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Abstract: Accurate forecasting of crop yields holds paramount importance in guiding decision-
making processes related to breeding efforts. This study focused on the application of multi-sensor
data fusion and machine learning algorithms based on unmanned aerial vehicles (UAVs) in wheat
yield prediction. Five machine learning (ML) algorithms namely random forest (RF), partial least
squares (PLS), ridge regression (RR), K-Nearest Neighbor (KNN) and eXtreme Gradient Boosting
Decision Tree (XGboost) were utilized for multi-sensor data fusion, and three ensemble methods
including the second-level ensemble methods (stacking and feature-weighted) and the third-level
ensemble method (simple average) for wheat yield prediction. The 270 wheat hybrids were used as
planting materials under full and limited irrigation treatments. A cost-effective multi-sensor UAV
platform, equipped with red-green-blue (RGB), multispectral (MS), and thermal infrared (TIR)
sensors, was utilized to gather remote sensing data. The results revealed that the XGboost algorithm
exhibited outstanding performance in multi-sensor data fusion, with the RGB+MS+Texture+TIR
combination demonstrating the highest fusion performance (R2=0.660, RMSE= 0.754). Compared
with the single ML model, the employment of three ensemble methods significantly enhanced the
prediction accuracy of wheat yield. Notably, the third-layer simple average ensemble method
demonstrated superior performance (R2 =0.733, RMSE= 0.668 t ha-1). It significantly outperformed
both the second-layer ensemble methods of Stacking (R2= 0.668, RMSE= 0.673 t ha-1) and feature-
weighted (R2= 0.667, RMSE= 0.674 t ha-1), thereby exhibiting superior predictive capabilities. This
finding demonstrated that the third-layer ensemble method not only augments the predictive ability
of the model but also fine-tuned the accuracy of wheat yield prediction through the employment of
simple average ensemble learning. Consequently, it offers a novel perspective for crop yield
prediction and breeding selection.Keywords: keyword 1; keyword 2; keyword 3 (List three to ten
pertinent keywords specific to the article yet reasonably common within the subject discipline.)

Keywords: machine learning; yield prediction; data fusion; wheat; phenotyping

1. Introduction

Wheat stands as one of the most vital crops globally, with approximately 35%-40% of the world's
population relying on it as a primary food source. It contributes approximately 21% of food energy
and 20% of protein intake. Given the backdrop of population growth and climate change, the early
and accurate estimation of wheat yield holds utmost importance for safeguarding national food
security and maintaining people's living standards [1,2]. Conventionally, the yield prediction method
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has primarily been dependent on field observation and investigation, which is not only a time-
consuming and laborious process but also susceptible to subjective biases, and can even result in crop
damage [3]. In recent years, remote sensing technology has gained widespread application in the
domain of agricultural monitoring. This technology enables the effective acquisition of canopy
spectral data from aerial sources, thereby facilitating the estimation of crop yields [4,5]. Furthermore,
unmanned aerial vehicle (UAV)-based remote sensing technology has witnessed rapid development,
owing to its distinctive advantages of flexibility and high resolution [6].

The vegetation index (VI) derived from UAV images has demonstrated its effectiveness in
predicting crop yields. Spectral, structural, thermal infrared (TIR), and texture features extracted
from UAV-collected datasets through sensors can be utilized to assess various plant traits and
structures [7]. For instance, low-altitude UAVs were employed to capture RGB imaging data of potato
canopies at two distinct growth stages, to predict yields [8]. The use of a multispectral (MS) UAV
platform for swift monitoring of the normalized vegetation index (NDVI) during the wheat filling
stage exhibited a strong correlation with wheat grain yield [9]. Texture information extracted from
UAYV images can effectively reflect the spatial variations in pixel intensity, thereby emphasizing the
structural and geometric characteristics of the plant canopy [10]. The potential of UAV TIR imaging
technology for assessing crop water stress and predicting wheat kernel yield in different wheat
varieties has also been thoroughly validated [11]. However, the majority of studies solely rely on data
from a single sensor to estimate crop yields, overlooking the advantages of combining multiple
sensors. For example, by combining the features derived from MS, RGB, and TIR imaging, the
accuracy of soybean yield prediction can be significantly improved [7]. The combination of canopy
TIR information with spectral and structural characteristics can improve the robustness of crop yield
prediction across diverse climatic conditions and developmental stages [12]. In particular, the
application of machine learning (ML) techniques to the analysis of multi-sensor data collected by
UAVs can significantly enhance the accuracy of crop yield predictions [13]. On this basis, to fully
harness the potential of ML algorithms, the machine learning technology is combined with the VIs
extracted from the spectral image of the sensor to build a yield prediction model, which provides
strong support for the relevant practices of precision agriculture [14,15].

