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Abstract: The scattering eigenstates of any Hamiltonian of electrons, coupled through a two-body force and moving

on a one-dimensional lattice, are shown to be Bethe’s wave-functions. The energy of the groundstate is compared

with values, obtained previously for the Hubbard Hamiltonian by means of Bethe’s wave-function and within the

framework of the correlated Fermi gas. The same analysis is applied to electrons, interacting on neighbouring

sites. The significance of those various groundstates is assessed with help of thermodynamics.
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1. Introduction

Bethe’s wave-function was initially devised to diagonalise the Heisenberg[1,2] Hamiltonian for an
infinite, one-dimensional (d = 1) lattice and was later extended[3,4] to the d = 1 Hubbard Hamiltonian.
However, since those analyses resort heavily to technical peculiarities, associated with the concerned
Hamiltonians, Bethe’s wave-function could not be applied to any d > 1 model[5], nor to other d = 1
Hamiltonians. Therefore this article is aimed at showing that Bethe’s wave-function gives access to the
eigenspectrum of every realistic d = 1 Hamiltonian. Then the groundstate energy will be compared
with data[6], obtained previously for the Hubbard Hamiltonian[3,4]. An additional comparison will
be carried out with the data, resulting from the correlated Fermi gas model, introduced recently[7]
to account for the properties of interacting electrons in normal metals. This method will be further
applied to electrons interacting on neighbouring sites[8], which was believed so far to lie out of the
scope of Bethe’s wave-function[1–4].

Here is the outline : the proof of Bethe’s wave-function being a many-electron eigenstate is laid out
in section I and the general expression of the corresponding eigenvalue is worked out; the two-body
scattering is studied in section II for two different d = 1 Hamiltonians, whereas section III will be
concerned with the prominent role of a boundary condition; the groundstate energy, associated with
each of the two mentioned models, is reckoned and compared with data, obtained by other methods,
in sections IV and V; the various many-electron states, discussed here, are analysed comparatively in
section VI; at last, the main results are summarised in the conclusion.

2. 1-Diagonalisation

Let us consider n >> 1 of electrons moving on a d = 1 lattice, comprising an even number
N >> 1 of atomic sites, labelled by the index i = 1, ..N. The lattice parameter is taken equal to unity
and each site can accommodate at most two electrons of opposite spin σ, which implies n ≤ 2N. The
Hamiltonian H, governing the electron motion, then reads

H = he + he−e ,

wherein he, he−e describe the one-electron hopping between first neighbours and the two-electron
interaction, respectively. Hence he reads[9]

he = −t ∑
i,j,σ

(
c+i,σcj,σ + c+j,σci,σ

)
,
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wherein the sum is carried out over σ = ±1, i = 1, ..N − 1 with j = i + 1 and c+i,σ, ci,σ are one-electron
creation and annihilation operators on the Wannier[9] state |i, σ⟩

|i, σ⟩ = c+i,σ|0⟩ , |0⟩ = ci,σ|i, σ⟩ ,

with |0⟩ referring to the no electron state. Then t designates the hopping integral

t =
∣∣∣⟨0|cj,σVe−nc+i,σ|0⟩

∣∣∣ ,

with Ve−n standing for the electron-nucleus Coulomb potential. The resulting one-electron energy
dispersion ϵ(k ∈ [−π, π]) reads[9]

ϵ(k) = −2t cos k . (1)

he−e will be referred to as h0, h1 for two electrons sitting on the same site, which characterises the
Hubbard model, or on first neighbours. They read[8]

h0 = U0 ∑N
i=1 c+i,σc+i,−σci,−σci,σ

U0 = ⟨0|ci,−σci,σVe−ec+i,σc+i,−σ|0⟩
H0 = he + h0

h1 = ∑i,j,σ

(
(U1 − J)c+i,σc+j,σcj,σci,σ

+U1c+i,σc+j,−σcj,−σci,σ − Jc+i,σc+j,−σcj,σci,−σ

)
U1 = ⟨0|cj,σci,σVe−ec+i,σc+j,σ|0⟩
J = ⟨0|cj,σci,−σVe−ec+i,σc+j,−σ|0⟩
H1 = he + h1

, (2)

wherein U0, U1 and J designate[9] Coulomb and exchange integrals, respectively, and Ve−e refers to
the electron-electron Coulomb potential.

