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Abstract: The scattering eigenstates of any Hamiltonian of electrons, coupled through a two-body force and moving
on a one-dimensional lattice, are shown to be Bethe’s wave-functions. The energy of the groundstate is compared
with values, obtained previously for the Hubbard Hamiltonian by means of Bethe’s wave-function and within the
framework of the correlated Fermi gas. The same analysis is applied to electrons, interacting on neighbouring

sites. The significance of those various groundstates is assessed with help of thermodynamics.
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1. Introduction

Bethe’s wave-function was initially devised to diagonalise the Heisenberg[1,2] Hamiltonian for an
infinite, one-dimensional (d = 1) lattice and was later extended[3,4] to the d = 1 Hubbard Hamiltonian.
However, since those analyses resort heavily to technical peculiarities, associated with the concerned
Hamiltonians, Bethe’s wave-function could not be applied to any d > 1 model[5], nor to other d =1
Hamiltonians. Therefore this article is aimed at showing that Bethe’s wave-function gives access to the
eigenspectrum of every realistic d = 1 Hamiltonian. Then the groundstate energy will be compared
with data[6], obtained previously for the Hubbard Hamiltonian[3,4]. An additional comparison will
be carried out with the data, resulting from the correlated Fermi gas model, introduced recently[7]
to account for the properties of interacting electrons in normal metals. This method will be further
applied to electrons interacting on neighbouring sites[8], which was believed so far to lie out of the
scope of Bethe’s wave-function[1-4].

Here is the outline : the proof of Bethe’s wave-function being a many-electron eigenstate is laid out
in section I and the general expression of the corresponding eigenvalue is worked out; the two-body
scattering is studied in section II for two different 4 = 1 Hamiltonians, whereas section III will be
concerned with the prominent role of a boundary condition; the groundstate energy, associated with
each of the two mentioned models, is reckoned and compared with data, obtained by other methods,
in sections IV and V; the various many-electron states, discussed here, are analysed comparatively in
section VI; at last, the main results are summarised in the conclusion.

2. 1-Diagonalisation

Let us consider n >> 1 of electrons moving on a d = 1 lattice, comprising an even number
N >> 1 of atomic sites, labelled by the index i = 1,..N. The lattice parameter is taken equal to unity
and each site can accommodate at most two electrons of opposite spin ¢, which implies n < 2N. The
Hamiltonian H, governing the electron motion, then reads

H=he+he— ,

wherein h,, h,_. describe the one-electron hopping between first neighbours and the two-electron
interaction, respectively. Hence h, reads[9]

he=—t) (cifac]-,(, + c;;,cl-lg> ,

ij,0
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wherein the sum is carried out over o = +1,i =1,..N — 1 with j = i + 1 and c;"
creation and annihilation operators on the Wannier[9] state |, o)

i.ov Cio are one-electron

li,o) =ci,10) . [0) =ciglio)
with |0) referring to the no electron state. Then t designates the hopping integral
= [(0lejo Ve 10)]

with V._, standing for the electron-nucleus Coulomb potential. The resulting one-electron energy
dispersion €(k € [—7t, 7t]) reads[9]
e(k) = —2tcosk . (1)

he_. will be referred to as hy, hy for two electrons sitting on the same site, which characterises the
Hubbard model, or on first neighbours. They read[8]

ho = UOEZ 1Clg' 1+— Cz (TClU
Uy = (0]¢j—gCig Ve gcz Ucz +0)
Ho = he + ho
= Yije ((u — )y oChtin
'Hllclg i~ Cj,—cCio — ]ng i~ ],(rci,—a)
Uy = (0]¢jeCio Ve—ec; Uc]U|O)
]: <0|Cj,l7'ci Vf ecz(rcj (7|0>
Hy =he+m

, ()

wherein Uy, U; and | designate[9] Coulomb and exchange integrals, respectively, and V,_, refers to
the electron-electron Coulomb potential.

