

1

Article

Towards a Model-Based Pattern Language for New

Space-Based Systems
Bhushan Lohar * and Robert Cloutier

Department of Systems Engineering, University of South Alabama, Mobile, AL 36688, U.S.A.;

rcloutier@southalabama.edu (R.J.C.)

 Correspondence: brl2021@jagmail.southalabama.edu; Tel.: +01-682-313-4665 (B.R.L.)

Abstract: This paper presents an approach to the application of the Model-Based

Systems Engineering (MBSE) and Model-Based Systems Architecting (MBSA)

principles to develop a Model-Based Pattern Language (MBPL). It takes too long for

systems engineers and architects to develop a new system from scratch, particularly

new space-based systems derived from the existing space systems architectures. A

pattern language is a holistic view of reusable logical model artifacts; many are

interdisciplinary and introductory, if at all. The results are mostly a combination of the

application-specific logical solution, which further results in the best possible overall

solution. The main benefit of the pattern language is reducing the time and validation

required to generate a new space-based system architecture; this approach will develop

top-level requirements in the initial phase of the system development. The rationale of

the methodology proposed by the paper is as follows, collect, and decompose published

literature and other open-source information available on space system architectures

and system models; develop SysML models for systems, subsystems, products,

assembly, subassembly level, and mission-specific requirements using CAMEO

SysML software. Arrange these patterns to develop a functional ontology and construct

a logical architecture pattern library. This approach created, updated, and managed

SysML pattern language, which evaluated the expedited new model construction.

Again, our objective is to develop a logical pattern language using public domain

information and evaluate patterns by constructing a new space mission concept—for

example, planetary surface habitat.

Keywords: model-based system engineering (MBSE); model-based systems

architecting (MBSA); model-based pattern language (MBPL); system architecture;

logical architecture; SysML patterns; pattern library; systems engineering (SE); pattern

language; logical decomposition

1. Introduction:

Patterns for architecting were first introduced by Alexander [1977] to

accommodate reusable constructs for civil architectures. These constructs ranged in

size from entire cities down to the rooms in a house [Alexander, 1979]. Based on

Alexander’s work, the notion of patterns is very scalable. The software community

began adopting patterns in the form of code constructs in the 1990s [Beck, 1994] Rising

[1999], followed by applying patterns to processes. Cloutier [2006] adapted the patterns

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202208.0177.v1
http://creativecommons.org/licenses/by/4.0/

2

construct to systems architecture, demonstrating the Perform Command and Control

Pattern using IDEF0 (Icam DEFinition for Function Modeling). The Object

Management Group (OMG) released version 1.0 of Systems Modeling Language

(SysML) in September 2007 [OMG, 2007]. Since then, SysML has become a

cornerstone for Model-Based Systems Engineering.

Model-Based Systems Engineering (MBSE) has emerged as a strategic

approach to architecting and designing critical systems. While systems engineers have

used models in the past IDEF0, FFBD, State machines, etc., the models were usually

disconnected and, in most cases, created using disparate tools. MBSE, as practiced

today, uses the SysML [OMG, 2007]. Using SysML, objects containing attributes and

behaviors are identified and lined through their associations.

This manuscript provides the systematic process of developing a pattern

language for systems, subsystems, products, assembly, and subassembly levels. The

patterns are ordered, beginning with the top-level systems, second-level subsystems,

and subassemblies, and ending with the choice of alternative components. There are

two essential purposes behind this approach. The first purpose is to present each pattern

connected to the second level pattern so that the user grasps the collection of seventy-

four patterns as a pattern language, within which the user can create numerous

combinations. Secondly, the approach provides ease and standard solutions for each

pattern in such a way that users can understand and modify it without losing the original

purpose of new space system development.

The research consists of three main exercises focused on developing a logical

pattern library for NASA to adopt as it “becomes more model-based.” Below is the in-

detail explanation of the exercises. Some parts of all three exercises occurred in parallel

because there is a sequential dependency between them.

1.1 Pattern Library as a Pattern Language

Alexander defined his collection of patterns as a language [The Timeless Way,

1977] in that the patterns complemented one another. The pattern language is like the

language English, which can be a medium for prose or a medium for poetry; The

difference between prose and poetry is not that they use different languages, but the

same language is used differently. In his book “A Pattern Language,” [Alexander,

1977] says he spent years formulating this language; hoping that when a person uses it,

he will be so impressed by its power and so joyful in its use that he will understand

again, what it means to have a living language of this kind.

 Cloutier [2006] extended this notion into a Perform Command and Control

Pattern Language; using patterns in system architecting may provide the foundation for

a more common lexicon leading to improved communications between the various

stakeholders while enhancing the R&D efficiency of complex development programs.