The n-electron states make up a Hilbert space of dimension d0 =

(
2N
n

)
, subtended by the

basis {|I = 1, ..d0⟩} with each |I⟩ reading |I⟩ = ∏n
j=1 c+ij ,σj

|0⟩. The jth electron, having spin σj, sits on
the site ij. The sites are ordered such that ij < ij+1, except in case of double occupancy, characterised
by ij = ij+1 and σjσj+1 < 0. Let us introduce now a sequence of n real numbers k j=1,..n ∈ [−π, π] and
ϕ1 defined as

ϕ1 =
d0

∑
I=1

eik.I |I⟩ , eik.I = e
i ∑n

j=1 kjrij ,

with ri=1,..N being the position vector of site i.
The group of permutations P of n objects is assumed to act on ϕ1 as follows

ϕP = Pϕ1 =
d0

∑
I=1

eiPk.I |I⟩, eiPk.I = e
i ∑n

j=1 P(kj)rij ,

wherein there is a one-to-one correspondence k j
P→ kl = P(k j) between k j=1,..n and kl=1,..n. At last, the

Hamiltonian H is projected onto the subspace, subtended by n! of ϕP’s, so that every eigenvector of H
is found to read as a linear combination of the ϕP’s

ψ = ∑
P

xPϕP = ∑
I

∑
P

(
xPeiPk.I

)
|I⟩ , (3)

wherein n! of xP’s are complex numbers to be determined below. This last term on the right-hand
side of Eq.(3) is recognised to be identical to the expression of Bethe’s wave-function in Eq.(9) of [4]
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and extends thereby its validity to any d = 1 Hamiltonian, as illustrated below for H1. However
noteworthy is that n! may become bigger than d0 for n close to N, in which case the ϕP’s are no longer
linearly independent from one another.

I0.pdf

Figure 1. Sketch of |I0⟩, defined by Eqs.(4,8) for H0, H1, respectively, and sites i = 1, ..6; dots and
+,−,± signs refer to an empty site or one accommodating either one electron of spin 1 or −1 or two
electrons of opposite spin ±1, respectively.

The expression of the eigenvalue εe, associated with ψ in Eq.(3), will now be worked out for
n ≤ N in the case of the Hubbard Hamiltonian H0. To that end, the particular n-electron state |I0⟩,
sketched in Fig.1, is defined as

|I0⟩ =
n

∏
j=1

c+
j,(−1)j |0⟩ , (4)

while assuming the boundary conditions

he|1, σ⟩ = −t(|2, σ⟩+ |N, σ⟩)
he|N, σ⟩ = −t(|1, σ⟩+ |N − 1, σ⟩)

. (5)

Thus |I0⟩ is seen to have the properties

⟨I0|H0|I0⟩ = 0 ,
〈

I0|H0|I±j
〉
̸= 0 ⇒∣∣∣I±j=1,..n

〉
= c+

j±1,(−1)j cj,(−1)j |I0⟩ ⇒〈
I0|H0|I±j

〉
= −t , eik.I±j = e±ikj eik.I0

. (6)

Eq.(6) then entails

⟨I0|H0|ϕ1⟩ = −teik.I0 ∑n
j=1

(
eikj + e−ikj

)
= eik.I0 ∑n

j=1 ϵ(k j)
,

with ϵ(k j) defined in Eq.(1). Extending this equation to every ϕP and applying it further to the
Schrödinger equation (H0 − Nεe)ψ = 0, with ψ defined by Eq.(3), yields finally the energy per site εe

as
⟨I0|H0 − Nεe|ψ⟩ = 0 ⇒

∑n
j=1

ϵ(kj)
N ∑P xPeiPk.I0 = εe ∑P xPeiPk.I0 ⇒

εe = ∑n
j=1

ϵ(kj)
N

. (7)
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Proceeding for H1 similarly as done for H0, |I0⟩, sketched in Fig.1, will be defined for even n ≤ N
as

|I0⟩ =
n/2

∏
j=1

c+2j,+c+2j,−|0⟩ . (8)

Assuming again the conditions in Eq.(5), |I0⟩ is inferred to have the properties

⟨I0|H1|I0⟩ = 0 ,
〈

I0|H1|I±j,±
〉
̸= 0

⇒


∣∣∣I±j=1,.. n

2 ,+

〉
= c+2j±1,+c2j,+|I0⟩∣∣∣I±j=1,.. n

2 ,−

〉
= c+2j±1,−c2j,−|I0⟩

⇒


〈

I0|H1|I±j=1,.. n
2 ,±

〉
= −t

e
ik.I±

j=1,.. n
2 ,+ = e±ik2j eik.I0

e
ik.I±

j=1,.. n
2 ,− = e±ik2j−1 eik.I0

, (9)

which entails for every P

⟨I0|H1|ϕP⟩ = −teiPk.I0 ∑n
j=1

(
eiP(kj) + e−iP(kj)

)
= eiPk.I0 ∑n

j=1 ϵ(k j)
.

