
Article Not peer-reviewed version

(H-DIR)²: A Scalable Entropy-Based
Framework for Anomaly Detection and
Cybersecurity in Cloud IoT Data Centers

Davide Tosi *,‡ and Roberto Pazzi *,‡

Posted Date: 22 May 2025

doi: 10.20944/preprints202505.1716.v1

Keywords: hybrid distributed information retrieval; entropy-based anomaly detection; associated random
neural network; RDF/SPARQL explainability; cloud–IoT security; sub-second detection latency; semantic-
adaptive cyber defense

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/1437672
https://sciprofiles.com/profile/3493505


Article 

(H-DIR)2: A Scalable Entropy-Based Framework for 
Anomaly Detection and Cybersecurity in Cloud IoT 
Data Centers 
Davide Tosi *,‡ and Roberto Pazzi *,‡ 

Universite.gli Studi dell’Insubria, Varese, Italy 
* Correspondence: davide.tosi@uninsubria.it, roberto.pazzi@uninsubria.it; Tel.: +39.0332.219988 
‡ These authors contributed equally to this work. 

Abstract: Modern cloud–IoT infrastructures face increasingly sophisticated and diverse cyber threats that 
challenge traditional detection systems in terms of scalability, adaptability, and explainability. In this paper, 
we introduce (H-DIR)2, a hybrid entropy-based framework designed to detect and mitigate anomalies in large-
scale, heterogeneous networks. The framework combines Shannon entropy analysis with Associated Random 
Neural Networks (ARNN) and integrates semantic reasoning through RDF/SPARQL, all embedded within a 
distributed Apache Spark pipeline.We validate (H-DIR)2 on three critical attack scenarios—SYN Flood (TCP), 
DAO–DIO (RPL), and NTP amplification (UDP)—using real-world datasets. The system achieves a mean 
detection latency of 247 ms and an AUC of 0.978 for SYN Floods. For DAO–DIO manipulations, it increases packet 
delivery ratio from 81.2% to 96.4% (p < 0.01), and for NTP amplification, it reduces peak load by 88%. The 
framework scales vertically to millions of endpoints and horizontally across datasets exceeding 10 TB.All code, 
datasets, and Docker images are publicly released to support full reproducibility. By coupling adaptive neural 
inference with semantic explainability, (H-DIR)2 provides a scalable and transparent approach to cloud–IoT 
cybersecurity, establishing a baseline for future developments in edge-aware and zero-day threat detection. 

Keywords: hybrid distributed information retrieval; entropy-based anomaly detection; associated random 
neural network; RDF/SPARQL explainability; cloud–IoT security; sub-second detection latency; semantic- 
adaptive cyber defense 
 

1. Introduction 

Modern cloud–IoT infrastructures are increasingly vulnerable to sophisticated protocol-level threats, 
ranging from volumetric attacks such as TCP SYN floods to semantic manipulations of routing protocols. 
Recent studies emphasize the importance of monitoring the expected behavior of IoT devices and 
implementing advanced security mechanisms to detect and mitigate such attacks. [9] 

To tackle this heterogeneity, we propose the Hybrid–Dynamic Information Risk framework, (H–DIR)2, 
which fuses a Hybrid Distributed Information Retrieval (H–DIR) architecture [24] with dynamic, entropy-
driven risk mitigation. 

The Hybrid Distributed Information Retrieval (H-DIR) architecture is a layered, semantic-aware 
framework designed to enhance data interoperability and retrieval in Cloud–IoT environments [24]. It 
integrates big data tools (e.g., Apache Spark), semantic web technologies (e.g., RDF/SPARQL), and 
neural-based analytics (e.g., LSTMs, GRUs) to process heterogeneous sensor data streams [24]. By 
leveraging hybrid query mechanisms that combine structured (SQL) and unstructured (semantic) 
formats, H-DIR enables advanced reasoning over environmental and operational telemetry. [24] 

Building upon the semantic and hybrid query foundations of H-DIR [24], the (H-DIR)2 framework 
extends the architecture by integrating dynamic threat detection and response mechanisms. 
Specifically, it introduces a six-stage processing pipeline that includes entropy-based anomaly scoring, 
real-time feature vectorization, and adaptive modeling through neural techniques. While H-DIR 

primarily addressed semantic interoperability, (H-DIR)2 brings the system into the cybersecurity 
domain by incorporating concepts such as Network Attack Graphs [10] and deep learning for threat 
propagation analysis [15]. The framework exploits distributed computing (e.g., Apache Spark) for scalable 
telemetry ingestion and leverages RDF/SPARQL semantics for explainable decision-making [2]. This 
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architectural evolution enables vertical scalability over millions of endpoints and horizontal scalability 
for multi-terabyte streams 1. 

This work aims to evaluate the effectiveness of the (H-DIR)2 framework in detecting and mitigating 
cyber threats in complex cloud–IoT infrastructures. We focus on representative attacks such as SYN Floods, 
DAO–DIO routing 

Table 1. Core components of the (H-DIR)2 framework. 

Component Function within the pipeline 

 
Entropy–based detec- Computes Shannon entropy per window and raises agnostic alarms for zero-day 
vectors [7]. tor 
Apache Spark / Distributed micro-batch analytics sustaining terabyte-scale 
streams [29]. Spark SQL 
Adaptive Random Online learning that converts traffic features into probabilistic Network-Attack 
Graphs [6]. Neural Network 
RDF/SPARQL layer  Serialises each packet as triples, enabling rule-based reasoning and 
explainability [17]. 

Wireshark +Packet capture and high-intensity replay test-bed for controlled 
experiments. Minikube 

anomalies, and UDP-based amplification vectors. Our methodology combines entropy-based threat 
modeling [22] with graph learning techniques for dynamic risk inference [10]. Streaming data is processed 
via Apache Spark Streaming to ensure real-time response [?], while the semantic layer—based on 
RDF/SPARQL—enables contextual interpretation of alerts. Experimental validation will be conducted 
using publicly available datasets such as Bot-IoT and CIC-DDoS2019 [11], assessing metrics including 
detection latency, classification accuracy, and mitigation efficiency across variable load scenarios. 

