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Abstract: Accurate forecasting of crop yields holds paramount importance in guiding decision-

making processes related to breeding efforts. This study focused on the application of multi-sensor 

data fusion and machine learning algorithms based on unmanned aerial vehicles (UAVs) in wheat 

yield prediction. Five machine learning (ML) algorithms namely random forest (RF), partial least 

squares (PLS), ridge regression (RR), K-Nearest Neighbor (KNN) and eXtreme Gradient Boosting 

Decision Tree (XGboost) were utilized for multi-sensor data fusion, and three ensemble methods 

including the second-level ensemble methods (stacking and feature-weighted) and the third-level 

ensemble method (simple average) for wheat yield prediction. The 270 wheat hybrids were used as 

planting materials under full and limited irrigation treatments. A cost-effective multi-sensor UAV 

platform, equipped with red–green–blue (RGB), multispectral (MS), and thermal infrared (TIR) 

sensors, was utilized to gather remote sensing data. The results revealed that the XGboost algorithm 

exhibited outstanding performance in multi-sensor data fusion, with the RGB+MS+Texture+TIR 

combination demonstrating the highest fusion performance (R2=0.660, RMSE= 0.754). Compared 

with the single ML model, the employment of three ensemble methods significantly enhanced the 

prediction accuracy of wheat yield. Notably, the third-layer simple average ensemble method 

demonstrated superior performance (R2 = 0.733, RMSE= 0.668 t ha-1). It significantly outperformed 

both the second-layer ensemble methods of Stacking (R2= 0.668, RMSE= 0.673 t ha-1) and feature-

weighted (R2= 0.667, RMSE= 0.674 t ha-1), thereby exhibiting superior predictive capabilities. This 

finding demonstrated that the third-layer ensemble method not only augments the predictive ability 

of the model but also fine-tuned the accuracy of wheat yield prediction through the employment of 

simple average ensemble learning. Consequently, it offers a novel perspective for crop yield 

prediction and breeding selection.Keywords: keyword 1; keyword 2; keyword 3 (List three to ten 

pertinent keywords specific to the article yet reasonably common within the subject discipline.) 

Keywords: machine learning; yield prediction; data fusion; wheat; phenotyping 

 

1. Introduction 

Wheat stands as one of the most vital crops globally, with approximately 35%-40% of the world's 

population relying on it as a primary food source. It contributes approximately 21% of food energy 

and 20% of protein intake. Given the backdrop of population growth and climate change, the early 

and accurate estimation of wheat yield holds utmost importance for safeguarding national food 

security and maintaining people's living standards [1,2]. Conventionally, the yield prediction method 
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has primarily been dependent on field observation and investigation, which is not only a time-

consuming and laborious process but also susceptible to subjective biases, and can even result in crop 

damage [3]. In recent years, remote sensing technology has gained widespread application in the 

domain of agricultural monitoring. This technology enables the effective acquisition of canopy 

spectral data from aerial sources, thereby facilitating the estimation of crop yields [4,5]. Furthermore, 

unmanned aerial vehicle (UAV)-based remote sensing technology has witnessed rapid development, 

owing to its distinctive advantages of flexibility and high resolution [6].  

The vegetation index (VI) derived from UAV images has demonstrated its effectiveness in 

predicting crop yields. Spectral, structural, thermal infrared (TIR), and texture features extracted 

from UAV-collected datasets through sensors can be utilized to assess various plant traits and 

structures [7]. For instance, low-altitude UAVs were employed to capture RGB imaging data of potato 

canopies at two distinct growth stages, to predict yields [8]. The use of a multispectral (MS) UAV 

platform for swift monitoring of the normalized vegetation index (NDVI) during the wheat filling 

stage exhibited a strong correlation with wheat grain yield [9]. Texture information extracted from 

UAV images can effectively reflect the spatial variations in pixel intensity, thereby emphasizing the 

structural and geometric characteristics of the plant canopy [10]. The potential of UAV TIR imaging 

technology for assessing crop water stress and predicting wheat kernel yield in different wheat 

varieties has also been thoroughly validated [11]. However, the majority of studies solely rely on data 

from a single sensor to estimate crop yields, overlooking the advantages of combining multiple 

sensors. For example, by combining the features derived from MS, RGB, and TIR imaging, the 

accuracy of soybean yield prediction can be significantly improved [7]. The combination of canopy 

TIR information with spectral and structural characteristics can improve the robustness of crop yield 

prediction across diverse climatic conditions and developmental stages [12]. In particular, the 

application of machine learning (ML) techniques to the analysis of multi-sensor data collected by 

UAVs can significantly enhance the accuracy of crop yield predictions [13]. On this basis, to fully 

harness the potential of ML algorithms, the machine learning technology is combined with the VIs 

extracted from the spectral image of the sensor to build a yield prediction model, which provides 

strong support for the relevant practices of precision agriculture [14,15].  

At present, a variety of machine learning methods have been applied to yield prediction, such 

as random forest (RF) [16], partial least squares (PLS) [17], ridge regression (RR) [18], K-Nearest 

Neighbor (KNN) [19] and eXtreme Gradient Boosting Decision Tree (XGboost) [20]. However, the 

predictions of the same model may vary significantly across different crops and environments, 

primarily due to the quality of data, the representation of the model, and the dependencies between 

input and target variables within the collected dataset [21]. If the data is biased or if the chosen model 

exhibits overfitting to the respective dataset, the model will fail to demonstrate accurate performance 

[22]. Ensemble learning, a research hotspot, is proposed to address these challenges. Its objective is 

to integrate data fusion, data modeling, and data mining into a cohesive framework [23]. the 

ensemble learning paradigm known as stacked regression involves linearly combining various 

predictors to enhance prediction accuracy [24,25]. The feature-weighted ensemble method assigns 

weights according to the correlation of features and estimates the degree of correlation between each 

feature and the extracted output model [26–29]. In this study, we employ a feature-weighted 

ensemble learning approach that assigns weights to the training dataset generated by the primary 

learner, based on the prediction accuracy of each individual learner. Subsequently, utilizing these 

weighted data, the meta-learner is trained to enhance the overall model's learning efficiency. To 

further refine the model performance, we introduce an innovative third-layer ensemble method, 

specifically the simple average ensemble method. To further optimize the model performance, we 

introduce a novel ensemble method in the third layer, specifically the simple average ensemble 

method. The method calculates the average values of the predictions of the stacking ensemble 

method and the feature-weighted ensemble method on the test set and compares them with the actual 

measured values to realize the effect of the third-layer ensemble learning. 

The primary objective of this study was to explore the utilization of UAV-based remote sensing 

data obtained 21 days after wheat flowering to predict wheat yield. It includes: (1) evaluation and 
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data fusion of UAV yield prediction methods based on RGB, MS, Texture and TIR; (2) Compare the 

accuracy of the basic learner (RF, PLS, RR, KNN and XGboost) and three ensemble methods (stacking, 

feature-weighted and simple average) for yield prediction, and then select the optimal approach. 