Other disciplines that have adopted patterns chose one of the pattern forms already used

by the software community, which originated from the Alexandrian form. However,

systems architects may need different or additional information than that required by a

software engineer to implement a pattern. Systems architecture patterns may also

enable the implementation of common design features across systems (reuse), leading

to enhanced R&D efficiency and lower ownership costs through reduced efforts

concerning system testing, integration, and maintenance. [Cloutier, 2006, 2005, 2005a,

2005].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

https://doi.org/10.20944/preprints202208.0177.v1

3

In this research, the authors extended the same notions by defining how to mine

patterns from the public domain knowledge. The authors developed a working-level

space system pattern language from the commonalities found in the existing space

system architectures. This paper follows the methodologies explained by Alexander

and Cloutier. Secondly, this research utilized the notion of “Documenting Patterns;”

Cloutier [2006] states that it takes an experienced systems architect to know what can

be abstracted and how to abstract that information in a meaningful way so that it is

reusable. Once documented, as the software community found, patterns provide a

common communication medium between engineers and architects. Alexander [1977:

782 – 784] spent three pages explaining the importance of documenting patterns. The

outcome of this research is documented, called Pattern Library (PL).

1.2 Logical Decomposition

Logical decomposition is the system engineering process for creating the

detailed functional requirements that enable NASA programs and projects to meet

stakeholder expectations. This process identifies the “what;” the system should achieve

that at each level to enable a successful project. Logical decomposition utilizes

functional analysis to create a system architecture and decompose top-level (or parent)

requirements and allocate them down to the lowest desired levels of the project [NASA

SE Handbook Rev2].

Decomposition of the information starts with mining open-source documents.

This effort included compiling and constructing system architecture models and dozens

of examples from the literature, giving close details on how to decompose the mission

functions into logical architectures. The exercise included an in-depth survey of open-

source models and published literature by gathering relevant source material, including

complete systems models. The research covered diversified sources of examples and

assembled them to support constructing a library of commonly occurring functions and

model elements; The pilot test used the following examples:

• Outer planet robotic science mission (e.g., Europa Clipper).

• Human lunar lander (e.g., Apollo).

• Human Mars base (e.g., Mars One).

• Earth-observing CubeSat (e.g., INCOSE’s CubeSat model).

• Launch vehicle (e.g., Saturn V rocket).

Initial literature surveys identified alternative approaches to perform functional

analysis, and authors collaborated with the NASA mission architects to evaluate their

applicability to the design team’s standard process.

1.3 Functional Analysis Library and Patterns

This section derived a generic “starter” functional pattern library using the

Object Management Group Systems Markup Language (OMG SysML) by reading the

literature and then constructing a SysML model from the description; This became the

system-level model. Subsystems were each modeled as individual SysML model files

and saved with precise names. As this process continued exploring new articles on new

platforms, the authors identified common subsystem functionality and thereby common

models, those identified as patterns. New functionality identified in a further reading

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

https://doi.org/10.20944/preprints202208.0177.v1

4

that did not appear earlier was added to the subsystem model as necessary. As the

SysML models matured, it became easier and faster to capture architectures described

in new articles as part of the literature search.

 This research categorized SysML models into three primary levels. The first is

the top level, also referred to as the system level. The next level is the subsystem level,

and the final level is the product/subassembly/assembly level; Combine all three levels

to construct a complete architecture pattern. Or parts of the pattern can be used

independently and either combined with other patterns in the library or used as a

standalone to be combined with new work. This work is an extension of prior work

performed in which systems architecture patterns as “a high-level structure, appropriate

for the major components of a system. It expresses the relationship between the context,

a problem, and a solution, documenting attributes and usage guidance. Patterns are

time-proven in solving problems similar in nature to the problem under consideration”

[Cloutier, 2006, p. 107, 2005c, 2005b].

1.4 Contribution to the Body of Knowledge

This article presents the process, methodology, and challenges of developing a

pattern library. This manuscript is the result of NASA Advances Concept Office (ACO)

funded research intended to address the question: “Is it possible to develop an

architectural pattern library that helps systems engineers, system architects, and

mission architects to develop a logical architecture of proposed new space systems with

a short-lived development timeframe and complex system requirements?”

The pattern library development uses the General MBSE approach and the

decomposition methodology from the NASA SE handbook. The general modeling

approach started by decomposing existing missions and systems information; This

research was limited in terms of scope, application, and methodology. The main benefit

of the pattern language is reducing the time and validation required to generate new

system architecture; with this approach, new system requirements can be developed in

the initial phase of the system development. On the other hand, it does not matter if the

new system requirements are defined or not; because the purpose of a pattern language

is to rapidly create new system architecture to support the mission definition and

generate the system requirements once this approach is complete.