The n-electron states make up a Hilbert space of dimension dy = 211\] ), subtended by the

basis {|I =1,..do) } with each |I) reading |I) =[Tj_; ¢ l P
the site i;. The sites are ordered such that i; <ijy4, except in case of double occupancy, characterised
by i; = ij;1 and 0joj 1 < 0. Let us introduce now a sequence of n real numbers kj_1,_,, € [—7, 7] and
¢ defined as

|0). The j*" electron, having spin ;, sits on

d,

b1 = ZO; del|py ekl = o D=1k

=1
with r;—1 n being the position vector of site .
The group of permutations P of n objects is assumed to act on ¢; as follows

d() JR—
; ; L P(k)ri.
¢p =P = Y eP*I|I), PRI = R ])T’J,

wherein there is a one-to-one correspondence k; EA k= P(k]-) between kj_1, , and kj_1, ,,. At last, the
Hamiltonian H is projected onto the subspace, subtended by 1! of ¢p’s, so that every eigenvector of H
is found to read as a linear combination of the ¢p’s

=Y xppp = ZE(xpeiPk'I) I 3)
P TP

wherein n! of xp’s are complex numbers to be determined below. This last term on the right-hand
side of Eq.(3) is recognised to be identical to the expression of Bethe’s wave-function in Eq.(9) of [4]
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and extends thereby its validity to any d = 1 Hamiltonian, as illustrated below for H;. However
noteworthy is that n! may become bigger than d for n close to N, in which case the ¢p’s are no longer
linearly independent from one another.

10.pdf

Figure 1. Sketch of |Iy), defined by Eqgs.(4,8) for Hy, Hy, respectively, and sites i = 1,..6; dots and
+, —, % signs refer to an empty site or one accommodating either one electron of spin 1 or —1 or two
electrons of opposite spin £1, respectively.

The expression of the eigenvalue ¢,, associated with ¢ in Eq.(3), will now be worked out for
n < N in the case of the Hubbard Hamiltonian Hy. To that end, the particular n-electron state |Iy),
sketched in Fig.1, is defined as

n
— +
|IO> _]I;{Cj,(—l)j|0> ’ (4)
while assuming the boundary conditions

hell,0) = —t(|2,0) + |N, o))

5
elN,0) = ~1{]1,0) + [N = 1,0)) ©
Thus |Iy) is seen to have the properties
(Io|Hollo) =0 , <10|H0|1ji> #0=
+ _ :
‘Ijzl,‘.n> - C]ttl,(—l)jcjl(fl)]|10> = . (6)

kI ik i
<10|H0|1ji>:—t B I

Eq.(6) then entails
(Io|Ho|¢1) = —te™lo yt_, (eikj n efik])
= eik.IO 27:1 G(k])
with e(k]-) defined in Eq.(1). Extending this equation to every ¢p and applying it further to the

Schrodinger equation (Hy — Ne. )¢ = 0, with ¢ defined by Eq.(3), yields finally the energy per site ¢,
as

7

<IQ|H0 — N€e|lp> =0=
}1:1 5(;‘/) T xpeiPRlo — ¢, T xpeiPklo = | %
n e(k/-)
j=1 "N

Ee =
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Proceeding for Hj similarly as done for Hy, |Iy), sketched in Fig.1, will be defined for even n < N

as
n/2

) = TTegs e o) ®
]:
Assuming again the conditions in Eq.(5), |Iy) is inferred to have the properties

(olFll) =0, (Io|Hi|I%) #0

+ — -t .
= I] 1,.2 +> - C2ji1,+c2],+|10>
+ _ -t .
I] 1,.2,— >— CZjil,—CZJ,*’IO> ©)
7
+
N ezk I/ 1. ng o e:l:zkz]ezk,lo
T
elk.I/-:L“%ﬁ _ e:l:ikzj,leik.lo
which entails for every P
(To| Halgp) = —teiPllo gt (&) 4 ¢~ P4
— piPkIy 231 (k )

