10]. Streaming data is processed
via Apache Spark Streaming to ensure real-time response [?], while the semantic layer —based on
RDF/SPARQL —enables contextual interpretation of alerts. Experimental validation will be conducted
using publicly available datasets such as Bot-IoT and CIC-DD0S2019 [11], assessing metrics including
detection latency, classification accuracy, and mitigation efficiency across variable load scenarios.

By coupling statistical entropy monitoring, Adaptive Recurrent Neural Networks (ARNNs) and semantic
network- attack graphs, the model achieves early anomaly detection, predictive attack-path inference,
and self-adaptive remediation across distributed environments.

The paper is structured as follows. Section 2 discusses related work in the field of IoT cybersecurity, and
examines three representative attacks (TCP SYN-Flood, RPL DAO-DIO and UDP/NTP Amplification); Section
3 formalises the entropy-based detection model, and the ARNN-graph coupling; Section 4 reports the
experimental validation; Section 5 outlines future research directions.

Dataset and statistical rationale. Our analysis relies on a telemetry corpus that aggregates (i) the
CIC-DDo0S2019 trace for TCP-level floods [4], (ii) the Dryad DAO-DIO routing-manipulation dataset
[?], and (iii) the Kitsune NTP-amplification subset [13], for a total of n = 1.2 x 104 labelled events. We report
UDP amplification (50.3%), TCP-based (30.8%), SYN-Flood (16.3%) and residual unknown (2.6%). Applying
Wilson’s 95% confidence interval [12] yields a margin of +1.1 percentage points, supporting the statistical
significance of the class proportions adopted later in Section 3.1. [26]

2. Related Work

Traditional counter-measures—firewalls, signature-based IDS and heuristic rule sets—struggle to keep
pace with the scale and velocity of modern cloud-IoT deployments. Studies show that such approaches
miss zero-day attacks and fail under protocol heterogeneity and rapidly changing traffic patterns [3, 5].
Moreover, advanced persistent threats (APT) and large-scale DDoS campaigns are particularly disruptive
for constrained IoT devices that cannot off-load heavy cryptographic operations [8,18].

Entropy-based anomaly detectors [7], machine-learning pipelines [27] and big-data analytics over
streaming frameworks [29] have emerged as promising alternatives. Yet very few contributions merge these
techniques into a single, vertically and horizontally scalable architecture capable of spanning edge, fog and cloud
layers.

Building on policy-based enforcement schemes that introduce secure regions and context-aware access
control for IoT nodes [1, 21], the RDF/SPARQL tier of (H-DIR)?> appends predicates such as
thasAccessLevel and
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sisInSecureRegion to each triple. These semantics trigger edge-local rules that quarantine high-risk
flows and, combined with the ARNN risk score, deliver an adaptive, region-aware access-control plane.

While Sicariet al. [20] compile a comprehensive taxonomy of 5G-IoT threats, they highlight the absence
of frameworks that coordinate detection and mitigation at runtime across edge, fog and cloud tiers. The open
source prototype (H-DIR)?, packaged as a six—stage entropy / ARNN pipeline, which extends our previous
architecture [24], directly fills this gap, achieving subsecond detection and automated mitigation traceable
on third-party testbeds. Section 3 discusses the (H—DIR)? pipeline and framework.

2.1. Overview of Targeted Cyber Attacks

Modern cloud-loT infrastructures face increasingly sophisticated cyber threats that exploit
vulnerabilities at different layers of the communication stack. To address this heterogeneity, we identify three
representative attack classes that span the transport, network, and application levels. These classes were
selected based on their relevance to distributed denial-of-service (DDoS) campaigns, semantic manipulation of
IoT routing protocols, and amplification-based reflection vectors, respectively. This categorization provides a
structured basis for evaluating the detection capabilities and mitigation response of the proposed (H—
DIR)? framework.

Building on the taxonomy outlined in Sec. 1.1, we focus on three representative threat classes that
collectively span the transport, network-layer (IoT), and application layers of cloud-IoT infrastructures:

[label=()]
TCP-SYN-Flood,

DAO-DIO routing manipulation in RPL, and

UDP/NTP amplification.
Each class exposes a different attack surface, entropy signature, and mitigation pathway within the

(H-DIR)?
framework, as summarized in Table 2. The detailed case-study evaluations follow in Sections 4.1-4.3.

Table 2. Summary of targeted cyber attacks used for evaluation. .

Attack Protocol Layer Key Entropy Signal Mitigation Module

TCP SYN-Flood Transport AHstiags spike Adaptive Rate Limiter (Sec.
4.1)

DAO-DIO (RPL) IoT Network AHpath drift Route Sanitiser (Sec. 4.2)

NTP Amplification Application/UDP AHsize bimodality =~ Amplification Throttler (Sec.
4.3)

3. Insights and Practical Implications of the (H-DIR)? Framework

3.1. Simulation Pipeline: Formal (H—DIR)ZWOrkﬂow

The Hybrid—Dynamic Information Risk (H-DIR)Zmodel is grounded on the simulation pipeline of Figurel. Let
0Q,F, P  Dbe the measurable space of raw network events and let Gt = (V, Wt) denote the weighted attack
graph at discrete time ¢. The end-to-end workflow is decomposed into six deterministic, composable operators

T = (01, Oz, O3, O4, Os, Os) : Q2 —> Gt (1)

Table 3. Legend for the (H—DIR)22 simulation pipeline.