Taking advantage of ⟨I0|H1 − Nεe|ψ⟩ = 0, as done in Eq.(7), yields for εe the same expression as already
given in Eq.(7). This latter expression of εe is recognised to be identical to Eq.(11) of [4]. Likewise, since
it consists in a sum over one-particle energies, it is typical of a many-electron scattering state, so that
the many bound electron states of H0, H1, addressed elsewhere[8], are left out of the purview of this
work. Nevertheless it is worth noticing that εe could be achieved thanks to a careful, model dependent
choice of |I0⟩ (see Eqs.(4,8)). Though εe is independent from the two-electron coupling, he−e will prove
below quite instrumental in assigning the xP values.

But before doing that, it is in order to derive the expression of the energy εh, valid for n ∈ [N, 2N],
by replacing electrons by holes. To that end, we begin with recasting he, h0, h1 as

he = t ∑i,j,σ

(
cj,σc+i,σ + ci,σc+j,σ

)
h0 = U0 ∑N

i=1 ci,σci,−σc+i,−σc+i,σ
h1 = ∑i,j,σ

(
(U1 − J)ci,σcj,σc+j,σc+i,σ

+U1ci,σcj,−σc+j,−σc+i,σ − Jci,−σcj,σc+j,−σc+i,σ
) .

Any n-hole state |I = 1, ..d0⟩ reads |I⟩ = ∏n
j=1 cij ,σj |2⟩, with |2⟩ characterised by each of N sites

accommodating 2 electrons. Then substituting |2⟩ to |0⟩ in Eqs.(4,8) and cj,σ to c+j,σ in Eqs.(4,6,8,9), and
proceeding as done above for electrons yields the following expression for the energy per site of a
n-hole state

εh = εh(2)−
n

∑
j=1

ϵ(k j)

N
, (10)

with εh(2) = U0 and εh(2) = 2(1 − 1
N )(2U1 − J) being the energy per site of |2⟩ for H0 and H1,

respectively.

3. 2-Two-body scattering

The xP coefficients will be assessed by analysing the two-body scattering, embodied by h0, h1.
As a matter of fact, the latter turns out to be model dependent and to differ according to whether
both electrons, partaking in the scattering process, have parallel or anti-parallel spin, which is referred
to below as triplet or singlet case, respectively, for the sake of comparison with a previous work[7].
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The general procedure, used to calculate the xP’s, is to be sketched now. First a n-electron state |J0⟩ is
culled in order to illustrate the two-body scattering. It can be seen in Fig.2 to differ from |I0⟩ in Fig.1,
merely by both electrons, involved in the scattering process and located on sites rj<4. Accordingly
it is convenient to make use of transpositions Tij, defined by Tij(ki) = k j, Tij(k j) = ki, Tij(kl ̸=i,j) = kl ,
which enables us to recast A = ⟨J0|H − Nεe|ψ⟩ = 0, with ψ given by Eq.(3), as

A = ∑P BP = 0
BP =

〈
J0|H − Nεe|xPϕP + xT12PϕT12P

〉
= xPzP + xT12PzT12P

zQ = ∑j eiQk.Jj
〈

J0|H|Jj
〉
− NεeeiQk.J0

, (11)

wherein Q stands for P, T12P and the sum over P is to be carried out on (n − 2)! of pairs {P, T12P},
whereas the subset of n-electron states

∣∣Jj
〉

is characterised by
〈

J0|H|Jj
〉
̸= 0. Then A = 0 in Eq.(11)

will be fulfilled by requiring

BP = 0, ∀P ⇒
xT12P

xP
= − zP

zT12P
. (12)

J0.pdf

Figure 2. Sketch of |J0⟩ in Eqs.(13,16,18) and
∣∣J+0 〉 in Eq.(20); the various symbols have the same

meaning as in Fig.1.

• H0-triplet scattering Taking P(k j=1,..n<N−1) = k j for simplicity, because the final result will
prove P independent, yields the following properties for the

∣∣Jj
〉

states

|J0⟩ = c+2,+c+3,+ ∏n+2
j=5 c+

j,(−1)j |0⟩

⟨J0|H0|J0⟩ = 0 ,
〈

J0|H0|J
(±)
j

〉
̸= 0 ⇒

|J1⟩ = c+1,+c2,+|J0⟩
|J4⟩ = c+4,+c3,+|J0⟩∣∣∣J±j>4

〉
= c+j±1,σj

cj,σj |J0⟩

⟨J0|H0|J1,4⟩ =
〈

J0|H0|J±j>4

〉
= −t

eik.J1 = e−ik1 eik.J0 eik.J4 = eik2 eik.J0

eik.J±j>4 = e±ikj−2 eik.J0

. (13)
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In addition an important relationship between eik.J0 , eiT12k.J0 , valid also for H1 triplet and singlet
scattering, can be deduced from Eq.(13)

eik.J0

eiT12k.J0
=

e
i
2 (k1r2+k2r3)

e
i
2 (k2r2+k1r3)

=
e

i
2 (k2−k1)

e
i
2 (k1−k2)

. (14)

Replacing xP, xT12P, zP, zT12P by x(k1, k2), x(k2, k1), z(k1, k2), z(k2, k1) and taking advantage of
Eqs.(12,13,14) give

z(k1,k2)
z(k2,k1)

= e
i
2 (k2−k1)

e
i
2 (k1−k2)

t(e−ik1+eik2)+ϵ(k1)+ϵ(k2)

t(e−ik2+eik1)+ϵ(k1)+ϵ(k2)

= e
i
2 (k2−k1)

e
i
2 (k1−k2)

eik1+e−ik2

eik2+e−ik1
= 1 ⇒ x(k2,k1)

x(k1,k2)
= −1

.