At present, a variety of machine learning methods have been applied to yield prediction, such
as random forest (RF) [16], partial least squares (PLS) [17], ridge regression (RR) [18], K-Nearest
Neighbor (KNN) [19] and eXtreme Gradient Boosting Decision Tree (XGboost) [20]. However, the
predictions of the same model may vary significantly across different crops and environments,
primarily due to the quality of data, the representation of the model, and the dependencies between
input and target variables within the collected dataset [21]. If the data is biased or if the chosen model
exhibits overfitting to the respective dataset, the model will fail to demonstrate accurate performance
[22]. Ensemble learning, a research hotspot, is proposed to address these challenges. Its objective is
to integrate data fusion, data modeling, and data mining into a cohesive framework [23]. the
ensemble learning paradigm known as stacked regression involves linearly combining various
predictors to enhance prediction accuracy [24,25]. The feature-weighted ensemble method assigns
weights according to the correlation of features and estimates the degree of correlation between each
feature and the extracted output model [26-29]. In this study, we employ a feature-weighted
ensemble learning approach that assigns weights to the training dataset generated by the primary
learner, based on the prediction accuracy of each individual learner. Subsequently, utilizing these
weighted data, the meta-learner is trained to enhance the overall model's learning efficiency. To
further refine the model performance, we introduce an innovative third-layer ensemble method,
specifically the simple average ensemble method. To further optimize the model performance, we
introduce a novel ensemble method in the third layer, specifically the simple average ensemble
method. The method calculates the average values of the predictions of the stacking ensemble
method and the feature-weighted ensemble method on the test set and compares them with the actual
measured values to realize the effect of the third-layer ensemble learning.

The primary objective of this study was to explore the utilization of UAV-based remote sensing
data obtained 21 days after wheat flowering to predict wheat yield. It includes: (1) evaluation and
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data fusion of UAV yield prediction methods based on RGB, MS, Texture and TIR; (2) Compare the
accuracy of the basic learner (RF, PLS, RR, KNN and XGboost) and three ensemble methods (stacking,
feature-weighted and simple average) for yield prediction, and then select the optimal approach.

2. Materials and Methods
2.1. Experiment Location and Design

Two hundred and seventy RILs from cross Zhongmai 578/Jimai 22 were planted at the research
site of Chinese Academy of Agriculture Sciences (35°18'0”"N, 113°52'0"E) in Xinxiang, Henan
province, China during the 2021-2022 growing season. This experiment used randomized complete
blocks with three replications under full and limited irrigation treatments. Two irrigations at the
seedling and overwintering stages were poured for both treatments, the full irrigation treatment was
flooded at the greening jointing and early grain filling stages. A plot area was 3.6 m? (1.2 mx3 m). It
was designed in 6 lines, with a line spacing of 0.20 m. The planting density was maintained at 270
plants/m?, and agricultural management was performed according to local conditions. After
maturity, the harvest was conducted using a combine harvester. The seeds were weighed after drying
to a moisture content of less than 12.5%.

2.2. Multi-Sensor Image Acquisition and Processing Based on UAV

Data acquisition for all traits was done by a UAV platform M210 (SZ DJI Technology Co.,
Shenzhen, China). An RGB and TIR were the same sensor (Zenmuse XT2 camera, SZ D]I Technology
Co., Shenzhen, China) with lens pixels of 4000x3000 and 640%x512, respectively. MS sensor (Red-Edge
MX camera, MicaSense, Seattle, USA) captures same pixel images (1280x960) in five bands including
blue, green, red, red edge and near infrared (NIR) with wavelength were 475 nm, 560 nm, 668 nm,
717 nm and 842 nm, respectively. The aerial surveys were carried out at the 21 days post-anthesis due
to the proven high accuracy of yield predictions during this period [13]. All flight tasks were carried
out from 10:00 to 14:00 in clear skies, using DJI Pilot software to set route parameters as follows: the
forward and side overlap were 90% and 85%, respectively, and the flight altitude was 30 meters.

In this study, the Pix4D Mapper Pro 4.5.6 software (Pix4D, Lausanne, Switzerland) was used to
perform radiometric correction and image stitching on RGB, TIR and MS images of UAV, and the
visible, TIR orthophoto image and five-band orthophoto reflectance map were obtained. The
obtained images with spectral reflectance were imported into ArcGIS 10.8.1 (Environmental Systems
Research Institute, Inc., Redlands, USA) software for image cropping, each cell was selected as the
area of interest, the features were extracted and to calculate the different VIs used in this study. The
detailed process is shown in Figure 1. To minimize the noise impact on the images and enhance the
efficiency of subsequent processing steps, it was necessary to exclude non-target areas from the
acquired MS images. The Pix4D Mapper software was utilized to perform image stitching, shading
correction, and digital number (DN) processing on the filtered MS data, ultimately converting it into
a TIFF image format with spectral reflectivity. Radiation calibration was conducted prior to and
following each flight using a dedicated calibration plate. Subsequently, the TIR data was calibrated
based on the blackbody reference to determine the temperature corresponding to each pixel value in
the TIR imagery.
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Figure 1. Processing of UAV-based data.

