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Abstract: This article analyses entropy changes triggered by specific events in deterministic and
indeterministic systems. Article considers a simple model consisting of water in a cuvette, an ice
cube in the device above the cuvette and a random number generator (RNG) that controls the prob-
ability of dropping the ice into water. Article introduces the entropic potential Z(T, A) of an event
A occurred in a system R at the moment T, which describes the influence of the event A to the
entropy of the system R in the future (for the moments T>T;). The entropic potential of an event
Z(T,A) can be calculated as the difference between the mathematical expectations of entropy of the
system R for the moment T (T>T;) made immediately before and immediately after the event A as
Z(T, A) = S(T+dT) - S(T,-dT). Article also presents examples of calculations of the entropic poten-

tials of events in indeterministic systems with different probabilities of events. Since real-life sys-
tems are mostly indeterministic, the entropic potentials of events in real-life usually have non-zero
values. The entropic potentials of the events "useful" for the system are negative, and entropic po-
tentials of the events "harmful" for the system are positive.
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1. Introduction. An analysis of entropy changes in a simple deterministic and indeter-
ministic system
1.1. Deterministic system

Let us consider a simple system consisting of water in a cuvette and an ice cube lo-
cated in the device above this cuvette. Let the moment T, designate when the device drops

the ice into water. The ice melts and during the specific moment, Ty, the system enters a

state of equilibrium. Since in the described model the system’s entropy S is a function of
time T, let us denote it as S(T). At time T, it is S(T,) and at the moment Ty, it is S(T,).

During the ice melting the entropy grows and we denote this increase as AS.
AS = S(T,) - S(T,) (1)
We can also calculate the average speed of entropy growth (V,,), which is
Vee= [S(Tg,) - S(Tp)] / (Tgy~ T) @)
For an arbitrary moment of time (T) between the immersion of ice and the equilib-
rium state (T,<T<Tj,) the entropy of the system is between S(T;) and S(Ty,) and for the

time (T) after reaching the equilibrium (T>Ty,), the entropy of the system stays as S(T4,)

while the system is isolated. (For simplicity we neglect the melting of ice while it is located
in the device before it drops into the water.)

1.2. Indeterministic system

The model above with the ice cube dropping into water represents a deterministic
system [1, 2]. In that model, the probability of the piece of ice dropping into water is 100%.
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Let us now consider an indeterministic system [3] where the probability of dropping
the ice into water is less than 100%. It can, for example, be a system where the device drops
the piece of ice into water only if a random number generator (RNG) [4] connected to this
device returns a specific predefined number. For simplicity we check the random number
generator only once. This restriction is important to avoid the situation when the ice will
eventually be dropped into water after multiple RNG trials. Let us denote the moment of
the RNG trial as T, and the probability that the RNG outcome will trigger the ice drop as

p- In the indeterministic system at the time preceding the RNG trial, we do not know for
sure if the ice will be dropped into the water or not, and correspondingly we have to use
the mathematical expectation S(Ty,,) as an estimation of system entropy at the moment Ty,

instead of the S(Ty,) value.

To analyze this model in further detail we will consider two moments of time. One
moment is (T,-dT), which immediately precedes the RNG trial. The second moment is

(T¢+dT), which immediately follows the RNG trial. Similarly to the deterministic model,
T4, denotes the moment in the future in which the system would achieve equilibrium if
the ice was dropped at the time T,. Since the temperature of the water and ice and their
masses are known in this model, the time Ty, is calculatable.

Let us try to estimate the system entropy Sg, for the moment Ty, in the future. We
will perform two estimations at the moments (T,-dT) and (T;+dT) and will also denote
these entropy estimations as S4n(T-dT) and Sy, (T+dT).

When we estimate entropy S, at the moment T-dT we do not yet know if the ice will

be dropped into the water or not. Correspondingly, the mathematical expectation of Sy, is
So(Ty-dT) = S(Ty) + AS*p ©)

where the change in entropy AS was defined in formula (1) and p is the probability
that the RNG outcome will trigger the ice dropping.
When we estimate entropy S, at the moment T,+dT we already know if the ice was

dropped into the water or not. Here we can have one of two cases.
If the RNG produced the number that triggered the ice drop, then the estimation of
entropy Sﬁn is

S; (T HdT)=S(T,) + AS ()

If the RNG did not produce the number that triggered the ice drop, then the estima-
tion of entropy 8. is

S (Ty+dT)=S(T,) (5)

since the initial state was not changed and entropy did not increase.

