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Abstract

Federated learning is a distributed machine learning technique that enables multiple devices to
collaborate on learning a shared model without exchanging data. It can be used to improve model
accuracy while protecting user privacy. However, traditional federated learning is vulnerable to attacks
from generative adversarial networks (GANs). As a new privacy protection method, differential
privacy enhances privacy protection capabilities by sacrificing some data accuracy. We optimized
the privacy budget allocation scheme in traditional differential privacy and proposed an adaptive
parameter-based differential privacy method that improves training accuracy while maintaining the
overall privacy budget. Additionally, we proposed an asynchronous federated learning aggregation
scheme that combines privacy budget and freshness, reducing the impact of differential privacy on
accuracy. We conducted extensive experiments on Gaussian mechanism-based differential privacy and
Laplace mechanism-based differential privacy algorithms. Experimental results show that, under the
same privacy budget, our algorithm achieves higher accuracy and lower communication overhead
compared to baseline algorithms.

Keywords: differential privacy; adaptive; weighted aggregation; federated learning

1. Introduction
With the increasing popularity of IoT devices, the amount of distributed data has skyrocketed.

The total amount of global data will grow to 175 ZB by 2025[1], and the increase in data volume has
promoted the development of artificial intelligence in many fields such as smart medical, smart home,
and traffic accident detection and artificial intelligence-driven by the big data environment has entered
the third golden period of development. Traditional centralized learning requires all data collected
on local devices to be stored centrally in a data center or cloud server. This requirement not only
raises concerns about privacy risks and data breaches but also places high demands on the storage and
computing power of servers, particularly in cases involving large amounts of data. Distributed data
parallelism enables multiple machines to train a copy of a model in parallel, using different sets of
data. While it may be a potential storage solution and compute power issues, it still requires access to
the entire training data, segmenting it into evenly distributed fragments, which can pose security and
privacy concerns for the data.

Federated learning aims to train a global model that can train on data distributed across different
devices while protecting data privacy. In 2016, McMahan et al. first introduced the concept of federated
learning based on data parallelism [1] and proposed the federated averaging (FedAvg) algorithm. As a
decentralized machine learning approach, FedAvg enables multiple devices to collaborate in training
machine learning models while storing user data locally. FedAvg eliminates the need to upload
sensitive user data to a central server, enabling edge devices to train shared models locally using their
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own local data. By aggregating updates of local models, FedAvg meets the basic requirements of
privacy protection and data security.

While federated learning offers a promising approach to privacy protection, numerous challenges
arise when applying it to the real world[2]. The first is the problem of privacy. Studies in recent years
have shown that gradient information during training can reveal privacy [3–9], whether by third
parties or central servers [10,11]. As shown in [12,13], even a slight gradient can reveal a significant
amount of sensitive information about local data. By simply observing the gradient, a malicious
attacker can steal training data within a few iterations [6]. Although traditional privacy protection
methods, such as encryption and secure multi-party computing, can protect private information from
being leaked, they are not designed for edge environments. Excessive algorithm complexity leads to
high latency and communication overhead in practical applications. To solve the above problems, this
paper proposes an efficient federated learning method that combines differential privacy and outdated
level methods. The main contributions of this paper are as follows:

• This paper proposes a differential privacy method with adaptive parameters that dynamically
adjusts privacy parameters during training. This method improves the accuracy of federated
learning while maintaining the total privacy budget.

• This paper proposes an asynchronous federated learning aggregation scheme that combines
privacy budget and device aging. This scheme adjusts weights based on privacy budget, device
aging, and dataset during aggregation to improve training accuracy.

• This paper conducts extensive experimental testing and validates the effectiveness of the algorithm
using real-world datasets under Gaussian and Laplace noise.