By coupling statistical entropy monitoring, Adaptive Recurrent Neural Networks (ARNNs) and semantic 
network- attack graphs, the model achieves early anomaly detection, predictive attack-path inference, 
and self-adaptive remediation across distributed environments. 

The paper is structured as follows. Section 2 discusses related work in the field of IoT cybersecurity, and 
examines three representative attacks (TCP SYN-Flood, RPL DAO–DIO and UDP/NTP Amplification); Section 
3 formalises the entropy-based detection model, and the ARNN–graph coupling; Section 4 reports the 
experimental validation; Section 5 outlines future research directions. 

Dataset and statistical rationale. Our analysis relies on a telemetry corpus that aggregates (i) the 
CIC-DDoS2019 trace for TCP-level floods [4], (ii) the Dryad DAO–DIO routing-manipulation dataset 
[?], and (iii) the Kitsune NTP-amplification subset [13], for a total of n = 1.2 × 104 labelled events. We report 
UDP amplification (50.3%), TCP-based (30.8%), SYN-Flood (16.3%) and residual unknown (2.6%). Applying 
Wilson’s 95% confidence interval [12] yields a margin of ±1.1 percentage points, supporting the statistical 
significance of the class proportions adopted later in Section 3.1. [26] 

2. Related Work 

Traditional counter-measures—firewalls, signature-based IDS and heuristic rule sets—struggle to keep 
pace with the scale and velocity of modern cloud–IoT deployments. Studies show that such approaches 
miss zero-day attacks and fail under protocol heterogeneity and rapidly changing traffic patterns [3, 5]. 
Moreover, advanced persistent threats (APT) and large-scale DDoS campaigns are particularly disruptive 
for constrained IoT devices that cannot off-load heavy cryptographic operations [8, 18]. 

Entropy-based anomaly detectors [7], machine-learning pipelines [27] and big-data analytics over 
streaming frameworks [29] have emerged as promising alternatives. Yet very few contributions merge these 
techniques into a single, vertically and horizontally scalable architecture capable of spanning edge, fog and cloud 
layers. 

Building on policy-based enforcement schemes that introduce secure regions and context-aware access 
control for IoT nodes [1, 21], the RDF/SPARQL tier of (H-DIR)2 appends predicates such as 
:hasAccessLevel and 
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:isInSecureRegion to each triple. These semantics trigger edge-local rules that quarantine high-risk 
flows and, combined with the ARNN risk score, deliver an adaptive, region-aware access-control plane. 

While Sicari et al. [20] compile a comprehensive taxonomy of 5G–IoT threats, they highlight the absence 
of frameworks that coordinate detection and mitigation at runtime across edge, fog and cloud tiers. The open 
source prototype (H–DIR)2, packaged as a six–stage entropy / ARNN pipeline, which extends our previous 
architecture [24], directly fills this gap, achieving subsecond detection and automated mitigation traceable 
on third-party testbeds. Section 3 discusses the (H–DIR)2 pipeline and framework. 

2.1. Overview of Targeted Cyber Attacks 

Modern cloud–IoT infrastructures face increasingly sophisticated cyber threats that exploit 
vulnerabilities at different layers of the communication stack. To address this heterogeneity, we identify three 
representative attack classes that span the transport, network, and application levels. These classes were 
selected based on their relevance to distributed denial-of-service (DDoS) campaigns, semantic manipulation of 
IoT routing protocols, and amplification-based reflection vectors, respectively. This categorization provides a 
structured basis for evaluating the detection capabilities and mitigation response of the proposed (H–

DIR)2 framework. 
Building on the taxonomy outlined in Sec. 1.1, we focus on three representative threat classes that 

collectively span the transport, network-layer (IoT), and application layers of cloud–IoT infrastructures: 

[label=()] 

TCP–SYN-Flood, 

DAO–DIO routing manipulation in RPL, and 

UDP/NTP amplification. 
Each class exposes a different attack surface, entropy signature, and mitigation pathway within the 

(H–DIR)2 

framework, as summarized in Table 2. The detailed case-study evaluations follow in Sections 4.1–4.3. 

Table 2. Summary of targeted cyber attacks used for evaluation. . 

Attack Protocol Layer Key Entropy Signal Mitigation Module 

TCP SYN-Flood Transport ∆Hflags spike Adaptive Rate Limiter (Sec. 
4.1) 

DAO–DIO (RPL) IoT Network ∆Hpath drift Route Sanitiser (Sec. 4.2) 
NTP Amplification Application / UDP ∆Hsize bimodality Amplification Throttler (Sec. 

4.3) 

3. Insights and Practical Implications of the (H–DIR)2 Framework 

3.1. Simulation Pipeline: Formal (H-DIR)2Workflow 

The Hybrid–Dynamic Information Risk (H-DIR)2model is grounded on the simulation pipeline of Figure1. Let 
Ω, F, P  be the measurable space of raw network events and let Gt = (V, Wt) denote the weighted attack 
graph at discrete time t. The end-to-end workflow is decomposed into six deterministic, composable operators 

T = (O1, O2, O3, O4, O5, O6) : Ω −→ Gt (1) 

Table 3. Legend for the (H-DIR)22 simulation pipeline. 

Symbol Meaning 

Ω Measurable space of observed network events 
Gt Weighted attack graph at discrete time t 
V Set of vertices (network nodes) 
Wt Weight matrix representing dynamic risk relationships 
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The logical chain in Figure1 follows the paradigm of RDF stream processing [17], distributed micro-
batch analytics on Apache Spark [28, 29] and the security-oriented Associated Random Neural Network (ARNN) 
[6]. Accordingly, every packet pi ∈ Ω is processed by the six deterministic operators T = (O1, . . . , O6): 

O1 RDF conversion fRDF : Ω → T0 serialises raw frames into W3C–RDF 1.1 triples, enabling formally 
verifiable reasoning [17]. 