2.3. Extraction of Vegetation and Texture Index

As a metric for evaluating physiological parameters of crops, VIs could effectively reflect the
real-time growth level of crops [30]. Ten color index and eleven MS VIs were selected as shown in
Table 1.

In addition to spectral information, texture features as another important remote sensing
information were less susceptible to external environmental factors. They reflected the grayscale
nature of the image and its spatial relationships, thereby enhancing the inversion accuracy of single
spectral information sources that may suffer from saturation issues. Furthermore, texture features
enhanced the potential for inverting physicochemical parameters to a certain extent [31]. In ENVI 5.3,
the widely utilized gray level co-occurrence matrix (GLCM) was used to extract 40 texture features
for the RGB-based R, G, B bands and MS based red-edge, NIR bands. Then, the region of interest was
delimited for the texture feature images of each band in ArcGIS 10.8.1 (Figure 1).

Principal component analysis (PCA) was a data mining technique in multivariate statistics. It
transformed convert high-dimensional data into low-dimensional data through dimensionality
reduction, while preserving the majority of the information within the data without compromising
its integrity [32]. Through principal component analysis, we transformed the initial 40 texture
features into 3 new principal components, which were linear combinations of the original features.
Each principal component encapsulated a portion of the information from the original features. By
utilizing these principal components, we effectively represented the original data in a lower-
dimensional space while preserving as much of the data's variance as possible. Consequently, these
three principal components could be regarded as representative of the most significant texture
features within the dataset (Figure 1).
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Table 1. Vegetation index formula for UAV images.

Sensor Spectral Indices Equation References
RGB Red Green Blue Vegetation Index =~ RGBVI=(G2-B * R)(G2+ B * R) [33]
Plant Pigment Ratio PPR= (G - B)/(G +B) [34]
Green Leaf Algorithm GLA=(2*G-R-B)/(2*G+R+B) [35]
Excess Green Index ExG=2*G-R-B [36]
Colour Index of Vegetation CIVE=0.441*R- 37]
Extraction 0.881*G+0.3856*B+18.78745
Visible Atmospherically Resistant VARI=(G-R)/(G+R-B) [38]
Index
Kawashima Index IKAW=(R-B)/(R+B) [39]
Woebbecke Index WI=(G-B)/(R-G) [36]
Green Blue Ratio Index GBRI=G/B [40]
Red Blue Ratio Index RBRI=R/B [40]
MS Green-NDVI GNDVI=(NIR-G)/(NIR+G) [41]
MERIS Terrestrial Chlorophyll MTCI=(NIR-R)/(RE-R) [42]
Index
Normalized Difference Vegetation NDVI=(NIR-R)/(NIR+R) [38]
Index
Ratio Vegetation Index RVI1=NIR/R [43]
Ratio Vegetation Index RVI2=NIR/G [44]
Modifed Simple Ratio Index MSRI=(NIR/R-1)/(NIR/R+1)**0.5 [45]
Re—normahz.ed Difference RDVI=(NIR-R)/(NIR+R)*0.5 [46]
Vegetation Index
Structure Insensitive Pigment Index SIPI = (NIR-B(NIR+B) [47]
Colour Index CI=NIR/G-1 [48]
Generahzed. Soil-adjusted GOSAVI=(NIR-G)/(NIR+G+0.16) [49]
Vegetation Index
Plant Senescence Refectance Index PSRI=(R-B)/NIR [50]

2.3. Ensemble Learning Framework

In ML, each algorithm possesses its distinct strengths. Ensemble learning achieves superior
generalization performance by harnessing the combined advantages of various machine learning
algorithms [51]. This study proposed three methods in total. The first method was stacking
regression, which was a heterogeneous ensemble learning model first introduced by WOLPERT in
1992 [52]. The objective of this study was to integrate the predictive strengths of five fundamental
models: RF, PLS, RR, KNN and XGboost. Initially, the training dataset was partitioned into an 80%
training subset and a 20% testing subset. Each base model was then trained independently on the
training subset, utilizing a 10-fold cross-validation approach, and their respective predictions were
generated for the testing subset. Subsequently, these prediction results were employed as input
features for the meta-model. RR served as the regression algorithm for the meta-model, tasked with
learning to effectively integrate the learning algorithms of the various basic models in order to
generate a final ensemble prediction. Throughout the training process, cross-validation techniques
were employed to meticulously fine-tune the hyperparameters of the meta-model, with the ultimate
goal of bolstering its generalization capabilities. Upon completion of the training phase, the refined
stacking model was then utilized to predict outcomes for the test set, subsequently enabling a
thorough evaluation of the model's overall performance (Figure 2).