2. Related Work
Differential privacy is a new definition of privacy proposed in 2006 by Dwork cite dwork2006differential

for addressing the problem of privacy leakage in databases. It is mainly through the use of random
noise to ensure that the results of querying publicly visible information do not reveal the private
information of the individual, that is, to provide a way to maximize the accuracy of the data query
when querying from a statistical database, while minimizing the chance of identifying its records. Dif-
ferential privacy enhances the ability to protect privacy by sacrificing some data accuracy. Determining
how to balance privacy and efficiency in the actual use process is a problem worth studying.

In response to differential attacks, Robin C. et al. [14] propose a federated optimization algorithm
for client differential privacy protection. This algorithm dynamically adjusts the level of differential
privacy during distributed training, aiming to hide customer contributions during training while
balancing the trade-off between privacy loss and model performance. Xue J. et al.[15] proposed
an improved SignDS-FL framework, which shares the same dimension selection concept as FedSel
but saves privacy costs during the value perturbation stage by assigning random sign values to the
selected dimensions. Patil et al. [16] introduced the concept of differential privacy into traditional
random forests cite breiman2001random. The Random Forest algorithm was tested in three aspects.
The experiments demonstrated that the traditional random forest algorithm and the random forest
based on differential privacy achieved nearly identical classification accuracy. Badih Ghazi et al. [17]
improve the privacy guarantee of the FL model by combining the shuffling technique with DP and
masking user data using an invisibility cloak algorithm. Cai et al.[18]proposed the idea of differential
private continuous release (DPCR) into FL and proposed a FL framework based on DPCR (FL-DPCR)
to effectively reduce the overall error added to the parameter model and improve the accuracy of
FL. Wang et al.[19]propose a Loss Differential Strategy (LDS) for parameter replacement in FL. The
key idea is to maintain the performance of the Private Model by preserving it through parameter
replacement with multiuser participation while significantly reducing the efficiency of privacy attacks
on the model. However, some solutions cite new1, new2, new3, new4, new5 introduce uncertainty
into the upload parameters and may compromise the training performance. The current research
schemes are all aimed at protecting the privacy of federated learning at the cost of accuracy. We aim to
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enhance the training accuracy of federated learning by optimizing the allocation of privacy budgets
and the aggregation scheme while preserving privacy.

3. Problem Formulation
3.1. Model Definition

Neural networks update parameters through backpropagation. Similarly, in a federated learning
framework based on gradient (weight) updates, gradient information is propagated between clients
and servers. The gradient information transmitted by clients originates from local datasets. Attackers
can use gradient information to reverse-engineer datasets, resulting in privacy leaks among participants
in federated learning.

Definition 1 (Differential Privacy Problem Model). A trusted data regulator C has a set of data D =

D1, D2, ...Dn. The goal of the data regulator is to derive a random algorithm A(D′), D′ ∈ D, where A(D′)
describes certain information about the data set D′, while ensuring the privacy of all data D.

The schematic diagram of differential privacy is shown in Figure 1. For example, for a query on
the average age, the average age of all individuals in the query dataset D is first calculated, followed
by the average age of the adjacent dataset D′, which lacks Bob’s age. This can be inferred from the
results of the previous two queries, which constitute a differential attack. The figure illustrates the
core idea of differential privacy technology, which involves processing query results to ensure that the
query algorithm produces highly similar output probability distributions on adjacent datasets. Thus,
for datasets with only one record difference, the query results are likely to be the same. Differential
privacy applications can effectively prevent attackers from inferring information about datasets
through gradient analysis. However, the added noise inevitably leads to reduced accuracy and slower
convergence in federated learning and may even prevent convergence. Therefore, finding a method to
minimize the impact of differential privacy on accuracy while ensuring privacy security has become
an urgent research issue.

Figure 1. Illustration of Differential privacy.

3.2. Algorithm Definition

This section introduces the relevant definitions and basic properties that will be applied in the
composition of adaptive differential privacy algorithms. Differential privacy is defined as follows:

Definition 2 (Adjacent data sets). For data sets D and D′ with the same data structure, if these two data sets
differ only in a certain element x, then these two data sets are called adjacent data sets.