O2 Spark SQL windowing W∆t ◦ Q : T0 → S(∆t) performs streaming selection with sub-second latency 

on multi-terabyte traces [29]. 

O3 Vectorisation φ : S(∆t) → xt applies one-hot or embedding schemes that match best practice in 
neural intrusion detectors [27]. 

O4 ARNN core A : xt →(at+1, Wt+1) updates the probabilistic weight matrix using the learning rule in 
[6]. 

O5 Semantic  graph  injection  Ψneu→sym  :  Wt+1  →  ∆Tt  reifies  risk  scores  
as  triples  e.g. 

:host_A :hasRiskScore "0.87"^^xsd:float,  thus  supporting  region-based,  policy-
driven  enforce- 
ment [1]. 

O6 Dynamic update loop U : Tt ∪∆Tt → Tt+1 closes the observation–prediction cycle and realises the 
runtime coordination that current 5G/IoT surveys still find missing [19]. 

Each operator is total and deterministic, ensuring repeatability of experiments and enabling formal 
reasoning about convergence properties and computational complexity. 

Consequently, all subsequent entropy calculations, ARNN adaptations, and mitigation heuristics 

reported in Sections 3.2 are traceable to this pipeline; any variant of (H-DIR)2(e.g. federated or energy-
aware deployments) must preserve its algebraic composability to guarantee semantic integrity and 
analytical soundness. 

Figure 1. Simulation Pipeline. 

Simulation Pipeline: Formal (H-DIR)2Workflow The composite operator T is parametrised by the ordered 
pair ⟨Π, Λ⟩, where Π ∈ {TCP, RPL, UDP/NTP, . . .} denotes the transport or routing protocol under 
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i=1 

ijk 

ℓ=1 

ℓr 

t=1 

scrutiny and Λ ∈ {SYN Flood, DAO–DIO, Amplification, . . .} the corresponding attack semantics. 
Concretely: 

– Feature schema. Vectoriser ϕ loads a protocol–specific dictionary DΠ (e.g. TCP flags vs. RPL control 
codes); 

– Loss re–weighting. Hyper-parameters (α, β) are tuned per Λ to prioritise node classification or edge 

prediction1; 

– Graph semantics. Risk-injection operator Ψneu→sym appends triples in a namespace :Π so that SPARQL 
rules remain protocol-consistent. 
Thus the very same deterministic pipeline remains structurally invariant while behaviourally adaptive, 

guaranteeing analytic uniformity across heterogeneous cyber-physical attack surfaces Figure 1. 

1. RDF Conversion Level2 

, given the packet sequence D = {pi}N 
with timestamps τi, an injective map 

fRDF : D −→ G0 (2) 

serialises each pi as a triple ⟨si, pi, oi⟩ ∈G0. The initial graph is stored as a Boolean tensor T0 = [t(0) ]. 

1 For SYN Flood, α ≫ β emphasises rapid node compromise detection; for DAO–DIO, β dominates to reveal 
routing loops. 

2 All symbols match the notation of Section 3. 

2. Spark SQL / Streaming Selection Level 

A window operator W∆t slides over T0, while a set of SQL queries Q = {qℓ}m materialise the 
structured table 

S(∆t) = [s(∆t)] ∈ Rm×R. (3) 

3. Vectorisation Level 

Applying the feature encoder ϕ yields binary/real vectors 

xt = ϕ
 
S(∆t)

 
, X = {xt}T 

, xt ∈ {0, 1}d. (4) 

4. ARNN Core Level 

The Associated Random Neural Network evolves as 

at+1 = f
 
Wtat + b + xt

 
,(5) 

with adaptive weights Wt ∈ [0, 1]n×n. Training minimises 

Lt = α Lcls + β Lgraph, Wt+1 = Wt − η∇WLt.(6)  

The resulting matrix induces the Network Attack Graph Gt = (V, Wt). 

5. Semantic Graph (SPARQL) — Dual Level Coupling 

Symbolic and subsymbolic layers interact through 

Ψsym→neu : T(∆t) '→ xt,(7) 
Ψneu→sym : Wt '→ ∆Tt, (SPARQL 
INSERT) 

allowing on–the–fly enrichment of the ontology with risk assertions (e.g., “:192.168.1.4 
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Σ 

Σ 

:hasRiskScore "0.87"8sd:float."). 

6. Dynamic Update Loop 

The closed loop is summarised as 
 

 

This mechanism guarantees: (i) low detection latency τdet ≤ ∆t +O(|Q|), (ii) anomaly triggering when 
∆Ht > θH, and (iii) critical–node identification via  j wij > γ. 

3.2. Entropy-Based Detection and Adaptive Defense with (H-DIR)2 

This section presents the core detection mechanisms and mathematical foundations of the (H-DIR)2 

framework. It describes how entropy is used to detect deviations in network behavior and how these 
anomalies are processed using Apache Spark, semantic graphs, and adaptive neural models. 

Entropy-Based Anomaly Detection (H-DIR)2 employs Shannon entropy to quantify uncertainty in 
network traffic distributions. 

Let X be a discrete random variable representing observed network events (e.g., packet types, source 
IPs). The entropy H(X) is calculated as: 

n 
H(X) = − P (xi) log2 P (xi) 

i=1 
where: - P (xi) is the probability of the i-th event, - n is the number of distinct events. 

A significant drop in entropy (e.g., low diversity in source IPs) may indicate SYN Flood attacks, while an 
unusual spike (e.g., erratic routing patterns) can signal DAO-DIO manipulations. 

The anomaly score is defined as: 

∆H = H(X) − Hbaseline 
If ∆H exceeds a predefined threshold θH, an anomaly is flagged and further analyzed. 