Taking advantage of (Iy|H; — Ne.|p) = 0, as done in Eq.(7), yields for ¢, the same expression as already
given in Eq.(7). This latter expression of ¢, is recognised to be identical to Eq.(11) of [4]. Likewise, since
it consists in a sum over one-particle energies, it is typical of a many-electron scattering state, so that
the many bound electron states of Hy, H1, addressed elsewhere[8], are left out of the purview of this
work. Nevertheless it is worth noticing that ¢, could be achieved thanks to a careful, model dependent
choice of |Ip) (see Egs.(4,8)). Though ¢, is independent from the two-electron coupling, h,—, will prove
below quite instrumental in assigning the xp values.

But before doing that, it is in order to derive the expression of the energy ¢, valid for n € [N, 2N],
by replacing electrons by holes. To that end, we begin with recasting k., ho, h1 as

_ . ot . ct
he =t Zi,j,a (C]/ffci,tr + Cl/VC]',U)

_ N . X + +
ho = Up }.;4 CioCi,—oC; _Cio

hl = Eijg’((ul - ])Ci LTC],D'C] gClJrg

o+ +
—Hl]CZUC] ‘TC]—UHT Icl ‘TC]‘TC]—UCHT)

Any n-hole state |I = 1,..dy) reads |I) = 7 1Ci;0|2), with |2) characterised by each of N sites
accommodating 2 electrons. Then substituting |2) to |O> in Egs.(4,8) and ¢;; to c »in Egs.(4,6,8,9), and
proceeding as done above for electrons yields the following expression for the energy per site of a
n-hole state

n
en=en(2) =) (10)
with ¢,(2) = Up and ,(2) = 2(1 — &)(2U; — ]) being the energy per site of |2) for Hy and Hj,
respectively.

3. 2-Two-body scattering

The xp coefficients will be assessed by analysing the two-body scattering, embodied by hy, ;.
As a matter of fact, the latter turns out to be model dependent and to differ according to whether
both electrons, partaking in the scattering process, have parallel or anti-parallel spin, which is referred
to below as triplet or singlet case, respectively, for the sake of comparison with a previous work][7].
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The general procedure, used to calculate the xp’s, is to be sketched now. First a n-electron state |Jy) is
culled in order to illustrate the two-body scattering. It can be seen in Fig.2 to differ from |Ij) in Fig.1,
merely by both electrons, involved in the scattering process and located on sites r;-4. Accordingly
it is convenient to make use of transpositions T;;, defined by T;;(k;) = k;j, Ti;(k;) = ki, Tij(ki£i ;) = ki,
which enables us to recast A = (Jo|H — Ne.|¢) = 0, with ¢ given by Eq.(3), as

A=YpBp=0

Bp = (Jo|H — Nec|xppp + xnzp¢nzp>
= Xpzp + XT,PZT},P

zg = ¥ ¢ (Jo|H|Jj) — Neee'&h

(11)

wherein Q stands for P, T1; P and the sum over P is to be carried out on (n — 2)! of pairs {P, T1oP},
whereas the subset of n-electron states |J;) is characterised by (Jo|H|J;) # 0. Then A = 0 in Eq.(11)
will be fulfilled by requiring

XTpP _ 2P
Xp ZT;,P

Bp =0,VP =

(12)

JO.pdf

Figure 2. Sketch of |Jo) in Eqs.(13,16,18) and | Iar ) in Eq.(20); the various symbols have the same
meaning as in Fig.1.