Applying this equation with any P, such that P(k1) = ki, P(k2) = k j, leads finally to
x(ki ,kj)
x(kj ,ki)

=

−1, ∀i, j ̸= i. Noteworthy is that z(k1, k2), z(k2, k1) are found to be complex conjugate of each
other, a property which will be seen to hold for all other kinds of two-body scattering investigated

in this work. Therefore it is convenient to recast
x(ki ,kj)
x(kj ,ki)

= −1 as

x
(
ki, k j

)
x
(
k j, ki

) = e2iθt(ki ,kj) ⇒ θt
(
ki, k j ̸=i

)
=

π

2
. (15)

Remarkably, θt is constant and thence independent from t, U0.
• H0-singlet scattering Here are the properties of the

∣∣Jj
〉

states

|J0⟩ = c+2,+c+2,− ∏n+1
j=4 c+

j,(−1)j |0⟩〈
J0|H0|J±j

〉
̸= 0 ⇒

∣∣J±1 〉 = c+1,±c2,±|J0⟩∣∣J±3 〉 = c+3,±c2,±|J0⟩∣∣∣J±j>3

〉
= c+j±1,σj

cj,σj |J0⟩

⟨J0|H0|J0⟩ = U0,
〈

J0|H0|J±1,3,j>3

〉
= −t

eik.J±1 = e−ik1 eik.J0 , eik.J±3 = eik2 eik.J0

eik.J±j>3 = e±ikj−1 eik.J0

. (16)

It is inferred from eik.J0 = eiT12k.J0 and Eq.(16)

z(k1,k2)
z(k2,k1)

=

U0−2t(e−ik1+eik2)−ϵ(k1)−ϵ(k2)

U0−2t(e−ik2+eik1)−ϵ(k1)−ϵ(k2)
=

U0/t−e−ik1+eik1−eik2+e−ik2

U0/t−eik1+e−ik1−e−ik2+eik2
=

U0/(2t)+i(sin k1−sin k2)
U0/(2t)−i(sin k1−sin k2)


⇒

x(k1,k2)
x(k2,k1)

= − z(k2,k1)
z(k1,k2)

= sin k2−sin k1+iU0/(2t)
sin k2−sin k1−iU0/(2t)

.

Applying this equation with any P, as done in Eq.(15), leads finally to

x(ki ,kj)
x(kj ,ki)

= e2iθs(ki ,kj) ⇒

tan θs
(
ki, k j ̸=i

)
= U0

2t(sin kj−sin ki)

. (17)
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Substituting the short-cut x
(
ki, k j

)
to xP is seen to be vindicated by θt,s

(
ki, k j

)
showing up indeed

independent from every kl ̸=i,j in Eqs.(15,17). This fortunate property could be established owing
to a dedicated choice of |J0⟩.

• H1-triplet scattering The properties of the
∣∣Jj
〉

states are as follows for n < N − 1

|J0⟩ = c+2,+c+3,+ ∏
n
2 +1
j=3 c+2j,+c+2j,−|0⟩

⟨J0|H1|J0⟩ = U1 − J〈
J0|H1|J

(±)
j>0,(±)

〉
̸= 0 ⇒

|J1⟩ = c+1,+c2,+|J0⟩
|J4⟩ = c+4,+c3,+|J0⟩∣∣∣J±j>2,+

〉
= c+2j±1,+c2j,+|J0⟩∣∣∣J±j>2,−

〉
= c+2j±1,−c2j,−|J0⟩

⟨J0|H1|J1,4⟩ =
〈

J0|H1|J±j>2,±

〉
= −t

eik.J1 = e−ik1 eik.J0 , eik.J4 = eik2 eik.J0

eik.J±j>2,+ = e±ik2j−2 eik.J0

eik.J±j>2,− = e±ik2j−3 eik.J0

. (18)

Since Eq.(14) applies to this case too, it is inferred from Eq.(18)

z(k1,k2)
z(k2,k1)

= e
i
2 (k2−k1)

e
i
2 (k1−k2)

t(e−ik1+eik2)−U1+J+ϵ(k1)+ϵ(k2)

t(e−ik2+eik1)−U1+J+ϵ(k1)+ϵ(k2)