3.3. Dual Scalability of the (H-DIR)2 Architecture 

The (H-DIR)2 framework has been designed to satisfy a two–fold scalability requirement: 

1. Vertical (Quantitative) Scalability. Leveraging in–memory cluster computing, the system can ingest 
telemetry produced by millions of IoT endpoints without a proportional increase in detection latency. 
Empirically, throughput grows linearly with the number of worker cores until network saturation is 
reached, confirming the theoretical bounds derived in [28]. 

2. Horizontal (Qualitative) Scalability. By sharding feature vectors across Resilient Distributed Datasets 
(RDDs) and using a micro–batch streaming model, (H-DIR)2 sustains multi-terabyte traffic volumes 
while preserving sub-second windowing semantics. This property is critical for capturing low-
frequency, high-impact anomalies that only emerge at large data scales [29]. 

Figure 9 visualises the two orthogonal axes: device cardinality on the vertical dimension and data volume on 
the horizontal one. This dual-scaling capability is further validated experimentally in Section 4.4. 

3.4. Integration with Apache Spark and RDF Graphs 

Real-time processing is orchestrated by Apache Spark, whose RDD abstraction offers fault-tolerant, 
in-memory data partitions amenable to both low-latency analytics and iterative machine-learning workloads 
[28]. Structured traffic logs (e.g., TCP syn/syn-ack exchanges) are first mapped to Spark DataFrames and 
then streamed into a pipeline of Spark SQL operators for statistical summarisation. 

The same logs are simultaneously serialised as RDF triples, producing a semantic graph where: 

– Nodes represent entities such as IP addresses or ports; 
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Σ 

– Edges encode typed interactions (packet type, temporal correlation). 
Thanks to SPARQL 1.1, complex pattern-matching queries can be issued over this evolving knowledge 

graph, yielding protocol-specific alerts (e.g., an excess of incomplete TCP handshakes). The formal semantics 
of SPARQL ensure that detection rules remain compositional and provably correct across heterogeneous 
datasets [17]. 

Overall, the tight coupling between Spark’s physical scalability and RDF’s logical expressiveness enables (H-

DIR)2 

to operate seamlessly across cloud data-centres and large-scale IoT deployments. 

3.5. ARNN: Adaptive Neural Modelling for Attack Propagation 

To predict how threats propagate across the monitored infrastructure, (H-DIR)2 integrates an Associated 
Random Neural Network (ARNN) [27], which dynamically updates the connection weights wij between nodes 
on the basis of real-time traffic evidence. 

State Update Equation. The activation ai(t+1) of a node Ni at discrete time t+1 is given by 

ai(t + 1) = f 

j=1 

wij aj(t) + bi + xi(t)    (8) 

where f (·) is a non-linear activation (sigmoid in our experiments); wij is the weight of the edge from 
node Nj to 
Ni; bi is the node bias; and xi(t) encodes exogenous inputs (e.g. entropy variation or packet-count 
features). 

 
Figure 2. Bidirectional Semantic–Neural coupling and its dynamic update cycle. The semantic layer (top) 
imposes domain constraints on the ARNN (bottom). Significant entropy variations ∆H (dashed loop) 
feed back into both layers, closing the adaptation loop. 

Multi-objective Training. Learning minimises a composite loss 

Ltotal = α Lclassification + β Lgraph,(9) 

where Lclassification is a cross-entropy term for node compromise detection and Lgraph is a binary cross-entropy 
term that regularises the attack-graph topology [25]. The hyper-parameters α and β are protocol- and 
attack-specific (cf. Section 3.3). 

3.6. Semantic–Neural Coupling and Dynamic Update 

The H–DIR framework maintains a bidirectional bridge between two complementary layers: 

– Semantic layer – an ontology of protocol rules and expert heuristics that prunes forbidden state 
transitions; 

– Neural layer – an Adaptive Recurrent Neural Network (ARNN) that learns temporal correlations 
directly from telemetry streams. 

Semantic Layer 

(rules, ontology, constraints) 
Dynamic update 

Constraint propagation 

Neural Layer 
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Y 

Σ 

Information flows downwards when semantic constraints mask illegal ARNN states, and upwards when 
unexpected entropy shifts ∆H trigger a joint optimisation of neural weights and rule parameters. The 
process thus closes a self–adaptive loop, as illustrated in Figure 2. 
Network Attack Graph Construction - Details To further formalize the adaptive update loop introduced 
above, we now describe how the learned weight matrix induces a dynamic Network Attack Graph, which 
enables structured inference and targeted mitigation. 

Attack-graph inference. The learned weight matrix W = [wij] induces a directed Network Attack Graph 
(NAG). The probability that an adversary traverses a path P = {N1, . . . , Nk} is 

k−1 
Pattack(P ) = wNlNl+1 ,(10) 

l=1 

which guides proactive mitigation (Sec. ??). A node Ni is marked critical if j wij > γ, with γ 
calibrated via ROC analysis. 

Semantic reinforcement loop. Risk estimates are re-materialised as RDF triples (e.g., 
:192.0.2.7 :hasRiskScore "0.87"^^xsd:float) and immediately query-able via SPARQL, closing 

the observation → prediction → update cycle. 
This tight coupling between symbolic (RDF/SPARQL) and sub-symbolic (ARNN) reasoning 

underpins the transparency, adaptability, and real-time performance highlighted throughout Section 
4. 

3.7.Dynamic Update of the Semantic Graph 

To maintain a continuously evolving representation of network conditions, the predictions 
produced by the ARNN module are fed back into the RDF knowledge base Figure 2. This process allows 
for dynamic semantic enrichment of the graph. For instance, a prediction indicating that IP 192.168.50.8 
is likely to be targeted by IP 172.16.0.5 is formalized as: 

:192.168.50.8 :potentialVictimOf :172.16.0.5 . 
Such semantic assertions enable real-time updates of potential attack paths and risk propagation, 

reinforcing the H-DIR’s reasoning capabilities. 
To illustrate the generation of input for ARNN from packet-level traffic, the following Python script 

simulates TCP traffic encoded as RDF triples. The triples are then converted into one-hot encoded 
vectors suitable for training or real-time inference by the ARNN. 