® Hy-triplet scattering Taking P(kal,..n< N_1) = k]- for simplicity, because the final result will
prove P independent, yields the following properties for the |J;) states

Joh = cfch, TI2E" 10
(Jo|HolJo) =0 , <]o|H0|]j(i)> #0=
) = a4 lfo)
Ja) = ¢i c3+1Jo)
]]>4 ]ilrrc]‘fjlj(])

(Jo|HolJ1,4) = <]0|H0|Ij>4> =—t
okt — pikipikJo  pikJs — piks pikJo
Zk]>4 — ptikj-2,ik.Jo

(13)
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In addition an important relationship between e*/o, ¢/T12k-Jo, valid also for H; triplet and singlet
scattering, can be deduced from Eq.(13)

eik-Jo es(kirathkars) o5 (ka—ki)

- = — = — . 14
elT12k-]0 E% (kz'r‘z +k11’3) E% (k1 —kz) ( )

Replacing xp, X1,,p, zp, z1,,p by x(k1,k2), x(ka, k1), z(k1,k2),z(k2, k1) and taking advantage of
Eqgs.(12,13,14) give '
liydy) _ chllarty) He ) el el
zlkakr) 5 (kik) t(e 241 ) e (ki) +e(ks)
_ enlkamk) giky =iy x(koky) _ 4
oa(ki—kp) R e~ T 1= Sk = 71

Applying this equation with any P, such that P(k;) = k;, P(kz) = k;, leads finally to EI; ];; =

—1,Vi,j # i. Noteworthy is that z(kq, ky), z(kp, k1) are found to be complex conjugate of each
other, a property which will be seen to hold for all other kinds of two-body scattering investigated

in this work. Therefore it is convenient to recast ig:llz] ; =-las
]V 1
xkiky) _ in(riky) g, (i ki) = (15)
) S

Remarkably, 8; is constant and thence independent from ¢, U.
* Hy-singlet scattering Here are the properties of the |] ;) states

|]0> = C2+,+C2+,— H7:+41 C;(,l)j|0>
(JolHolJF) #0 =

i) = )
5) = C;iC2i|IO>
(16)
]]>3 ]:tla Cjoj Jo)
(Jo|HolJo) = U, <]0|Ho|]1,3,j>3> =—t
ek T — o—iky eikJo, ek Ty — pika ik Jo
1k ] i3 — eizk] 1ezk To
It is inferred from ek-Jo = ¢iT12k-Jo and Eq.(16)
z(kiky) _
(kz kl)
(e*’k1+e’k2) ki)—e(kz)
<87'k2+e‘k1) )*E(kz) =
UQ/t eilkl J,-g’kl g’k2+g*ik2 o =
uo/t_eikl J,-e*ikl _efikz_,’_eikz -
Uy / (2t)+i(sinky —sinky)
Uy/ (2t)—i(sink; —sinky)
x(k1,kz) _ 7Z(k2,k]) _ sinkz—sink1+il,lo/(2t)
X(kz,kl) - Z(kl,kz) - sinkz—sinkl—illo/(Zt)
Applying this equation with any P, as done in Eq.(15), leads finally to
x(kiky) _ i (kik) —
x (ki ki 17)

i) .
tanG (kzlkﬁéz) = (#

2t(sink;—sin ki)
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Substituting the short-cut x (k;, k;) to xp is seen to be vindicated by 6; s (k;, k;) showing up indeed

independent from every k;; ; in Eqs.(15,17). This fortunate property could be established owing
to a dedicated choice of |]o).
* Hj-triplet scattering The properties of the |] ;) states are as follows forn < N —1

Jo) = ¢ +C3+H] =3 C2]+C2j,—|0>
(JolH1lJo) = Uy — ]
+
<Jo|H1|f}>3,(i)> £0=
1) = ¢ e+ 1Jo)
Ja) = c3 ,cs,+ 1))
_ ot
]]>2+ = Cj1,4 91 1J0) : (18)
_ ot
]]>2 — ) = Cjx1,-Cj,— o)
(Jo|H1|J1,4) = <]0|H1| >2i> —t
lk h — e*l’k]eik.]()/ lk ]4 — elkzelk ]0
lk]>2+ — pTtkaj2,ik.Jo
elk‘]j>2,— — pTtkaj-3pik.Jo

Since Eq.(14) applies to this case too, it is inferred from Eq.(18)
e Mol 2) Uy +]+e(kr)+e (k)

e k2461 ) — U+ +e(ky ) +e(kz)
Ky +k
1+2) N x(kjk;)