Symbol Meaning
(2 Measurable space of observed network events
Gt Weighted attack graph at discrete time ¢
1% Set of vertices (network nodes)
Wi Weight matrix representing dynamic risk relationships
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The logical chain in Figurel follows the paradigm of RDF stream processing [17], distributed micro-
batch analytics on Apache Spark [28,29] and the security-oriented Associated Random Neural Network (ARNN)
[6]. Accordingly, every packet pi € (2 is processed by the six deterministic operators T = (O;, . . ., Oe):

O1 RDF conversion fror : 2 — To serialises raw frames into W3C-RDF 1.1 triples, enabling formally
verifiable reasoning [17].

O: Spark SQL windowing WateQ : To — S(At) performs streaming selection with sub-second latency

on multi-terabyte traces [29].

Os Vectorisation ¢ : S(At) — xt applies one-hot or embedding schemes that match best practice in
neural intrusion detectors [27].

O1 ARNN core A : xt — (a1, W) updates the probabilistic weight matrix using the learning rule in
[6]-
Os Semantic  graph  injection =~ Wheu—sym : Wi — ATe reifies risk  scores
as triples eg.
thost_A :hasRiskScore "0.87""xsd:float, thus supporting region-based, policy-
driven enforce-
ment [1].
Os Dynamic update loop U : TtUAT: — Twa closes the observation—prediction cycle and realises the
runtime coordination that current 5G/IoT surveys still find missing [19].
Each operator is total and deterministic, ensuring repeatability of experiments and enabling formal
reasoning about convergence properties and computational complexity.

Consequently, all subsequent entropy calculations, ARNN adaptations, and mitigation heuristics

reported in Sections 3.2 are traceable to this pipeline; any variant of (H-DIR)z(e.g. federated or energy-
aware deployments) must preserve its algebraic composability to guarantee semantic integrity and
analytical soundness.

Data Ingestion

!

RDF Conversion ——

It
Spark SQL

!

Vectorization

v
ARNN

(Predictive-Dynamic)

I

Semantic Graph ‘4_,
(SPARQL)

v

Dynamic Update

Simulation Pipeline

Figure 1. Simulation Pipeline.

Simulation Pipeline: Formal (H-DIR)2Workflow The composite operator T is parametrised by the ordered
pair (II, A), where II € {TCP, RPL, UDP/NTP, . ..} denotes the transport or routing protocol under
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scrutiny and A € {SYN Flood, DAO-DIO, Amplification, . . .} the corresponding attack semantics.
Concretely:

— Feature schema. Vectoriser ¢ loads a protocol-specific dictionary D (e.g. TCP flags vs. RPL control
codes);

- Loss re—weighting. Hyper-parameters (a, ) are tuned per A to prioritise node classification or edge

prediction1 ;

- Graph semantics. Risk-injection operator Wheu—sym appends triples in a namespace :I1 so that SPARQL
rules remain protocol-consistent.

Thus the very same deterministic pipeline remains structurally invariant while behaviourally adaptive,
guaranteeing analytic uniformity across heterogeneous cyber-physical attack surfaces Figure 1.

1. RDF Conversion Level2

, given the packet sequence D = {pi}N
with timestamps 7i, an injective rrllzalp

fror : D —— Go 2)
serialises each pi as a triple (si, pi, 0i) EGo. The initial graph is stored as a Boolean tensor o = [+©].

1For SYN Flood, a > emphasises rapid node compromise detection; for DAO-DIO,  dominates to reveal
routing loops.

2All symbols match the notation of Section 3.

2. Spark SQL / Streaming Selection Level

A window operator Wat slides over To, while a set of SQL queries Q= {q¢f™ materialise the
structured table =1

SAD - [(AD] ¢ RM*R (3 o
3. Vectorisation Level
Applying the feature encoder ¢ yields binary/real vectors

Xt = ¢ S@y X = {xt}t1
,  xt € {0, 1}4. 4)

4. ARNN Core Level
The Associated Random Neural Network evolves as

at+1 =f Wi:at + b + x: ,(5)
with adaptive weights Wt € [0, 1]™. Training minimises

Le=a Las + ﬁ Lgraph, Wi = Wi — WVWLt (6)

The resulting matrix induces the Network Attack Graph Ge= (V, Wh).

5. Semantic Graph (SPARQL) — Dual Level Coupling

Symbolic and subsymbolic layers interact through

Ysym—neu . T(AY xt,(7)
lI/neu—>sym cWit'— ATt, (SPARQL
INSERT)
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hasRiskScore "0.87"8sd:float.").