The second approach was feature-weighted ensemble learning. Its essence laied in assigning
distinct weights to each base learner depending on their predictive prowess. Each base model
underwent training on the training set, and the coefficient of determination (R?) for each base model
was computed using the testing set. Subsequently, the R? values served as the foundation for
allocating weights (Figure 2).

d0i:10.20944/preprints202405.0402.v2
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The third approach proposed in this study was simple average ensemble learning, where the
predictions obtained from Stacking regression and the feature-weighted ensemble method on the
testing set were averaged. Then, the R? score was computed between the averaged predictions and
the true values of the testing set (Figure 2).
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Figure 2. Modeling construction and assessment.

2.4. Model Performance Evaluation

In this study, the selection R?, root-mean-square error (RMSE) and normalized root-mean-square
error (NRMSE) were selected as the indexes to evaluate the prediction accuracy of the base learner.
The formula is as follows:

n ~ 2
R2=1-— Zi;l (yi‘lii)z (1)
Xiz1 (vi-¥)
RMSE = /z?ﬂ(ii—yi)z @)
NRMSE = @ % 100% 3)

Where y; and J; are measured and predicted values of wheat yield, respectively, y is the
mean value of measured yield and n is the sample size.
The weight allocation formula is as follows:
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Where w; is the weight of the [ primary learner, [ =1, 2, ..., T; T is the number of primary
learners; Ey,; isthe R? of the | primary learner; Er, isthe R? of the h primary learner.

This formula transforms the R? scores of each base model into weights and ensures that the sum
of all weights equals 1. Thus, the stronger predictive performance of each base model is assigned a
higher weight, leading to a larger proportion in the ensemble prediction.

3. Results
3.1. Principal Component Analysis of Texture Features

In analysing the initial value, variance contribution rate and cumulative variance contribution
rate of the texture eigenprincipal components (Table 2), we observed that the initial eigenvalues of
the first, second, and third principal components exceed 1, specifically 19.72, 11.13 and 3.09,
respectively. The variance contribution rates were 49.30%, 27.80% and 7.70%, respectively, and the
cumulative variance contribution rate amounted to 84.90%. This indicated that the first three
principal components were capable of retaining 84.90% of the information from the original data.
Consequently, the first three components were extracted as the principal components for the
comprehensive evaluation of texture features.

Table 2. Initial eigenvalues, contribution rates of variance and cumulative contribution rates of
variance of texture feature principal components.

Initial Eigenvalues

Principal Component Eigenvalue Variance Contribution Cumulative Variance
Ratio (%) Contribution Ratio (%)
1 19.72 49.30 49.30
2 11.13 27.80 77.10
3 3.09 7.70 84.90
4 1.93 4.80 89.70
5 1.54 3.80 93.50
6 0.74 1.90 95.40
7 0.66 1.70 97.00
8 0.38 0.90 98.00
9 0.28 0.70 98.70
10 0.22 0.60 99.20
11 0.15 0.40 99.60
12 0.06 0.10 100.00

Figure 3 displayed the loadings of the principal component analysis for the 40 texture features.
The variance contributions of the first (PC1), second (PC2), and third (PC3) principal components
were represented on the X-, Y- and Z-axes, respectively. It was evident that the larger the absolute
value of a variable's coefficient on a particular principal component, the greater its contribution to
that component.
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Figure 3. Principal component analysis loading plots for different texture features.

3.2. Correlation Analysis of Cl, VI, Texture Features and TIR with Wheat Yield

The Pearson’s correlation coefficient (r) analysis of vegetation index including 10 CIs and 11 VIs,
3 texture features and thermal infrared index were shown in Figure 4. The absolute correlation
between CI and wheat yield ranged from r = 0.13 to r = 0.72. Among these, the highest correlation
was observed with VARI (r = 0.72), while the lowest correlations were with PPR and GBRI (r = 0.13).
The remaining 6 indices, IKAW, ExG, RGBVI, GLA, CIVE, RBRI and VAR], all exhibited correlations
of 0.6 and above (r 2 0.60). The absolute correlation between VIs and wheat yield consistently
approached 0.70, with RDVI and GOSAV showing the highest correlation (r = 0.70). The lowest
correlation was observed with MTCI (r = 0.68). The texture features were primarily consisted of
component analysis. In the correlation analysis between TIR and wheat yield, it was found that the
absolute correlation value of PC1 was the highest (r = 0.69), whereas the remaining indices exhibited
lower correlations. Notably, TIR demonstrated a relatively higher correlation (r = 0.68).