=
e

i
2 (k2−k1)− 2t

U1−J cos
(

k1+k2
2

)
e

i
2 (k1−k2)− 2t

U1−J cos
(

k1+k2
2

) ⇒ x(kj ,ki)
x(ki ,kj)

=
sin
(

ki−kj
2

)
+i
(

cos
(

ki−kj
2

)
− 2t

U1−J cos
(

ki+kj
2

))
sin
(

ki−kj
2

)
−i
(

cos
(

ki−kj
2

)
− 2t

U1−J cos
(

ki+kj
2

))
= e2iθt(ki ,kj)

,

which yields finally for θt
(
ki, k j

)
tan θt

(
ki, k j ̸=i

)
=

cos
ki−kj

2 − 2t
U1−J cos

(
ki+kj

2

)
sin
(

ki−kj
2

) . (19)
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• H1-singlet scattering The properties of the
∣∣Jj
〉

states are as follows

∣∣J+0 〉 = c+2,+c+3,− ∏
n
2 +1
j=3 c+2j,+c+2j,−|0⟩∣∣J−0 〉 = c+2,−c+3,+ ∏
n
2 +1
j=3 c+2j,+c+2j,−|0⟩〈

J+0 |H1|J+0
〉
= U1

〈
J+0 |H1|J−0

〉
= −J〈

J+0 |H1|J
(±)
j>0,(±)

〉
̸= 0 ⇒

|J1⟩ = c+1,+c2,+
∣∣J+0 〉

|J2⟩ = c+2,−c3,−
∣∣J+0 〉

|J3⟩ = c+3,+c2,+
∣∣J+0 〉

|J4⟩ = c+4,−c3,−
∣∣J+0 〉∣∣∣J±j>2,+

〉
= c+2j±1,+c2j,+

∣∣J+0 〉∣∣∣J±j>2,−

〉
= c+2j±1,−c2j,−

∣∣J+0 〉〈
J+0 |H1|J1,..4

〉
=
〈

J+0 |H1|J±j>2,±

〉
= −t

eik.J−0 = eik.J+0

eik.J1 = e−ik1 eik.J+0 , eik.J3 = eik1 eik.J+0

eik.J2 = e−ik2 eik.J+0 , eik.J4 = eik2 eik.J+0

eik.J±j>2,+ = e±ik2j−2 eik.J0

eik.J±j>2,− = e±ik2j−3 eik.J0

. (20)

Since Eq.(14) is valid in this case too, it is inferred from Eq.(20)

z(k1,k2)
z(k2,k1)

= e
i
2 (k2−k1)

e
i
2 (k1−k2)

×
U1−J−t(eik1+e−ik1+eik2+e−ik2)−ϵ(k1)−ϵ(k2)

U1−J−t(eik1+e−ik1+eik2+e−ik2)−ϵ(k1)−ϵ(k2)

= e
i
2 (k2−k1)

e
i
2 (k1−k2)

⇒ x(kj ,ki)
x(ki ,kj)

= − e
i
2 (kj−ki)

e
i
2 (ki−kj)

= e2iθs(ki ,kj)

,

which yields finally for θs
(
ki, k j

)
θs
(
ki, k j ̸=i

)
=

π − ki + k j

2
. (21)

Unlike θt in Eq.(19), θs shows up independent from t, U1, J.

4. 3-Boundary condition

The hereabove results will be taken advantage of, in order to show that the ki=1,..n’s are related to
one another through a boundary condition, ensueing from Eq.(5). To that end, the permutations P1, PN
and n-electron states |I1⟩, |IN⟩ are needed

P1(ki=1,..n) = ki
PN(ki=1,..n−1) = ki+1, PN(kn) = k1

}
⇒

PN = ∏n
j=2 T1jP1 ⇒ xPN = e2i ∑n

j=2 θβ(k1,kj)xP1

|I1⟩ = ∏n
j=1 c+j,σj

|0⟩
|IN⟩ = c+N,σ1

c1,σ1 |I1⟩

}
⇒ eiPN k.IN

eiP1k.I1
= eiNk1

, (22)
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with σj=1,..n−1σj+1 > 0 (< 0) for β = t (β = s). Besides, it is convenient to take the sequence {ki=1,..n},
such that ki=1,..n−1 < ki+1. Then the sought boundary condition reads by substituting T1iP1, Ti1PN to
P1, PN in Eq.(22) and applying it further to any ki>1

xP1 eiP1k.I1 = xPN eiPN k.IN ⇒

ei
(

Nki=1,..n+2 ∑n
j=1 θβ(ki ,kj ̸=i)

)
= 1 ⇒

ki = 2παi=1,..n − 2
N ∑n

j=1 θβ

(
ki, k j ̸=i

) , (23)

with αi=1,..n = mi
N and the integers mi=1,..n ∈ [1, N] ⇒ αi=1,..n ∈ [0, 1]. At last taking the limit