6. Dynamic Update Loop

The closed loop is summarised as

h P
'.'f.'at"'l’ wl,:t.].] —Ta

D |‘-|=|;|::|==T'r:I Wﬂﬁq‘:siﬁt} i}& AR NN

This mechanism guarantees: (i) low Etection latency Taet< At +O(1QI), (ii) anomaly triggering when
AH: > 01, and (iii) critical-node identification via jwi>y.

3.2. Entropy-Based Detection and Adaptive Defense with ( H-DIR)?

This section presents the core detection mechanisms and mathematical foundations of the (H-DIR)?
framework. It describes how entropy is used to detect deviations in network behavior and how these
anomalies are processed using Apache Spark, semantic graphs, and adaptive neural models.

Entropy-Based Anomaly Detection (H-DIR)? employs Shannon entropy to quantify uncertainty in
network traffic distributions.

Let X be a discrete random variable representing observed network events (e.g., packet types, source
IPs). The entropy H(X) is calculated as:

>
H(X) = — P (xi)logp P (xi)
i=1
where: - P (xi) is the probability of the i-th event, - n is the number of distinct events.
A significant drop in entropy (e.g., low diversity in source IPs) may indicate SYN Flood attacks, while an
unusual spike (e.g., erratic routing patterns) can signal DAO-DIO manipulations.

The anomaly score is defined as:
AH = H(X) — Hbaseline
If AH exceeds a predefined threshold Ou, an anomaly is flagged and further analyzed.

3.3. Dual Scalability of the (H-DIR)? Architecture

The (H-DIR)? framework has been designed to satisfy a two—fold scalability requirement:

1. Vertical (Quantitative) Scalability. Leveraging in-memory cluster computing, the system can ingest
telemetry produced by millions of IoT endpoints without a proportional increase in detection latency.
Empirically, throughput grows linearly with the number of worker cores until network saturation is
reached, confirming the theoretical bounds derived in [28].

2. Horizontal (Qualitative) Scalability. By sharding feature Vectors across Resilient Distributed Datasets
(RDDs) and using a micro-batch streaming model, (H- DIR)? sustains multi- -terabyte traffic volumes

while preserving sub-second windowing semantics. This property is critical for capturing low-
frequency, high-impact anomalies that only emerge at large data scales [29].

Figure 9 visualises the two orthogonal axes: device cardinality on the vertical dimension and data volume on
the horizontal one. This dual-scaling capability is further validated experimentally in Section 4.4.

3.4. Integration with Apache Spark and RDF Graphs

Real-time processing is orchestrated by Apache Spark, whose RDD abstraction offers fault-tolerant,
in-memory data partitions amenable to both low-latency analytics and iterative machine-learning workloads
[28]. Structured traffic logs (e.g., TCP syn/syn-ack exchanges) are first mapped to Spark DataFrames and
then streamed into a pipeline of Spark SQL operators for statistical summarisation.

The same logs are simultaneously serialised as RDF triples, producing a semantic graph where:
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- Edges encode typed interactions (packet type, temporal correlation).

Thanks to SPARQL 1.1, complex pattern-matching queries can be issued over this evolving knowledge
graph, yielding protocol-specific alerts (e.g., an excess of incomplete TCP handshakes). The formal semantics
of SPARQL ensure that detection rules remain compositional and provably correct across heterogeneous
datasets [17].

Overall, the tight coupling between Spark’s physical scalability and RDF’s logical expressiveness enables (H-
DIR)?
to operate seamlessly across cloud data-centres and large-scale IoT deployments.

3.5. ARNN: Adaptive Neural Modelling for Attack Propagation

To predict how threats propagate across the monitored infrastructure, ( H-DIR)? integrates an Associated
Random Neural Network (ARNN) [27], which dynamically updates the connection weights wjj between nodes
on the basis of real-time traffic evidence.

State Update Equation. The activation ai(t+1) of a node Ni at discrete time t+1 is given by
w(t+1)=f
=1
wy ai(t) + b+ xi(t)  (8)

where f(-) is a non-linear activation (sigmoid in our experiments); wjj is the weight of the edge from
node Nj to

Ni; bi is the node bias; and xi(t) encodes exogenous inputs (e.g. entropy variation or packet-count
features).

Semantic Layer

) D}mami’ouﬁda e DRISR
(rules, ontology, constraints) - ~.
v <o AN
’ T~ N
7 ~~o \

’ TSN
’ ==
/

1
Constraiit propagation
1

1
v !
\

1
Neural Layer '
\

- -

Figure 2. Bidirectional Semantic—Neural coupling and its dynamic update cycle. The semantic layer (top)
imposes domain constraints on the ARNN (bottom). Significant entropy variations AH (dashed loop)
feed back into both layers, closing the adaptation loop.

Multi-objective Training. Learning minimises a composite loss

Ltotal = « Lclassification + B Lgraph,(9)

where Ledassification i a cross-entropy term for node compromise detection and Lgraph is a binary cross-entropy
term that regularises the attack-graph topology [25]. The hyper-parameters a and  are protocol- and
attack-specific (cf. Section 3.3).