Finally, this paper studies the research problem from the systems engineers’

perspective and does not consider other points of view. Overall, this article is an

excellent initial step in developing a pattern library using pattern language. This study

suggests further research to create a logical architecture pattern language framework

for architecting new space systems. Also, this research shows that further research is

required to study the application of pattern libraries in other domains such as

aeronautical, shipbuilding, automobile, and other large-scale heavy industries. The

article follows the following structure: Section 2 presents a literature review, including

the most relevant topics for the development of this article. Section 3 elaborates the

pattern language methodology and develops the pattern library. Section 4 presents the

discussion of the results from the pattern library and its usage, followed by generating

new space system architecture using the relevant patterns from the library. Section 5

concludes the proposal, future application, adoption into different industries, and

further research of the pattern library.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

https://doi.org/10.20944/preprints202208.0177.v1

5

2. Literature Review

This section discusses the most relevant topics for developing and using the

model-based pattern language.

2.1 Patterns

There are different definitions of the word pattern, and they are context-

specific; according to the Oxford English Dictionary, pattern means “an arrangement

or sequence regularly found in comparable objects” [OED Online 2022]. An

engineering definition is “to make or design (anything) by, from, or after, something

that serves as a pattern; to copy; to model; to imitate.”

“Model-based systems engineering (MBSE) is the formalized application of

modeling to support system requirements, design, analysis, verification, and validation

activities beginning in the conceptual design phase and continuing throughout

development and later life cycle phases.” [INCOSE-TP-2004-004-02, Sep 2007]. In

recent years, the digital modeling adoption across the industries has led to increased

adoption of MBSE. In Feb 2019, NASA noted that industry and government have

increasingly embraced MBSE to keep track of system complexity. It allows the

engineer to represent the system in a comprehensive computer model allowing for

better traceability, tracking, and information consistency [Wheatcraft L. 2021].

The Systems Modeling Language (SysML) is a general-purpose modeling

language for systems engineering applications, which supports the specification,

analysis, design, verification, and validation of a broad range of systems and systems-

of-systems. The SysML addresses the holistic and interdisciplinary modeling of

technical systems. It is based on Unified Modeling Language (UML) and extends the

language by further aspects [Friedenthal, 2012; Object Management Group, 2018].

2.2 Pattern language

The engineering community attributes Christopher Alexander as the originator

and inventor of the pattern language. Alexander [1977] also portrayed a pattern

language as a network of larger patterns comprised of smaller patterns. Alexander

[1979] offered a pattern language as a collection of individual patterns that are

complimentary for designing a house for one person. The collection of patterns chosen

to design a house for a person may include Workplace Enclosure, Window Place, Bed

Alcove, Dressing Room, and Your Own Home Conversely. The approach to

developing the house for an older or incredibly young person is different according to

the pattern for Old Age Cottage or Teen Ager’s Cottage. This paper describes the

similar hierarchy of the patterns and their interdependent nature; no pattern is an

isolated entity. Each pattern can exist globally, only to the extent supported by other

patterns. The larger pattern embeds it, the pattern of the same size that surrounds it, and

the smaller patterns embedded in it [Alexander, 1977].

Cloutier [2006] presents a uniform structure; he proposes a Solution Pattern in

sixteen categories. The application of the patterns ranges from business model

development and the design of the actual system to testing and validation. Weilkiens

[2011] also describes Solution Patterns with the SysML methodology. According to

Alexander [1979], “The people can shape building for themselves and have done it for

centuries, by using languages which I call pattern language. A pattern language gives

each person who uses it, the power to create an infinite variety of new and unique

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

https://doi.org/10.20944/preprints202208.0177.v1

6

buildings, just as his ordinary language gives him the power to create an infinite variety

of sentences.”

The software engineering pattern domain uses multiple patterns to create a

software architecture similar to pattern language. Beck and Johnson’s “Patterns

Generate Architecture” first presented this concept [Beck, 1994; Hanmer, 2004]. As

defined by Alexander in his book “A Pattern Language,” this order is presented as a

straight linear sequence, which is essential to how the language works. It is presented

and explained more fully in the next section of this article. This sequence is most

important because it bases on the connection between patterns. Fowler [2003] agreed

with that assessment and had his recommendation.

“When people write patterns, they typically write them in some standardized

format - as befits a reference. However, there’s no agreement as to what sections are

needed because every author has his or her own ideas. For me, there are two vital

components: the how and the when. The how part is obvious - how do you implement

the pattern? The when part often gets lost. One of the most useful things I do when

understanding a pattern, one I’m either writing or reading, is ask, “When would Not

use this pattern?” Design is all about choices and trade-offs; consequently, there

usually isn’t one design approach that’s always the right one to use. Any pattern should

discuss alternatives and when to use them rather than the pattern you’re considering.”

Christopher Alexander, 1979.