Definition 3 ((Differential Privacy)[20]). A randomized algorithm M with domain R|X | is (ϵ, ∆)-
differentially private if for all S ⊆ Range(M) and for all x, y ∈ R|X |such that ||x− y||1 ≤ 1:

Pr[M(x) ∈ S ] ≤ exp(ϵ)Pr[M(y) ∈ S ] + δ (1)
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where the probability space is over the coin flips of the mechanismM. If δ = 0, we say thatM is ϵ differentially
private.M satisfies (ϵ, δ)−differential privacy, then when δ = 0,M satisfies ϵ−differential privacy.

(ϵ, 0)−differential privacy guarantees that the absolute value of privacy loss for all adjacent databases is
less than or equal to ϵ. (ϵ, δ)−differential privacy guarantees that the probability of privacy loss for all adjacent
databases being less than or equal to ϵ is 1− δ, meaning that a privacy algorithm failure with a probability of δ

is acceptable. This is a relatively lenient differential privacy strategy.

Definition 4 (Local Sensitivity). Local sensitivity of FL training is defined as follows:

∆ fLs = max
D′
|| f (D)− f (D′)||1 (2)

Definition 5 (Global Sensitivity). Global sensitivity of FL training is defined as follows:

∆ f global
Ls = max

D,D′
|| f (D)− f (D′)||1 (3)

Definition 6 (Laplace Mechanism). For input dataset D and function F , if the algorithm Γ satisfy:

Γ = F (D) + Lap(∆F/ϵ) (4)

Theorem 1 ((Gaussian Mechanism)[20]). For any δ, σ >

√
2 ln(1.25/δ)∆ f

ϵ , if algorithm Γ satisfies:

Γ = F (D) +N (σ2) (5)

then algorithm Γ satisfies (ϵ, σ)−differential privacy. N (σ2) is a Gaussian distribution with center 0 and
variance σ2.

Theorem 2 ((Composition Theorem)[20]). LetMi each provide ϵi-differentially private. The sequence of
Mi(X) provides (∑i ϵi)-differentially private.

The differential privacy method selected for this study is a differential privacy algorithm based on the
Laplace noise mechanism and the Gaussian noise mechanism.

4. Adaptive Differential Privacy Mechanisms For Federated Learning
In this section, we will introduce the building blocks of our method and explain how to implement

our algorithm. In Section 4.1, we introduced adaptive differential privacy design. In Section 4.2, we
introduced security analysis and scheme design. In Section 4.3, we provided a detailed explanation of
the ADP-FL algorithm implementation.

4.1. Design of Adaptive Differential Privacy

Differential privacy technology was first proposed by Dwork in 2006[20] to prevent differential
attacks from obtaining sensitive information about a single record, thereby protecting the confidential-
ity of data. For example, for a query for average wages, select a set of 100 people, query the average
wages of these 100 people, and then query the average wages of any 99 people in the set. The wages of
the remaining one person can be analyzed by the results of the first two queries, which is a differential
attack. The core idea of differential privacy technology is to process query results in a way that, for a
dataset with only one record difference, the query result is likely to remain the same.

According to the composition theorem, when deploying differential privacy multiple times on the
same input data, the requirements of differential privacy can still be met. However, it should be noted
that there is a correlation between the outputs of each algorithm in serial composition, which leads to
an increase in the overall privacy budget ϵ and failure probability δ, thereby reducing the effectiveness
of privacy protection. In particular, when different differential privacy methods are applied multiple
times on the same dataset, the level of privacy protection may be significantly weakened.
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Therefore, allocating privacy budgets of different sizes according to the various stages of federated
learning has greater advantages than the traditional method of evenly distributing privacy budgets.