3.6. Semantic—Neural Coupling and Dynamic Update
The H-DIR framework maintains a bidirectional bridge between two complementary layers:

- Semantic layer — an ontology of protocol rules and expert heuristics that prunes forbidden state
transitions;

- Neural layer — an Adaptive Recurrent Neural Network (ARNN) that learns temporal correlations
directly from telemetry streams.
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Information flows downwards when semantic constraints mask illegal ARNN states, and upwards when
unexpected entropy shifts AH trigger a joint optimisation of neural weights and rule parameters. The
process thus closes a self-adaptive loop, as illustrated in Figure 2.

Network Attack Graph Construction - Details To further formalize the adaptive update loop introduced
above, we now describe how the learned weight matrix induces a dynamic Network Attack Graph, which
enables structured inference and targeted mitigation.

Attack-graph inference. The learned weight matrix W = [wjj] induces a directed Network Attack Graph
(NAG). The probability that an adversary traverses a path P = {Ni, ..., Ni} is
id
Pattack(P) = UJNlNl+1 ,(10)
=1 s
which guides proactive mitigation (Sec. 2?). A node Ni is marked critical if j wi >y, with'y
calibrated via ROC analysis.
Semantic reinforcement loop. Risk estimates are re-materialised as RDF triples (e.g.,
:192.0.2.7 :hasRiskScore "0.87""xsd:float) and immediately query-able via SPARQL, closing
the observation — prediction — update cycle.
This tight coupling between symbolic (RDF/SPARQL) and sub-symbolic (ARNN) reasoning

underpins the transparency, adaptability, and real-time performance highlighted throughout Section
4.

3.7.Dynamic Update of the Semantic Graph

To maintain a continuously evolving representation of network conditions, the predictions
produced by the ARNN module are fed back into the RDF knowledge base Figure 2. This process allows
for dynamic semantic enrichment of the graph. For instance, a prediction indicating that IP 192.168.50.8
is likely to be targeted by IP 172.16.0.5 is formalized as:

:192.168.50.8 :potentialVictimOf :172.16.0.5 .

Such semantic assertions enable real-time updates of potential attack paths and risk propagation,
reinforcing the H-DIR’s reasoning capabilities.

To illustrate the generation of input for ARNN from packet-level traffic, the following Python script
simulates TCP traffic encoded as RDF triples. The triples are then converted into one-hot encoded
vectors suitable for training or real-time inference by the ARNN.

Pre-processing pipeline. The full Python routine used for one-hot feature encoding and normalisation is

available in our open-source repository3 (file one_hot_encoder.py).We omit the code listing here for
brevity.
The H-DIR? pipeline realises a sermantic reinforcement loop: risk scores Ri predicted by the adaptive
layer (ARNN + NAG) are re-materialised as RDF triples —for example:
“‘turtle :192.0.2.7 :hasRiskScore "0.87"8sd:float . “*
These triples become immediately queryable via SPARQL, thereby closing the observation — prediction
— update cycle shown in Figure??. This tight coupling between the symbolic layer (RDF/SPARQL) and the
sub—symbolic layer (ARNN) guarantees both explainability and real-time adaptability.
Worked example on the Syn_ridotto dataset. The file Syn_ridotto.xIsx (a trimmed subset of the CIC-
DDo0S52019 trace) contains 100.0 k TCP flows summarised by 88.0 features. Listing ?? shows, step by step, how
a single row is (i) serialised via rdflib and (ii) one—hot encoded into a vector x € {0, 1} that feeds
the ARNN. The mapping Wsym—neu therefore acts as an ETL bridge between semantic space and neural
space.
Code availability. All preprocessing scripts and notebooks are openly released at https://github.com/
RobUninsubria/HDIR2-paper.git (tag v1.4); we omit the full listing for brevity.
Once the ARNN estimates the compromise probability ai(f+1) for each node Ni, the inverse
transformation
Wheu sym Writes back triples such as:
“turtle :192.168.50.8 :potentialVictimOf :172.16.0.5 “
These assertions feed subsequent SPARQL rules (e.g. isolating high-risk policies or risk-aware load

balancing). The bidirectional flow endows H-DIR? with explainability and situational awareness: every
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neural prediction is anchored to an explicit semantic assertion, updated in real time as new evidence

arrives.

3 https://github.com/RobUninsubria/HDIR2-paper.git

Semantic Neural Level
Level

W,,m_heu
EE‘E' \ ETL bridge > ——
SPARQL
_@ —— Weight Graph

triples Ontology ~ W,eu—+sym

Eegenda

= RDF triples / log repository

%" Ontology & SPARQL rules

= Yymonew ETL vectorisation
ARNN core

= Weight matrix W

&% Network Attack Graph (NAG)

Figure 3. ETL bridge between semantic space and neural space.

4. Experimental Results and Evaluation

This section presents the empirical validation of the(H-DIR)2framework through three
representative attack scenarios: SYN Flood, DAO-DIO routing manipulation, and NTP amplification.
Each scenario evaluates the framework’s performance in terms of detection latency, classification accuracy,
entropy variation, and mitigation efficiency under realistic network conditions.