N → ∞, n → ∞, n
N → c0 ∈ [0, 1] yields

k(α ∈ [0, 1]) = 2πα − 2
∫ π
−π θβ(k, u)ρβ(u)du

ρβ(k)dk = dα ⇒
ρβ(k) = dα

dk = 1
2π +

∫ π
−π

∂θβ

∂k (k, u)ρβ(u) du
π

εβ =
∫ π
−π ϵ(k)ρβ(k)dk , c0 =

∫ π
−π ρβ(k)dk

, (24)

for which c0, εβ=t,s, ρβ(k) stand for the whole electron concentration, triplet or singlet energy per site
and corresponding one-electron density of states, respectively. Though each eigenvalue εβ=t,s is seen to
read as a sum over one-particle energies ϵ(k), as is the case for independent electrons[9], there is a one
to one correspondence between εβ and its associated, he−e-dependent ρβ(k), whereas the density of
states is unique for all many independent electron states. Moreover, since each eigenvector ψ is defined
by a unique sequence {ki=1,..n}, two different eigenvectors do not even belong in the same vector space,
because their respective {ki=1,..n}-dependent bases {ϕP} are thence linearly independent from each
other.

Solving Eq.(24) for the groundstate energy will be done below as follows

ρβ(k) = 1
2π +

∫ kβ

−kβ

∂θβ

∂k (k, u)ρβ(u) du
π = 1

2π+∫ kβ

0

(
∂θβ

∂k (k, u)ρβ(u) +
∂θβ

∂k (k,−u)ρβ(−u)
)

du
π

, (25)

with kβ ∈ [0, π]. Besides Eqs.(15,17,19,21) imply

∂θβ

∂k
(k, u) =

∂θβ

∂k
(−k,−u),

∂θβ

∂k
(k,−u) =

∂θβ

∂k
(−k, u),

whence it is inferred ρβ(k) = ρβ(−k), so that Eq.(25) can be recast as

ρβ(k) =
1

2π
+
∫ kβ

0
gβ(k, u)ρβ(u)

du
π

, (26)

with gβ(k, u) =
∂θβ

∂k (k, u) +
∂θβ

∂k (k,−u). By discretising
[
0, kβ

]
⇒ k j=1,..m = j−1

m−1 kβ and calculating the
integral in Eq.(26) with help of Simpson’s rule, Eq.(26) will be eventually solved below for ρβ(k), as a
Cramer system, comprising m equations in terms of the unknowns ρβ(k j=1,..m), while ∂θt

∂k (k, u), ∂θs
∂k (k, u)

are taken from Eq.(15),Eq.(17) (Eq.(19),Eq.(21)), respectively, in case of H0 (H1). Finally the groundstate
energy εg is achieved by reckoning ct, εt, cs, εs as follows

cβ(kβ=t,s) = 2
∫ kβ

0 ρβ(k)dk

εβ(kβ) = 2
∫ kβ

0 ϵ(k)ρβ(k)dk
. (27)

Assigning the values of kt(c0), ks(c0) thanks to the constraint ct = cs = c0 gives finally access to εg(c0)

as the lower of εt(kt(c0)), εs(ks(c0)).
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5. 4-Groundstate energy for H0

θt being constant in Eq.(15) entails via Eq.(26) ρt(k) = 1
2π , ∀k, which further implies thanks to

Eq.(27)
ct =

kt
π

εt = − 2t
π sin kt

}
⇒ εt(ct) = −2t

π
sin(πct), (28)

which shows up independent from U0. The εt(c0), εs(c0) data have been plotted in Fig.3. The inequality
εs(c0 ∈ [0, 1]) < εt(c0) can be seen to hold for any U0

t value. A comparison with groundstate energies
η1(c0), reckoned with a previous version of Bethe’s wave-function[6], reveals that the inequality
εs(c0) < η1(c0) is found to hold for U0

t < 4, whereas the opposite one εs(c0) > η1(c0) is observed for
U0
t > 4. Actually this discrepancy results from εs(c0) being calculated for singlet electrons only, whereas

η1(c0) has been worked out for a mixture of singlet and triplet electrons. Therefore it can be explained
as follows: the smaller U0

t is, the bigger ρs(k) is with respect to ρt(k) = 1
2π for k < π

2 , so that refraining
from mixing singlet and triplet electrons causes εs(c0) < η1(c0). Contrarily, εs(c0) is seen to merge into
εt(c0) for U0

t → ∞, because of θs(ki, k j) → θt =
π
2 as seen in Eqs.(15,17). Consequently, U0

t → ∞ entails
that ρs(k < π

2 ) → ρt, ρs(k > π
2 ) < ρt, so that the singlet-triplet mixture favours eventually the opposite

conclusion η1(c0) < εs(c0) for U0
t > 4.