2. Materials and Methods 

2.1. Experiment Location and Design 

Two hundred and seventy RILs from cross Zhongmai 578/Jimai 22 were planted at the research 

site of Chinese Academy of Agriculture Sciences (35°18′0″N, 113°52′0″E) in Xinxiang, Henan 

province, China during the 2021-2022 growing season. This experiment used randomized complete 

blocks with three replications under full and limited irrigation treatments. Two irrigations at the 

seedling and overwintering stages were poured for both treatments, the full irrigation treatment was 

flooded at the greening jointing and early grain filling stages. A plot area was 3.6 m2（1.2 m×3 m). It 

was designed in 6 lines, with a line spacing of 0.20 m. The planting density was maintained at 270 

plants/m2, and agricultural management was performed according to local conditions. After 

maturity, the harvest was conducted using a combine harvester. The seeds were weighed after drying 

to a moisture content of less than 12.5%.  

2.2. Multi-Sensor Image Acquisition and Processing Based on UAV 

Data acquisition for all traits was done by a UAV platform M210 (SZ DJI Technology Co., 

Shenzhen, China). An RGB and TIR were the same sensor (Zenmuse XT2 camera, SZ DJI Technology 

Co., Shenzhen, China) with lens pixels of 4000×3000 and 640×512, respectively. MS sensor (Red-Edge 

MX camera, MicaSense, Seattle, USA) captures same pixel images (1280×960) in five bands including 

blue, green, red, red edge and near infrared (NIR) with wavelength were 475 nm, 560 nm, 668 nm, 

717 nm and 842 nm, respectively. The aerial surveys were carried out at the 21 days post-anthesis due 

to the proven high accuracy of yield predictions during this period [13]. All flight tasks were carried 

out from 10:00 to 14:00 in clear skies, using DJI Pilot software to set route parameters as follows: the 

forward and side overlap were 90% and 85%, respectively, and the flight altitude was 30 meters. 

In this study, the Pix4D Mapper Pro 4.5.6 software (Pix4D, Lausanne, Switzerland) was used to 

perform radiometric correction and image stitching on RGB, TIR and MS images of UAV, and the 

visible, TIR orthophoto image and five-band orthophoto reflectance map were obtained. The 

obtained images with spectral reflectance were imported into ArcGIS 10.8.1 (Environmental Systems 

Research Institute, Inc., Redlands, USA) software for image cropping, each cell was selected as the 

area of interest, the features were extracted and to calculate the different VIs used in this study. The 

detailed process is shown in Figure 1. To minimize the noise impact on the images and enhance the 

efficiency of subsequent processing steps, it was necessary to exclude non-target areas from the 

acquired MS images. The Pix4D Mapper software was utilized to perform image stitching, shading 

correction, and digital number (DN) processing on the filtered MS data, ultimately converting it into 

a TIFF image format with spectral reflectivity. Radiation calibration was conducted prior to and 

following each flight using a dedicated calibration plate. Subsequently, the TIR data was calibrated 

based on the blackbody reference to determine the temperature corresponding to each pixel value in 

the TIR imagery. 
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Figure 1. Processing of UAV-based data. 

2.3. Extraction of Vegetation and Texture Index 

As a metric for evaluating physiological parameters of crops, VIs could effectively reflect the 

real-time growth level of crops [30]. Ten color index and eleven MS VIs were selected as shown in 

Table 1.  

In addition to spectral information, texture features as another important remote sensing 

information were less susceptible to external environmental factors. They reflected the grayscale 

nature of the image and its spatial relationships, thereby enhancing the inversion accuracy of single 

spectral information sources that may suffer from saturation issues. Furthermore, texture features 

enhanced the potential for inverting physicochemical parameters to a certain extent [31]. In ENVI 5.3, 

the widely utilized gray level co-occurrence matrix (GLCM) was used to extract 40 texture features 

for the RGB-based R, G, B bands and MS based red-edge, NIR bands. Then, the region of interest was 

delimited for the texture feature images of each band in ArcGIS 10.8.1 (Figure 1). 

Principal component analysis (PCA) was a data mining technique in multivariate statistics. It 

transformed convert high-dimensional data into low-dimensional data through dimensionality 

reduction, while preserving the majority of the information within the data without compromising 

its integrity [32]. Through principal component analysis, we transformed the initial 40 texture 

features into 3 new principal components, which were linear combinations of the original features. 

Each principal component encapsulated a portion of the information from the original features. By 

utilizing these principal components, we effectively represented the original data in a lower-

dimensional space while preserving as much of the data's variance as possible. Consequently, these 

three principal components could be regarded as representative of the most significant texture 

features within the dataset (Figure 1). 

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2024                   doi:10.20944/preprints202405.0402.v2

https://doi.org/10.20944/preprints202405.0402.v2


 5 

 

Table 1. Vegetation index formula for UAV images. 

Sensor Spectral Indices Equation References 

RGB Red Green Blue Vegetation Index RGBVI=(G2 − B ∗ R)∕(G2 + B ∗ R) [33] 

 Plant Pigment Ratio PPR= (G – B)/(G + B) [34] 

 Green Leaf Algorithm GLA=(2*G-R-B)/(2*G+R+B) [35] 

 Excess Green Index ExG=2*G-R-B [36] 

 
Colour Index of Vegetation 

Extraction 

CIVE=0.441*R-

0.881*G+0.3856*B+18.78745 
[37] 

 
Visible Atmospherically Resistant 

Index 
VARI=(G-R)/(G+R-B) [38] 

 Kawashima Index IKAW=(R-B)/(R+B) [39] 

 Woebbecke Index WI=(G-B)/(R-G) [36] 

 Green Blue Ratio Index GBRI=G/B [40] 

 Red Blue Ratio Index RBRI=R/B [40] 

MS Green-NDVI GNDVI=(NIR-G)/(NIR+G) [41] 

 
MERIS Terrestrial Chlorophyll 

Index 
MTCI=(NIR-R)/(RE-R) [42] 

 
Normalized Difference Vegetation 

Index 
NDVI=(NIR-R)/(NIR+R) [38] 

 Ratio Vegetation Index RVI1=NIR/R [43] 

 Ratio Vegetation Index RVI2=NIR/G [44] 

 Modifed Simple Ratio Index MSRI=(NIR/R-1)/(NIR/R+1)**0.5 [45] 

 
Re-normalized Difference 

Vegetation Index 
RDVI=(NIR-R)/(NIR+R)**0.5 [46] 

 Structure Insensitive Pigment Index SIPI = (NIR-B)∕(NIR+B) [47] 

 Colour Index CI=NIR/G-1 [48] 

 
Generalized Soil-adjusted 

Vegetation Index 
GOSAVI=(NIR-G)/(NIR+G+0.16) [49] 