4.1. SYN-Flood Case Study

Objective Quantify the performance of the (H-DIR)2 pipeline against a volumetric TCP SYN-Flood in
terms of detection latency, classification quality, and backlog—exhaustion risk.

Dataset and Pre-processing A stratified 50 000-packet excerpt of the CIC-DDo052019 trace [4] is replayed at
line-rate. Each packet is (i) serialised into an RDF triple (operator O1), (ii) windowed by Spark SQL
over

At =500 ms (O2), (iii) one-hot vectorised on srclIP, dstIP, and TCP flags (d = 256; Os), and streamed
into the ARNN core (O4). The semantic feedback loop (Os—Os) updates the Network Attack Graph in
real time. All code and random seeds are released in the companion notebook

reproduce_syn_flood.ipynb (commit 3a98f1b).5
Metrics

- Shannon entropy H(X) on flag distribution X = {SYN, SYN-ACK, ACK]}. An alarm is raised if
AH =

Ht — Hbpaseline < —61 with 6u = 0.50 bits [?].

Imbalance ratio r = #SYN/#SYN-ACK (continuous feature).

ARNN quality: accuracy, false-positive rate (FPR), area under ROC curve (AUC).

Detection latency 7det from first spoofed SYN to alarm.
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*Experiments run on Python3.11.4, Spark3.5.0, PyTorch2.1; section: Reproducibility. Full environment files are
included in the repository https://github.com/RobUninsubria/HDIR2-paper.git.

5 https://github.com/RobUninsubria/HDIR2-paper.git
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Figure 4. (a) Spatial distribution of the entropy variation AH in the RPL DAO-DIO attack (red=higher
disorder). (b) Backlog B(t) with and without the proposed H-DIR2 mitigation; the vertical dashed line
marks the cut-off time t* = 0.43s.

Results
Indicator Value 95% CI
Accuracy 94.1%  [93.7, 94.5]
FPR 4.7% [4.3, 5.1]
AUC 0.978 +0.004
T det 247 ms [221, 273] ms
AH* -1.15 bits —
(peak)
Tattack 27.4+3.5 —

Figure 8 (a) highlights the mastermind node (red) and reflector set (blue), while the traffic matrix in
Figure 8 (b) shows dark rows/columns corresponding to massive SYN bursts lacking ACK responses. The
median detection latency (<250 ms) remains well below the retransmission timeout recommended by
RFC 6298 [16].

Analytical backlog threshold. A closed-form expression for the backlog cut-off time #*, together with its
full derivation, is reported in Appendix A (Eq. (11)). For completeness, the adaptive scheduler converges
when

AH(t*)=t, yielding t* = 0.43 s under the worst-case load defined in Sec. 4.1.1.

4.2. DAO-DIO Routing Manipulation Case Study

Objective Evaluate the capability of the (H—DIR)2 pipeline to detect and mitigate RPL-centric attacks —
routing loops, black holes, and path diversions —in low-power mesh networks.

Dataset and Pre-processing The annotated Dryad DAO-DIO Routing Manipulation trace by Marcov et al. [12]
(200 motes, 1h, 10 Hz sampling) serves as ground-truth. Packets are processed through the six operators
01-Oe:

(O1) RDF serialisation into the IoT-RPL-OWL ontology, yielding To. (O2) Streaming windowing At
=5s and Spark SQL filtering.

(O3) Vectorisation (d = 256) with one-hot encodings for node / rank / message type. (O4) ARNN core
— attentive RNN, nn = 128, n = 1073, loss weights (a, f) = (0.3, 0.7). (O5) Risk scoring Ri = o(ai); nodes with
Ri > 0.6 are flagged.

(O6) Graph feedback via SPARQL INSERT triples (:hasHighRisk true), closing the adaptive loop.
All artefacts are released in reproduce_dao_dio.ipynb (commit 61f5c7d).

Metrics

- Routing loops — number of closed rank cycles.

>
- Maximum incoming risk maxi j wiiin the learned graph.
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- Packet-delivery ratio (PDR).
- Average loop duration in seconds.
- AH entropy over DAO/DIO message mix; alarm if AH >0u = 1.2 bits [?].

Table 4. Effectiveness of (H—DIR)2 against DAO-DIO attacks. Metric ~ Before After Improvement

Routing loops [#] 9.0 20 —789%

l%/[ax incoming risk 4301 2550 —41%
w

PDR [%] 812 964 +18%

Avg. loop duration 180 5.0 =72%

[s]

Comparison of Key Metrics (Before vs After Mitigation)
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Figure 6. Dynamically reconfigured routing.

Results Figure 5 contrasts key metrics before/after mitigation, while Figure 6 shows the dynamically
reconfigured routing DAG produced by the risk-aware graph.
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Simulation of NTP Amplification Attack over UDP
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Figure 7. Traffic overload triggered by spoofed NTP requests (amplification x500).

A paired t-test confirms that loop reduction and PDR gain are significant (p < 0.01). Detection
latency is

0.9 £0.2 s, dominated by the 5 s window, and the ARNN attains an F1 score of 0.92 on node-
compromise classification.