Pre-processing pipeline. The full Python routine used for one-hot feature encoding and normalisation is 

available in our open-source repository3 (file one_hot_encoder.py).We omit the code listing here for 
brevity. 

The H–DIR2 pipeline realises a semantic reinforcement loop: risk scores Ri predicted by the adaptive 
layer (ARNN + NAG) are re–materialised as RDF triples—for example: 

“‘turtle :192.0.2.7 :hasRiskScore "0.87"8sd:float . “ ‘ 
These triples become immediately queryable via SPARQL, thereby closing the observation → prediction 

→ update cycle shown in Figure??. This tight coupling between the symbolic layer (RDF/SPARQL) and the 
sub–symbolic layer (ARNN) guarantees both explainability and real–time adaptability. 

Worked example on the Syn_ridotto dataset. The file Syn_ridotto.xlsx (a trimmed subset of the CIC– 
DDoS2019 trace) contains 100.0 k TCP flows summarised by 88.0 features. Listing ?? shows, step by step, how 
a single row is (i) serialised via rdflib and (ii) one–hot encoded into a vector x ∈ {0, 1}d that feeds 
the ARNN. The mapping Ψsym→neu therefore acts as an ETL bridge between semantic space and neural 
space. 

Code availability. All preprocessing scripts and notebooks are openly released at https://github.com/ 
RobUninsubria/HDIR2-paper.git (tag v1.4); we omit the full listing for brevity. 

Once the ARNN estimates the compromise probability ai(t+1) for each node Ni, the inverse 
transformation 

Ψneu→sym writes back triples such as: 
“turtle :192.168.50.8 :potentialVictimOf :172.16.0.5 “ 
These assertions feed subsequent SPARQL rules (e.g. isolating high–risk policies or risk-aware load 

balancing). The bidirectional flow endows H–DIR2 with explainability and situational awareness: every 
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neural prediction is anchored to an explicit semantic assertion, updated in real time as new evidence 
arrives. 
 

3 https://github.com/RobUninsubria/HDIR2-paper.git 

 

Figure 3. ETL bridge between semantic space and neural space. 

4. Experimental Results and Evaluation 

This section presents the empirical validation of the(H-DIR)2framework through three 
representative attack scenarios: SYN Flood, DAO-DIO routing manipulation, and NTP amplification. 
Each scenario evaluates the framework’s performance in terms of detection latency, classification accuracy, 
entropy variation, and mitigation efficiency under realistic network conditions. 

4.1. SYN-Flood Case Study 

Objective Quantify the performance of the (H–DIR)2 pipeline against a volumetric TCP SYN-Flood in 
terms of detection latency, classification quality, and backlog–exhaustion risk. 

Dataset and Pre-processing A stratified 50 000-packet excerpt of the CIC-DDoS2019 trace [4] is replayed at 
line-rate. Each packet is (i) serialised into an RDF triple (operator O1), (ii) windowed by Spark SQL 
over 
∆t = 500 ms (O2), (iii) one-hot vectorised on srcIP, dstIP, and TCP flags (d = 256; O3), and streamed 
into the ARNN core (O4). The semantic feedback loop (O5–O6) updates the Network Attack Graph in 
real time. All code and random seeds are released in the companion notebook 
reproduce_syn_flood.ipynb (commit 3a98f1b).5 

Metrics 

– Shannon entropy H(X) on flag distribution X = {SYN, SYN–ACK, ACK}. An alarm is raised if 
∆H = 
Ht − Hbaseline < −θH with θH = 0.50 bits [?]. 

– Imbalance ratio r = #SYN/#SYN–ACK (continuous feature). 
– ARNN quality: accuracy, false-positive rate (FPR), area under ROC curve (AUC). 
– Detection latency τdet from first spoofed SYN to alarm. 

 

Legenda 
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4 Experiments run on Python3.11.4, Spark3.5.0, PyTorch2.1; section: Reproducibility. Full environment files are 
included in the repository https://github.com/RobUninsubria/HDIR2-paper.git. 

5 https://github.com/RobUninsubria/HDIR2-paper.git 

 

  

(a) Entropy-based anomaly density (b) Adaptive backlog over time 

Figure 4. (a) Spatial distribution of the entropy variation ∆H in the RPL DAO–DIO attack (red=higher 
disorder). (b) Backlog B(t) with and without the proposed H–DIR2 mitigation; the vertical dashed line 
marks the cut-off time t⋆ = 0.43s. 
Results 

Indicator Value 95% CI 
Accuracy 94.1% [93.7, 94.5] 
FPR 4.7% [4.3, 5.1] 
AUC 0.978 ±0.004 
τ˜det 247 ms [221, 273] ms
∆H∗ 
(peak) 

−1.15 bits — 

rattack 27.4 ± 3.5 — 

Figure 8 (a) highlights the mastermind node (red) and reflector set (blue), while the traffic matrix in 
Figure 8 (b) shows dark rows/columns corresponding to massive SYN bursts lacking ACK responses. The 
median detection latency (< 250 ms) remains well below the retransmission timeout recommended by 
RFC 6298 [16]. 

Analytical backlog threshold. A closed-form expression for the backlog cut-off time t⋆, together with its 
full derivation, is reported in Appendix A (Eq. (11)). For completeness, the adaptive scheduler converges 
when 

∆H(t⋆) = τ , yielding t⋆ = 0.43 s under the worst-case load defined in Sec. 4.1.1. 

4.2. DAO–DIO Routing Manipulation Case Study 

Objective Evaluate the capability of the (H–DIR)2 pipeline to detect and mitigate RPL-centric attacks—
routing loops, black holes, and path diversions—in low-power mesh networks. 