 Plant Senescence Refectance Index PSRI=(R-B)/NIR [50] 

2.3. Ensemble Learning Framework 

In ML, each algorithm possesses its distinct strengths. Ensemble learning achieves superior 

generalization performance by harnessing the combined advantages of various machine learning 

algorithms [51]. This study proposed three methods in total. The first method was stacking 

regression, which was a heterogeneous ensemble learning model first introduced by WOLPERT in 

1992 [52]. The objective of this study was to integrate the predictive strengths of five fundamental 

models: RF, PLS, RR, KNN and XGboost. Initially, the training dataset was partitioned into an 80% 

training subset and a 20% testing subset. Each base model was then trained independently on the 

training subset, utilizing a 10-fold cross-validation approach, and their respective predictions were 

generated for the testing subset. Subsequently, these prediction results were employed as input 

features for the meta-model. RR served as the regression algorithm for the meta-model, tasked with 

learning to effectively integrate the learning algorithms of the various basic models in order to 

generate a final ensemble prediction. Throughout the training process, cross-validation techniques 

were employed to meticulously fine-tune the hyperparameters of the meta-model, with the ultimate 

goal of bolstering its generalization capabilities. Upon completion of the training phase, the refined 

stacking model was then utilized to predict outcomes for the test set, subsequently enabling a 

thorough evaluation of the model's overall performance (Figure 2). 

The second approach was feature-weighted ensemble learning. Its essence laied in assigning 

distinct weights to each base learner depending on their predictive prowess. Each base model 

underwent training on the training set, and the coefficient of determination (R2) for each base model 

was computed using the testing set. Subsequently, the R2 values served as the foundation for 

allocating weights (Figure 2). 
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The third approach proposed in this study was simple average ensemble learning, where the 

predictions obtained from Stacking regression and the feature-weighted ensemble method on the 

testing set were averaged. Then, the R² score was computed between the averaged predictions and 

the true values of the testing set (Figure 2). 

 

Figure 2. Modeling construction and assessment. 

2.4. Model Performance Evaluation 

In this study, the selection R2, root-mean-square error (RMSE) and normalized root-mean-square 

error (NRMSE) were selected as the indexes to evaluate the prediction accuracy of the base learner. 

The formula is as follows: 

𝑅2 = 1 −
∑  (𝑦̂𝑖−𝑦𝑖)

2𝑛
𝑖=1

∑  (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1

                         (1) 

RMSE = √
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
                          (2) 

NRMSE =
RMSE

y̅
∗ 100%                        (3) 

Where 𝑦𝑖  and 𝑦̂𝑖  are measured and predicted values of wheat yield, respectively, 𝑦̅ is the 

mean value of measured yield and n is the sample size. 

The weight allocation formula is as follows: 
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𝑤𝑙 =
𝐸𝑅,𝑙

∑ 𝐸𝑅,ℎ
𝑇
ℎ=1

                              (4) 

Where 𝑤𝑙 is the weight of the 𝑙 primary learner, 𝑙 = 1, 2, ... , T; T is the number of primary 

learners; 𝐸𝑅,𝑙 is the R2 of the 𝑙 primary learner; 𝐸𝑅,ℎ is the R2 of the ℎ primary learner. 

This formula transforms the R² scores of each base model into weights and ensures that the sum 

of all weights equals 1. Thus, the stronger predictive performance of each base model is assigned a 

higher weight, leading to a larger proportion in the ensemble prediction. 

3. Results 

3.1. Principal Component Analysis of Texture Features 

In analysing the initial value, variance contribution rate and cumulative variance contribution 

rate of the texture eigenprincipal components (Table 2), we observed that the initial eigenvalues of 

the first, second, and third principal components exceed 1, specifically 19.72, 11.13 and 3.09, 

respectively. The variance contribution rates were 49.30%, 27.80% and 7.70%, respectively, and the 

cumulative variance contribution rate amounted to 84.90%. This indicated that the first three 

principal components were capable of retaining 84.90% of the information from the original data. 

Consequently, the first three components were extracted as the principal components for the 

comprehensive evaluation of texture features. 

Table 2. Initial eigenvalues, contribution rates of variance and cumulative contribution rates of 

variance of texture feature principal components. 

Principal Component 

Initial Eigenvalues 

Eigenvalue 
Variance Contribution 

Ratio (%) 

Cumulative Variance 

Contribution Ratio (%) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

19.72 

11.13 

3.09 

1.93 

1.54 

0.74 

0.66 

0.38 

0.28 

0.22 

0.15 

0.06 

49.30 

27.80 

7.70 

4.80 

3.80 

1.90 

1.70 

0.90 

0.70 

0.60 

0.40 

0.10 

49.30 

77.10 

84.90 

89.70 

93.50 

95.40 

97.00 

98.00 

98.70 

99.20 

99.60 

100.00 

Figure 3 displayed the loadings of the principal component analysis for the 40 texture features. 

The variance contributions of the first (PC1), second (PC2), and third (PC3) principal components 

were represented on the X-, Y- and Z-axes, respectively. It was evident that the larger the absolute 

value of a variable's coefficient on a particular principal component, the greater its contribution to 

that component. 
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Figure 3. Principal component analysis loading plots for different texture features. 

3.2. Correlation Analysis of CI, VI, Texture Features and TIR with Wheat Yield 

The Pearson’s correlation coefficient (r) analysis of vegetation index including 10 CIs and 11 VIs, 

3 texture features and thermal infrared index were shown in Figure 4. The absolute correlation 

between CI and wheat yield ranged from r = 0.13 to r = 0.72. Among these, the highest correlation 

was observed with VARI (r = 0.72), while the lowest correlations were with PPR and GBRI (r = 0.13). 

The remaining 6 indices, IKAW, ExG, RGBVI, GLA, CIVE, RBRI and VARI, all exhibited correlations 

of 0.6 and above (r ≥ 0.60). The absolute correlation between VIs and wheat yield consistently 

approached 0.70, with RDVI and GOSAV showing the highest correlation (r = 0.70). The lowest 

correlation was observed with MTCI (r = 0.68). The texture features were primarily consisted of 

component analysis. In the correlation analysis between TIR and wheat yield, it was found that the 

absolute correlation value of PC1 was the highest (r = 0.69), whereas the remaining indices exhibited 

lower correlations. Notably, TIR demonstrated a relatively higher correlation (r = 0.68). 

 

Figure 4. Pearson’s correlation coefficient (r) between CI, VI, Texture features, TIR and wheat yield. 