4.3. NTP Amplification Case Study

Objective Assess how the (H—DIR)2 pipeline mitigates UDP-level NTP amplification, a reflection-based
DDoS that multiplies small monlist queries into large traffic bursts.

Dataset and Attack Model We replay the Kitsune Network Attack subset dedicated to NTP amplification
[?]: 100 spoofed requests, amplification factor x500, victim bandwidth saturated within <3 s. Packets
traverse the six operators O1-Os with protocol-specific settings:

(O1) RDF serialisation into the [oT-UDP-OWL schema.

(02) Windowing At =1s; Spark SQL computes per-IP entropy. (O3) Vectorisation (d =128) on srclIP,
dstIP, UDP ports, NTP_cmd. (O4) ARNN core — LSTM variant, 3 layers, 64 cells, n = 2 x 103. (O5) Risk
scoring threshold Ri > 0.55.

(0O6) Graph feedback injects :underMitigation true.

Defence Stack

- Edge caching (C = 0.9) to absorb duplicate replies.

- Anycast load distribution over S =5 edge nodes.

- Entropy filter — alarm if AH > 6u = 1.5 bits.

- ARNN early predictor (validation ACC = 0.90) drives proactive throttling.

Metrics

Peak load at the victim (Gb/s).

Mitigation latency tmit (s) after AH trigger.
Back-end traffic reduction (ratio).

ARNN early-stage prediction accuracy.

Figure 7 visualises the bursty traffic pattern, while Figure 8 compares load-handling across the four
architectures; the LSTM learning curve appears in Figure 9. The defence stack cuts peak bandwidth by an
order of magnitude and reacts in 1.7 s (£0.3 s), well before link saturation. Early ARNN warnings
(accuracy 90.4%) permit smart load shedding.
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Figure 8. NTP Amplification case study. (a) Peak load observed at the victim as a function of the number of edge servers

S under four mitigation stacks: Centralised, Distributed, + Caching and the proposed (H-DIR)2. (b) Training and validation
accuracy of the ARNN early predictor over 20 epochs.

Table 5. Performance against NTP amplification. Architecture Peak load [Gb/s] twit [s] Backend reduction.

Centralised 8.1 7.1 0%
Distributed 43 3.1 47%
+ Caching 12 2.0 85%
(H-DIR)? 1.0 1.7 88%

4.4. Comparative Summary Across Scenarios

These results confirm that(H—DIR)Zoffers a highly effective and scalable solution for detecting and
mitigating diverse cyber threats in cloud and IoT ecosystems. The integration of entropy analysis, graph
modeling, and adaptive neural learning ensures resilience against both known and emergent attack
patterns.

To substantiate the dual scalability claim, we conducted a synthetic stress test by varying both the
number of simulated IoT nodes (vertical scalability) and the data volume per node (horizontal

scalability). As shown in Figure 9 and Table 6, the ( H-DIR)? framework consistently maintains sub-
second detection latency (< 500 ms) up to 1 million simulated endpoints and 10 TB of daily telemetry.

Throughput increases almost linearly with the number of Spark worker cores, while entropy variation
(AH) and ARNN inference times remain stable across window sizes ranging from 512 to 8192 samples. These
empirical results validate the architectural design principles discussed in Section 3.3 and demonstrate the
framework’s robustness under large-scale, heterogeneous conditions.

All scripts  used  to  reproduce the stress tests,

including parameter
configurations

and synthetic data generation routines, are available in the companion GitHub
repository: https://github.com/RobUninsubria/HDIR2-paper.git, supporting full replicability and
independent verification of the results.
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Table 6. Stress Test Results: Throughput and Latency vs. Device Count. Devices Data (TB) Latency (ms)
Throughput (Gbps) AH Stability

100 0.01 45 0.5 Stable
1,000 0.10 70 1.7 Stable
10,000 1.00 110 5.8 Stable
100,000 5.00 230 19.4 Stable
1,000,000 10.00 470 36.0 Slight Drift
(H-DIR)? Scalability Test: Throughput and Latency vs Device Count
351
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Figure 9. (H—DIR)2 Throughput and Detection Latency versus Simulated Device Count. The chart shows
that throughput scales nearly linearly as the number of devices increases (left axis), while detection
latency remains below 500 ms even at the highest simulated load (right axis). This confirms both vertical
and horizontal scalability of the (H-DIR)? framework under stress-test conditions.

Table 7: Comparative Summary Across Scenarios. _

Attack Type Target Pro- Key Threat & Detection Response
tocol Method

SYN Flood TCP AH entropy+ ARNN SYN cookies; adaptive
graph throttling

DAO-DIO RPL (IoeT) Routing loops; black-hole  Entropy + semantic RDF;
detection graph-based reconfigura-

tion

NTP Amplification UDP/NTP Bandwidth congestion; ARNN + LSTM + load

saturation profiling profiling; caching; smart

filtering; isolation

Table 8. Analytics Layers in the H-DIR Mitigation Pipeline (Vertical Layout).

Layer Details

Entropy Monitor |(zgugrning equations: H(X) = - ™ 1P (xi) lo§ P (xi); alert
1=

AH = Ht — Hbaseline = OH.

