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Abstract

The increasing generation of liquid waste from agricultural, industrial, and municipal sources poses
significant environmental challenges due to its high content of organic carbon (OC) and nutrients
such as phosphorus and nitrogen. This review examined the effectiveness of membrane-based
technologies, particularly microfiltration (MF) and ultrafiltration (UF), in separating and recovering
these valuable compounds. Drawing on key literature indexed in Scopus, the review analyzed how
membrane properties, operating conditions, and feed characteristics influence removal efficiency.
The findings indicate that MF membranes primarily retain particulate organic matter and suspended
solids (SS), with limited retention of phosphorus and nitrogen species. In contrast, UF membranes
exhibited superior performance in removing both OC and phosphorus, and partially retain some
nitrogen compounds depending on molecular size and charge. When combined with pre-treatment
processes such as coagulation or adsorption, both MF and UF achieve higher nutrient removal rates.
These membrane technologies showed promise not only in reducing pollutant loads but also in
enabling nutrient recovery for potential reuse in agriculture. The optimization of membrane
configuration and integration with other processes is essential for enhancing treatment performance
and contributing to circular wastewater management strategies.

Keywords: microfiltration; nutrients; organic carbon; removal efficiency; ultrafiltration

1. Introduction

The growing global demand for water and the increasing generation of wastewater from
domestic, industrial, and agricultural sources have intensified the need for efficient and sustainable
treatment technologies [1-3]

Liquid waste streams often contain significant concentrations of OC and nutrients such as
nitrogen and phosphorus, which, if not properly managed, contribute to serious environmental
issues including eutrophication, groundwater contamination, and greenhouse gas emissions [4,5].
Conversely, these waste streams also represent a valuable source of recoverable materials that could
be reused in agriculture and industry, supporting the principles of circular economy and resource
recovery [6-8]. Conventional wastewater treatment methods, including biological and chemical
processes, have proven effective in many cases but often present limitations such as high energy
consumption, sludge generation, and incomplete removal of certain pollutants [9]. Among the
advanced treatment options, membrane technologies especially pressure-driven MF and UF have
gained attention due to their operational efficiency, modularity, and ability to selectively separate
particulate and colloidal matter based on size exclusion mechanisms [10,11]

MF and UF membranes differ in pore size and separation performance, with MF typically
removing particles >0.1 micrometer (um) and UF targeting smaller solutes, including
macromolecules and certain nutrient forms [12,13]. These membranes can effectively retain OC
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compounds and, to a certain extent, phosphorus and nitrogen species, depending on membrane
material, configuration, and operational parameters [14-16]. Additionally, integrating MF and UF
with pre- or post-treatment techniques such as coagulation, adsorption, or biological processes
enhances the removal efficiency of nutrients, making these technologies suitable for both centralized
and decentralized treatment systems [11,17]. This review aims to provide a comprehensive overview
of the performance of MF and UF membranes in the separation of OC and nutrient compounds from
liquid waste. The emphasis is placed on the influence of membrane characteristics, feed composition,
and operational conditions on the separation efficiency. The objective is to highlight the advantages
and limitations of these technologies and inform future researchers the strategies for sustainable
wastewater treatment and resource recovery.

2. Technologies for the Removal of OC and Nutrients from Wastewater

The elimination of OC and nutrients from wastewater is essential for several benefits, including
preventing eutrophication of surface water bodies and recovering fertilizer and maintaining water
quality [18]. According to [19], various technologies are employed to remove key nutrients like
carbon, nitrogen and phosphorus from wastewater and the recovery rate varies from one technology

to another (Figure 1).

Technologies involved
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Figure 1. Technologies to remove nutrients from waste streams [20].

