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Abstract 

The increasing generation of liquid waste from agricultural, industrial, and municipal sources poses 

significant environmental challenges due to its high content of organic carbon (OC) and nutrients 

such as phosphorus and nitrogen. This review examined the effectiveness of membrane-based 

technologies, particularly microfiltration (MF) and ultrafiltration (UF), in separating and recovering 

these valuable compounds. Drawing on key literature indexed in Scopus, the review analyzed how 

membrane properties, operating conditions, and feed characteristics influence removal efficiency. 

The findings indicate that MF membranes primarily retain particulate organic matter and suspended 

solids (SS), with limited retention of phosphorus and nitrogen species. In contrast, UF membranes 

exhibited superior performance in removing both OC and phosphorus, and partially retain some 

nitrogen compounds depending on molecular size and charge. When combined with pre-treatment 

processes such as coagulation or adsorption, both MF and UF achieve higher nutrient removal rates. 

These membrane technologies showed promise not only in reducing pollutant loads but also in 

enabling nutrient recovery for potential reuse in agriculture. The optimization of membrane 

configuration and integration with other processes is essential for enhancing treatment performance 

and contributing to circular wastewater management strategies. 

Keywords: microfiltration; nutrients; organic carbon; removal efficiency; ultrafiltration 

 

1. Introduction 

The growing global demand for water and the increasing generation of wastewater from 

domestic, industrial, and agricultural sources have intensified the need for efficient and sustainable 

treatment technologies [1–3] 

Liquid waste streams often contain significant concentrations of OC and nutrients such as 

nitrogen and phosphorus, which, if not properly managed, contribute to serious environmental 

issues including eutrophication, groundwater contamination, and greenhouse gas emissions [4,5]. 

Conversely, these waste streams also represent a valuable source of recoverable materials that could 

be reused in agriculture and industry, supporting the principles of circular economy and resource 

recovery [6–8]. Conventional wastewater treatment methods, including biological and chemical 

processes, have proven effective in many cases but often present limitations such as high energy 

consumption, sludge generation, and incomplete removal of certain pollutants [9]. Among the 

advanced treatment options, membrane technologies especially pressure-driven MF and UF have 

gained attention due to their operational efficiency, modularity, and ability to selectively separate 

particulate and colloidal matter based on size exclusion mechanisms [10,11] 

MF and UF membranes differ in pore size and separation performance, with MF typically 

removing particles >0.1 micrometer (µm) and UF targeting smaller solutes, including 

macromolecules and certain nutrient forms [12,13]. These membranes can effectively retain OC 
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compounds and, to a certain extent, phosphorus and nitrogen species, depending on membrane 

material, configuration, and operational parameters [14–16]. Additionally, integrating MF and UF 

with pre- or post-treatment techniques such as coagulation, adsorption, or biological processes 

enhances the removal efficiency of nutrients, making these technologies suitable for both centralized 

and decentralized treatment systems [11,17]. This review aims to provide a comprehensive overview 

of the performance of MF and UF membranes in the separation of OC and nutrient compounds from 

liquid waste. The emphasis is placed on the influence of membrane characteristics, feed composition, 

and operational conditions on the separation efficiency. The objective is to highlight the advantages 

and limitations of these technologies and inform future researchers the strategies for sustainable 

wastewater treatment and resource recovery. 

2. Technologies for the Removal of OC and Nutrients from Wastewater 

The elimination of OC and nutrients from wastewater is essential for several benefits, including 

preventing eutrophication of surface water bodies and recovering fertilizer and maintaining water 

quality [18]. According to [19], various technologies are employed to remove key nutrients like 

carbon, nitrogen and phosphorus from wastewater and the recovery rate varies from one technology 

to another (Figure 1). 

 

Figure 1. Technologies to remove nutrients from waste streams [20]. 

Membrane filtration, consisting of microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) 

and reverse osmosis (RO) processes finds its application when nutrient accumulation is targeted [20]. 