2. Methods and results. Entropic potential of an event

2.1. Calculation of the strength of the “RNG trial” event to the change of entropy in the future
As we saw in the presented model, a random event in the system at the moment T,

may influence the system entropy value at the moment of Ty, in the future. The above

formulae also give us the method to calculate the strength of this influence. Before the
RNG trial the estimation of entropy for the moment T, was 84n(To-dT). After the RNG trial

the estimation of entropy for the moment Ty, is Sﬁn(TO+dT). Correspondingly we can use
the difference of the math estimations S, (T+dT) - S;,(T,-dT) to measure the influence of

the RNG outcome to entropy changes in the future.
For estimating the influence of the event “RNG outcome has triggered the ice drop” to
the system entropy in the future we have the difference
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Sa(To#dT) - 8 (Ty-dT) = [S(Ty) + AS] — [S(T,) + AS*p] = AS(1-p) (6)

For estimating the influence of the event “RNG outcome did NOT trigger the ice drop”
to the system entropy in the future we have the difference

Sa(Ty+dT) - S (T=dT) = S(Ty) -[S(T,) + AS*p] = - AS*p )

This way we can describe the strength of influence of random events occurred in the
system to the speed of future entropy growth in this system.

The text above illustrated the preamble of the introduction of an Entropic potential of
an event, which describes the influence of an event occurred at the moment T, to the en-

tropy change in the future T>T,,.

2.2. Definition

The entropic potential Z (T, A) of an event A occurred in the system R at the moment
T, describes the influence of the event A to the entropy of the system R in the future (for
the moments T>T).

As shown in the above model, in indeterministic systems the entropy can grow faster

or slower depending on the random events occurred in this system, the strength of influ-
ence of these events to the speed of entropy growth can be formulated.

2.3. Formula
As shown in the section “Indeterministic systems”, the entropic potential Z(T, A) can

be formulated as the difference between the mathematical expectations of entropy of the
system R for the moment T (T>T,;) made immediately before and immediately after the

event A.

Z(T, A) =S (T, +dT) - S(T,— dT) (8)

2.4. Examples of “Entropic potential of an event” calculations

Let us return to the formulae (6) and (7) and review in further detail what they mean
from a physical point of view. As above, AS is the entropy increase, which occurs if the ice
is dropped into water. The value p shows the probability of this event. Since p is a proba-
bility, it is located within the [0,1] interval. Let us analyze several cases.

2.4.1. The case when the system is deterministic.

In such a case the probability is p=1 because the device drops the ice into water for
any RNG outcome. Correspondingly the mathematical expectations made before and af-
ter the RNG trial are the same, S, (T#+dT) = S, (T,-dT). Correspondingly, the entropic po-
tential of the RNG trial is zero Z(A,T)=0, because the outcome of the RNG at the moment
T, does not influence the change of entropy in the future.

2.4.2. The case when the system is indeterministic and probability p is high, p~1.

For example, this can be implemented if from the n available RNG outcomes the (n-
1) outcomes lead to dropping the ice into water. The entropic potential of the event “RNG
trial has triggered the ice drop” is described by formula (6)

Z(A,Tg) = AS(1-p) = 0

The entropic potential of the “RNG trial has triggered the ice drop” event is small be-
cause it is an expected event with high probability p=(n-1)/n. It occurs in (n-1) cases from
n and correspondingly the event “RNG trial has triggered the ice drop” practically does not
alter the entropy at the moment Ty, from its mathematical expectation made before the

RNG trial.
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The entropic potential of the event “RNG trial did NOT trigger the ice drop” is described
by formula (7)

Z(A,Ty) =- AS*p = - AS

The potential Z(A,Ty,) in this case is high and has a negative value because the event
“RNG trial did NOT trigger the ice drop” has a low probability. Reasonably it is expected
that the entropy at the moment T, will be S,.= S,+ AS. However, because of the RNG

event “RNG trial did NOT trigger the ice drop”, the device did not drop the ice into water
and entropy Sg, at the moment T, will be equal to Sy = S, which is much less than its

mathematical expectation S(T,) + AS*p = S(T,)) + AS. The entropy growth halts and corre-

spondingly the event “RNG trial did NOT trigger the ice drop” has a large negative entropic
potential. This slows down the growth of entropy (in this model it even halts it) in the
system R compared to the expected outcome.