—
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Figure 4. Pearson’s correlation coefficient (r) between CI, VI, Texture features, TIR and wheat yield.

(a) CIs; (b) VIs; (c) Texture features and TIR.
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3.3. Wheat Yield Estimation for Optimal Sensor

In this study, five regression algorithms (RF, PLS, RR, KNN, and XGboost) were employed,
alongside three ensemble learning algorithms, to forecast wheat yield. These predictions were based
on features extracted from three distinct types of sensors (RGB, MS, and TIR) and their various
combinations, as depicted in Table 3 and Figure 5. Among the predicted results from the single data
source, the fusion of two data sources, the fusion of three data sources and the fusion of four data
sources across eight machine learning algorithms, the highest R? values were observed for Texture
(R?=4.773), Texture+TIR (R? = 4.934), RGB+Texture+TIR (R? = 5.153) and RGB+MS+Texture+TIR (R? =
5.238). Additionally, the prediction error value based on the RGB+MS+Texture+TIR data fusion
model was also the lowest, with RMSE = 5546 t ha! and NRMSE = 55.733%. Therefore, the
RGB+MS+Texture+TIR data fusion yielded the most accurate predictions for wheat yield, surpassing
single, dual and triple data source fusion. Specifically, it achieved a higher overall R? value, ranging
from 9.74% to 33.48%, 6.17% to 19.61% and 1.64% to 8.88%, respectively, compared to the other fusion
strategies. Furthermore, it demonstrated a lower total RMSE, decreasing by 7.53%-17.72%, 5.12%-
16.07% and 3.23%-6.97%, respectively. Similarly, the total NRMSE was reduced by 7.54%-17.73%,
5.13%-16.06% and 3.31%-6.98%, respectively. In conclusion, the RGB+MS+Texture+TIR data fusion
emerged as the most precise in estimating wheat yield.

Table 3. Test accuracy statistics of different models for wheat yield prediction.

Sensor Metric Base learner Secondary learner Thirdary
learner
RF PLS RR KNN XGboost StRR En_FW En_Mean
R? 0.492 0.501 0.517 0.465 0.514 0.525  0.524 0.612
RGB RMSE (tha') 0.848 0.841 0.827 0.871 0.830 0.820  0.821 0.818
NRMSE (%) 8.520 8.449 8310 8.750 8.339 8.241  8.247 8.172
R? 0.513 0.534 0.534 0.507 0.528 0.542  0.548 0.625
MS RMSE (tha') 0.853 0.834 0.834 0.858 0.839 0.827  0.821 0.822
NRMSE (%) 8.565 8.378 8.383 8.619 8.433 8.304  8.249 8.243
R? 0.579 0.592 0.592 0.539 0.593 0.605  0.596 0.678
Texture RMSE (tha') 0.758 0.746 0.746 0.793 0.745 0.734  0.743 0.733
NRMSE (%) 7.617 7.498 7.498 7963 7.487 7.374 7459 7.384
R? 0.434 0.490 0.490 0.439 0.482 0.500  0.495 0.594
TIR RMSE (tha') 0.879 0.834 0.834 0.875 0.840 0.826  0.830 0.823
NRMSE (%) 8.825 8.382 8.382 8.791 8.443 8295  8.335 8.292
R? 0.540 0.506 0.545 0.503 0.537 0.561  0.552 0.636
RGB+MS RMSE (tha') 0.825 0.854 0.820 0.857 0.827 0.806  0.814 0.805
NRMSE (%) 8.285 8.580 8.241 8.611 8.307 8.096  8.173 8.107
R? 0.604 0.577 0.577 0.569 0.605 0.619  0.614 0.687
RGB+Texture RMSE (tha') 0.747 0.772 0.772 0.779 0.746 0.733  0.737 0.733
NRMSE (%) 7.506 7.754 7.758 7.828 7.491 7.360  7.407 7.314
Sensor Metric Base learner Secondary learner Thirdary
learner
RF PLS RR  KNN XGboost StRR  En_FW En_Mean
R? 0.554 0.557 0.560 0.548 0.561 0.575  0.580 0.657
RGB+TIR RMSE (tha') 0.780 0.777 0.775 0.785 0.774 0.762  0.757 0.756
NRMSE (%) 7.839 7.806 7.786 7.889 7.772 7.650  7.602 7.620
R? 0.598 0.604 0.601 0.551 0.617 0.623  0.619 0.694
MS+Texture RMSE (tha') 0.741 0.735 0.738 0.782 0.723 0718  0.721 0.714
NRMSE (%) 7.443 7.389 7410 7.859 7.263 7208  7.246 7.198
R? 0.569 0.561 0.563 0.536 0.566 0.581  0.571 0.656
MS+TIR RMSE (tha') 0.772 0.780 0.778 0.801 0.775 0762  0.770 0.763
NRMSE (%) 7.760 7.833 7.811 8.049 7.789 7.654  7.739 7.660
R? 0.607 0.607 0.607 0.555 0.614 0.628  0.620 0.697
Texture+TIR RMSE (tha') 0.732 0.732 0.733 0.780 0.726 0713 0.720 0.710