Product recovery quality depends on membrane pore size, nutrient size, feed characteristics and 

application pressure (Figure 2). Especially for the removal of organic substances from liquid waste, 

MF and UF processes are used [19,21,22]. In general, MF membranes are used to remove particles 

larger than 0.5 μm, whereas membrane filters with a pore size of 0.002-0.5 μm are available for UF in 

order to eliminate macromolecules and colloidal particles. According to [23], both two membranes 

are also required for filtration of viruses (0.03–1 μm) and bacteria (0.5–20 μm). MF membranes have 

pore sizes ranging from 0.1 to 10 μm with an applied pressure range of 0.1–2 bar from an inlet fluid 

stream. Globally, MF can effectively remove suspended solids (SS), particulate and colloidal organic 

species. However, it is less effective in removing dissolved organic, nutrients and smaller organic 

compounds. UF membranes have smaller pore sizes than MF ones, ranging from 0.01 to 0.1 μm [24]. 

They also operate via size exclusion but can retain much smaller particles, including macromolecules 
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and some colloidal substances. UF is effective in removing a broader range of organic contaminants, 

including proteins, polysaccharides, and other macromolecules [25]. It can also remove some 

dissolved organic compounds, depending on their size. For a high efficiency, MF and UF in the 

removal of inorganic and organic micropollutants are applied in integrated systems coupled with 

coagulation, flocculation, sedimentation, adsorption, complexion with polymers or surfactants and 

biological reactions [28,29]. With low operating pressure in the range of 0.1-2.5 bar and pore size 

ranging between 0.1 and 10 μm, MF membrane have removed organic compounds until 95% by 

showing a permeability of 500L/m2.h.bar [28]. On the other hand, with UF membrane, the same 

recovery was achieved by applying the pressure of 2-5 bar with 0,001-1µm of membrane pore size by 

showing 150L/m2.h.bar of permeability. According to [31–33], the high concentration of organics such 

as O C is found in concentrate of MF when municipal, urban and agricultural wastewater are treated 

and inorganic ions remain in MF permeate. UF removes phosphorus, nitrogen, and OC in soluble 

and colloidal form within removal rate in the range of 10-85% [32]. Phosphorous and nitrogen in 

particulate form with the size > 0.1 μm can be selectively removed by those filtration processes [33]. 

 

Figure 2. General features on MF and UF membranes. 

In their researches, [10,31,36,37] demonstrated that organics are removed by microfiltration and 

ultrafiltration membranes while inorganic ions pass through the pore of each module. When MF is 

involved, OC is retained whereas inorganics such as phosphorus and nitrogen forms pass through 

the membrane pore size [36]. Inorganics separation or recovery in the UF membranes depends on the 

ionic charge [37]. Total nitrogen (TN) and total phosphorus (TP) dominated by particulate forms 

show high concentration in UF concentrate [38]. Trivalent, divalent and monovalent for instance are 

retained in the UF permeate [39]. This behavior also depends on the size of the components (Table 1) 

and membrane solute permeability. 
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Table 1. Size of nutrients from wastewater. 

Component Nutrients Nutrients form Size(µm) References 

Organics Organic Carbon TOC 1-100 μm [40] 

Inorganics 

Nitrogen 

TN >0.5 nm 

 

[41] 

 

Ammonium ion (NH₄⁺) 0.1 to 0.5 nm 

Nitrate (NO₃⁻) 0.2 to 0.4 nm 

Nitrite (NO₂⁻) 0.2 to 0.4 nm 

Phosphorus 
TP higher than 0.5nm 

Phosphate (PO₄³⁻) 0.5 nm in diameter 

2.1. Removal Efficiency of OC from Liquid Waste by Using MF Membrane 

In the context of assessing the removal efficiency of OC from liquid waste, MF emerges as a 

promising option, offering distinctive operational advantages and limitations [42]. By harnessing a 

combination of physical sieving and adsorption mechanisms, this approach has demonstrated 

effectiveness in removing organic carbon from liquid waste [46,47]. The process mainly depends on 

the pore size, which is usually between 0.1 and 10μm. This helps to physically separate particulate 

organic matter from the liquid phase [45]. The liquid waste passes through the membrane, particles 

that are too big to fit through the holes in the membrane are caught on the surface or inside the holes 

in the membrane matrix[46]. This makes the water clearer and removes a lot of the suspended organic 

carbon [47]. As shown in Table 2, how well microfiltration works at removing organic carbon 

depends on a few things, like what the feed water is like and how the system is running [47,51]. 

