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Abstract: This article analyses entropy changes triggered by specific events in deterministic and 

indeterministic systems. Article considers a simple model consisting of water in a cuvette, an ice 

cube in the device above the cuvette and a random number generator (RNG) that controls the prob-

ability of dropping the ice into water. Article introduces the entropic potential Z(T, A) of an event 

A occurred in a system R at the moment Т0, which describes the influence of the event A to the 

entropy of the system R in the future (for the moments T>Т0). The entropic potential of an event 

Z(T,A) can be calculated as the difference between the mathematical expectations of entropy of the 

system R for the moment T (T>Т0) made immediately before and immediately after the event A as 

Z(T, A) = ŜT(Т0+dT) - ŜT(Т0-dT). Article also presents examples of calculations of the entropic poten-

tials of events in indeterministic systems with different probabilities of events. Since real-life sys-

tems are mostly indeterministic, the entropic potentials of events in real-life usually have non-zero 

values. The entropic potentials of the events "useful" for the system are negative, and entropic po-

tentials of the events "harmful" for the system are positive.  
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1. Introduction. An analysis of entropy changes in a simple deterministic and indeter-

ministic system

1.1. Deterministic system 

Let us consider a simple system consisting of water in a cuvette and an ice cube lo-

cated in the device above this cuvette. Let the moment Т0 designate when the device drops 

the ice into water. The ice melts and during the specific moment, Тfin, the system enters a 

state of equilibrium. Since in the described model the system’s entropy S is a function of 

time T, let us denote it as S(T). At time Т0 it is S(Т0) and at the moment Тfin 
it is S(Тfin). 

During the ice melting the entropy grows and we denote this increase as ΔS.  

ΔS = S(Тfin) - S(Т0) (1)

We can also calculate the average speed of entropy growth (Veg), which is 

Veg = [S(Тfin) - S(Т0)] / (Тfin- Т0) (2) 

For an arbitrary moment of time (T) between the immersion of ice and the equilib-

rium state (Т0<T<Тfin) the entropy of the system is between S(Т0) and S(Тfin) and for the 

time (T) after reaching the equilibrium (T>Тfin), the entropy of the system stays as S(Тfin) 

while the system is isolated. (For simplicity we neglect the melting of ice while it is located 

in the device before it drops into the water.) 

1.2. Indeterministic system 

The model above with the ice cube dropping into water represents a deterministic 

system [1, 2]. In that model, the probability of the piece of ice dropping into water is 100%. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 May 2022                   doi:10.20944/preprints202205.0178.v1

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202205.0178.v1
http://creativecommons.org/licenses/by/4.0/


 

 

Let us now consider an indeterministic system [3] where the probability of dropping 

the ice into water is less than 100%. It can, for example, be a system where the device drops 

the piece of ice into water only if a random number generator (RNG) [4] connected to this 

device returns a specific predefined number. For simplicity we check the random number 

generator only once. This restriction is important to avoid the situation when the ice will 

eventually be dropped into water after multiple RNG trials. Let us denote the moment of 

the RNG trial as Т0 and the probability that the RNG outcome will trigger the ice drop as 

p. In the indeterministic system at the time preceding the RNG trial, we do not know for 

sure if the ice will be dropped into the water or not, and correspondingly we have to use 

the mathematical expectation Ŝ(Тfin) as an estimation of system entropy at the moment Тfin 

instead of the S(Тfin) value.  

To analyze this model in further detail we will consider two moments of time. One 

moment is (Т0-dT), which immediately precedes the RNG trial. The second moment is 

(Т0+dT), which immediately follows the RNG trial. Similarly to the deterministic model, 

Тfin denotes the moment in the future in which the system would achieve equilibrium if 

the ice was dropped at the time Т0. Since the temperature of the water and ice and their 

masses are known in this model, the time Тfin is calculatable.    

Let us try to estimate the system entropy Sfin for the moment Тfin in the future. We 

will perform two estimations at the moments (Т0-dT) and (Т0+dT) and will also denote 

these entropy estimations as Ŝfin(Т0-dT) and Ŝfin(Т0+dT).  

When we estimate entropy Sfin at the moment Т
0
-dT we do not yet know if the ice will 

be dropped into the water or not. Correspondingly, the mathematical expectation of Sfin is 

Ŝfin(Т0-dT) = S(Т0) + ΔS*p (3) 

where the change in entropy ΔS was defined in formula (1) and p is the probability 

that the RNG outcome will trigger the ice dropping. 

When we estimate entropy Ŝfin at the moment Т0+dT we already know if the ice was 

dropped into the water or not. Here we can have one of two cases.  

If the RNG produced the number that triggered the ice drop, then the estimation of 

entropy Ŝfin 
is 

Ŝfin(Т0+dT)= S(Т0) + ΔS (4)

If the RNG did not produce the number that triggered the ice drop, then the estima-

tion of entropy Ŝfin 
is 

Ŝfin(Т0+dT)= S(Т0) (5)

since the initial state was not changed and entropy did not increase.  