Rising [1999b] suggests ways to generate new patterns. The International

Council on Systems Engineering (INCOSE) considered three of them for their

applications: Mining by Interviewing, Mining by Teaching Patterns Writing, and

Mining by Borrowing (from the literature). An example of borrowing from the

literature is given in Haskins [2005]. Many forms apply to writing the patterns [Rising,

1998; Simpson and Simpson, 2006; Cloutier and Verma, 2007]. Appleton [2007]

advises that “writing good patterns is exceedingly difficult. Patterns should not only

provide facts (like a reference manual or user’s guide) but should also tell a story that

captures the experience they are trying to convey. A pattern should help users

comprehend existing systems, customize systems to fit user needs, and construct new

systems.”

The logical architecture is an abstraction of the physical architecture; the

purpose of logical architecture is to allow the systems engineer to “allocate”

requirements and architectural elements without performing design. These

architectural elements may later be allocated to electrical, thermal, propulsion, and

other relevant commodity engineers for future design. The logical architecture model

aims to create a model that will stand the test of time. Physical elements may change

as technology advances, yet the logical elements and interfaces do not require updates.

For instance, a communication block does not specify the specific radio or

communication method but can be satisfied with a physical RF (Radio Frequency)

radio or laser-based transmit/receive model. Logical architectures are depicted in Block

Definition Diagrams (BDD) and Internal Block Diagrams (IBD). The BDD represents

hierarchical relationships, and the IBD represents interface relationships between

objects within a construct. Patterns and pattern language become the repository of

workable solutions and were particularly valuable for capturing the domain expertise

from an aging generation of experts [Coplien, 1996].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

https://doi.org/10.20944/preprints202208.0177.v1

7

A pattern language is a compilation of patterns that work together to solve

problems in a given domain. The result of a pattern’s use is not simply: our problems

are solved; Instead, as patterns are applied to problems, they change the context of other

problems in the domain. Those other problems require patterns for their solution and

so on [Haskins 2003]. In her book [Rising 1999] describes patterns that share a common

context; each pattern may add value to that context or slightly modify it, but the

common context helps focus these patterns into a pattern language. Haskins [2005]

stated that MBSE would be driven by the emergence and maturation of modeling

languages and information exchange standards. The continuing evolution of

information technology continues to be a necessary enabler of improved modeling

techniques. Creating and reusing model sources, taxonomies, ontologies, and design

patterns will benefit the future MBSE. Hanmer and Kocan [2004] note that the

“patterns are not created from a blank page; they are mined” and building a pattern

library starts with mining models that architects the patterns.

Pattern-based data structures using PBSE open new opportunities in developing

pattern language; the S* patterns and S* Metamodel further enable this vision. Schindel

[2005, 2013] described the PBSE approach, which leverages the power of MBSE to

rapidly deliver benefits to a larger community. Projects using PBSE get a “learning

curve jumpstart” from an existing pattern, increasing the benefits of its subject and

enhancing that pattern with what they learn for future users.

2.3 Pattern Language Example

 Alexander [1977] states, “The structure of a pattern language is created by the

fact that individual patterns are not isolated.” Each pattern then depends both on the

smaller pattern it contains and on the larger patterns within which it is contained. Each

pattern lies at the center of a network of connections that connects it to specific other

patterns that help complete it [Alexander 1977]. Alexander [1979] provides a great

example of this methodology; suppose we use a dot to stand for each pattern and use

an arrow to stand for each connection between two patterns.

Figure 1. Individual Pattern Connection

This means that pattern A needs the B as a part of it, for A to be complete; and that

the pattern B needs to be part of the pattern A, for B to be complete. If we draw a picture

of all the patterns connected to pattern A, we see then that pattern A sits at the center

of a whole network of patterns, some above it, some below it.

Figure 2. Individual Pattern Network

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

https://doi.org/10.20944/preprints202208.0177.v1

8

3 Methodology

This section will discuss the methodology used in developing this pattern library.

The work began by organizing over 180 journal papers, conference papers, and NASA

websites describing space-based systems.

3.1 Problem definition

As mentioned in section 1, NASA was looking for an approach to create, then

reuse, patterns to meet fast turn-around design explorations, which became the problem

definition for the work contained in this manuscript. Develop and prove a methodology

towards using patterns for fast architecting using a pattern library. This research aimed

to provide a framework and methodology to document, develop, and use crucial

implicit information from the existing space system architectures and mission

engineering patterns.

3.2 Research Goals

 Based on the problem statement outlined above, the research addressed the

following goals:

1. Mine existing literature to identify reusable architecture and designs.

2. Capture those architecture as logical architecture elements using SysML.

3. Collect these individual SysML model elements into a logical construct (pattern

library).

4. Use models from the pattern library to develop new space system architecture like

deep space habitat.

 The pattern library evolved very much in parallel with the literature research,

and patterns have been modeled over the last year, as we have worked on the one hand

to mine the open-source information to define the logical architecture pattern language

and, on the other hand to architect models for individual space system patterns. The

practical considerations and historical data were necessary to develop the operational

level ontology. In this paper, we proposed a pattern language methodology that is

extremely practical. It is a language we have extracted from our logical architecture

pattern library, constructed for building new space system architectures. The main

elements of this language are models called patterns; each pattern describes an essential

object of the system.