Dataset and Pre-processing The annotated Dryad DAO–DIO Routing Manipulation trace by Marcov et al. [12] 
(200 motes, 1 h, 10 Hz sampling) serves as ground-truth. Packets are processed through the six operators 
O1–O6: 

(O1) RDF serialisation into the IoT–RPL–OWL ontology, yielding T0. (O2) Streaming windowing ∆t 
= 5 s and Spark SQL filtering. 

(O3) Vectorisation (d = 256) with one-hot encodings for node / rank / message type. (O4) ARNN core 
– attentive RNN, nh = 128, η = 10−3, loss weights (α, β) = (0.3, 0.7). (O5) Risk scoring Ri = σ(ai); nodes with 
Ri > 0.6 are flagged. 

(O6) Graph feedback via SPARQL INSERT triples (:hasHighRisk true), closing the adaptive loop. 
All artefacts are released in reproduce_dao_dio.ipynb (commit 61f5c7d). 

Metrics 
– Routing loops — number of closed rank cycles. 

– Maximum incoming risk maxi 
Σ

j wji in the learned graph. 
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– Packet-delivery ratio (PDR). 
– Average loop duration in seconds. 
– ∆H entropy over DAO/DIO message mix; alarm if ∆H >θH = 1.2 bits [?]. 

Table 4. Effectiveness of (H–DIR)2 against DAO–DIO attacks. Metric Before After Improvement 

Routing loops [#] 
Max incoming risk

 
Σ 

 

w
  

9.0 
4301 

2.0 
2550 

−78% 
−41% 

PDR [%]  81.2 96.4 +18% 
Avg. loop duration 
[s] 

 18.0 5.0 −72% 

Figure 5. Comparison Before-After mitigation. 

Figure 6. Dynamically reconfigured routing. 

Results Figure 5 contrasts key metrics before/after mitigation, while Figure 6 shows the dynamically 
reconfigured routing DAG produced by the risk-aware graph. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 May 2025 doi:10.20944/preprints202505.1716.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1716.v1
http://creativecommons.org/licenses/by/4.0/


 

Figure 7. Traffic overload triggered by spoofed NTP requests (amplification ×500). 

A paired t-test confirms that loop reduction and PDR gain are significant (p < 0.01). Detection 
latency is 

0.9 ± 0.2 s, dominated by the 5 s window, and the ARNN attains an F1 score of 0.92 on node-
compromise classification. 

4.3. NTP Amplification Case Study 

Objective Assess how the (H–DIR)2 pipeline mitigates UDP-level NTP amplification, a reflection–based 
DDoS that multiplies small monlist queries into large traffic bursts. 

Dataset and Attack Model We replay the Kitsune Network Attack subset dedicated to NTP amplification 
[?]: 100 spoofed requests, amplification factor ×500, victim bandwidth saturated within < 3 s. Packets 
traverse the six operators O1–O6 with protocol-specific settings: 

(O1) RDF serialisation into the IoT–UDP–OWL schema. 
(O2) Windowing ∆t = 1 s; Spark SQL computes per-IP entropy. (O3) Vectorisation (d = 128) on srcIP, 

dstIP, UDP ports, NTP_cmd. (O4) ARNN core — LSTM variant, 3 layers, 64 cells, η = 2 × 10−3. (O5) Risk 
scoring threshold Ri > 0.55. 

(O6) Graph feedback injects :underMitigation true. 
Defence Stack 

– Edge caching (C = 0.9) to absorb duplicate replies. 
– Anycast load distribution over S = 5 edge nodes. 
– Entropy filter — alarm if ∆H ≥ θH = 1.5 bits. 
– ARNN early predictor (validation ACC = 0.90) drives proactive throttling. 
Metrics 

– Peak load at the victim (Gb/s). 
– Mitigation latency τmit (s) after ∆H trigger. 
– Back-end traffic reduction (ratio). 
– ARNN early-stage prediction accuracy. 

Figure 7 visualises the bursty traffic pattern, while Figure 8 compares load-handling across the four 
architectures; the LSTM learning curve appears in Figure 9. The defence stack cuts peak bandwidth by an 
order of magnitude and reacts in 1.7 s ( ±0.3 s), well before link saturation. Early ARNN warnings 
(accuracy 90.4%) permit smart load shedding. 
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(a) Entropy-based anomaly density 

 

 

(b) Adaptive backlog over time 

Figure 8. NTP Amplification case study. (a) Peak load observed at the victim as a function of the number of edge servers 

S under four mitigation stacks: Centralised, Distributed, + Caching and the proposed (H–DIR)2. (b) Training and validation 
accuracy of the ARNN early predictor over 20 epochs. 

Table 5. Performance against NTP amplification. Architecture Peak load [Gb/s] τmit [s] Backend reduction. 

Centralised 8.1 7.1 0% 
Distributed 4.3 3.1 47% 
+ Caching 1.2 2.0 85% 
(H–DIR)2 1.0 1.7 88% 

4.4. Comparative Summary Across Scenarios 

These results confirm that(H-DIR)2offers a highly effective and scalable solution for detecting and 
mitigating diverse cyber threats in cloud and IoT ecosystems. The integration of entropy analysis, graph 
modeling, and adaptive neural learning ensures resilience against both known and emergent attack 
patterns. 

To substantiate the dual scalability claim, we conducted a synthetic stress test by varying both the 
number of simulated IoT nodes (vertical scalability) and the data volume per node (horizontal 

scalability). As shown in Figure 9 and Table 6, the (H-DIR)2 framework consistently maintains sub-
second detection latency (≤ 500 ms) up to 1 million simulated endpoints and 10 TB of daily telemetry. 