Membrane filtration, consisting of microfiltration (MF), ultrafiltration (UF), nanofiltration (NF)
and reverse osmosis (RO) processes finds its application when nutrient accumulation is targeted [20].
Product recovery quality depends on membrane pore size, nutrient size, feed characteristics and
application pressure (Figure 2). Especially for the removal of organic substances from liquid waste,
MF and UF processes are used [19,21,22]. In general, MF membranes are used to remove particles
larger than 0.5 um, whereas membrane filters with a pore size of 0.002-0.5 um are available for UF in
order to eliminate macromolecules and colloidal particles. According to [23], both two membranes
are also required for filtration of viruses (0.03-1 pm) and bacteria (0.5-20 pm). MF membranes have
pore sizes ranging from 0.1 to 10 um with an applied pressure range of 0.1-2 bar from an inlet fluid
stream. Globally, MF can effectively remove suspended solids (SS), particulate and colloidal organic
species. However, it is less effective in removing dissolved organic, nutrients and smaller organic
compounds. UF membranes have smaller pore sizes than MF ones, ranging from 0.01 to 0.1 pm [24].
They also operate via size exclusion but can retain much smaller particles, including macromolecules
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and some colloidal substances. UF is effective in removing a broader range of organic contaminants,
including proteins, polysaccharides, and other macromolecules [25]. It can also remove some
dissolved organic compounds, depending on their size. For a high efficiency, MF and UF in the
removal of inorganic and organic micropollutants are applied in integrated systems coupled with
coagulation, flocculation, sedimentation, adsorption, complexion with polymers or surfactants and
biological reactions [28,29]. With low operating pressure in the range of 0.1-2.5 bar and pore size
ranging between 0.1 and 10 pum, MF membrane have removed organic compounds until 95% by
showing a permeability of 500L/m2.h.bar [28]. On the other hand, with UF membrane, the same
recovery was achieved by applying the pressure of 2-5 bar with 0,001-1um of membrane pore size by
showing 150L/m?2.h.bar of permeability. According to [31-33], the high concentration of organics such
as O C is found in concentrate of MF when municipal, urban and agricultural wastewater are treated
and inorganic ions remain in MF permeate. UF removes phosphorus, nitrogen, and OC in soluble
and colloidal form within removal rate in the range of 10-85% [32]. Phosphorous and nitrogen in
particulate form with the size > 0.1 um can be selectively removed by those filtration processes [33].

4 )
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Membrane compounds in the size

Pressure(bar)
pore size(um)

N N/
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colloids, organics, fats,
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Figure 2. General features on MF and UF membranes.

In their researches, [10,31,36,37] demonstrated that organics are removed by microfiltration and
ultrafiltration membranes while inorganic ions pass through the pore of each module. When MF is
involved, OC is retained whereas inorganics such as phosphorus and nitrogen forms pass through
the membrane pore size [36]. Inorganics separation or recovery in the UF membranes depends on the
ionic charge [37]. Total nitrogen (TN) and total phosphorus (TP) dominated by particulate forms
show high concentration in UF concentrate [38]. Trivalent, divalent and monovalent for instance are
retained in the UF permeate [39]. This behavior also depends on the size of the components (Table 1)
and membrane solute permeability.
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Table 1. Size of nutrients from wastewater.
Component Nutrients Nutrients form Size(um) References
Organics Organic Carbon TOC 1-100 um [40]
TN >0.5 nm
Ammonium ion (NH*) 0.1 to 0.5nm
Nitrogen )
) Nitrate (NO;37) 0.2 to 0.4 nm
Inorganics o [41]
Nitrite (NOy") 0.2t0 0.4 nm
P higher than 0.5nm
Phosphorus