NRMSE (%) 7.357 7.358 7.359 7.831 7.290 7.161 7.235 7.157



https://doi.org/10.20944/preprints202405.0402.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted:

23 May 2024

d0i:10.20944/preprints202405.0402.v2

10

R? 0.615 0.590 0.614 0577 0.613 0.639  0.627 0.702
RGB+MS+Texture RMSE (tha?) 0.736 0.760 0.738 0.772 0.739 0.713  0.725 0.716
NRMSE (%) 7.396 7.638 7.412 7.755 7.421 7163  7.281 7.146
R? 0.588 0.582 0.602 0.547 0.591 0.603  0.612 0.686
RGB+MS+TIR ~ RMSE (tha') 0.750 0.755 0.737 0.786 0.747 0.736  0.728 0.723
NRMSE (%) 7.532 7.589 7.405 7.897 7.508 7.389  7.310 7.287

Sensor Metric Base learner Secondary learner Thirdary
learner

RF PLS RR KNN XGboost StRR  En_FW En_Mean
R? 0.636 0.614 0.620 0.615 0.647 0.652  0.655 0.717
RGB+Texture+TIR RMSE (tha') 0.718 0.739 0.733 0.738  0.707 0.702  0.698 0.696
NRMSE (%) 7.210 7.424 7367 7415 7.098 7.051  7.014 7.061
R? 0.627 0.616 0.620 0.568 0.641 0.643  0.645 0.711
MS+Texture+TIR  RMSE (tha') 0.720 0.730 0.726 0.774 0.706 0.704  0.702 0.699
NRMSE (%) 7.234 7.336 729 7.777 7.090 7.072  7.049 7.046
R? 0.640 0.631 0.649 0.589 0.660 0.668  0.667 0.733
RGB+MS+Texture+TIRRMSE (tha') 0.701 0.709 0.692 0.748 0.681 0.673  0.674 0.668
NRMSE (%) 7.038 7.127 6.949 7.519 6.842 6.760  6.771 6.727

MS multi-spectral features, TIR thermal infrared features, RF random forest, PLS partial least squares,

RR ridge regression, KNN k-nearest neighbor, XGboost extreme gradient boosting decision tree, StRR

stacking ensemble using ridge regression as a secondary learner, En_FW feature-weighted ensemble

as a secondary learner, En_Mean simple mean ensemble as a thirdary learner.
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Figure 5. Comparison of the estimation accuracies of models for different sensors and their

combinations.
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3.4. Optimal Machine Learning Algorithm for Wheat Yield Estimation

Based on the results above, the fusion data of RGB+MS+Texture+TIR demonstrated high
accuracy in predicting wheat yield. Among the five base models, the RR model performed the best
when using RGB data (R? = 0.517) and TIR data (R? = 0.490) as single data sources. Conversely, PLS
exhibited the highest predictive value for MS data (R? = 0.534), while XGboost showed the highest
predictive value for Texture data (R? = 0.593). After the fusion of multi-sensor data, the prediction
accuracy of most machine learning models was notably enhanced. The findings indicated that
XGboost emerged as the top-performing predictive machine learning model, achieving an R? value
of 0.660 (Table 3). The analysis results of the models on different data combinations are depicted in
Figure 6. The R? value of XGboost was observed to be 0.011, 0.014, 0.0053, and 0.044 higher than RF,
PLS, RR, and KNN, respectively. Furthermore, the XGboost model exhibited smaller errors in terms
of RMSE and NRMSE. Specifically, its RMSE was lower than the other four models by 0.010, 0.013,
0.005, and 0.040, respectively, while the NRMSE was lower than 0.104, 0.131, 0.053, and 0.399,
respectively. These findings further confirm the superiority of XGboost in wheat yield prediction,

followed by RR.
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Figure 6. Comparison of the estimation accuracies of different ML algorithms.