Membrane material also significantly impacts removal efficiency [49]. Materials such as 

polyvinylidene fluoride (PVDF), polypropylene (PP), and ceramic offer different levels of 

hydrophobicity, chemical resistance, and mechanical strength [53,54]. These properties influence not 

only how well the membrane can filter out organic carbon but also its longevity and maintenance 

requirements. In general, microfiltration represents a robust methodology for the removal of both 

particulate and dissolved forms of organic carbon from liquid waste streams. This is achieved 

through the dual mechanisms of sieving and adsorption [25,55].The presence of organic carbon in 

liquid waste can be detected in a number of ways, including through the use of chemical oxygen 

demand (COD), biological oxygen demand (BOD), total organic carbon (TOC), and dissolved organic 

carbon (DOC) [54]. MF metal membranes generally operated at Transmembrane Pressure(TMP) 

below 0,3 bar within possibility of 65–75% of TOC removal [55]. 

Table 2. Some of the applications of MF membrane in the removal of OC from liquid waste. 

Wastewater Membrane material  Removal rate References 
Secondary treated 
water 

Polyolefin 25–30% in DOC [56] 

 
Olive oil mill 

 
Cell body and cell holder 

 
75.4% in TOC 

 
[57] 

 
Oil 

 
Ceramic membrane 

 
higher than 95% in TOC 

 
[58] 

 
Oilfield 

 
Mixed cellulose ester 
(MCE) 

 
82% in TOC 

 
[59] 

 
Industrial textile 

 
Phosphate/kaolinite 

 
69.39% in TOC 

[60] 

 
Oily 

 
Ceramic (Al2O3) 

 
96.6–97.7% in TOC 

 
[61] 

 
Domestic 

 
Membrane tank 

 
65,8% in TOC and 60% in 
DOC 

 
[62] 
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Reclamation/reuse Polyolefin 25–30%; 20–25% of COD [56] 
Reclamation/reuse GAC   53% of COD [56] 
Secondary effluent PP fibers 78% of COD [57] 
Activated sludge Polyethersulfone(PS) 96.3% of TCOD [63] 
 
Poultry Slaughterhouse 

 
PVDF 

 
26.5% of COD 

 
[16] 

2.2. Removal Efficiency of OC from Liquid Waste by Using UF Membranes 

In the implementation of UF membranes for the removal of OC from liquid waste, pore sizes are 

typically observed to range from 1 to 100 nanometers(nm) [13,67]. As water permeates through the 

porous structure of the membrane, larger organic molecules such as humic substances, proteins, and 

colloids are retained on its surface or within its pores [52,68]. Materials like polyethersulfone (PES), 

polysulfone (PS), cellulose acetate (CA), and various types of modified polymer blends are commonly 

used due to their favorable mechanical strength, chemical resistance, and ability to form consistent 

pore structures [66]. In exploring the removal efficiency of OC from liquid waste using UF 

membranes, several case studies and practical applications underscore the versatility and efficiency 

of this technology [67].By integrating UF membranes into their treatment processes, many 

municipalities have achieved substantial reductions in OC levels, thereby enhancing the overall 

quality of discharged effluent [68]. Additionally, pilot projects in agricultural settings demonstrated 

its potential to manage runoff containing pesticides and fertilizers [69]. These projects have shown 

promising results in reducing organic load before water is released back into natural waterways or 

reused for irrigation purposes [73,74] 

Table 3. Some of the applications of UF membrane in the removal of OC from liquid waste. 

Wastewater Membrane material Removal rate References 

Oil and grease 
PS and a 

polyacrylonitrile (PAN) 
96.3% in TOC [72] 

Oily  PS  99.7% in TOC [73] 

Municipal  Stainless steel 
up to 50% in terms of 

COD and TOC 
[74] 

Oily  PVDF 98% in TOC [75] 

Oily  PS 93,5% in TOC [73] 

Vegetable oil  PS    87% in TOC [76] 

Poultry Slaughterhouse  PES   8.8% of COD [16] 

Influent from the treatment 

plant 
PVDF   

78% of COD and 91% of 

BOD5 
[77] 

Pig manure PVDF  Total COD mg/L= 15000 [78] 