Phosphate (PO,*) 0.5 nm in diameter

2.1. Removal Efficiency of OC from Liquid Waste by Using MF Membrane

In the context of assessing the removal efficiency of OC from liquid waste, MF emerges as a
promising option, offering distinctive operational advantages and limitations [42]. By harnessing a
combination of physical sieving and adsorption mechanisms, this approach has demonstrated
effectiveness in removing organic carbon from liquid waste [46,47]. The process mainly depends on
the pore size, which is usually between 0.1 and 10um. This helps to physically separate particulate
organic matter from the liquid phase [45]. The liquid waste passes through the membrane, particles
that are too big to fit through the holes in the membrane are caught on the surface or inside the holes
in the membrane matrix[46]. This makes the water clearer and removes a lot of the suspended organic
carbon [47]. As shown in Table 2, how well microfiltration works at removing organic carbon
depends on a few things, like what the feed water is like and how the system is running [47,51].
Membrane material also significantly impacts removal efficiency [49]. Materials such as
polyvinylidene fluoride (PVDF), polypropylene (PP), and ceramic offer different levels of
hydrophobicity, chemical resistance, and mechanical strength [53,54]. These properties influence not
only how well the membrane can filter out organic carbon but also its longevity and maintenance
requirements. In general, microfiltration represents a robust methodology for the removal of both
particulate and dissolved forms of organic carbon from liquid waste streams. This is achieved
through the dual mechanisms of sieving and adsorption [25,55].The presence of organic carbon in
liquid waste can be detected in a number of ways, including through the use of chemical oxygen
demand (COD), biological oxygen demand (BOD), total organic carbon (TOC), and dissolved organic
carbon (DOC) [54]. MF metal membranes generally operated at Transmembrane Pressure(TMP)
below 0,3 bar within possibility of 65-75% of TOC removal [55].

Table 2. Some of the applications of MF membrane in the removal of OC from liquid waste.

Wastewater Membrane material Removal rate References
Secondary  treated 10 16y 25-30% in DOC [56]
water
Olive oil mill Cell body and cell holder 75.4% in TOC [57]
Oil Ceramic membrane higher than 95% in TOC [58]
s Mixed  cellulose ester o -
Oilfield (MCE) 82% in TOC [59]
. . . o) [60]
Industrial textile Phosphate/kaolinite 69.39% in TOC
Oily Ceramic (A20s) 96.6-97.7% in TOC [61]

65,8% in TOC and 60% in

Domestic Membrane tank DOC

[62]
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Reclamation/reuse Polyolefin 25-30%; 20-25% of COD [56]
Reclamation/reuse GAC 53% of COD [56]
Secondary effluent PP fibers 78% of COD [57]
Activated sludge Polyethersulfone(PS) 96.3% of TCOD [63]
Poultry Slaughterhouse PVDF 26.5% of COD [16]

2.2. Remowval Efficiency of OC from Liquid Waste by Using UF Membranes

In the implementation of UF membranes for the removal of OC from liquid waste, pore sizes are
typically observed to range from 1 to 100 nanometers(nm) [13,67]. As water permeates through the
porous structure of the membrane, larger organic molecules such as humic substances, proteins, and
colloids are retained on its surface or within its pores [52,68]. Materials like polyethersulfone (PES),
polysulfone (PS), cellulose acetate (CA), and various types of modified polymer blends are commonly
used due to their favorable mechanical strength, chemical resistance, and ability to form consistent
pore structures [66]. In exploring the removal efficiency of OC from liquid waste using UF
membranes, several case studies and practical applications underscore the versatility and efficiency
of this technology [67].By integrating UF membranes into their treatment processes, many
municipalities have achieved substantial reductions in OC levels, thereby enhancing the overall
quality of discharged effluent [68]. Additionally, pilot projects in agricultural settings demonstrated
its potential to manage runoff containing pesticides and fertilizers [69]. These projects have shown
promising results in reducing organic load before water is released back into natural waterways or
reused for irrigation purposes [73,74]

Table 3. Some of the applications of UF membrane in the removal of OC from liquid waste.