2. Methods and results. Entropic potential of an event 

2.1. Calculation of the strength of the “RNG trial” event to the change of entropy in the future 

As we saw in the presented model, a random event in the system at the moment Т0 

may influence the system entropy value at the moment of Тfin in the future. The above 

formulae also give us the method to calculate the strength of this influence. Before the 

RNG trial the estimation of entropy for the moment Тfin 
was Ŝfin(Т0-dT). After the RNG trial 

the estimation of entropy for the moment Тfin 
is Ŝfin(Т0+dT). Correspondingly we can use 

the difference of the math estimations Ŝfin(Т0+dT) - Ŝfin(Т0-dT) to measure the influence of 

the RNG outcome to entropy changes in the future. 

For estimating the influence of the event “RNG outcome has triggered the ice drop” to 

the system entropy in the future we have the difference 
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Ŝfin(Т0+dT) - Ŝfin(Т0-dT) = [S(Т0) + ΔS] – [S(Т0) + ΔS*p] = ΔS(1-p) (6)

For estimating the influence of the event “RNG outcome did NOT trigger the ice drop” 

to the system entropy in the future we have the difference  

Ŝfin(Т0+dT) - Ŝfin(Т0-dT) = S(Т0) -[S(Т0) + ΔS*p] = - ΔS*p (7)

This way we can describe the strength of influence of random events occurred in the 

system to the speed of future entropy growth in this system. 

The text above illustrated the preamble of the introduction of an Entropic potential of 

an event, which describes the influence of an event occurred at the moment Т0 to the en-

tropy change in the future T>Т0. 

2.2. Definition 

The entropic potential Z (T, A) of an event A occurred in the system R at the moment 

Т0 describes the influence of the event A to the entropy of the system R in the future (for 

the moments T>Т0). 

As shown in the above model, in indeterministic systems the entropy can grow faster 

or slower depending on the random events occurred in this system, the strength of influ-

ence of these events to the speed of entropy growth can be formulated. 

2.3. Formula  

As shown in the section “Indeterministic systems”, the entropic potential Z(T, A) can 

be formulated as the difference between the mathematical expectations of entropy of the 

system R for the moment T (T>Т0) made immediately before and immediately after the 

event A.  

Z(T, A) = Ŝ
T
(T0 + dT) – Ŝ

T
(T0 

– dT) (8)

2.4. Examples of “Entropic potential of an event” calculations 

Let us return to the formulae (6) and (7) and review in further detail what they mean 

from a physical point of view. As above, ΔS is the entropy increase, which occurs if the ice 

is dropped into water. The value p shows the probability of this event. Since p is a proba-

bility, it is located within the [0,1] interval. Let us analyze several cases. 

2.4.1. The case when the system is deterministic.  

In such a case the probability is p=1 because the device drops the ice into water for 

any RNG outcome. Correspondingly the mathematical expectations made before and af-

ter the RNG trial are the same, Ŝfin(Т0+dT) = Ŝfin(Т0-dT). Correspondingly, the entropic po-

tential of the RNG trial is zero Z(A,T)=0, because the outcome of the RNG at the moment 

Т0 
does not influence the change of entropy in the future.  

2.4.2. The case when the system is indeterministic and probability p is high, p~1.  

For example, this can be implemented if from the n available RNG outcomes the (n-

1) outcomes lead to dropping the ice into water. The entropic potential of the event “RNG 

trial has triggered the ice drop” is described by formula (6)  

Z(A,Tfin) = ΔS(1-p) ≈ 0 

The entropic potential of the “RNG trial has triggered the ice drop” event is small be-

cause it is an expected event with high probability p=(n-1)/n. It occurs in (n-1) cases from 

n and correspondingly the event “RNG trial has triggered the ice drop” practically does not 

alter the entropy at the moment Tfin 
from its mathematical expectation made before the 

RNG trial.  
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The entropic potential of the event “RNG trial did NOT trigger the ice drop” is described 

by formula (7) 

Z(A,Tfin) = - ΔS*p ≈ - ΔS 

The potential Z(A,Tfin) in this case is high and has a negative value because the event 

“RNG trial did NOT trigger the ice drop” has a low probability. Reasonably it is expected 

that the entropy at the moment Tfin 
will be Ŝfin= S0 

+ ΔS. However, because of the RNG 

event “RNG trial did NOT trigger the ice drop”, the device did not drop the ice into water 

and entropy Sfin at the moment Tfin will be equal to Sfin= S0, which is much less than its 

mathematical expectation S(Т0) + ΔS*p ≈ S(Т0) + ΔS. The entropy growth halts and corre-

spondingly the event “RNG trial did NOT trigger the ice drop” has a large negative entropic 

potential. This slows down the growth of entropy (in this model it even halts it) in the 

system R compared to the expected outcome. 