The state-of-the-art approach described in the following is an essential

establishment for developing a pattern library. For convenience and clarity, each

pattern has the same format; First, there is the top-level “Block” with a defined

“Stereotype” and secondly, its composition with a multiplicity of the following

block(s).

3.2 Pattern Architecting

Applying the pattern language discussion from section 2.3, consider the

spacecraft Energy Storage Subsystem’s pattern. Figure 3 represents the hierarchical

relationship between Energy Storage and batteries as part of the subsystem. By using

as abstract of “batteries.” While this pattern will hold true for any number of practical

applications, such as an Electric Vehicle (EV) automobile, this example will be for a

spacecraft.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

https://doi.org/10.20944/preprints202208.0177.v1

9

Figure 3. Energy Storage Subsystem Pattern (BDD)

 But the pattern of the energy storage and the smaller pattern it contains are not

enough to define the energy storage fully. Figure 4 shows batteries with a selection of

primary, rechargeable, or advanced rechargeable batteries. If it were just put in the

spacecraft, with no system connections, interfaces, or defining, it might be a battery for

tools, lights, or running gadgets. For an architecture to be a subsystem, it has to have

an “Association,” “Composition” and defined “Stereotypes,” with the subsystem,

subassembly, and assembly level interfaces.

Figure 4. Energy Storage Subsystem and types of Batteries Pattern (BDD)

Figure 5 shows just primary batteries and the various battery type options reflected

as part of the pattern. When applying the pattern (using the pattern in an architectural

design), the architect will delete the options that are not considered for the final

architecture.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

https://doi.org/10.20944/preprints202208.0177.v1

10

Figure 5. Power Sub-system Level Architectural Pattern

Alexander [1977] elaborated on the example of choosing the patterns for a

garden that seems relevant. Figure 6 is the pattern language defined for architecting a

garden pattern. For instance, define a pattern for PRIVATE TERRACE ON THE

STREET and ENTRANCE TRANSITION. These two patterns can be imagined as

free-floating entities, there is an enormous verity of possible relationships in these two

patterns, and a variety of house and garden patterns can contain them.

Figure 6. The Structure of Language (Alexander, 1977; Chapter 16)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

https://doi.org/10.20944/preprints202208.0177.v1

11

Each pattern lies at the center of a similar network, and it is the network of these

connections between patterns that creates the language. Figure 8 illustrates the pattern

language for the energy storage subsystem defined by this research, in which each

pattern has its place, with connections to each other.

Figure 7. Subsystem Pattern Network - Spacecraft Energy Storage Subsystem (Mindmap)

Figure 8 represents the Energy Storage pattern language using a mindmap. The

links between the pattern are as much of a part of the language as the patterns

themselves [Alexander 1977]. The top-level modeling starts with the deriving top-level

logical (functional) model; the top-level decomposition consists of a system of systems

decomposition. For example, the Avionics subsystem consists of a Controls system,

data processing system, electronics and communications systems, guidance system,

navigation system, sensors, and instruments.

3 Results and discussion

The approach recognizes that there is more to an architectural pattern than a

model, so we begin with that part of the language which defines a space system

architecture. Alexander [1977] states that these patterns can never be “designed” or

“built” all at once; but patient, gradual growth, designed in such a way that every

individual action is always helping to create or generate the larger global patterns, will,

slowly and surely, make a community that has these global patterns in it.

1. Avionics System: Avionics is the electrical system necessary for flight and

driven by software to tell the rocket where it should go and how it should pivot the

engines to keep on the right trajectory [nasa.gov]

2. Controls System

3. Data Processing System

4. Electronics and Communication System

5. Guidance System

6. Navigation System

7. Sensor and Instruments

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

https://doi.org/10.20944/preprints202208.0177.v1

12

8. Multifunctional CRT Display System

9. Computer Data Bus Network

10. Internal Measurement Units

11. Environmental Control and Life Support (ECLS) System: Environmental

Control and Life Support (ECLS) encompasses the process technologies and equipment

necessary to provide and maintain a livable environment within a crewed spacecraft or

surface habitat cabin [nasa.gov].

12. Environmental Control System

13. Air Revitalization System

14. Oxygen Generation System (OSG)

15. Water Recovery System (WRS)

16. Urine Process Assembly

17. Water Processing Assembly

18. Extravehicular Activity System (EVS)

19. Human Health System

20. Life Support System

21. Power System (EPS): encompasses electrical power generation, storage, and

distribution. The EPS is a major, fundamental subsystem and commonly comprises a

large portion of volume and mass in any given spacecraft [nasa.gov].