Compared with the basic model, three ensemble methods were used in this study, including two
second-layer ensemble methods (stacking and feature-weighted methods) and one third-layer
ensemble method (simple average method). The analysis results were shown in Table 3. All three
ensemble methods demonstrated higher model prediction accuracy compared to the single ML
model. When compared to the single ML model that performed best on single sensor data, stacking,
feature-weighted and simple average ensemble learning increased the R? values of the single sensor
by 1.53% -2.16%, 0.50%-2.67% and 14.33%-21.26%, respectively. Additionally, RMSE was reduced by
0.81%-1.48%, 0.33%-1.55% and 1.10%-1.65%, respectively, while NRMSE was reduced by 0.83%-
1.51%, 0.37%-1.54% and 1.08%-1.66%, respectively.

Compared with the single ML models exhibiting the best performance in the optimal
combination of multi-source data fusion (RGB+MS+Texture+TIR), the prediction accuracy of the three
ensemble learning methods was also superior, surpassing each single model by 1.23%, 1.07% and
11.01%, respectively. Additionally, the RMSE was reduced by 1.19%, 1.03% and 1.97%, respectively,
while NRMSE decreased by 1.20%, 1.04% and 1.68%, respectively. The ensemble learning model
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consistently achieved higher estimation accuracy in average R?, RMSE and NRMSE compared to all
the base models, which confirmed the effectiveness of the ensemble learning model. In addition, it
can be seen from Figure 6 that the R? of the simple average ensemble model was significantly higher
than the stacking ensemble and the feature-weighted ensemble model, surpassing them by 1.121 and
1.157, respectively. Moreover, both RMSE and NRMSE were lower in the simple average ensemble
model compared to the other two ensemble models. Therefore, it can be inferred that the simple
average ensemble model was more accurate for wheat yield prediction.

By comparing the correlation and linear fit between the estimated yield and measured yield of
different integration methods under the optimal combination of RGB+MS+Texture+TIR (Figure 7); it
was observed that the prediction result of the simple average ensemble method exhibited a closer
correspondence with the actual tested yield. This observation confirms that the simple average
ensemble method was the most accurate for wheat yield prediction.
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Figure 7. Comparison of ensemble learning estimated and measured yields.

4. Discussion
4.1. Estimation of Wheat Yield from Single Sensor Data and Multi-Sensor Fusion Data

In this study, through the analysis of the single sensor prediction results, it was found that the
wheat yield prediction accuracy ranked as follows: Texture > MS > RGB > TIR. Among them, texture
features exhibited superior performance in wheat yield prediction accuracy, with R? values ranging
from 0.539 to 0.593. This has been consistently demonstrated in studies across various sites and crops.
The utilization of PCA in maize yield prediction effectively reduced the standard deviation of the
prediction performance, thereby enhancing the accuracy of yield forecasts [53]. In Vietnam, the rice
yield prediction model utilizing PCA-ML exhibited an average improvement of 18.5-45.0% compared
to using ML alone. This outcome fully underscores the reliability and effectiveness of the combined
model [54]. This indicates that the method combining PCA and ML effectively handles redundant
data in multi-channel texture features, consequently leading to a significant enhancement in the
accuracy of yield prediction.

The wheat yield prediction results from MS data were superior to those from RGB data,
primarily due to its capability to capture spectral information across multiple bands from visible light
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to near infrared. Particularly, the near-infrared band provides the opportunity to accurately calculate
Vis such as NDVI, which in turn can be utilized to better assess wheat yield. Furthermore, the stability
of MS cameras across varying lighting conditions minimizes the influence of environmental
fluctuations on prediction accuracy, ensuring the provision of reliable data for yield estimation
[55,56]. The performance of TIR information extracted by TIR sensors was not satisfactory, with R?
values ranging from 0.434 to 0.490. This finding aligns with the results reported by Luz and Elarab
[57,58]. The possible explanation for this could be that canopy heat information is intricately linked
to factors such as leaf water content, pigment concentration and canopy structural characteristics. If
these factors are not appropriately controlled or corrected for during data processing, they can
significantly impact the accuracy of yield predictions [7,59].

Multi-sensor fusion (RGB+MS+Texture+TIR) demonstrated clear advantages over single sensor
prediction. By harnessing the capabilities of multiple sensors and integrating data from different
sources, it provided a more comprehensive overview of crop growth information, thereby enhancing
forecast accuracy [13].

However, it also poses challenges in terms of data processing and algorithm optimization.
Future research efforts should focus on streamlining the fusion process and enhancing algorithm
efficiency to achieve more reliable wheat yield prediction.