(a) CIs; (b) VIs; (c) Texture features and TIR. 
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3.3. Wheat Yield Estimation for Optimal Sensor 

In this study, five regression algorithms (RF, PLS, RR, KNN, and XGboost) were employed, 

alongside three ensemble learning algorithms, to forecast wheat yield. These predictions were based 

on features extracted from three distinct types of sensors (RGB, MS, and TIR) and their various 

combinations, as depicted in Table 3 and Figure 5. Among the predicted results from the single data 

source, the fusion of two data sources, the fusion of three data sources and the fusion of four data 

sources across eight machine learning algorithms, the highest R² values were observed for Texture 

(R² = 4.773), Texture+TIR (R² = 4.934), RGB+Texture+TIR (R² = 5.153) and RGB+MS+Texture+TIR (R² = 

5.238). Additionally, the prediction error value based on the RGB+MS+Texture+TIR data fusion 

model was also the lowest, with RMSE = 5.546 t ha⁻¹ and NRMSE = 55.733%. Therefore, the 

RGB+MS+Texture+TIR data fusion yielded the most accurate predictions for wheat yield, surpassing 

single, dual and triple data source fusion. Specifically, it achieved a higher overall R² value, ranging 

from 9.74% to 33.48%, 6.17% to 19.61% and 1.64% to 8.88%, respectively, compared to the other fusion 

strategies. Furthermore, it demonstrated a lower total RMSE, decreasing by 7.53%-17.72%, 5.12%-

16.07% and 3.23%-6.97%, respectively. Similarly, the total NRMSE was reduced by 7.54%-17.73%, 

5.13%-16.06% and 3.31%-6.98%, respectively. In conclusion, the RGB+MS+Texture+TIR data fusion 

emerged as the most precise in estimating wheat yield. 

Table 3. Test accuracy statistics of different models for wheat yield prediction. 

Sensor Metric Base learner   Secondary learner  
Thirdary 

learner 

    RF PLS RR KNN XGboost  StRR En_FW  En_Mean 

RGB 

R2 0.492  0.501  0.517  0.465  0.514   0.525  0.524   0.612 

RMSE (t ha-1) 0.848  0.841  0.827  0.871  0.830   0.820  0.821   0.818 

NRMSE (%) 8.520  8.449  8.310  8.750  8.339   8.241  8.247   8.172 

MS 

R2 0.513  0.534  0.534  0.507  0.528   0.542  0.548   0.625 

RMSE (t ha-1) 0.853  0.834  0.834  0.858  0.839   0.827  0.821   0.822 

NRMSE (%) 8.565  8.378  8.383  8.619  8.433   8.304  8.249   8.243 

Texture 

R2 0.579  0.592  0.592  0.539  0.593   0.605  0.596   0.678 

RMSE (t ha-1) 0.758  0.746  0.746  0.793  0.745   0.734  0.743   0.733 

NRMSE (%) 7.617  7.498  7.498  7.963  7.487   7.374  7.459   7.384 

TIR 

R2 0.434  0.490  0.490  0.439  0.482   0.500  0.495   0.594 

RMSE (t ha-1) 0.879  0.834  0.834  0.875  0.840   0.826  0.830   0.823 

NRMSE (%) 8.825  8.382  8.382  8.791  8.443   8.295  8.335   8.292 

RGB+MS 

R2 0.540  0.506  0.545  0.503  0.537   0.561  0.552   0.636 

RMSE (t ha-1) 0.825  0.854  0.820  0.857  0.827   0.806  0.814   0.805 

NRMSE (%) 8.285  8.580  8.241  8.611  8.307   8.096  8.173   8.107 

RGB+Texture 

R2 0.604  0.577  0.577  0.569  0.605    0.619  0.614   0.687 

RMSE (t ha-1) 0.747  0.772  0.772  0.779  0.746   0.733  0.737   0.733 

NRMSE (%) 7.506  7.754  7.758  7.828  7.491   7.360  7.407   7.314 

Sensor Metric Base learner  Secondary learner 
Thirdary 

learner 

    RF PLS RR KNN XGboost  StRR En_FW  En_Mean 

RGB+TIR 

R2 0.554  0.557  0.560  0.548  0.561    0.575  0.580   0.657  

RMSE (t ha-1) 0.780  0.777  0.775  0.785  0.774   0.762  0.757   0.756  

NRMSE (%) 7.839  7.806  7.786  7.889  7.772   7.650  7.602   7.620  

MS+Texture 

R2 0.598  0.604  0.601  0.551  0.617    0.623  0.619   0.694  

RMSE (t ha-1) 0.741  0.735  0.738  0.782  0.723   0.718  0.721   0.714  

NRMSE (%) 7.443  7.389  7.410  7.859  7.263   7.208  7.246   7.198  

MS+TIR 

R2 0.569  0.561  0.563  0.536  0.566   0.581  0.571   0.656  

RMSE (t ha-1) 0.772  0.780  0.778  0.801  0.775   0.762  0.770   0.763  

NRMSE (%) 7.760  7.833  7.811  8.049  7.789   7.654  7.739   7.660  

Texture+TIR 

R2 0.607  0.607  0.607  0.555  0.614    0.628  0.620   0.697  

RMSE (t ha-1) 0.732  0.732  0.733  0.780  0.726   0.713  0.720   0.710  

NRMSE (%) 7.357  7.358  7.359  7.831  7.290   7.161  7.235   7.157  
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RGB+MS+Texture 

R2 0.615  0.590  0.614  0.577  0.613   0.639  0.627   0.702  

RMSE (t ha-1) 0.736  0.760  0.738  0.772  0.739   0.713  0.725   0.716  

NRMSE (%) 7.396  7.638  7.412  7.755  7.421   7.163  7.281   7.146  

RGB+MS+TIR 

R2 0.588  0.582  0.602  0.547  0.591    0.603  0.612   0.686  

RMSE (t ha-1) 0.750  0.755  0.737  0.786  0.747   0.736  0.728   0.723  

NRMSE (%) 7.532  7.589  7.405  7.897  7.508   7.389  7.310   7.287 

            

Sensor Metric Base learner Secondary learner 
Thirdary 

learner 

    RF PLS RR KNN XGboost  StRR En_FW  En_Mean 

RGB+Texture+TIR 

R2 0.636  0.614  0.620  0.615  0.647    0.652  0.655   0.717  

RMSE (t ha-1) 0.718  0.739  0.733  0.738  0.707   0.702  0.698   0.696  

NRMSE (%) 7.210  7.424  7.367  7.415  7.098   7.051  7.014   7.061  

MS+Texture+TIR 

R2 0.627  0.616  0.620  0.568  0.641    0.643  0.645   0.711  

RMSE (t ha-1) 0.720  0.730  0.726  0.774  0.706   0.704  0.702   0.699  

NRMSE (%) 7.234  7.336  7.296  7.777  7.090   7.072  7.049   7.046  

RGB+MS+Texture+TIR 

R2 0.640  0.631  0.649  0.589  0.660    0.668  0.667   0.733  

RMSE (t ha-1) 0.701  0.709  0.692  0.748  0.681   0.673  0.674   0.668  

NRMSE (%) 7.038  7.127  6.949  7.519  6.842    6.760  6.771   6.727  

MS multi-spectral features, TIR thermal infrared features, RF random forest, PLS partial least squares, 

RR ridge regression, KNN k-nearest neighbor, XGboost extreme gradient boosting decision tree, StRR 

stacking ensemble using ridge regression as a secondary learner, En_FW feature-weighted ensemble 

as a secondary learner, En_Mean simple mean ensemble as a thirdary learner. 