Purpose: Fast, feature-agnostic anomaly flagging.
Key tunables Feature set F, wmdowldth w, threshold 6On.

Adaptive Ran{Governing equations: ai(t +1) = f j wiai(t) + bi + xi(t) ;
dom Neural Net/

weight update: wij < wij — WM ; Ltotal = aLclass +
work (ARNN)

pLgraph. Owij
Purpose: Learns normal propagation patterns and

updates/estimates attack graph edges in real time.
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units.

Network-Attack |Governing equations: Adjacency matrix W = [wi]; attack path prob-
Graph (NAG) | opility Patec(N1 — Ni) = ~< 1
‘ i=1

wii+1; critical nodes Nerit =

gk
Purpose: Predicts likely propagation paths and identifies "hot"
nodes to quarantine.

Key tunables: Risk cut-off y, number of top-kspaths tracked.

Load-balancing  |Governing equations: Centralised load L = Ri; per-server
/ Caching (UDP |load with cache Lj = (1 — C)Ri/S.
amplification) Purpose: Explains how any-cast and edge caching reduce traffic

seen by each origin server.
Key tunables: Cache ratio C, number of servers S.

4.5. Extended Comparison with State-of-the-Art Methods

Table 9. Comparative Evaluation: (H—DIR)2 vs. State-of-the-Art Approaches.

Vet | Lqteney (AT RUDRYRIGS | et

Spark 1IDS 950 09I YEes

k}ésune— 6/0 U.Y3 No Yes

i:solatlon /20 U.8Y PPartial No
orest

(H-DIR)? 247 0.978 Yes Yes

Comparison of AUC and Detection Latency

1.00r
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- 800
0.96

0.94 - 600 =
E
9 )
< 0.2t =
-4003
0.90}
0.88} - 200
0.86

Spark IDS Kitsune-AE Isolation Forest (H-DIR)?
Method
Figure 10. Comparison of AUC and Detection Latency across methods. While other models offer partial performance,

(H—DIR)2 achieves both low latency and high accuracy.

To contextualize the performance of the (H—DIR)2 framework, Table 9 compares its results against
representative state-of-the-art anomaly detection methods, including Spark IDS [?], Kitsune Autoencoder

[14], and Isolation Forest [23]. While all achieve reasonable AUC scores (= 0.89), only (H-DIR)2
combines high classification accuracy (AUC = 0.978), low detection latency (247 ms), and real-time
entropy-based explainability. The use

of RDF/SPARQL further enables semantic rule tracking, which is absent in the other models. This

positions (H—DIR)2 as a robust and interpretable alternative suitable for high-throughput, cloud-to-
edge scenarios.
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4.6. Dynamic Integration Between Semantics and Prediction in (H-DIR)?

The experiment conducted on real-world data from the Kitsune Network Attack dataset [14] concretely
demon- strates the integrated cycle between symbolic representation and adaptive modelling within the (H-

DIR)2 framework. Network packets were first serialised as RDF triples and queried via SPARQL 1.1, whose
formal semantics guarantee sound and complete pattern matching [17]. These triples were then vectorised
and fed to an Associated Random Neural Network (ARNN) [6], yielding a weight matrix wi that encodes the
probability of compromise between nodes.

The resulting Network-Attack Graph allows the identification of likely attack paths and critical assets;
neural risk scores are immediately re-materialised as additional RDF triples (e.g., :potential VictimOf),
closing a continuous observation — prediction — update loop. This bidirectional process, in line with
recent graph-neural approaches to industrial-control security [?], constitutes the intelligent core of H-DIR and
enables both real-time adaptation and human-readable explanations even under highly dynamic,
distributed attack scenarios.

Semantic Level Adaptive Level
(RDF + SPARQL) (ARNN + NAG)

has_sent

has_replied

SYN

Figure 11. On the left sketches the semantic layer that detects suspicious patterns, whereas Figure 8b (b) on the
right shows the ARNN/LSTM learning curve that drives proactive mitigation.

Figure 11 is the conceptual visualization of the semantic-adaptive integration cycle in the figure 2:

- On the left, the semantic layer (RDF + SPARQL) identifies suspicious patterns in network traffic
flows.

- The data is transformed into vector inputs and passed to the ARNN model, which estimates
propagation risk and identifies critical nodes.

- On the right, the predictions (e.g., probability of attack) feed into the weight graph wij.

- These predictions are then reintroduced into the RDF graph, closing a continuous loop of
observation — prediction — update.

5. Conclusions

This study introduced the Hybrid-Dynamic Information Risk (H-DIR)? framework, a scalable,
entropy-driven defence stack that couples symbolic (RDF/SPARQL) reasoning with sub-symbolic
(ARNN+NAG) learning. Across three representative vectors—TCP SYN Flood, RPL DAO-DIO routing

manipulation, and UDP/NTP amplification—(H—DIR)2 achieved sub-second detection latency, > 90%
classification accuracy, and resource savings up to 88% in peak-load scenarios. The open-sourced artefacts
(datasets, Docker images, notebooks) make
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the results fully reproducible and provide a baseline for future comparative studies. By unifying

entropy analytics, adaptive neural inference, and semantic feedback, (H—DIR)2 lays the groundwork for
proactive, explainable, and cloud-to-edge deployable cybersecurity solutions.