4.2. Application of Basic Model in Wheat Yield Estimation

Five basic models were employed for wheat yield forecasting. XGboost, as a novel ML algorithm,
has demonstrated superior predictive capabilities compared to other models, such as RF [60]. RF has
been favored by many researchers due to its capability of removing redundant information from
spectral data and achieving higher inversion accuracy through a smaller set of spectral characteristic
variables [60,61]. Indeed, the XGboost model exhibited exceptional performance in the wheat yield
prediction task. This was primarily attributed to its innovative algorithm design and optimization
strategy, which effectively minimized overfitting and reduced computational demands.
Consequently, the model's generalization ability was significantly enhanced, leading to more
accurate predictions [62]. This research result has been corroborated by Li et al., who confirmed that
the XGboost model outperforms other models in soybean yield prediction when utilizing the same
input data [63]. Furthermore, in the prediction of winter wheat yield, the XGboost model not only
marginally exceeded the RF model in terms of prediction accuracy but also demonstrated significant
superiority in computational efficiency in most scenarios. Notably, it requires less time, making it a
more efficient and practical choice for yield prediction [64]. These results underscore the advantages
of XGboost in processing large-scale agricultural data, particularly in situations where swift and
efficient output predictions are imperative. The model's superior performance in terms of both
accuracy and computational efficiency demonstrates its potential as a valuable tool for agricultural
yield forecasting.

The PLS model exhibited the poorest performance in wheat yield prediction, both in single-
sensor and multi-sensor data fusion scenarios. Although PLS is capable of addressing the issue of
multicollinearity among independent variables, as the number of potential variables increases, the
training model tends to overfit. This overfitting phenomenon adversely impacts the model's
performance on new test data, limiting its accuracy and reliability for yield prediction tasks [65,66].

4.3. Performance of Ensemble Learning in Wheat Yield Prediction

Despite the recent significant advancements in ML methods and their successful applications
across various fields, the pure data-driven approach in utilizing ML technology still poses some
fundamental limitations. The accuracy and uncertainty of predictions generated by ML algorithms
heavily depend on several factors. These include the quality of the data, the representativeness of the
chosen model, and the dependencies between the input and target variables within the collected
dataset [26]. Data that contains high levels of noise, erroneous information, outliers, biases, and
incompleteness can significantly diminish the predictive capabilities of a machine learning model
[21]. For this reason, this study incorporates three ensemble methods: stacking, feature-weighted and
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simple average ensemble. In comparison to a single model, the ensemble model demonstrates higher
precision. This finding aligns with the outcomes of previous research [13,33]. The R? values of the
stacking ensemble method, which served as the second layer, were closely comparable to those of the
feature-weighted ensemble learning approach. The primary advantage of the stacking ensemble
method lies in its ability to learn and capitalize on the complementarities among diverse base
learners, thereby enhancing the accuracy of predictions [67]. However, since the performance of each
primary learner varies, the presence of large output errors in some primary learners can introduce
significant error features into the training process of the meta-learner. This, in turn, can negatively
impact the prediction accuracy of the entire model [68]. Another feature-weighted ensemble learning
method involves correcting the prediction error of each primary learner. By doing so, it addresses the
issue of poor prediction performance of individual models to some extent, generating a dataset that
is more conducive to learner training [26]. Therefore, when there is variation in the correlation among
features within the data, it is a prudent choice to select ensemble methods tailored to the specific
characteristics of the dataset [69]. In summary, the prediction accuracy of both stacking and feature-
weighted methods was comparable, likely due to the unique advantages each approach offers.
Notably, the novel layer 3 simple average ensemble method exhibited the highest R? value. This
superior performance may be attributed to its ability to effectively integrate prediction results from
diverse methods, mitigating potential issues such as model disparities, variations in sample
distribution, and inaccuracies in feature weights, ultimately leading to enhanced prediction accuracy.

5. Conclusion

This study delved into the capabilities of UAV multi-sensor data fusion and machine learning
algorithms for wheat yield prediction. Three ensemble learning methods of stacking, feature-
weighted and simple average were proposed to improve the performance of the prediction model.
The results demonstrated that these ensemble learning methods enhanced the accuracy of wheat
yield prediction. By synthesizing the strengths of different learners, ensemble learning methods
effectively mitigated the potential risk of overfitting associated with individual models, thereby
bolstering the model's generalization ability. The introduction of the simple average as the third layer
ensemble learning represented a novel concept in wheat yield estimation. This method not only
evaluated and improved the model's forecasting performance in a more robust and comprehensive
manner, but also enhanced its adaptability and flexibility to data variations while maintaining high
predictive accuracy. Therefore, it is anticipated that these ensemble learning methods will find
widespread application in assessing the yield of diverse crops, serving as a scientific foundation and
providing crucial management decision support for the advancement of precision agriculture.

Funding: This work was funded by the National Science and Technology Major Program(2022ZD015703), the
National Natural Science Foundation of China (32372196), and the Beijing Joint Research Program for
Germplasm Innovation and New Variety Breeding (G20220628002).
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