 

Figure 5. Comparison of the estimation accuracies of models for different sensors and their 

combinations. 
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3.4. Optimal Machine Learning Algorithm for Wheat Yield Estimation 

Based on the results above, the fusion data of RGB+MS+Texture+TIR demonstrated high 

accuracy in predicting wheat yield. Among the five base models, the RR model performed the best 

when using RGB data (R² = 0.517) and TIR data (R² = 0.490) as single data sources. Conversely, PLS 

exhibited the highest predictive value for MS data (R² = 0.534), while XGboost showed the highest 

predictive value for Texture data (R² = 0.593). After the fusion of multi-sensor data, the prediction 

accuracy of most machine learning models was notably enhanced. The findings indicated that 

XGboost emerged as the top-performing predictive machine learning model, achieving an R² value 

of 0.660 (Table 3). The analysis results of the models on different data combinations are depicted in 

Figure 6. The R² value of XGboost was observed to be 0.011, 0.014, 0.0053, and 0.044 higher than RF, 

PLS, RR, and KNN, respectively. Furthermore, the XGboost model exhibited smaller errors in terms 

of RMSE and NRMSE. Specifically, its RMSE was lower than the other four models by 0.010, 0.013, 

0.005, and 0.040, respectively, while the NRMSE was lower than 0.104, 0.131, 0.053, and 0.399, 

respectively. These findings further confirm the superiority of XGboost in wheat yield prediction, 

followed by RR. 

 

Figure 6. Comparison of the estimation accuracies of different ML algorithms. 

Compared with the basic model, three ensemble methods were used in this study, including two 

second-layer ensemble methods (stacking and feature-weighted methods) and one third-layer 

ensemble method (simple average method). The analysis results were shown in Table 3. All three 

ensemble methods demonstrated higher model prediction accuracy compared to the single ML 

model. When compared to the single ML model that performed best on single sensor data, stacking, 

feature-weighted and simple average ensemble learning increased the R² values of the single sensor 

by 1.53% -2.16%, 0.50%-2.67% and 14.33%-21.26%, respectively. Additionally, RMSE was reduced by 

0.81%-1.48%, 0.33%-1.55% and 1.10%-1.65%, respectively, while NRMSE was reduced by 0.83%-

1.51%, 0.37%-1.54% and 1.08%-1.66%, respectively.  

Compared with the single ML models exhibiting the best performance in the optimal 

combination of multi-source data fusion (RGB+MS+Texture+TIR), the prediction accuracy of the three 

ensemble learning methods was also superior, surpassing each single model by 1.23%, 1.07% and 

11.01%, respectively. Additionally, the RMSE was reduced by 1.19%, 1.03% and 1.97%, respectively, 

while NRMSE decreased by 1.20%, 1.04% and 1.68%, respectively. The ensemble learning model 
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consistently achieved higher estimation accuracy in average R2, RMSE and NRMSE compared to all 

the base models, which confirmed the effectiveness of the ensemble learning model. In addition, it 

can be seen from Figure 6 that the R2 of the simple average ensemble model was significantly higher 

than the stacking ensemble and the feature-weighted ensemble model, surpassing them by 1.121 and 

1.157, respectively. Moreover, both RMSE and NRMSE were lower in the simple average ensemble 

model compared to the other two ensemble models. Therefore, it can be inferred that the simple 

average ensemble model was more accurate for wheat yield prediction.  

By comparing the correlation and linear fit between the estimated yield and measured yield of 

different integration methods under the optimal combination of RGB+MS+Texture+TIR (Figure 7); it 

was observed that the prediction result of the simple average ensemble method exhibited a closer 

correspondence with the actual tested yield. This observation confirms that the simple average 

ensemble method was the most accurate for wheat yield prediction. 

 

Figure 7. Comparison of ensemble learning estimated and measured yields. 

4. Discussion 

4.1. Estimation of Wheat Yield from Single Sensor Data and Multi-Sensor Fusion Data 

In this study, through the analysis of the single sensor prediction results, it was found that the 

wheat yield prediction accuracy ranked as follows: Texture > MS > RGB > TIR. Among them, texture 

features exhibited superior performance in wheat yield prediction accuracy, with R² values ranging 

from 0.539 to 0.593. This has been consistently demonstrated in studies across various sites and crops. 

The utilization of PCA in maize yield prediction effectively reduced the standard deviation of the 

prediction performance, thereby enhancing the accuracy of yield forecasts [53]. In Vietnam, the rice 

yield prediction model utilizing PCA-ML exhibited an average improvement of 18.5-45.0% compared 

to using ML alone. This outcome fully underscores the reliability and effectiveness of the combined 

model [54]. This indicates that the method combining PCA and ML effectively handles redundant 

data in multi-channel texture features, consequently leading to a significant enhancement in the 

accuracy of yield prediction.  

The wheat yield prediction results from MS data were superior to those from RGB data, 

primarily due to its capability to capture spectral information across multiple bands from visible light 
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to near infrared. Particularly, the near-infrared band provides the opportunity to accurately calculate 

Vis such as NDVI, which in turn can be utilized to better assess wheat yield. Furthermore, the stability 

of MS cameras across varying lighting conditions minimizes the influence of environmental 

fluctuations on prediction accuracy, ensuring the provision of reliable data for yield estimation 

[55,56]. The performance of TIR information extracted by TIR sensors was not satisfactory, with R² 

values ranging from 0.434 to 0.490. This finding aligns with the results reported by Luz and Elarab 

[57,58]. The possible explanation for this could be that canopy heat information is intricately linked 

to factors such as leaf water content, pigment concentration and canopy structural characteristics. If 

these factors are not appropriately controlled or corrected for during data processing, they can 

significantly impact the accuracy of yield predictions [7,59]. 

Multi-sensor fusion (RGB+MS+Texture+TIR) demonstrated clear advantages over single sensor 

prediction. By harnessing the capabilities of multiple sensors and integrating data from different 

sources, it provided a more comprehensive overview of crop growth information, thereby enhancing 

forecast accuracy [13].  

However, it also poses challenges in terms of data processing and algorithm optimization. 

Future research efforts should focus on streamlining the fusion process and enhancing algorithm 

efficiency to achieve more reliable wheat yield prediction. 

4.2. Application of Basic Model in Wheat Yield Estimation 

Five basic models were employed for wheat yield forecasting. XGboost, as a novel ML algorithm, 

has demonstrated superior predictive capabilities compared to other models, such as RF [60]. RF has 

been favored by many researchers due to its capability of removing redundant information from 

spectral data and achieving higher inversion accuracy through a smaller set of spectral characteristic 

variables [60,61]. Indeed, the XGboost model exhibited exceptional performance in the wheat yield 

prediction task. This was primarily attributed to its innovative algorithm design and optimization 

strategy, which effectively minimized overfitting and reduced computational demands. 