2(kiky)  eh(ka ki) ¢
z(kakr) 5 (k) ¢

(

, (
e%(kz_kl)—ul—t_ os(
£

el (k1—ka) _ uz—t_l cos

kk]

sin( —— | +i| cos

= ki—k ki—k; ki+k;
s1n(—2 ]2—i<cos( 12 ]>——U12t_ cos( 12 ]>>

— p2ibe(kikj

which yields finally for 6; (k;, k;)

tan 6y (ki/ k]#_l) = (19)
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* Hj-singlet scattering The properties of the |];) states are as follows

Jo) =c3405 Hzg CZ+C2+] 10)
Jg)=ci- c3+r122 35, 10)
(Jo [HilJy ) = Uz <]0 |Hily ) = —
<IO+|H1|]S&(¢)> 7’é 0=

) =i e |l
2) =c3_ca-|Iy)
1J3) = c§f+c2,+|]0+>
Ja) = c5_ca|I§)

_ + (20)
]]>2+ = CZj:l:l,+C2j,+|]0 )

_ -+ +
I]>2 -)= C2j:|:1,fc2j,f|]0 )

+ + + _
(Jo |HilJ,.4) = <]0 |H1|]j>2,i> =t
ko — pikJy
ek — p=ik1 ez’k.]g, okJs — pik1 eik.]g
elkl2 — p=ik eik.]g/ oikJa — pika eik.jgr

’k]>2+ — ptikaj-2,ik.Jo

lk I i>2— — eiikz]',3eik,]0

Since Eq.(14) is valid in this case too, it is inferred from Eq.(20)

2(kiky) ek k1)
z(kok1) L d(k—ka)

Uy —J—t(e 1k1+e*”‘1+elkz+e*’k2)
Uy—J—t(e*1+e*1+e2+e~k2) —e
_ gé(kz_kl) x(kj,k,‘) _ e

T AR ox(kk) T

)—€(k2)

ki) —e(k2) ’
k) _ o205 (Kikj)
)

ek
) (Kj-
(k

N~ NI~

which yields finally for s (k;, k;)

T —ki+k;
0 (ki kjzi) = % . (21)

Unlike 6; in Eq.(19), 65 shows up independent from ¢, Uj, J.

4. 3-Boundary condition

The hereabove results will be taken advantage of, in order to show that the k;—; ,’s are related to
one another through a boundary condition, ensueing from Eq.(5). To that end, the permutations P;, Py
and n-electron states |I1), |Iy) are needed

Py(ki=1,.n) = ki N
Py (ki=1,.n—1) = kiz1,  Pn(kn) = k1
Py =TT\, TyjPr = xpy = T2 %00k, (22)

_ +

|I]> = 7 l ],0,] O> eiPNkJN o eiNkl
Iv) = ot I JPRL T

[IN) = e Cren | T1)
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with 01, 41011 > 0(< 0) for p =t (B = s). Besides, it is convenient to take the sequence {kiz1,.n},
such that kz:l,..n 1 < kj+1. Then the sought boundary condition reads by substituting T1;P;, Tj; Py to
Py, Py in Eq.(22) and applying it further to any ki~

xp Pkl = xp oiPNEIN =
o (Vo t 25O bikin) _q (23)
ki=2nai_1, ,— % Y71 0p (ki kjzi)

with a;—y, , = § and the integers m;—; , € [I,N] = a1, € [0,1]. At last taking the limit
N — oo,n — oo, 3y — ¢ € [0,1] yields