2.4.3. The case when the system is indeterministic and probability p is 0.5.  

For example, this can be implemented if within the available n RNG trials only the 

n/2 outcomes lead to the dropping of ice into water. The entropic potential of the event 

“RNG trial has triggered the ice drop” is described by formula (6), which is shown as  

Z(A,Tfin) = ΔS(1-p) = ΔS/2 

The entropic potential of the event “RNG trial did NOT trigger the ice drop” is described 

by formula (7), which now is shown as  

Z(A,Tfin) = -ΔS(1-p) = -ΔS/2 

As shown, the absolute values of entropic potentials for both events are equal. How-

ever, the potentials have different signs. The following shows why. 

The event “RNG trial has triggered the ice drop” causes the entropy Sfin to be higher than 

the mathematical expectation. The estimation Ŝfin(Т0-dT) made before the RNG trial pro-

duces the value S(Т0) + ΔS*p= S(Т0) + ΔS/2. However, the event “RNG trial has triggered the 

ice drop” produces the entropy Sfin= S(Т0) + ΔS at the moment Tfin, which is ΔS/2 higher than 

the mathematical expectation made before the RNG trial. Correspondingly, the entropic 

potential of this event is positive, and the system’s entropy grows faster than estimated. 

In the inverse case, the event “RNG trial did NOT trigger the ice drop” leads to the 

entropy Sfin= S(Т0) at the moment Tfin, which is ΔS/2 lower than the mathematical expecta-

tion made before the RNG trial. Correspondingly, the entropic potential of this event is 

negative and the system’s entropy grows slower than estimated. 

2.4.4. The case when the system is indeterministic and probability p is low, p~0.  

This can be implemented if within the n available RNG results only 1 outcome leads 

to the dropping of ice into water. The entropic potential of the event “RNG trial triggers 

the ice drop” is described by formula (6)  

Z(A,Tfin) = ΔS(1-p) ≈ ΔS 

As shown, the entropic potential of the “RNG trial has triggered the ice drop” event is 

high because it is an unexpected event with low probability p=1/n. It occurs only in 1 case 

from n and correspondingly the event “RNG trial triggered the ice drop” significantly influ-

ences the entropy of the system R at the moment Tfin deviating it from the mathematical 

expectation. In this case the mathematical expectation is Ŝfin(Т0-dT) = S(Т0) + ΔS*p ≈ S(Т0), 

while Sfin is Sfin= S(Т0)+ ΔS ≫ S(Т0). 

The entropic potential of the event “RNG trial did NOT trigger the ice drop” is described 

by formula (7) 
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Z(A,Tfin) = - ΔS*p ≈ 0. 

The potential Z(A,Tfin) in this case is negative and very small. The following shows 

why. In the analyzed case, the event “RNG trial did NOT trigger the ice drop” has a high 

probability. All the RNG outcomes but one keeps the ice out of water. Therefore, the event 

“RNG trial did NOT trigger the ice drop” practically does not deviate the final entropy Sfin= 

S(Т0) from its mathematical expectation Ŝfin(Т0-dT)= S(Т0) + ΔS*p ≈ S(Т0). Correspondingly, 

the event “RNG trial did NOT trigger the ice drop” at Т0 
practically does not influence the 

entropy at the future moment Tfin. 

3. Discussion. The entropic potential of an event and real-life systems

Real-life systems are mostly indeterministic as for almost any event A the event Ᾱ 

("not A"), with the non-zero probability p(Ᾱ) = 1-p(A) ≠ 0 can also occur. Correspondingly, 

the entropic potentials of real-life events are not zero, Z(A,T) ≠ 0 for any T as soon as the 

entropy in these systems is not constant.  

Since system entropy describes the amount of disorder/organization in the system, 

the entropic potential of events Z(A,T) thereby describes the impact of event A to the de-

velopment or degradation of the system R in the future. Therefore, if before event A has 

occurred (i.e., when it is not yet known if A or Ᾱ will take place) a mathematical expecta-

tion of entropy at the moment T is Ŝ (Т0-dT) and after event A has occurred the mathemat-

ical expectation of entropy is ŜT 
(Т0+dT) and Ŝ

T 
(Т0+dT) < Ŝ

T 
(Т0-dT). This in essence means 

that event A prevented the growth of entropy in the system R, and protected it from deg-

radation and destruction at least until the moment T. For such cases the entropic potential 

of event A is negative  

Z(T, A) = Ŝ
T
(T0 

+ dT) – Ŝ
T
(T0 

– dT) < 0 (9)

Vice versa, if the difference between the mathematical expectations of entropy at the 

future moment T is calculated after and before the event A is positive ŜT 
(Т0+dT) > ŜT 

(Т0-

dT) , this essentially means that the event A sped up the growth of entropy in the system 

R and accelerated degradation of this system at least until the moment T. For such cases 

the entropic potential of event A is positive  

Z(T, A) = Ŝ
T
(T0 

+ dT) – Ŝ
T
(T0 

– dT) > 0 (10)

In short, the entropic potentials of the events "useful" for system R are negative, and 

the entropic potentials of the events "harmful" for system R are positive.  
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