Consequently, the model's generalization ability was significantly enhanced, leading to more 

accurate predictions [62]. This research result has been corroborated by Li et al., who confirmed that 

the XGboost model outperforms other models in soybean yield prediction when utilizing the same 

input data [63]. Furthermore, in the prediction of winter wheat yield, the XGboost model not only 

marginally exceeded the RF model in terms of prediction accuracy but also demonstrated significant 

superiority in computational efficiency in most scenarios. Notably, it requires less time, making it a 

more efficient and practical choice for yield prediction [64]. These results underscore the advantages 

of XGboost in processing large-scale agricultural data, particularly in situations where swift and 

efficient output predictions are imperative. The model's superior performance in terms of both 

accuracy and computational efficiency demonstrates its potential as a valuable tool for agricultural 

yield forecasting. 

The PLS model exhibited the poorest performance in wheat yield prediction, both in single-

sensor and multi-sensor data fusion scenarios. Although PLS is capable of addressing the issue of 

multicollinearity among independent variables, as the number of potential variables increases, the 

training model tends to overfit. This overfitting phenomenon adversely impacts the model's 

performance on new test data, limiting its accuracy and reliability for yield prediction tasks [65,66]. 

4.3. Performance of Ensemble Learning in Wheat Yield Prediction 

Despite the recent significant advancements in ML methods and their successful applications 

across various fields, the pure data-driven approach in utilizing ML technology still poses some 

fundamental limitations. The accuracy and uncertainty of predictions generated by ML algorithms 

heavily depend on several factors. These include the quality of the data, the representativeness of the 

chosen model, and the dependencies between the input and target variables within the collected 

dataset [26]. Data that contains high levels of noise, erroneous information, outliers, biases, and 

incompleteness can significantly diminish the predictive capabilities of a machine learning model 

[21]. For this reason, this study incorporates three ensemble methods: stacking, feature-weighted and 
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simple average ensemble. In comparison to a single model, the ensemble model demonstrates higher 

precision. This finding aligns with the outcomes of previous research [13,33]. The R² values of the 

stacking ensemble method, which served as the second layer, were closely comparable to those of the 

feature-weighted ensemble learning approach. The primary advantage of the stacking ensemble 

method lies in its ability to learn and capitalize on the complementarities among diverse base 

learners, thereby enhancing the accuracy of predictions [67]. However, since the performance of each 

primary learner varies, the presence of large output errors in some primary learners can introduce 

significant error features into the training process of the meta-learner. This, in turn, can negatively 

impact the prediction accuracy of the entire model [68]. Another feature-weighted ensemble learning 

method involves correcting the prediction error of each primary learner. By doing so, it addresses the 

issue of poor prediction performance of individual models to some extent, generating a dataset that 

is more conducive to learner training [26]. Therefore, when there is variation in the correlation among 

features within the data, it is a prudent choice to select ensemble methods tailored to the specific 

characteristics of the dataset [69]. In summary, the prediction accuracy of both stacking and feature-

weighted methods was comparable, likely due to the unique advantages each approach offers. 

Notably, the novel layer 3 simple average ensemble method exhibited the highest R² value. This 

superior performance may be attributed to its ability to effectively integrate prediction results from 

diverse methods, mitigating potential issues such as model disparities, variations in sample 

distribution, and inaccuracies in feature weights, ultimately leading to enhanced prediction accuracy. 

5. Conclusion 

This study delved into the capabilities of UAV multi-sensor data fusion and machine learning 

algorithms for wheat yield prediction. Three ensemble learning methods of stacking, feature-

weighted and simple average were proposed to improve the performance of the prediction model. 

The results demonstrated that these ensemble learning methods enhanced the accuracy of wheat 

yield prediction. By synthesizing the strengths of different learners, ensemble learning methods 

effectively mitigated the potential risk of overfitting associated with individual models, thereby 

bolstering the model's generalization ability. The introduction of the simple average as the third layer 

ensemble learning represented a novel concept in wheat yield estimation. This method not only 

evaluated and improved the model's forecasting performance in a more robust and comprehensive 

manner, but also enhanced its adaptability and flexibility to data variations while maintaining high 

predictive accuracy. Therefore, it is anticipated that these ensemble learning methods will find 

widespread application in assessing the yield of diverse crops, serving as a scientific foundation and 

providing crucial management decision support for the advancement of precision agriculture. 

Funding: This work was funded by the National Science and Technology Major Program(2022ZD015703), the 

National Natural Science Foundation of China (32372196), and the Beijing Joint Research Program for 

Germplasm Innovation and New Variety Breeding (G20220628002). 

References 

1. Sun, C., Dong, Z., Zhao, L., Ren, Y., Zhang, N., & Chen, F. (2020). The wheat 660k SNP array demonstrates 

great potential for marker-assisted selection in polyploid wheat. Plant Biotechnology Journal, 18(6). 

2. Zhou, X., Zheng, H. B., Xu, X. Q., He, J. Y., Ge, X. K., & Yao, X.; et al. (2017). Predicting grain yield in rice 

using multi-temporal vegetation indices from uav-based multispectral and digital imagery. ISPRS Journal 

of Photogrammetry and Remote Sensing, 130, 246-25. 

3. Bian, C., Shi, H., Wu, S., Zhang, K., Wei, M., & Zhao, Y.; et al. (2022). Prediction of Field-Scale Wheat Yield 

Using Machine Learning Method and Multi-Spectral UAV Data. Remote Sensing,14, 1474. 

4. Xu, W., Chen, P., Zhan, Y., Chen, S., Zhang, L., & Lan, Y. (2021). Cotton yield estimation model based on 

machine learning using time series uav remote sensing data. International Journal of Applied Earth 

Observation and Geoinformation, 104. 

5. Thenkabail, P.S., Lyon, J.G., Huete, A. (2011). Hyperspectral remote sensing of vegetation and agricultural 

crops: Knowledge gain and knowledge gap after 40 years of research. CRC Press, 26, 663-688. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2024                   doi:10.20944/preprints202405.0402.v2

https://doi.org/10.20944/preprints202405.0402.v2


 15 

 

6. Li, B., Liu, R., Liu, S., Liu, Q., Liu, F., & Zhou, G. (2012). Monitoring vegetation coverage variation of winter 

wheat by low-altitude UAV remote sensing system. Transactions of the Chinese Society of Agricultural 

Engineering, 28(13), 160-165. 

7. Maimaitijiang, M., Sagan, V., Sidike, P., Hartling, S., & Fritschi, F.B. (2020). Soybean yield prediction from 

UAV using multimodal data fusion and deep learning. Remote Sensing of Environment, 237, 111599. 