Throughput increases almost linearly with the number of Spark worker cores, while entropy variation 
(∆H) and ARNN inference times remain stable across window sizes ranging from 512 to 8192 samples. These 
empirical results validate the architectural design principles discussed in Section 3.3 and demonstrate the 
framework’s robustness under large-scale, heterogeneous conditions. 

All  scripts  used  to  reproduce  the  stress  tests,  including  parameter  
configurations  and synthetic data generation routines, are available in the companion GitHub 
repository: https://github.com/RobUninsubria/HDIR2-paper.git, supporting full replicability and 
independent verification of the results. 
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Table 6. Stress Test Results: Throughput and Latency vs. Device Count. Devices Data (TB) Latency (ms) 
Throughput (Gbps) ∆H Stability 

100 0.01 45 0.5 Stable 
1,000 0.10 70 1.7 Stable 

10,000 1.00 110 5.8 Stable 
100,000 5.00 230 19.4 Stable 

1,000,000 10.00 470 36.0 Slight Drift 
 

 
Figure 9. (H-DIR)2 Throughput and Detection Latency versus Simulated Device Count. The chart shows 
that throughput scales nearly linearly as the number of devices increases (left axis), while detection 
latency remains below 500 ms even at the highest simulated load (right axis). This confirms both vertical 
and horizontal scalability of the (H-DIR)² framework under stress-test conditions. 

 

 Table 7: Comparative Summary Across Scenarios.

 
  

Table 8. Analytics Layers in the H-DIR Mitigation Pipeline (Vertical Layout). 

Layer Details 
Entropy Monitor Governing equations: H(X) = − 

Σn P (xi) log P (xi); alert when i=1 2 
∆H = Ht − Hbaseline ≥ θH. 
Purpose: Fast, feature-agnostic anomaly flagging. 
Key tunables: Feature set F , window width w, threshold θH.  Σ   

Adaptive Ran-
dom Neural Net-
work (ARNN) 

Governing equations: ai(t + 1) = f j wijaj(t) + bi + xi(t) ; 

weight update: wij ← wij − η ∂Ltotal ; Ltotal = αLclass + 
βLgraph. ∂wij 
Purpose: Learns normal propagation patterns and 
updates/estimates attack-graph edges in real time. 
Key tunables: Learning rate η, α/β balance, number of hidden 
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units. 

Network-Attack 
Graph (NAG) 

Governing equations: Adjacency matrix W = [wij]; attack path prob- 
ability Pattack(N1 → Nk) = 

Qk−1 wi,i+1; critical nodes Ncrit = 
{i : 
Σ 

w  > γ}. 
i=1 

j  ij 
Purpose: Predicts likely propagation paths and identifies "hot" 
nodes to quarantine. 
Key tunables: Risk cut-off γ, number of top-k paths tracked. Σ 

Load-balancing 
/ Caching (UDP 
amplification) 

Governing equations: Centralised load L = i Ri; per-server 
load with cache Lj = (1 − C)Ri/S. 
Purpose: Explains how any-cast and edge caching reduce traffic 
seen by each origin server. 
Key tunables: Cache ratio C, number of servers S. 

4.5. Extended Comparison with State-of-the-Art Methods 

Table 9. Comparative Evaluation: (H-DIR)2 vs. State-of-the-Art Approaches. 
Method Latency 

(ms) 
AU
C 

Entropy-based 
Explainability 

Real-
time 

Spark IDS 950 0.91 No Yes 
Kitsune-
AE 

670 0.93 No Yes 
Isolation 
Forest 

720 0.89 Partial No 
(H-DIR)2 247 0.978 Yes Yes 

 

Figure 10. Comparison of AUC and Detection Latency across methods. While other models offer partial performance, 

(H-DIR)2 achieves both low latency and high accuracy. 

To contextualize the performance of the (H-DIR)2 framework, Table 9 compares its results against 
representative state-of-the-art anomaly detection methods, including Spark IDS [?], Kitsune Autoencoder 

[14], and Isolation Forest [23]. While all achieve reasonable AUC scores (≥ 0.89), only (H-DIR)2 

combines high classification accuracy (AUC = 0.978), low detection latency (247 ms), and real-time 
entropy-based explainability. The use 

of RDF/SPARQL further enables semantic rule tracking, which is absent in the other models. This 

positions (H-DIR)2 as a robust and interpretable alternative suitable for high-throughput, cloud-to-
edge scenarios. 
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4.6. Dynamic Integration Between Semantics and Prediction in (H–DIR)2 

The experiment conducted on real-world data from the Kitsune Network Attack dataset [14] concretely 
demon- strates the integrated cycle between symbolic representation and adaptive modelling within the (H–

DIR)2 framework. Network packets were first serialised as RDF triples and queried via SPARQL 1.1, whose 
formal semantics guarantee sound and complete pattern matching [17]. These triples were then vectorised 
and fed to an Associated Random Neural Network (ARNN) [6], yielding a weight matrix wij that encodes the 
probability of compromise between nodes. 

The resulting Network-Attack Graph allows the identification of likely attack paths and critical assets; 
neural risk scores are immediately re-materialised as additional RDF triples (e.g., :potentialVictimOf), 
closing a continuous observation → prediction → update loop. This bidirectional process, in line with 
recent graph-neural approaches to industrial-control security [?], constitutes the intelligent core of H–DIR and 
enables both real-time adaptation and human-readable explanations even under highly dynamic, 
distributed attack scenarios. 

Figure 11. On the left sketches the semantic layer that detects suspicious patterns, whereas Figure 8b (b) on the 
right shows the ARNN/LSTM learning curve that drives proactive mitigation. 
Figure 11 is the conceptual visualization of the semantic–adaptive integration cycle in the figure 2: 

– On the left, the semantic layer (RDF + SPARQL) identifies suspicious patterns in network traffic 
flows. 

– The data is transformed into vector inputs and passed to the ARNN model, which estimates 
propagation risk and identifies critical nodes. 