22. Energy Storage

23. Batteries

24. Flywheels

25. Regenerative Fuel Cells

26. Power Distribution (PMAD)

27. Power Controls

28. Distribution and Transmission

29. Power Management (FDIR)

30. Power Generation Subsystem

31. Dynamic Energy Conversion

32. Heat Source

33. Photovoltaic

34. Propulsion System: is a machine that produces thrust to push an object forward.

On airplanes, thrust is generated by applying Newton’s third law of action and reaction.

A gas, or working fluid, is accelerated by the engine, and the reaction to this

acceleration produces a force on the engine [nasa.gov].

35. In-Space Propulsion System

36. Advance (TRL3) propulsion Technology

37. Chemical Propulsion

38. Non-Chemical Propulsion

39. Electrical Propulsion

40. Propulsion Supporting Technologies

41. Launch Propulsion System

42. Air-Breathing Propulsion System

43. Detonation Wave Engines

44. Liquid Rocket Propulsion System

45. Solid Rocket Propulsion System

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

https://doi.org/10.20944/preprints202208.0177.v1

13

46. Nozzles

47. Solid Rocket Motors

48. Robotic Systems: focuses on advanced development of sensing, perception,

planning, dexterity, mobility, controls, telepresence, fault tolerance, and intelligent

robotics [nasa.gov].

49. Autonomous System

50. Autonomous Components

51. Human-Robot System Interaction

52. Manipulation Subsystem

53. Mobility Subsystem

54. Robotic Integration System

55. Sensing and Perception System

56. Onboard mapping System

57. Recognition System

58. Robotic Sensing System

59. State Estimation System

60. Structural System: in building construction, the means and methods of

assembling and constructing structural elements of a building so that they support and

transmit applied loads safely to the ground without exceeding the allowable stresses in

the members [nasa.gov]

61. Manufacturing Processes

62. Materials Systems

63. Mechanical Systems

64. Structures

65. Thermal System: Thermal protection technology consists of materials and

systems designed to protect spacecraft from extremely high temperatures and heating

during all mission phases [nasa.gov]

66. Active Thermal Control

67. Two-Phase Thermal Control

68. Cryogenic Systems

69. Passive Thermal Control

70. Coating

71. Insulations

72. Thermal Control Systems

73. Thermal Protection Components

74. Thermal Protection Materials

All seventy-four patterns together form a language; they create a logical image

of a complete spacecraft, with the power to regenerate such spacecraft in hundreds of

forms, with thousands variety in all the details. It is also true that any small series of

patterns from this language is itself a language for an even smaller model of the

architecture. This small list of models is then capable of architecting thousands of

habitats, satellites, rovers, and gateways.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

https://doi.org/10.20944/preprints202208.0177.v1

14

Figure 8. New space-based system architecture (Habitat mindmap)

The pattern language can be described as its own system. While each pattern

has its own set of requirements, combining the small patterns into a larger pattern;

should identify the requirements that can only be satisfied by the specific interface of

the patterns.

4 Conclusion

Increasing competitiveness in space missions is driving the need to develop a

new systems architecture within a short period with accomplishing the verification,

validation, and testing requirements. Understanding customers, shareholders, and

stakeholder requirements; then finding potential solutions to develop a new system is

a challenging job. After creating the pattern library and using it for architecting the first

logical architecture, it was clear that patterns have an interface and language.

In this framework, we gain an entirely new view of the process through which

a sequence of acts of a new system generates a whole. The author Dr. Cloutier defined

his mantra, “The purpose of modeling is to reason about the problem, understand the

complexities, and communicate with others.” It is crucial to develop and maintain a

data dictionary (Ontology and Taxonomy) throughout the modeling efforts so that all

diagrams have consistent naming. The authors understand that the ontology used in the

patterns does not precisely match the physical architecture and NASA taxonomy, but

the objective is to deliver the methodology of developing a pattern library. The lessons

learned from this research are to define and generate your working level ontology and

the top-level system requirements.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

https://doi.org/10.20944/preprints202208.0177.v1

15

Figure 9. New Space-Bases System Logical Architecture (Planetary Surface Habitat)

Figure 9 shows a logical architecture of the planetary surface habitat, modeled

from the pattern library generated from this research. The top-level architecture

suggests that a planetary surface habitat as a system will have Power, Avionics,

Thermal Management, Environmental Control and Life Support, Structure, In-Space

propulsion, and Launch Propulsion Systems. Then each block provides parts options

that are necessary or optional for that subsystem.

Pattern libraries can be generated for the different domains such as defense

systems, biomedical, aeronautical, automobile, and other large-scale heavy industries.

The authors recommend that the government agencies to fund any future work; this

project was a success because of NASA funding. However, efforts in the past to create

a pattern library were unsuccessful because corporations view patterns as proprietary

information and would not allow them to contribute to the open-source information.