Sieved and settled manure 

supernatant (SAS) 
PVDF Total COD mg/L= 20000 [78] 

Sieved, biologically treated 

and SBS 
PVDF  Total COD mg/L= 160 [78] 

Biologically treated 

wastewater 
Zirconium oxide  52% of COD; 45% of BOD [79] 

Vegetable oil  
 

PS  

 

91% in COD; 87% in TOC 
[80] 

Urban  
Zirconia (ZrO2) and 

Al2O3 
97% of COD [81] 

Anaerobically digested 

sludge 
PES  (66% COD removal [82] 

Raw sewage ween PVDF  138±26mg/L of COD [83] 

Primary clarifier effluent PVDF  78±30 mg/L of COD [83] 
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Urban  Polyolephine  
43mg O2/L 0f COD and 

17mg O2/L of BOD5 
[84] 

2.3. Removal Efficiency of Phosphorus Compounds from Liquid Waste by Using MF Membrane 

For effective removal of phosphorus compounds from liquid waste, MF has emerged as a 

promising alternative [87,88]. Combined with other methods such as biological treatment or chemical 

precipitation, it serves as an excellent pre-treatment step [89,90]. The MF membranes facilitate the 

concentration of phosphorus compounds by filtering out larger solids and colloidal particles that 

might otherwise interfere with subsequent treatment stages [89]. The practical implementation of MF 

membranes for the removal of phosphorus compounds from liquid waste has seen considerably 

success across various wastewater (Table 4). By using a series of membrane modules with pore sizes 

optimized for capturing fine particulate matter and colloidal phosphorus, the facility achieved a 

reduction in total phosphorus levels to below 0.1 mg/L, significantly surpassing local environmental 

standards [90]. However, when combined with coagulation or adsorption, the efficiency can be 

increased to 80-95% [93,94]. PO43- removal rates can reach up to 11% for MF alone, 91% for MF-NF 

and 99.7% for MF softening [87]. 

Table 4. Some of the applications of MF membrane in the removal of phosphorus compounds from liquid 

waste. 

Wastewater 
Membrane 

material 
Removal rate References 

Secondary treated water  Polyolefin 5–8% of TP [56] 

Reclamation/reuse Polyolefin  5–8% of TP [56] 

Reclamation/reuse   GAC  13% of TP [56] 

Sedimentation pond PP fibers  7% of TP [57] 

Activated sludge floc PS 82.6 % of TP and 70.8 % of PO₄³⁻ [63] 

From Automobile plant Al2O3 ceramic  99.7% of PO₄³⁻ [93] 

Phosphoric acid Carbon  55.3% in acid form [94] 

Liquid crystal display  MCE  99% of PO₄³⁻ [95] 

Poultry Slaughterhouse   PVDF    5.6% of TP [16] 

Urban wastewater 

tertiary 
Propylene  7,6mg/L in TP and 5,9mg/L of PO₄³⁻ [84] 

2.4. Removal Efficiency of Phosphorus Compounds from Liquid Waste by Using UF Membrane 

UF represents a highly versatile and advanced method for the removal of contaminants from 

liquid waste, including phosphorus compounds [96]. The fundamental principle underlying this 

method is size exclusion, whereby the membrane's pore size functions as a physical barrier. This 

obstruction facilitates the selective permeation of water and smaller molecules while retaining larger 

phosphorus-containing particles [97]. This approach is particularly effective for particulate 

phosphorus and larger colloidal forms. The material composition and surface characteristics of the 

membrane are also of great consequence in this regard [98]. Membranes with charged or hydrophilic 

surfaces have the potential to enhance adsorption efficiency by attracting oppositely charged 

phosphate ions or other phosphorus species (Table 5). Due to its smaller pore size, UF offers better 

removal of phosphorus compounds (50-80%) [91]. When combined with coagulation, removal 

efficiencies of 90-99% can be achieved [99]. UF effectively separates phosphorus compounds by size 

exclusion mechanisms without the need for additional chemicals, thus minimizing secondary 

pollution concerns [100]. 
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Table 5. Some of the applications of UF membrane in the removal of phosphorus compounds from liquid 

waste. 