k(a € [0,1]) =2ma —2 [7_6g(k, u)pp(u)du
pp(k)dk = da =

op(k) = % = &+ [T, aailf(k/“)m;(u)d;”
ep= [T e(k)ppk)dk , co= [T pp(k)dk

for which co, eg—; s, pg (k) stand for the whole electron concentration, triplet or singlet energy per site
and corresponding one-electron density of states, respectively. Though each eigenvalue e4_;  is seen to
read as a sum over one-particle energies e(k), as is the case for independent electrons[9], there is a one
to one correspondence between ¢4 and its associated, h,—.-dependent pg(k), whereas the density of
states is unique for all many independent electron states. Moreover, since each eigenvector ¢ is defined
by a unique sequence {kj—1 _,}, two different eigenvectors do not even belong in the same vector space,
because their respective {kj_1 _, }-dependent bases {¢p} are thence linearly independent from each
other.
Solving Eq.(24) for the groundstate energy will be done below as follows

(24)

ks 00

pplk +fiﬁaszupﬁ( )dfu:%ﬁr
k

0ﬁ<ak(k w)pp(u )+ FE(k )d?

with kg € [0, r]. Besides Egs.(15,17,19,21) imply

, (25)

20

a0 a0
B B
), =

ok (ott) = 5 (k=

k,—u) = —(—k,u),

whence it is inferred pg(k) = pg(—k), so that Eq.(25) can be recast as

1 k d
o) = 3+ [ gplk e 6)

with gg(k, u) = ak E(ku)+ alf (k, —u). By discretising [0,kg| = kj—1,.n = %kﬁ and calculating the
integral in Eq.(26) with help of Simpson’s rule, Eq.(26) will be eventually solved below for pg(k), as a
Cramer system, comprising m equations in terms of the unknowns pg(kj—1, ), while % (k,u), % (k,u)
are taken from Eq.(15),Eq.(17) (Eq.(19),Eq.(21)), respectively, in case of Hy (Hj). Finally the groundstate
energy ¢, is achieved by reckoning ct, ¢¢, cs, €5 as follows

k
cp(kp=t,s *2f0 pplk 27)
ep(kg) = 2 fy” e(k)pp(k )

Assigning the values of k;(cg), ks(co) thanks to the constraint ¢; = c¢s = cg gives finally access to £¢(co)
as the lower of €;(k¢(co)), €s(ks(co))-
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5. 4-Groundstate energy for H

6; being constant in Eq.(15) entails via Eq.(26) p:(k) = %, Vk, which further implies thanks to
Eq.(27)
Ct = %
2t

2t
= = —— i , 28
e = “2gink, } er(ct) —sin(7tct) (28)

which shows up independent from Uy. The &;(cp), €s(co) data have been plotted in Fig.3. The inequality
es(co € 10,1]) < €¢(co) can be seen to hold for any % value. A comparison with groundstate energies
n1(co), reckoned with a previous version of Bethe’s wave-function[6], reveals that the inequality
es(co) < 171(co) is found to hold for @ < 4, whereas the opposite one &5(cy) > #1(cp) is observed for
% > 4. Actually this discrepancy results from &,(cg) being calculated for singlet electrons only, whereas
171(co) has been worked out for a mixture of singlet and triplet electrons. Therefore it can be explained
as follows: the smaller % is, the bigger ps (k) is with respect to p¢(k) = 5= for k < Z, so that refraining
from mixing singlet and triplet electrons causes €;(co) < 71 (co). Contrarily, €5(co) is seen to merge into
et(cg) for % — 00, because of 95(ki,kj) — 0 = T as seen in Eqs.(15,17). Consequently, % — o0 entails
that ps(k < 5) — p1,0s(k > ) < py, so that the singlet-triplet mixture favours eventually the opposite
conclusion 771 (cp) < &s(cp) for % > 4.

HO . pdf

Figure 3. Plots of ¢¢(cg), as given in Eq.(28) (white square), es(cg) (solid line, dashed line, dotted line,

dashed-dotted line) and #1(cg) (white triangle, white circle, white diamond, x), calculated for Hy with

v = % =1,2,4,8, as said in the text.