2.4.3. The case when the system is indeterministic and probability p is 0.5.

For example, this can be implemented if within the available n RNG trials only the
n/2 outcomes lead to the dropping of ice into water. The entropic potential of the event
“RNG trial has triggered the ice drop” is described by formula (6), which is shown as

Z(A,Ty,) = AS(1-p) = AS/2

The entropic potential of the event “RNG trial did NOT trigger the ice drop” is described
by formula (7), which now is shown as

Z(A,Ty,) =-AS(1-p) =-AS/2

As shown, the absolute values of entropic potentials for both events are equal. How-
ever, the potentials have different signs. The following shows why.

The event “RNG trial has triggered the ice drop” causes the entropy S, to be higher than
the mathematical expectation. The estimation Sﬁn(TO—dT) made before the RNG trial pro-
duces the value S(T) + AS*p=S(T,) + AS/2. However, the event “RNG trial has triggered the
ice drop” produces the entropy S.= S(T,) + AS at the moment Ty, which is AS/2 higher than
the mathematical expectation made before the RNG trial. Correspondingly, the entropic
potential of this event is positive, and the system’s entropy grows faster than estimated.

In the inverse case, the event “RNG trial did NOT trigger the ice drop” leads to the
entropy Sg.= S(T,) at the moment Ty, which is AS/2 lower than the mathematical expecta-
tion made before the RNG trial. Correspondingly, the entropic potential of this event is
negative and the system’s entropy grows slower than estimated.

2.4.4. The case when the system is indeterministic and probability p is low, p~0.
This can be implemented if within the n available RNG results only 1 outcome leads

to the dropping of ice into water. The entropic potential of the event “RNG trial triggers
the ice drop” is described by formula (6)

Z(A,Ty,) = AS(1-p) = AS

As shown, the entropic potential of the “RNG trial has triggered the ice drop” event is
high because it is an unexpected event with low probability p=1/n. It occurs only in 1 case
from n and correspondingly the event “RNG trial triggered the ice drop” significantly influ-
ences the entropy of the system R at the moment Ty, deviating it from the mathematical

expectation. In this case the mathematical expectation is Sn(Ty-dT) = S(T,) + AS*p = S(T),
while S, is Sg.= S(To)+ AS > S(T).

The entropic potential of the event “RNG trial did NOT trigger the ice drop” is described
by formula (7)
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Z(A,Tg,) =- AS*p = 0.

The potential Z(A,Ty,) in this case is negative and very small. The following shows
why. In the analyzed case, the event “RNG trial did NOT trigger the ice drop” has a high
probability. All the RNG outcomes but one keeps the ice out of water. Therefore, the event
“RNG trial did NOT trigger the ice drop” practically does not deviate the final entropy S;.,=
S(T,) from its mathematical expectation S4n(To-dT)=S(T,) + AS*p = 5(T,). Correspondingly,
the event “RNG trial did NOT trigger the ice drop” at T, practically does not influence the
entropy at the future moment Tj,,.

3. Discussion. The entropic potential of an event and real-life systems

Real-life systems are mostly indeterministic as for almost any event A the event A
("not A"), with the non-zero probability p(A) = 1-p(A) # 0 can also occur. Correspondingly,
the entropic potentials of real-life events are not zero, Z(A,T) # 0 for any T as soon as the
entropy in these systems is not constant.

Since system entropy describes the amount of disorder/organization in the system,
the entropic potential of events Z(A,T) thereby describes the impact of event A to the de-
velopment or degradation of the system R in the future. Therefore, if before event A has
occurred (i.e., when it is not yet known if A or A will take place) a mathematical expecta-
tion of entropy at the moment T is S (T,-dT) and after event A has occurred the mathemat-

ical expectation of entropy is 8, (T,+dT) and ST (Ty+dT) < ST (Ty~dT). This in essence means

that event A prevented the growth of entropy in the system R, and protected it from deg-
radation and destruction at least until the moment T. For such cases the entropic potential
of event A is negative

Z(T, A)=S(T,+dT) - S(T,—dT) <0 )
Vice versa, if the difference between the mathematical expectations of entropy at the
future moment T is calculated after and before the event A is positive S; (T+dT) > S (T,

dT), this essentially means that the event A sped up the growth of entropy in the system
R and accelerated degradation of this system at least until the moment T. For such cases
the entropic potential of event A is positive

Z(T, A) = S(T,+dT) - S(T,—dT)>0 (10)

In short, the entropic potentials of the events "useful” for system R are negative, and
the entropic potentials of the events "harmful" for system R are positive.
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