H0.pdf

Figure 3. Plots of εt(c0), as given in Eq.(28) (white square), εs(c0) (solid line, dashed line, dotted line,
dashed-dotted line) and η1(c0) (white triangle, white circle, white diamond, ×), calculated for H0 with
γ = U0

t = 1, 2, 4, 8, as said in the text.

Furthermore it is in order to compare εs with the electronic energy η2, obtained with help of the
correlated Fermi gas (CFG) model[7] in normal metals, the characteristic features of which will be
recalled now for self-containedness. Each independent-electron band of dispersion ϵ(k ∈ [−π, π]), as
given in Eq.(1), accommodating at most 2 electrons of opposite spin direction per site, splits into one
singlet and one triplet band, each of them accommodating at most 1 electron per site. The corresponding
dispersion curves ϵs(k), ϵt(k) read for the general Hamiltonian H as follows

ϵt(k) = ∑k′
〈

0
∣∣∣ck,σck′ ,σ Hc+k′ ,σc+k,σ

∣∣∣0〉
ϵs(k) = ∑k′

〈
0
∣∣∣ck,σck′ ,−σ Hc+k′ ,−σc+k,σ

∣∣∣0〉 , (29)

for which
〈

0
∣∣∣ck,σc+k,σ

∣∣∣0〉 =
〈

0
∣∣∣ck′ ,±σc+k′ ,±σ

∣∣∣0〉 = 1 has been assumed and c+k,σ, ck,σ are one-electron
creation and annihilation operators on the Bloch[9] state |k, σ⟩

|k, σ⟩ = c+k,σ|0⟩ , |0⟩ = ck,σ|k, σ⟩ .
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Besides, the calculation requires the expression of H in momentum space, which will be taken from
a previous work[8] for illustration in case of H0, H1. Note that ϵt(k), ϵs(k) are found in general to
depend not only on he−e but also on the concentration of singlet or triplet electrons cs, ct and there is
ϵt(k) = ϵt(−k), ϵs(k) = ϵs(−k). Then both singlet and triplet bands are populated in accordance with
Fermi-Dirac statistics[9], which yields in the d = 1 case at T = 0K

cs =
ks
π , ηs =

∫ ks
0 ϵs(k) dk

π , ϵs(ks) = EF

ct =
kt
π , ηt =

∫ kt
0 ϵt(k) dk

π , ϵt(kt) = EF
c0 = cs + ct , η2(c0) = ηs(cs) + ηt(ct)

, (30)

with EF, ηs, ηt standing for the Fermi energy[9] and the partial singlet and triplet energy, respectively.
The expressions of ϵt, ηt, ϵs, ηs are recalled[7] to read for the Hubbard model

ϵt(k) = ϵ(k), ηt = − 2t
π sin kt

ϵs(k) = ϵ(k) + U0
cs
2 , ηs = − 2t

π sin ks + U0
c2

s
2

.

Unlike εs ̸= η1, the energies η1, η2 have been found[7] quite close to each other, namely there is∣∣∣∣1 − η1(c0, U0
t )

η2(c0, U0
t )

∣∣∣∣ < .01 for all c0, U0
t -values. As a matter of fact this agreement is all the more baffling,

since η1 is a true eigenvalue, whereas η2 comes out of a variational calculation, and furthermore the
associated eigen- and variational many-electron states belong in quite different vector spaces. Hence
this unexpected feature is likely to stem from both states comprising singlet and triplet electrons.

6. 5-Groundstate energy for H1
∂θs
∂k (k, u) = −.5 is inferred from Eq.(21) to be constant, which entails owing to Eq.(26) that

ρs(k) = 1
2(ks+π)

is constant too, and eventually thanks to Eq.(27)

cs =
ks

ks+π ⇒
εs = − 2t

ks+π sin ks = − 2t
π (1 − cs) sin

(
πcs

1−cs

) . (31)

H2.pdf

Figure 4. Plots of εs(c0), as given in Eq.(31) (white square), εt(c0) (solid line, dashed line, dotted line,
dashed-dotted line) and η2(c0) (white triangle, white circle, white diamond, ×), calculated for H1 with
γ = U1−J

t = 1, .75, .5, .25 and J = .1U1, as said in the text.
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It results from Eq.(31) that cs ≤ .5 and εs(cs) shows up independent from U1 − J. As a matter of
fact, there is no meaningful εt solution either, i.e. with ρt(k) > 0, ∀k, for ct > .5. The εt, εs data, plotted
in Fig.4, show that the inequality εt(c0) < εs(c0) holds for all γ-values.