8. Li, B., Xu, X., Zhang, L., Han, J., & Jin, L. (2020). Above-ground biomass estimation and yield prediction in 

potato by using UAV-based RGB and hyperspectral imaging. ISPRS Journal of Photogrammetry and 

Remote Sensing, 162, 161-172. 

9. Hassan, M. A., Yang, M., Rasheed, A., Yang, G., Reynolds, M., Xia, X.; et al. (2019). A rapid monitoring of 

NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant 

science, 282, 95-103. 

10. De Grandi, G.D., Lucas, R.M., & Kropacek, J. (2009). Analysis by wavelet frames of spatial statistics in sar 

data for characterizing structural properties of forests. IEEE Transactions on Geoscience & Remote Sensing, 

47(2), 494-507. 

11. Das, S., Christopher, J., Apan, A., Choudhury, M. R., Chapman, S., Menzies, N. W., & Dang, Y. P. (2020). 

UAV-thermal imaging: A robust technology to evaluate in-field crop water stress and yield variation of 

wheat genotypes. In 2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS), 138-141. 

12. Rischbeck, P., Elsayed, S., Mistele, B., Barmeier, G., Heil, K., & Schmidhalter, U. (2016). Data fusion of 

spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring 

barley. European Journal of Agronomy, 78, 44-59. 

13. Fei, S., Hassan, M. A., Xiao, Y., Su, X., Chen, Z., Cheng, Q.; et al. (2022). UAV-based multi-sensor data fusion 

and machine learning algorithm for yield prediction in wheat. Precision Agriculture, 24, 187-212. 

14. Liakos, K.G., Busato, P., Moshou, D., Pearson, S., Bochtis, D. (2018). Machine Learning in Agriculture: A 

Review. Sensors,18, 2674. 

15. Ramos, A. P. M., Osco, L. P., Furuya, D.E.G., Gonalves, W.N., & Pistori, H. (2020). A random forest ranking 

approach to predict yield in maize with uav-based vegetation spectral indices. Computers and Electronics 

in Agriculture, 178, 105791. 

16. Han, J., Zhang, Z., Cao, J., Luo, Y., Zhang, L., Li, Z., Zhang, J. (2020). Prediction of Winter Wheat Yield 

Based on Multi-Source Data and Machine Learning in China. Remote Sensing, 12, 236. 

17. Maimaitijiang, M., Ghulam, A., Sidike, P., Hartling, S., Maimaitiyiming, M., Peterson, K.; et al. (2017). 

Unmanned aerial system (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme 

learning machine. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 43–58. 

18. Ahmed, A.A.M., Sharma, E., Jui, S.J.J., Deo, R.C., Nguyen-Huy, T., & Ali, M. (2022). Kernel ridge regression 

hybrid method for wheat yield prediction with satellite-derived predictors. Remote Sensing, 14(5), 1136. 

19. Cedric, L. S., Adoni, W. Y. H., Aworka, R., Zoueu, J. T., Mutombo, F. K., Krichen, M., & Kimpolo, C. L. M. 

(2022). Crops yield prediction based on machine learning models: Case of West African countries. Smart 

Agricultural Technology, 2, 100049. 

20. Sarijaloo, F.B., Porta, M., Taslimi, B., & Pardalos, P.M. (2021). Yield performance estimation of corn hybrids 

using machine learning algorithms. Aritificial Intelligence in Agriculture, 5, 82-89. 

21. Chlingaryan, S. W. B. (2018). Machine learning approaches for crop yield prediction and nitrogen status 

estimation in precision agriculture: A review. Computers and Electronics in Agriculture, 151,61-69. 

22. Van der Laan, M. J., Polley, E. C., & Hubbard, A. E. (2007). Super learner. Statistical applications in genetics 

and molecular biology, 6(1). 

23. Dong, X., Zhiwen, Y.U., Cao, W., Shi, Y., & Qianli, M.A. (2019). A survey on ensemble learning. Frontiers 

of Computer Science, 14(2). 

24. Leo, B. (1996). Stacked regressions. Machine learning, 24, 49-64. 

25. Zhang, W., Ren, H., Jiang, Q., & Zhang, K. (2015). Exploring Feature Extraction and ELM in Malware 

Detection for Android Devices. International Symposium on Neural Networks. Springer, Cham, 489-498. 

26. Wei, P., Lu, Z., & Song, J. (2015). Variable importance analysis: A comprehensive review. Reliability 

Engineering & System Safety, 142, 399-432. 

27. Kelly, J.D., Davis, L. (1991). A Hybrid Genetic Algorithm for Classification. IJCAI, 91, 645–650. 

28. Raymer, M. L., Punch, W. F., Goodman, E. D., Kuhn, L. A., & Jain, A. K. (2000). Dimensionality reduction 

using genetic algorithms. IEEE transactions on evolutionary computation, 4(2), 164-171. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2024                   doi:10.20944/preprints202405.0402.v2

https://doi.org/10.20944/preprints202405.0402.v2


 16 

 

29. Daszykowski, M., Kaczmarek, K., Heyden, Y.V., & Walczak, B. (2007). Robust statistics in data analysis–a 

review: Basic concepts. Chemometrics & Intelligent Laboratory Systems, 85(2), 203-219. 

30. Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and 

applications. Journal of sensors, 2017, 1-17. 

31. Humeau-Heurtier, A. (2019). Texture feature extraction methods: A survey. IEEE access, 7, 8975-9000. 

32. Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary reviews: 

Computational statistics, 2(4), 433-459. 

33. Ji, Y., Liu, R., Xiao, Y. Cui, Y., Chen, Z., Zong, X., &Yang, T. (2023). Faba bean above-ground biomass and 

bean yield estimation based on consumer-grade unmanned aerial vehicle RGB images and ensemble 

learning. Precision Agriculture, 24, 1439–1460. 

34. Peñuelas, J., Gamon, J. A., Fredeen, A. L., Merino, J., & Field, C. B. (1994). Reflectance indices associated 

with physiological changes in nitrogen-and water-limited sunflower leaves. Remote sensing of 

Environment, 48(2), 135-146. 

35. Louhaichi, M., Borman, M. M., & Johnson, D. E. (2001). Spatially located platform and aerial photography 

for documentation of grazing impacts on wheat. Geocarto International, 16(1), 65-70. 

36. Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Color indices for weed 

identification under various soil, residue, and lighting conditions. Transactions of the ASAE, 38(1), 259-

269. 

37. Guijarro, M., Pajares, G., Riomoros, I., Herrera, P. J., Burgos-Artizzu, X. P., & Ribeiro, A. (2011). Automatic 

segmentation of relevant textures in agricultural images. Computers and Electronics in Agriculture, 75(1), 

75-83. 

38. Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation 

of vegetation fraction. Remote sensing of Environment, 80(1), 76-87. 

39. Kawashima, S., & Nakatani, M. (1998). An algorithm for estimating chlorophyll content in leaves using a 

video camera. Annals of Botany, 81(1), 49-54. 