The methods and tools used in this article were the Astah System Safety and

CAMEO No Magic. Modeling of this type takes time, but because of the underlying

semantics and syntax, it is believed that more efforts were found earlier rather than

later, thereby reducing overall time and cost that would otherwise be spent if the defects

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

https://doi.org/10.20944/preprints202208.0177.v1

16

are found later in the project. This project represents approximately five hundred hours

of efforts conducted by the authors, yet it is nowhere near a complete pattern library –

that might take years to produce. However, it represents the Development of Space

Systems Architectural Pattern library in SysML.

Author Contribution:

Conceptualization, B.R.L., and R.J.C.; methodology, B.R.L., and R.J.C.;

validation, B.R.L., and R.J.C.; formal analysis, B.R.L.; literature research, B.R.L.;

investigation, B.R.L.; data curation, B.R.L., and R.J.C.; writing – original draft

preparation, B.R.L.; writing – review and editing, B.R.L., and R.J.C.; visualization,

B.R.L.; supervision, R.J.C.; MBSE and SysML guidelines, R.J.C. All authors have read

and agreed to the published version of the manuscript.

Acknowledgments:

This work was supported by NASA Marshall Spaceflight Center (MSFC),

Advanced Concepts Office (ACO) under the Engineering Services and Sciences

Capability Augmentation contract partnered with Jacobs Space Exploration Group

(JSEG).

Funding:

This research was funded by the Jacobs Space Exploration Group (JSEG) and

Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC).

NASA Prime Contract No. 80MSFC18C0011

Conflicts of Interest:

The authors declare no conflict of interest. The views expressed in this

document are those of the authors and do not reflect the official policy or position of

the Jacobs Space Exploration Group (JSEG) and the NASA Marshall Space Flight

Center (MSFC) Advanced Concepts Office (ACO). The strategy and implementation

concepts that are defined in this paper should not be viewed as constituting a formal

plan for NASA.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

https://doi.org/10.20944/preprints202208.0177.v1

17

Bibliography

Alexander C. (1964). Notes On the Synthesis of Form, Harvard University Press, Cambridge, MA.

Alexander C. (1977). A Pattern Language, Oxford University Press, New York.

Alexander C. (1979). The Timeless Way of Building. Center for Environmental Structure, Berkeley, CA.

Alexander C. (2002). The Order of Nature: An Essay on The Art of Building and The Nature of The

Universe, Book 1 The Phenomenon of Life, The Center for Environmental Structure, Berkley, CA.

Anacker H.; Dumitrescu R.; Kharatyan A.; Lipsmeier A. (2020). Pattern-Based Systems Engineering.

Application of Solution Patterns in the Design of Intelligent Technical Systems. International

Design Conference. https://doi.org/10.1017/dsd.2020.107. Fraunhofer IEM, Germany.

Appleton B. (2000). Patterns and Software: Essential Concepts and Terminology

https://www.sci.brooklyn.cuny.edu/~sklar/teaching/s08/cis20.2/papers/appleton-patterns-

intro.pdf

Bayer T. J.; Cooney L. A.; Delp C. L.; Dutenhoffer C. A.; Gostelow R. D.; Ingham M. D.; Jenkins J. S.;

Smith B. S. (2010). An Operations Concept for Integrated Model-Centric Engineering at J.P.L.

Aerospace Conference, 2010 IEEE, IEEE, 2010, pp. 1–14.

Beck K.; Johnson R. (1994). “Patterns Generate Architectures.” Proceedings Object-Oriented

Programming 8th European Conference, ECOOP ’94 (Bologna, Italy, 1994) Springer-Verlag, pp.

139-149.

Coplien J. O. (1997). “Idioms and Patterns as Architectural Literature.” IEEE Software Special Issue on

Objects, Patterns, and Architectures.

David C.; William D. S. (2017). Utilizing MBSE Patterns to Accelerate System Verification. Presented at

the 25th Annual International Symposium of INCOSE, Seattle, US-WA, 13–16 July.

ESO, (2007). “ALMA, Exploring the Universe at Millimeter Wavelengths.”

http://www.eso.org/sci/facilities/alma/publications/Brochure-2007.pdf

Fowler; Martin. (2003). “Patterns.” IEEE Software. March/April 2003.

George C. Marshall Space Flight Center Huntsville, AL 35812 www.nasa.gov/marshal NP-2016-06-67-

MSFC G-15605

Haskins C. (2003). 1.1.2 Using Patterns to Share Best Results. A proposal to codify the SEBOK.

Engineering Tomorrow’s World Today! INCOSE 13th Annual International Symp. Proceedings.

Haskins C. (2005). Application of patterns and pattern languages to systems engineering, Proc INCOSE

15th Annual International Symposium, Rochester, NY, July 10–13.

Hanmer R.; Kocan K. (2004). Documenting architectures with patterns. Bell Labs Tech J 9(1). 143–163.

INCOSE SE Vision 2020 (INCOSE-TP-2004-004-02, Sep 2007).