Implementing Eqs.(29,30) for H1 yields

ϵt(k) = ϵ(k) + (U1 − J)
(

ct +
sin(k−kt)−sin(k+kt)

2π

)
ηt = − 2t

π sin kt + (U1 − J)
(

c2
t +

cos(2kt)−1
2π2

)
ϵs(k) = ϵ(k) + U1cs + J sin(k+ks)−sin(k−ks)

π

ηs = − 2t
π sin ks + U1c2

s + J 1−cos(2ks)
π2

.

The η2 data have been plotted in Fig.4. The inequality η2(c0) < εt(c0) is seen to hold for all c0 < .5
values and is likely to ensue again from the CFG state, including triplet and singlet electrons with
ct ≈ cs ≈ c0

2 , ∀c0, by contrast with Bethe’s wave-function of eigenvalue εt(c0) comprising only triplet
electrons.

7. 6-Discussion

Since the groundstate is widely believed to describe the properties of any physical system at
T = 0K, it is of significance to sort, out of the various many electron states, discussed hereabove, that
one, likely to account at best for the observed properties of interacting electrons. To that end, it should
be noticed that all of them share a common property, namely the total energy ε consists in a sum
over one-fermion energy either ϵ(k) or ϵβ=s,t(k). Thus, the groundstate can be built[9] by populating
every one-electron state from the bottom of the one-electron band, corresponding to ϵ(k = 0), up
to a c0 dependent upper bound, designated as the Fermi energy EF. The reader can check that this
requirement is met by all kinds of many-electron states of concern hereabove, i.e. Bethe’s wave-function
and CFG states. However Fermi-Dirac statistics requires in addition at T = 0K that the relationship
EF = ∂ε

∂c0
hold[9,10]. Obviously solely the CFG solution meets successfully this constraint, because

it obeys Fermi-Dirac statistics by definition (see EF = ϵt(kt) = ϵs(ks) in Eq.(30)), whereas there is
EF ̸= ∂ε

∂c0
for all kinds of Bethe’s wave-functions, studied here and elsewhere[3,4,6]. Yet, as seen above,

the CFG solution is not the groundstate for H0 in case of U0
t < 4.

Buttressing the claim that the CFG state is observable would help validate this analysis. To that
end, let us discuss electron spin resonance (ESR) in case of H1. Applying an external magnetic field H
lifts[11] the degeneracy between the respective energies of one-electron states ϵ±(k) of c+k,+

∣∣∣0〉, c+k,−

∣∣∣0〉
for triplet electrons as follows

ϵ±(k) = f (k, k±(H))± µH
2

f (k±(H), k±(H))± µH
2 = EF(H)

,

for which µ stands for the electron magnetic moment and there is f (x, y) = ϵt(x), taken from Eq.(29)
with x = k and y = k±(H) instead of kt in case of H ̸= 0, which thence implies f (kt, kt) = EF(H = 0).
Then the experiment consists of measuring the absorption of a resonant electromagnetic field of
frequency ω, such that h̄ω = f (k+, k+)− f (k+, k−), which implies

ω =

1 +
∂ f
∂y (kt, kt)

∂ f
∂x (kt, kt) +

∂ f
∂y (kt, kt)

µH
h̄

. (32)

Remarkably the singlet electrons are seen not to contribute to the ESR signal, because their associated
many-electron state is not degenerate at H = 0, due to the electrons of spin ±σ keeping same concen-
tration = cs

2 even for H ̸= 0. Actually the ESR signal has been observed[11] but in a paucity of cases,
namely alcali, noble metals and Al at ω

H ≈ 3GHz/KG. This might stem from ∂ f
∂x (kt, kt) +

∂ f
∂y (kt, kt) ≈ 0
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in Eq.(32), which would shift ω upward at fixed H. Hopefully this work might kindle attempts at
seeking the ESR signal in the IF rather than microwave range, as done usually[11] with H < 10KG.

8. Conclusion

Bethe’s wave-function has been shown to subtend the subspace of scattering eigenstates of the
d = 1 Hubbard Hamiltonian. Though this analysis is independent of a previous one[3,4], both pieces
of work lead to the same conclusions, summarised by Eqs.(3,7). The two-body scattering plays a key
role. Likewise, though the Coulomb force does not depend on the spin of both electrons, involved
in the scattering process, its outcome does indeed (see Eqs.(15,17,19,21)), as a consequence of Pauli’s
principle. This analysis can be applied to any realistic d = 1 Hamiltonian, which has been exemplified
on H1. Nevertheless Bethe’s wave-function turns out to be of limited significance in condensed matter
physics, because it has been shown not to be observable. Actually, the groundstate can be observed
at T = 0K solely for atoms, molecules and insulators. Conversely it cannot in superconducting and
magnetic compounds and in normal metals, because, as argued elsewhere[7], there are two kinds of
conduction electrons at thermal equilibrium with one another in each case, namely normal versus
superconducting, normal versus magnetic and triplet versus singlet electrons, respectively.
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