Wastewater Membrane material Removal rate References
. PS and a o -
Oil and grease polyacrylonitrile (PAN) 96.3% in TOC [72]
Oily PS 99.7% in TOC [73]
- . up to 50% in terms of
Municipal Stainless steel COD and TOC [74]
Oily PVDF 98% in TOC [75]
Oily PS 93,5% in TOC [73]
Vegetable oil PS 87% in TOC [76]
Poultry Slaughterhouse PES 8.8% of COD [16]
Influent from the treatment PVDF 78% of COD and 91% of [77]
plant BOD:s
Pig manure PVDF Total COD mg/L=15000 [78]
Sieved and settled manure PVDE Total COD mg/L= 20000 (78]
supernatant (SAS)
Sieved, biologically treated B
and SBS PVDF Total COD mg/L=160 [78]
Biologically treated 4 conium oxide 52% of COD; 45% of BOD  [79]
wastewater
Vegetable oil PS 91% in COD; 87% in TOC  L°0)
Urban Zirconia  (ZrQ:) - and o0 ¢ cop 81]
AlOs
Anaerobically digested PES (66% COD removal [82]
sludge
Raw sewage ween PVDF 138+26mg/L of COD [83]
Primary clarifier effluent PVDF 78+30 mg/L of COD [83]
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43mg Oo/L 0f COD and

Urban Polyolephine 17mg O2/L of BODs

[84]

2.3. Removal Efficiency of Phosphorus Compounds from Liquid Waste by Using MF Membrane

For effective removal of phosphorus compounds from liquid waste, MF has emerged as a
promising alternative [87,88]. Combined with other methods such as biological treatment or chemical
precipitation, it serves as an excellent pre-treatment step [89,90]. The MF membranes facilitate the
concentration of phosphorus compounds by filtering out larger solids and colloidal particles that
might otherwise interfere with subsequent treatment stages [89]. The practical implementation of MF
membranes for the removal of phosphorus compounds from liquid waste has seen considerably
success across various wastewater (Table 4). By using a series of membrane modules with pore sizes
optimized for capturing fine particulate matter and colloidal phosphorus, the facility achieved a
reduction in total phosphorus levels to below 0.1 mg/L, significantly surpassing local environmental
standards [90]. However, when combined with coagulation or adsorption, the efficiency can be
increased to 80-95% [93,94]. POs* removal rates can reach up to 11% for MF alone, 91% for MF-NF
and 99.7% for MF softening [87].

Table 4. Some of the applications of MF membrane in the removal of phosphorus compounds from liquid

waste.
Membrane
Wastewater Removal rate References
material
Secondary treated water ~ Polyolefin 5-8% of TP [56]
Reclamation/reuse Polyolefin 5-8% of TP [56]
Reclamation/reuse GAC 13% of TP [56]
Sedimentation pond PP fibers 7% of TP [57]
Activated sludge floc PS 82.6 % of TP and 70.8 % of PO4*- [63]
From Automobile plant Al2Os ceramic 99.7% of PO43- [93]
Phosphoric acid Carbon 55.3% in acid form [94]
Liquid crystal display MCE 99% of PO, [95]
Poultry Slaughterhouse PVDF 5.6% of TP [16]
Urban wastewater
) Propylene 7,6mg/L in TP and 5,9mg/L of PO~ [84]
tertiary

2.4. Removal Efficiency of Phosphorus Compounds from Liquid Waste by Using UF Membrane

UF represents a highly versatile and advanced method for the removal of contaminants from
liquid waste, including phosphorus compounds [96]. The fundamental principle underlying this
method is size exclusion, whereby the membrane's pore size functions as a physical barrier. This
obstruction facilitates the selective permeation of water and smaller molecules while retaining larger
phosphorus-containing particles [97]. This approach is particularly effective for particulate
phosphorus and larger colloidal forms. The material composition and surface characteristics of the
membrane are also of great consequence in this regard [98]. Membranes with charged or hydrophilic
surfaces have the potential to enhance adsorption efficiency by attracting oppositely charged
phosphate ions or other phosphorus species (Table 5). Due to its smaller pore size, UF offers better
removal of phosphorus compounds (50-80%) [91]. When combined with coagulation, removal
efficiencies of 90-99% can be achieved [99]. UF effectively separates phosphorus compounds by size
exclusion mechanisms without the need for additional chemicals, thus minimizing secondary
pollution concerns [100].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 5. Some of the applications of UF membrane in the removal of phosphorus compounds from liquid

waste.