Karban R.; Zamparelli M.; Bauvir B.; Koehler B.; Noethe L.; Balestra A.; (2008). Exploring Model-Based

Engineering for Large Telescopes. Getting started with descriptive models. Proc. SPIE 7017,

70171I.

Laura E. H. (2015). Introduction To Model-Based System Engineering (MBSE) and SysML. Presented at

the Delaware Valley INCOSE Chapter Meeting.

NASA Systems Engineering Handbook Rev2.

Nataliya S. (2020). An Introduction to Model-Based Systems Engineering (MBSE). Carnegie Mellon

University Software Engineering Institute. 4500 Fifth Avenue, Pittsburgh, PA.

OED Online. Oxford University Press, June 2022. Web. 20 June 2022.

OMG Systems Modeling Language (OMG SysML), V1.0. September 2007.

Rising L. (1998). The Patterns Handbook: Techniques, Strategies, And Applications. Cambridge

University Press.

Rising L. (1999b). Patterns: A Way to Reuse Expertise. IEEE Communications Magazine. V- 37: 4.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

https://doi.org/10.1017/dsd.2020.107
https://www.sci.brooklyn.cuny.edu/~sklar/teaching/s08/cis20.2/papers/appleton-patterns-intro.pdf
https://www.sci.brooklyn.cuny.edu/~sklar/teaching/s08/cis20.2/papers/appleton-patterns-intro.pdf
http://www.nasa.gov/marshal%20NP-2016-06-67-MSFC%20G-15605
http://www.nasa.gov/marshal%20NP-2016-06-67-MSFC%20G-15605
https://doi.org/10.20944/preprints202208.0177.v1

18

Robert C. (2005b). Toward the Application of Patterns to Systems Engineering. Proceedings and

presentation, Conference on Systems Engineering Research

Robert C. (2005c). Application of Patterns to Systems Architecting. Telelogic-Lockheed Martin &

Stevens Institute of Technology.

Robert J. C.; John B.; Dinesh V. (2006). Application of Patterns to Systems Engineering and Architecting.

INCOSE International Symposium. Volume 16, Issue 1, Pages 926-940.

Robert C.; Satya M. (2006). The Use of Patterns in Systems Engineering. Lockheed Martin Lockheed

Martin – MS2.

Robert C.; Dinesh V. (2006). Applying pattern concepts to enterprise architecture. Journal of Enterprise

Architecture. Volume 2, Issue 2, Pages 34-50.

Robert C. (2006). Applicability of Patterns to Architecting Complex Systems. Doctoral Dissertation.

Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ.

Robert C.; Dinesh V. (2007). Applying the concept of patterns to systems architecture. Wiley Subscription

Services, Inc., A Wiley Company. Systems Engineering. Volume 10, Issue 2, Pages 138-154.

Robert C. (2008). Applicability of patterns to architecting complex systems: making implicit knowledge

explicit. VDM, Verlag Dr. Müller

Robert C, (2019). Pattern Identification and Management Toolset. Evolving Toolbox for Complex Project

Management. CRC Press.

Sanford F.; Alan M.; and Rick S. (2006). OMG Systems Modeling Language (OMG SysML) Tutorial.

INCOSE 2006 Orlando, FL.

Sanford F.; Alan M.; and Rick S. (2008). A Practical Guide to SysML, The Systems Modeling Language.

Morgan Kaufman Publishing, San Francisco, CA.

Sara. C. S.; David K.; Chris D.; Bjorn C.; Louise A.; Elyse F.; Brett S. G.; Leo H.; Theodore K.; (2012).

Applying Model-Based Systems Engineering (MBSE) to a standard CubeSat. IEEE Aerospace

Conference, 2012, pp. 1-20, DOI: 10.1109/AERO.2012.6187339.

Schindel B. MBSE Methodology Summary: Pattern‐Based Systems Engineering (PBSE), Based On

S*MBSE Models PBSE Extension of MBSE ‐ Methodology Summary V1.6.1

Schindel B. (2013). Introduction to Pattern-Based Systems Engineering (PBSE): Leveraging MBSE

Techniques. Article in INCOSE International Symposium · June 2013.

Sebastian J. I. H.; Dianna V.; Bassem N.; Brian M. W.; Raffi P. T.; Thomas M. R.; and Brian M. (2018).

A Model-based Approach to Developing the Concept of Operations for Potential Mars Sample

Return. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.

Simpson J.; Simpson M. (2006). Foundational Systems Engineering (SE) Patterns for a SE Pattern

Language. INCOSE International Symposium 16 (1).

Wheatcraft L. (2021). MBSE is Not SysML. https://resources.jamasoftware.com/model-based-systems-

engineering-mbse/mbse-is-not-sysml

Weilkiens T. (2011). Systems Engineering with SysML/UML: Modeling, Analysis, Design.

https://www.nasa.gov/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2022 doi:10.20944/preprints202208.0177.v1

https://www.nasa.gov/
https://doi.org/10.20944/preprints202208.0177.v1