Future work. In forthcoming research we plan to (i) extend the entropy-based detector to multi-modal
telemetry streams (e.g., EPC logs and container-level metrics), (ii) deploy (H-DIR)? on resource-
constrained edge nodes to stress-test scalability at the IoT perimeter, and (iii) enrich the semantic layer
with live threat-intelligence feeds, thereby shortening adaptation latency and further improving zero-
day coverage.

The (H-DIR)? pipeline is the first, to our knowledge, to unify entropy analytics, adaptive graph learning,
and symbolic RDF reasoning in a fully scalable and explainable framework for IoT security.

A Mathematical Proofs

A.1Closed-form backlog threshold

Starting from the M/M/1 queue with entropy-weighted arrival rate A and service rate u, the backlog cut-off
time t* that nulls the queue derivative satisfies AH(t*) = t. Solving the differential equation gives

r=tw 2Bo (11)

where W (-) is the Lambert-W function and Bo is thé initifl Bé\cklog. Substituting the experimental parameters
from Table 2 yields t* = 0.43 s, matching the empirical crossover.

C Table 10: MDPI format.

5 — NTP performance Miti-
gation performance for NTP
amplification. Peak load at
victim, mitigation latency mit
and back-end traffic reducti

Figure New\caption{...})
Figure 1 —  Simula-Simulation-pipeline of the (H—DIR)? workflow. Operators O1-06 trans-
tion Pipeline form the raw packet space Q into a time-varying attack graph Gt = (V, Wh).

Variables: To = initial triple tensor, xt = feature vector, a: = ARNN activation,
AH = entropy variation.

Figure 2 — Semantic—Neural Bidirectional coupling between semantic layer (RDF + SPARQL)

coupling and neural layer (ARNN). Downward arrows enforce protocol rules; the
upward dashed loop is triggered when AH > t, updating the weight matrix W
and the ontology.

Figure3—ETL bridge = End-to-end ETL bridge from RDF triples to ARNN input vectors
and back. Symbols: Wsym—neu = vectorisation; Wney—sym = SPARQL INSERT
of risk scores Ri. NAG = Network-Attack Graph.

Figure 4 — Composite RPL RPL DAO—-DIO case-study. (a) Spatial map of entropy variation AH (red =

results higher disorder). (b) Backlog curve B(t) with and without (H—DIR)?; dashed
line marks the analytical cut-off t* = 0.43s.

Figure 5 — Before/After met- DAO=DIO mitigation results. Bars show routing loops, maximum incoming

rics risk  w, packet-delivery ratio (PDR) and average loop duration before vs.
after (H—DIR)?. Error bars = 95 % CI, n = 5 runs.

Figure 6 — Reconfigured Risk-aware routing graph after mitigation. Node size « final risk Ri; blue

routing DAG edges are sanitized DAO routes; red edges indicate residual high-risk paths.

Figure 7 — NTP burst Traffic load during NTP amplification (factor x500). Victim bandwidth

(Gb s') over time; shaded band = attack window; arrow denotes mitigation trigger
at AH = 1.5 bits.

Figure 8 (duplicata di Fig.4) — Figura da eliminare —

Table 1 — Core components Core components of the (H—DIR)? framework. Each module is paired
with its main function and enabling technology.

Continua a pagina successiva

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.1716.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2025 d0i:10.20944/preprints202505.1716.v1

Continua dalla pagina precedente
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Table 2 — Attack summary Summary of the three evaluated attack classes. Columns:
protocol layer, key entropy signal and (H—DIR)* mitigation module
(Sec. 4.1-4.3).

Table 3 — Symbol legend Notation used in the simulation pipeline of Fig. 1.

Symbols are reused throughout Sec. 3.

Table 4 — DAO-DIO effec- Effectiveness of (H—DIR)? against DAO—DIO routing attacks.
Values
tiveness are averages over five runs; A = relative improvement.

Table 5 — NTP performance Mitigation performance for NTP amplification. Peak load
at victim, mitigation latency tmi and back-end traffic reduction
versus three baselines.

Table 6 — Scenario summary Cross-scenario summary of detection method and response.
Abbrevia- tions: CT = centralised throttling; RDF = Resource

Description Framework.

Table 7 — Analytics layers Analytical layers of the (H—DIR)? defence stack. For each
layer the

governing equation, purpose and key tunables are reported.

Reproducibility: To ensure full reproducibility of our results, we provide a complete Docker
image containing all Jupyter notebooks, preprocessed datasets, and configurations used in the
experiments on the (H-DIR)? architecture (SYN Flood, DAO-DIO, and NTP Amplification
attacks). The image can be downloaded from the following public folder:
https://drive.google.com/drive/folders/1N4z_Yo0jP46xPOXWdfLgxim9JbzgVINKO?usp=shar
ing
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