Membrane
Wastewater ] Removal rate References

material

. . . Phosphorus (100%) with FeCls
Car wash Zirconia Oxide [101]
coagulant
. Iron

Aqueous solution . . 93.6% of PO~ [102]

oxide/hydroxide
Municipal Anthracite >96% in TP [103]
Poultry Slaughterhouse PES 16.7% in TP [16]
Forms micelles Acrylonitrile >91% of POs- [104]
From the treatment plant PVDF 85% in TP [77]
Pig manure PVDF Pt mg/L~ 80 [78]
Sieved and settled manure = PVDF Pt mg/L=150 [78]
Sieved and biologically

PVDF TP mg/L=30 [78]
treated
Biologically treated Zirconium oxide 25% of TP [79]
Biologically treated Zirconium oxide 55% of Pt [79]
Vegetable oil PS 85% of PO~ [76]
Municipal: raw sewage 4,4+0,6 mg/L in TP and 4+0,8

PVDF [83]

weens mg/L of PO~
Municipal: primary clarifier 4,1+1 mg/L in TP and 3,4+1,6

PVDF [83]
effluent mg/L of PO4?-
Urban Polyolephine 4 mg/L of PO, [84]

2.5. Separation Efficiency of Nitrogen Compounds from Liquid Waste by Using MF Membrane

Nitrogen compounds are ubiquitous in agricultural runoff, wastewater treatment plants,

industrial effluents, and household waste, posing significant environmental challenges [105]. These

compounds primarily include ammonia (NHs;), nitrates (NOs"), nitrites (NO;"), and total kjeldah

nitrogen (TKN) [107,108]. The separation of them from liquid waste using MF membranes is generally

less effective when these membranes are used alone [109,110]. Nevertheless, when used in

combination with other treatment processes, MF can contribute to nitrogen removal efficiencies [109].

The performances of MF for nitrogen compounds removal are given in Table 6.

Table 6. Some applications of MF membrane in removal of nitrogen compounds from liquid waste.

Membrane
Wastewater . Removal rate References
material
Secondary treated Polyolefin 5-10% of TN [56]
Reclamation/reuse Polyolefin 5-10% of TN [56]
Secondary effluent i
) PP fibers 40 percent of TKN [57]
discharged
PS 68.1 % of TN; 95.3 %
Activated sludge floc in NHs* and 9.7% of [63]
NO3_
35 f TN; 25
Urban Propylene mg/L o [84]

mg/L in NH,; 3,2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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mg/L of NOs;
1,1mg/L of NO;~

2.6. Separation Efficiency of Nitrogen Compounds from Liquid Waste by Using UF Membrane

The efficiency of UF in separating nitrogen compounds from liquid waste relays on several
factors including membrane material and structure [112,113] (Table 7). Membrane materials can be
organic polymers or inorganic substances tailored for specific separation needs [112]. Proper selection
ensures optimal interaction between nitrogenous compounds and the membrane surface [113]. UF
can contribute to nitrogen removal efficiencies of 80-95% when used in combination with other
treatment processes [114]. Using UF technology, the liquid fraction of digestate pre-treated by
electrocoagulation with Fe electrodes rejects 82% of NH4* and 49% when using Al electrodes [115]. In
their experimental work, [116] found that the nitrogen efficiency of anaerobic digestate in the
agricultural sector produced by pressure-driven UF is around 75-95 % and 85-99 %.

Table 7. Some applications of microfiltration membrane in removal of nitrogen compounds from liquid waste.