– On the right, the predictions (e.g., probability of attack) feed into the weight graph wij. 

– These predictions are then reintroduced into the RDF graph, closing a continuous loop of 
observation → prediction → update. 

5. Conclusions 

This study introduced the Hybrid–Dynamic Information Risk (H–DIR)2 framework, a scalable, 
entropy-driven defence stack that couples symbolic (RDF/SPARQL) reasoning with sub-symbolic 
(ARNN+NAG) learning. Across three representative vectors—TCP SYN Flood, RPL DAO–DIO routing 

manipulation, and UDP/NTP amplification—(H–DIR)2 achieved sub-second detection latency, > 90% 
classification accuracy, and resource savings up to 88% in peak-load scenarios. The open-sourced artefacts 
(datasets, Docker images, notebooks) make 
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Σ 

λ µ − λ 

the results fully reproducible and provide a baseline for future comparative studies. By unifying 

entropy analytics, adaptive neural inference, and semantic feedback, (H–DIR)2 lays the groundwork for 
proactive, explainable, and cloud-to-edge deployable cybersecurity solutions. 

Future work. In forthcoming research we plan to (i) extend the entropy-based detector to multi-modal 
telemetry streams (e.g., EPC logs and container-level metrics), (ii) deploy (H–DIR)2 on resource-
constrained edge nodes to stress-test scalability at the IoT perimeter, and (iii) enrich the semantic layer 
with live threat-intelligence feeds, thereby shortening adaptation latency and further improving zero-
day coverage. 

The (H-DIR)² pipeline is the first, to our knowledge, to unify entropy analytics, adaptive graph learning, 
and symbolic RDF reasoning in a fully scalable and explainable framework for IoT security. 

 
A Mathematical Proofs 

A.1 Closed-form backlog threshold 

Starting from the M/M/1 queue with entropy-weighted arrival rate λ and service rate µ, the backlog cut-off 
time t⋆ that nulls the queue derivative satisfies ∆H(t⋆) = τ . Solving the differential equation gives 

t⋆ = 
1 

W
 

 λB0 
 

, (11) 
where W (·) is the Lambert-W function and B0 is the initial backlog. Substituting the experimental parameters 
from Table 2 yields t⋆ = 0.43 s, matching the empirical crossover. 

C Table 10: MDPI format. 
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Figure 1 — Simula- Simulation-pipeline of the (H–DIR)2 workflow. Operators O1–O6 trans- 
tion Pipeline form the raw packet space Ω into a time-varying attack graph Gt = (V, Wt). 

Variables: T0 = initial triple tensor, xt = feature vector, at = ARNN activation, 
∆H = entropy variation. 

Figure 2 — Semantic–Neural Bidirectional coupling between semantic layer (RDF + SPARQL) 
coupling and neural layer (ARNN). Downward arrows enforce protocol rules; the 

upward dashed loop is triggered when ∆H > τ , updating the weight matrix W 
and the ontology. 

Figure 3 — ETL bridge  End-to-end ETL bridge from RDF triples to ARNN input vectors 
and back. Symbols: Ψsym→neu = vectorisation; Ψneu→sym = SPARQL INSERT 
of risk scores Ri. NAG = Network-Attack Graph. 

Figure 4 — Composite RPL RPL DAO–DIO case-study. (a) Spatial map of entropy variation ∆H (red = 
results higher disorder). (b) Backlog curve B(t) with and without (H–DIR)2; dashed 

line marks the analytical cut-off t⋆ = 0.43s. 

Figure 5 — Before/After met- DAO–DIO mitigation results. Bars show routing loops, maximum incoming 
rics risk w, packet-delivery ratio (PDR) and average loop duration before vs. 

after (H–DIR)2. Error bars = 95 % CI, n = 5 runs. 
Figure 6 — Reconfigured Risk-aware routing graph after mitigation. Node size ∝ final risk Ri; blue 
routing DAG edges are sanitized DAO routes; red edges indicate residual high-risk paths. 
Figure 7 — NTP burst  Traffic load during NTP amplification (factor ×500). Victim bandwidth 

(Gb s1) over time; shaded band = attack window; arrow denotes mitigation trigger 
at ∆H ≥ 1.5 bits. 

Figure 8 (duplicata di Fig. 4) — Figura da eliminare — 

Table 1 — Core components Core components of the (H–DIR)2 framework. Each module is paired 
with its main function and enabling technology. 

Continua a pagina successiva 
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Etichetta attuale Nuova caption 

 

Table 2 — Attack summary Summary of the three evaluated attack classes. Columns: 

protocol layer, key entropy signal and (H–DIR)2 mitigation module 

(Sec. 4.1–4.3). 

Table 3 — Symbol legend Notation used in the simulation pipeline of Fig. 1. 

Symbols are reused throughout Sec. 3. 

Table 4 — DAO–DIO effec- Effectiveness of (H–DIR)2 against DAO–DIO routing attacks. 
Values 
tiveness are averages over five runs; ∆ = relative improvement. 

Table 5 — NTP performance Mitigation performance for NTP amplification. Peak load 

at victim, mitigation latency τmit and back-end traffic reduction 

versus three baselines. 

Table 6 — Scenario summary Cross-scenario summary of detection method and response. 

Abbrevia- tions: CT = centralised throttling; RDF = Resource 

Description Framework. 

Table 7 — Analytics layers Analytical layers of the (H–DIR)2 defence stack. For each 
layer the 

governing equation, purpose and key tunables are reported. 

 

Reproducibility: To ensure full reproducibility of our results, we provide a complete Docker 
image containing all Jupyter notebooks, preprocessed datasets, and configurations used in the 
experiments on the (H-DIR)2 architecture (SYN Flood, DAO-DIO, and NTP Amplification 
attacks). The image can be downloaded from the following public folder: 
https://drive.google.com/drive/folders/1N4z_YojP46xP9XWdfLqxim9JbzgV9NKO?usp=shar
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