Wastewater 
Membrane 

material 
 Removal rate References 

Car wash  Zirconia Oxide 
Phosphorus (100%) with FeCl3 

coagulant 
[101] 

Aqueous solution 
Iron 

oxide/hydroxide 
93.6% of PO₄³⁻ [102] 

Municipal  Anthracite >96% in TP [103] 

Poultry Slaughterhouse  PES   16.7% in TP [16] 

Forms micelles Acrylonitrile  > 91% of PO₄³⁻ [104] 

From the treatment plant PVDF   85% in TP [77] 

Pig manure PVDF  Pt mg/L= 80 [78] 

Sieved and settled manure  PVDF  Pt mg/L= 150 [78] 

Sieved and biologically 

treated  
PVDF TP mg/L=30 [78] 

Biologically treated  Zirconium oxide  25% of TP [79] 

Biologically treated Zirconium oxide  55% of Pt [79] 

Vegetable oil  PS 85% of PO₄³⁻ [76] 

Municipal:  raw sewage 

weens 
 PVDF 

4,4±0,6 mg/L in TP and 4±0,8 

mg/L of PO₄³⁻ 
[83] 

Municipal: primary clarifier 

effluent 
PVDF  

4,1±1 mg/L in TP and 3,4±1,6 

mg/L of PO₄³⁻ 
[83] 

Urban  Polyolephine  4 mg/L of PO₄³⁻ [84] 

2.5. Separation Efficiency of Nitrogen Compounds from Liquid Waste by Using MF Membrane 

Nitrogen compounds are ubiquitous in agricultural runoff, wastewater treatment plants, 

industrial effluents, and household waste, posing significant environmental challenges [105]. These 

compounds primarily include ammonia (NH₃), nitrates (NO₃⁻), nitrites (NO₂⁻), and total kjeldah 

nitrogen (TKN) [107,108]. The separation of them from liquid waste using MF membranes is generally 

less effective when these membranes are used alone [109,110]. Nevertheless, when used in 

combination with other treatment processes, MF can contribute to nitrogen removal efficiencies [109]. 

The performances of MF for nitrogen compounds removal are given in Table 6. 

Table 6. Some applications of MF membrane in removal of nitrogen compounds from liquid waste. 

Wastewater 
Membrane 

material 
Removal rate References 

Secondary treated Polyolefin 5–10% of TN [56] 

Reclamation/reuse Polyolefin  5–10% of TN [56] 

Secondary effluent 

discharged  
PP fibers 40 percent of TKN [57] 

Activated sludge floc 
PS  

 

68.1 % of TN; 95.3 % 

in NH₄⁺ and 9.7% of 

NO₃⁻ 

[63] 

Urban  Propylene  
35mg/L of TN; 25 

mg/L in NH₄⁺; 3,2 
[84] 
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2.6. Separation Efficiency of Nitrogen Compounds from Liquid Waste by Using UF Membrane 

The efficiency of UF in separating nitrogen compounds from liquid waste relays on several 

factors including membrane material and structure [112,113] (Table 7). Membrane materials can be 

organic polymers or inorganic substances tailored for specific separation needs [112]. Proper selection 

ensures optimal interaction between nitrogenous compounds and the membrane surface [113]. UF 

can contribute to nitrogen removal efficiencies of 80-95% when used in combination with other 

treatment processes [114]. Using UF technology, the liquid fraction of digestate pre-treated by 

electrocoagulation with Fe electrodes rejects 82% of NH4+ and 49% when using Al electrodes [115]. In 

their experimental work, [116] found that the nitrogen efficiency of anaerobic digestate in the 

agricultural sector produced by pressure-driven UF is around 75–95 % and 85–99 %. 

Table 7. Some applications of microfiltration membrane in removal of nitrogen compounds from liquid waste. 