Furthermore it is in order to compare &5 with the electronic energy 7, obtained with help of the
correlated Fermi gas (CFG) model[7] in normal metals, the characteristic features of which will be
recalled now for self-containedness. Each independent-electron band of dispersion e(k € [—m, 7)), as
given in Eq.(1), accommodating at most 2 electrons of opposite spin direction per site, splits into one
singlet and one triplet band, each of them accommodating at most 1 electron per site. The corresponding
dispersion curves €;(k), €(k) read for the general Hamiltonian H as follows

er(k) = Zkf<0 Chocr o Hp o0 0>

es(k) = Zk’<0 ck/gck/,,UHc,j,_aczg

(29)

0) '

; + _ + _ +
for which <0‘ckﬂck’ - 0> = <O’Ck’,iack/, i 0> = 1 has been assumed and ¢ , ¢, are one-electron

creation and annihilation operators on the Bloch[9] state |k, o)

ko) =cf,10) , 0)=cie

k,o)
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Besides, the calculation requires the expression of H in momentum space, which will be taken from
a previous work[8] for illustration in case of Hy, H;. Note that €;(k), €s(k) are found in general to
depend not only on h,_, but also on the concentration of singlet or triplet electrons cs, c; and there is
et(k) = er(—k), €s(k) = €s(—k). Then both singlet and triplet bands are populated in accordance with
Fermi-Dirac statistics[9], which yields in the d = 1 case at T = 0K

Cs = kﬁsr s = fos €s(k)d7f/ es(ks) =Er
Ct = %, 77t = fokt Gt(k)Fk, et(kt) = EF s (30)
co=cs+ct , 1mafc)=

with Er, #5, ¢ standing for the Fermi energy[9] and the partial singlet and triplet energy, respectively.
The expressions of €4, 1, €5, 45 are recalled[7] to read for the Hubbard model

er(k) =€(k), nm= —2t gink;

T

2 .
es(k) = e(k) +Ups, 1s=—ZLsinks+ Uy
Unlike &5 # 71, the energies 71,1, have been found[7] quite close to each other, namely there is

Up
12 (CO/ T )
since 7 is a true eigenvalue, whereas 77, comes out of a variational calculation, and furthermore the
associated eigen- and variational many-electron states belong in quite different vector spaces. Hence

this unexpected feature is likely to stem from both states comprising singlet and triplet electrons.

Uy
1-— nlco 1) < .01 for all ¢, %—values. As a matter of fact this agreement is all the more baffling,

6. 5-Groundstate energy for H;

%(k, u) = —.5 is inferred from Eq.(21) to be constant, which entails owing to Eq.(26) that
os(k) = m is constant too, and eventually thanks to Eq.(27)
Cs = kSI:S*T[ = (31)
g = _kfﬁ sinks = —%(1 — cs)sin<1”fgs> '
H2.pdf

Figure 4. Plots of ¢5(cg), as given in Eq.(31) (white square), &¢(cg) (solid line, dashed line, dotted line,
dashed-dotted line) and #(cg) (white triangle, white circle, white diamond, x), calculated for Hy with

y=Y"1 =1,75525and | = .1Uj, as said in the text.
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It results from Eq.(31) that ¢; < .5 and &s(c;s) shows up independent from U; — J. As a matter of

fact, there is no meaningful &; solution either, i.e. with p¢(k) > 0, Vk, for ¢; > .5. The ¢, ¢; data, plotted
in Fig.4, show that the inequality €;(co) < €s(co) holds for all y-values.
Implementing Eqs.(29,30) for H; yields

Q&):e&)+@h—]wq+éﬂkﬁggﬂﬂﬁ)
1w=—%$nh+ah—p(§+$%%tl
es(k) = e(k) + Uyc, + jonlrks) —sin(k—ks)

s = —Lsink, + Uyc? + [0

The 7, data have been plotted in Fig.4. The inequality 72(co) < €:(co) is seen to hold for all ¢y < .5
values and is likely to ensue again from the CFG state, including triplet and singlet electrons with
ct R cs & 9P, Veo, by contrast with Bethe’s wave-function of eigenvalue ¢;(cy) comprising only triplet
electrons.