Wastewater Membrane material =~ Removal rate References
Poultry Slaughterhouse PVDF 32.1% of TN [16]
Forms micelles Acrylonitrile > 86% of NH4* [104]
Influent from the treatment plant PVDF 98% of NH* [77]
Sieved and settled manure
PVDF TK L= 7
supernatant (SAS) v N mg/L=900 [78]
Biologically treated Zirconium oxide 10% of TN [79]
Biologically treated Zirconium oxide 26% of TN [79]
Urban ZrO:2 and AL20s 96.2% of (NH,*)  [81]
Anaerobically digested sludge PES and one PVDF 13% of NH4* [82]
29+3mg/L in TN
Municipal: raw sewage ween PVDEF and 39,4+11,6mg/L [83]
Of NH4+
Municipal : primary clarifier effluent PVDF F2r£l3\,1112,3 mg/L of [83]
38 mg/L of TN; 19
. . mg/L in NH,*; 12
h
Urban tertiary Polyolephine mg/L of NOs and [84]
1,3mg/L of NHx

3. Comparison

MF typically removes larger suspended solids, bacteria, and particulate organic matter (>0.1
pm), while UF can also retain macromolecules, colloids, and some dissolved organic compounds due
to its smaller pore size (1-100 nm) [11,117]. These differences directly influence their performance in
removing key pollutants such as TOC, TP, and various nitrogen species. Table 8 summarizes findings
from recent studies comparing the removal efficiencies of MF and UF for OC and nutrients under
various conditions and membrane configurations.

Table 8. comparison between MF and UF removal efficiency.

Target Removal
Membrane 5 . . Main Mechanism AdvantagesLimitations
Compounds Efficiency (%)
Low cost, L. .
TOC, TSS, some L Limited nutrient
MF 60-75 Sieving easy
TP . removal
operation

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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UF TOC, TP, TN 75-99 Sieving + High Fouling, costlier

adsorption selectivity

4. Conclusion

The separation efficiency of OC and nutrients was found to be low, particularly when MF and
UF are applied directly without a pretreatment system. While MF and UF may not achieve high
removal efficiencies for all dissolved contaminants, they are effective for particulate and colloidal
matter. Moderate levels of removal were observed for higher molecular weight OC and colloidal
organic matter, particulate phosphorus (PP) and particulate nitrogen. The removal of nitrogen and
phosphorus in their ionic forms from liquid waste using MF and UF is somewhat more complex, as
these processes are generally not effective for removing dissolved ions. The optimization of both pre-
treatment and post-treatment processes is fundamental to enhance the separation efficiency of OC,
phosphorus, and nitrogen compounds from liquid waste by using MF and UF membranes. The
aforementioned studies confirm that OC is elevated in the instances of MF rejection, whereas
inorganic elements predominantly remain in the permeate. The utilization of UF facilitates the
concentration of OC, TP and TN in the concentrate, while only ionic forms may pass through the UF
membrane pore.
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Abbreviations

The following symbols and abbreviations are used in this manuscript:
% Percentage

pum  Micrometer

BOD5 Biochemical Oxygen Demand, 5 days
COD Chemical Oxygen Demand

Da Daltons

DOC Dissolved Organic Carbon

h Hour

kDa KiloDaltons

kPa  Kilopascal

LMH Liters per square meter per hour

m/s  Meter per second

m Meter

m2  Square meter

MF  Microfiltration

mg/L  Milligram per Liter
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Minute

MWCO Molecular weight cut-offs

NH,* Nitrogen Ammonia

nm Nanometer

NO-2 Nitrites

NOs;~ Nitrates

OC  Organic Carbon

Pa Pascal

PAC DPowdered activated carbon,
PN  Particulate Nitrogen

PO~ Phosphates

POC Particulate Organic Carbon

PP Particulate Phosphorus

PVDF Polyvinylidene Fluoride,

SS Suspended Solids

TCOD Total Chemical Oxygen Demand
TKN Total Kjeldahl Nitrogen

TMP Transmembrane Pressure

TN  Total Nitrogen

TOC Total Organic Carbon

TP Total Phosphorous

TSS  Total Suspended Solids

UF Ultrafiltration
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