Wastewater Membrane material  Removal rate References 

Poultry Slaughterhouse   PVDF  32.1% of TN [16] 

Forms micelles Acrylonitrile  > 86% of NH₄⁺ [104] 

Influent from the treatment plant  PVDF  98% of NH₄⁺ [77] 

Sieved and settled manure 

supernatant (SAS) 
PVDF TKN mg/L= 900 [78] 

Biologically treated  Zirconium oxide  10% of TN [79] 

Biologically treated Zirconium oxide 26% of TN [79] 

Urban  ZrO2 and Al2O3 96.2% of (NH₄⁺) [81] 

Anaerobically digested sludge PES and one PVDF  13% of NH₄⁺ [82] 

Municipal:  raw sewage ween PVDF  

29±3mg/L in TN 

and 39,4±11,6mg/L 

of NH₄⁺ 

[83] 

Municipal : primary clarifier effluent PVDF  
28,1±2,3 mg/L of 

TN 
[83] 

Urban tertiary Polyolephine 

38 mg/L of TN; 19 

mg/L in NH₄⁺; 12 

mg/L of NO₃⁻ and 

1,3mg/L of NH2- 

[84] 

3. Comparison 

MF typically removes larger suspended solids, bacteria, and particulate organic matter (>0.1 

µm), while UF can also retain macromolecules, colloids, and some dissolved organic compounds due 

to its smaller pore size (1–100 nm) [11,117]. These differences directly influence their performance in 

removing key pollutants such as TOC, TP, and various nitrogen species. Table 8 summarizes findings 

from recent studies comparing the removal efficiencies of MF and UF for OC and nutrients under 

various conditions and membrane configurations. 

Table 8. comparison between MF and UF removal efficiency. 

Membrane 
Target 

Compounds 

Removal 

Efficiency (%) 
Main Mechanism Advantages Limitations 

MF 
TOC, TSS, some 

TP 
60–75 Sieving 

Low cost, 

easy 

operation 

Limited nutrient 

removal 

mg/L of NO₃⁻; 

1,1mg/L of NO₂⁻ 
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UF TOC, TP, TN 75–99 
Sieving + 

adsorption 

High 

selectivity 
Fouling, costlier 

4. Conclusion 

The separation efficiency of OC and nutrients was found to be low, particularly when MF and 

UF are applied directly without a pretreatment system. While MF and UF may not achieve high 

removal efficiencies for all dissolved contaminants, they are effective for particulate and colloidal 

matter. Moderate levels of removal were observed for higher molecular weight OC and colloidal 

organic matter, particulate phosphorus (PP) and particulate nitrogen. The removal of nitrogen and 

phosphorus in their ionic forms from liquid waste using MF and UF is somewhat more complex, as 

these processes are generally not effective for removing dissolved ions. The optimization of both pre-

treatment and post-treatment processes is fundamental to enhance the separation efficiency of OC, 

phosphorus, and nitrogen compounds from liquid waste by using MF and UF membranes. The 

aforementioned studies confirm that OC is elevated in the instances of MF rejection, whereas 

inorganic elements predominantly remain in the permeate. The utilization of UF facilitates the 

concentration of OC, TP and TN in the concentrate, while only ionic forms may pass through the UF 

membrane pore. 
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Abbreviations 

The following symbols and abbreviations are used in this manuscript: 

%   Percentage 

µm   Micrometer 

BOD5   Biochemical Oxygen Demand, 5 days 

COD   Chemical Oxygen Demand 

Da   Daltons 

DOC   Dissolved Organic Carbon 

h   Hour 

kDa   KiloDaltons 

kPa   Kilopascal 

LMH   Liters per square meter per hour 

m/s   Meter per second 

m   Meter 

m2   Square meter 

MF   Microfiltration 

mg/L   Milligram per Liter 
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min   Minute 

MWCO   Molecular weight cut-offs 

NH₄⁺   Nitrogen Ammonia 

nm   Nanometer 

NO-2   Nitrites 

NO₃⁻   Nitrates 

OC   Organic Carbon 

Pa   Pascal 

PAC   Powdered activated carbon , 

PN   Particulate Nitrogen 

PO₄³⁻   Phosphates 

POC   Particulate Organic Carbon 

PP   Particulate Phosphorus 

PVDF   Polyvinylidene Fluoride , 

SS   Suspended Solids 

TCOD   Total Chemical Oxygen Demand 

TKN   Total Kjeldahl Nitrogen 

TMP   Transmembrane Pressure 

TN   Total Nitrogen 

TOC   Total Organic Carbon 

TP   Total Phosphorous 

TSS   Total Suspended Solids 

UF   Ultrafiltration 
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