7. 6-Discussion

Since the groundstate is widely believed to describe the properties of any physical system at
T = 0K, it is of significance to sort, out of the various many electron states, discussed hereabove, that
one, likely to account at best for the observed properties of interacting electrons. To that end, it should
be noticed that all of them share a common property, namely the total energy ¢ consists in a sum
over one-fermion energy either (k) or e (k). Thus, the groundstate can be built[9] by populating
every one-electron state from the bottom of the one-electron band, corresponding to e(k = 0), up
to a ¢p dependent upper bound, designated as the Fermi energy Er. The reader can check that this
requirement is met by all kinds of many-electron states of concern hereabove, i.e. Bethe’s wave-function
and CFG states. However Fermi-Dirac statistics requires in addition at T = 0K that the relationship
Er = E?TEO hold[9,10]. Obviously solely the CFG solution meets successfully this constraint, because
it obeys Fermi-Dirac statistics by definition (see Er = €;(k;) = €;(ks) in Eq.(30)), whereas there is
Er # % for all kinds of Bethe’s wave-functions, studied here and elsewhere[3,4,6]. Yet, as seen above,
the CFG solution is not the groundstate for Hy in case of % < 4.

Buttressing the claim that the CFG state is observable would help validate this analysis. To that
end, let us discuss electron spin resonance (ESR) in case of Hj. Applying an external magnetic field H

lifts[11] the degeneracy between the respective energies of one-electron states e+ (k) of ¢;” n ’0>, o ’0>
for triplet electrons as follows

ex(k) = f(kke(H)) £ 12

flke(H), ke (H)) £ 47 = Ep(H)

for which p stands for the electron magnetic moment and there is f(x,y) = €(x), taken from Eq.(29)
with x = kand y = k4 (H) instead of k; in case of H # 0, which thence implies f (k;, k;) = Ep(H = 0).
Then the experiment consists of measuring the absorption of a resonant electromagnetic field of
frequency w, such that iw = f(ky, ki) — f(ks, k=), which implies

oL ki kr) pH
%(kt/kt) + %(kt/ k) h

w= |1+ (32)

Remarkably the singlet electrons are seen not to contribute to the ESR signal, because their associated
many-electron state is not degenerate at H = 0, due to the electrons of spin +¢ keeping same concen-
cs

tration = 5 even for H # 0. Actually the ESR signal has been observed[11] but in a paucity of cases,
namely alcali, noble metals and Al at §§ ~ 3GHz/KG. This might stem from % (ke ke) + % (kt, kt) =0

do0i:10.20944/preprints202404.0124.v1
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in Eq.(32), which would shift w upward at fixed H. Hopefully this work might kindle attempts at
seeking the ESR signal in the IF rather than microwave range, as done usually[11] with H < 10KG.

8. Conclusion

Bethe’s wave-function has been shown to subtend the subspace of scattering eigenstates of the
d = 1 Hubbard Hamiltonian. Though this analysis is independent of a previous one[3,4], both pieces
of work lead to the same conclusions, summarised by Egs.(3,7). The two-body scattering plays a key
role. Likewise, though the Coulomb force does not depend on the spin of both electrons, involved
in the scattering process, its outcome does indeed (see Egs.(15,17,19,21)), as a consequence of Pauli’s
principle. This analysis can be applied to any realistic 4 = 1 Hamiltonian, which has been exemplified
on Hj. Nevertheless Bethe’s wave-function turns out to be of limited significance in condensed matter
physics, because it has been shown not to be observable. Actually, the groundstate can be observed
at T = 0K solely for atoms, molecules and insulators. Conversely it cannot in superconducting and
magnetic compounds and in normal metals, because, as argued elsewhere[7], there are two kinds of
conduction electrons at thermal equilibrium with one another in each case, namely normal versus
superconducting, normal versus magnetic and triplet versus singlet electrons, respectively.
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