40. Sellaro, R., Crepy, M., Trupkin, S. A., Karayekov, E., Buchovsky, A. S., Rossi, C., & Casal, J. J. (2010). 

Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis. Plant physiology, 

154(1), 401-409. 

41. Gitelson, A. A., & Merzlyak, M. N. (1996). Signature analysis of leaf reflectance spectra: Algorithm 

development for remote sensing of chlorophyll. Journal of plant physiology, 148(3-4), 494-500. 

42. Zhang, S., & Liu, L. (2014). The potential of the MERIS Terrestrial Chlorophyll Index for crop yield 

prediction. Remote sensing letters, 5(8), 733-742. 

43. Pinter Jr, P. J., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daughtry, C. S., & Upchurch, D. R. 

(2003). Remote sensing for crop management. Photogrammetric Engineering & Remote Sensing, 69(6), 647-

664. 

44. Xue, L., Cao, W., Luo, W., Dai, T., & Zhu, Y. (2004). Monitoring leaf nitrogen status in rice with canopy 

spectral reflectance. Agronomy Journal, 96(1), 135-142. 

45. Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. 

Canadian Journal of Remote Sensing, 22(3), 229-242. 

46. Roujean, J. L., & Breon, F. M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance 

measurements. Remote sensing of Environment, 51(3), 375-384. 

47. Peñuelas, J., Filella, I., & Gamon, J. A. (1995). Assessment of photosynthetic radiation-use efciency with 

spectral refectance. New Phytologist, 131, 291–296. 

48. Gitelson, A. A., Viña, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G., & Leavitt, B. (2003). Remote 

estimation of leaf area index and green leaf biomass in maize canopies. Geophysical research letters, 30(5). 

49. Gilabert, M. A., González-Piqueras, J., Garcıa-Haro, F. J., & Meliá, J. (2002). A generalized soil-adjusted 

vegetation index. Remote Sensing of environment, 82(2-3), 303-310. 

50. Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., & Rakitin, V. Y. (1999). Non-destructive optical 

detection of pigment changes during leaf senescence and fruit ripening. Physiologia plantarum, 106(1), 135-

141. 

51. Dong, X., Yu, Z., Cao, W., Shi, Y. & Ma, Q. (2020). A survey on ensemble learning. Frontiers of Computer 

Science, 14: 241-258. 

52. Quinlan, J. R. (1992). Learning with continuous classes. In 5th Australian joint conference on artificial 

intelligence, 92, 343-348. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2024                   doi:10.20944/preprints202405.0402.v2

https://doi.org/10.20944/preprints202405.0402.v2


 17 

 

53. Croci, M., Impollonia, G., Meroni, M., & Amaducci, S. (2022). Dynamic maize yield predictions using 

machine learning on multi-source data. Remote sensing, 15(1), 100. 

54. Pham, H.T., Awange, J., Kuhn, M., Nguyen, B.V., & Bui, L.K. (2022). Enhancing Crop Yield Prediction 

Utilizing Machine Learning on Satellite-Based Vegetation Health Indices. Sensors, 22, 719. 

55. Soria, X., Sappa, A.D. and Akbarinia, A. (2017). Multispectral single-sensor RGB-NIR imaging: New 

challenges and opportunities. In 2017 Seventh International Conference on Image Processing Theory, Tools 

and Applications (IPTA), 1-6. 

56. Cao, X., Liu, Y., Yu, R., Han, D., & Su, B. (2021). A comparison of UAV RGB and multispectral imaging in 

phenotying for stay green of wheat population. Remote Sensing, 13(24), 5173. 

57. Luz, B.R.D., & Crowley, J.K. (2010). Identification of plant species by using high spatial and spectral 

resolution thermal infrared (8.0–13.5μm) imagery. Remote Sensing of Environment, 114(2): 404-413. 

58. Elarab, M., Ticlavilca, A. M., Torres-Rua, A.F., Maslova, I., & Mckee, M. (2015). Estimating chlorophyll with 

thermal and broadband multispectral high resolution imagery from an unmanned aerial system using 

relevance vector machines for precision agriculture. International Journal of Applied Earth Observation 

and Geoinformation, 43, 32-42. 

59. Beatriz, R. D. L., & Crowley, J. K. (2007). Spectral reflectance and emissivity features of broad leaf plants: 

Prospects for remote sensing in the thermal infrared (8.0-14.0 μm). Remote Sensing of Environment, 109, 

393-405. 

60. Bolón-Canedo, V., & Alonso-Betanzos, A. (2019). Ensembles for feature selection: A review and future 

trends. Information fusion, 52, 1-12. 

61. Huang, L., Liu, Y., Huang, W., Dong, Y., Ma, H., Wu, K., & Guo, A. (2022). Combining random forest and 

XGBoost methods in detecting early and mid-term winter wheat stripe rust using canopy level 

hyperspectral measurements. Agriculture, 12(1), 74. 

62. Nagaraju, A., & Mohandas, R. (2021). Multifactor Analysis to Predict Best Crop using Xg-Boost Algorithm. 

In 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), 155-163. 

63. Li, Y., Zeng, H., Zhang, M., Wu, B., Zhao, Y., Yao, X., Cheng, T., Qin, X., & Wu., F. (2023). A county-level 

soybean yield prediction framework coupled with XGBoost and multidimensional feature engineering. 

International Journal of Applied Earth Observation and Geoinformation, 118, 103269. 

64. Joshi, A., Pradhan, B., Chakraborty, S., & Behera, M. D. (2023). Winter wheat yield prediction in the 

conterminous United States using solar-induced chlorophyll fluorescence data and XGBoost and random 

forest algorithm. Ecological Informatics, 77, 102194. 

65. Aguate, F. M., Trachsel, S., Pérez, L. G., Burgueño, J., Crossa, J., Balzarini, M., & de los Campos, G. (2017). 

Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield. Crop Science, 

57(5), 2517-2524. 

66. Zeng, W. Z., Xu, C., Zhao, G., Wu, J.W., & Huang, J. (2018). Estimation of sunflower seed yield using partial 

least squares regression and artificial neural network models. Pedosphere, 28(5), 764-774. 

67. Li, C., Wang, Y., Ma, C., Chen, W., Li, Y., Li, J., & Ding, F. (2021). Improvement of wheat grain yield 

prediction model performance based on stacking technique. Applied Sciences, 11(24), 12164. 

68. Pavlyshenko, B. (2018). Using stacking approaches for machine learning models. 2018 IEEE second 

international conference on data stream mining & processing (DSMP), 255-258. 

69. Anh, V.P., Minh, L.N., Lam, T.B. (2017). Feature weighting and svm parameters optimization based on 

genetic algorithms for classification problems. Applied Intelligence, 46, 455-469. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2024                   doi:10.20944/preprints202405.0402.v2

https://doi.org/10.20944/preprints202405.0402.v2