In the early stages of federated learning, the gradient information contains less sensitive in-
formation, allowing for a more relaxed privacy budget to be adopted. As training progresses, the
privacy information contained in the delayed gradient increases, and the privacy budget must be
reduced to protect user information. Based on this idea, this paper employs an optimization algorithm
that adjusts the client’s privacy budget in real time according to the model’s training progress and
accuracy, ensuring that the overall privacy budget remains unchanged. By dynamically allocating the
privacy budget, this paper achieves a more balanced approach between privacy protection and model
performance during federated learning. This strategy of allocating privacy budgets of different sizes
for various stages of federated learning enables the method proposed in this paper to flexibly address
privacy protection requirements while fully utilizing the dataset’s information to enhance the model’s
accuracy and performance.

Since our overall method gradually reduces the privacy budget ϵt
i as training progresses, we use

Newton’s cooling law formula to adjust ϵt
i for each training round. The adaptive adjustment process

of the privacy budget ϵt
i can be formalized as:

ϵt
i = ϵi × e−α×(E−t) + ϵi (6)

Where t is current communication round, E is maximum communication round, α is the adjust-
ment coefficient that defaults to 0.1.

Algorithm 1 demonstrates the adaptive differential privacy process. When the client begins
participating in federated learning, the cumulative privacy budget is set to 0. As training progresses, if
the cumulative privacy budget exceeds the total privacy budget, continuing to participate in federated
learning will result in privacy leakage risks, so the client exits federated learning. It is important to
note that the decline curve of Newton’s cooling law is very rapid. To prevent the privacy budget from
depleting too quickly, which could lead to excessive noise and negatively impact training, this paper
introduces a detection callback mechanism. When the client detects that the model’s accuracy has
decreased beyond a threshold—i.e., when noise is affecting model convergence—the privacy budget is
adjusted accordingly. Through this mechanism, this paper achieves a balance between privacy and
efficiency.

Algorithm 1 Adaptive Differential Privacy

Input: privacy budget ϵ, accumulated privacy budget ϵacc, Coefficient λ, Maximum number of com-
munication rounds E

Output: ϵt
1: ϵacc = 0
2: while t ≤ E and ϵacc ≤ ϵ do
3: if Acct − Acct−1 > −λ then
4: ϵt ← ϵt−1 × e−α×(E−Et) + ϵt−1
5: else
6: ϵt = ϵt−1
7: end if
8: ϵacc+ = ϵt
9: end while

10: return ϵt

4.2. Design of Weighted Aggregation

In federated learning, due to communication or device issues, some devices may not participate
in training for extended periods and are referred to as outdated devices. These outdated devices can
lead to a decline in model accuracy, a significant issue in practice. To address this issue, a common
approach in the context of federated learning is to adjust the weight of the gradient based on the
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degree of model obsolescence, thereby reducing the impact of outdated gradient information on the
model. This paper adjusts the weights of gradient information based on the number of training rounds
the model has not participated in and uses an exponential function to implement this adjustment.
Through this approach, this paper can more effectively address the impact of outdated devices that
have not participated in training for an extended period, thereby improving the overall accuracy of the
model. This dynamic weight adjustment strategy ensures that the contribution of outdated devices in
model updates gradually decreases, allowing the updates from devices that participate on time to be
more significant. Therefore, this paper can better balance the contributions of different devices, thereby
enhancing the effectiveness of federated learning and the model’s performance. The obsolescence
degree function we use is as follows:

f (λ) = αt1−t2 λ (7)

Where t1 is the current communication round, t2 is the last communication round of the client,
and α is the adjustment coefficient. λ is the outdated coefficient. It is initially set to 1 and reset to 1
each time it participated in training.

According to the characteristics of the exponential function, the weights of clients who have not
participated in training for multiple rounds will be tiny, effectively reducing the impact of outdated
information.

During parameter aggregation, differential privacy noise impacts the model’s convergence.
Clients with smaller privacy budgets have a higher probability of their uploaded gradient parameters
deviating from the model convergence direction. Therefore, it is necessary to adjust the weights based
on the amount of noise added by the client. Regarding how to assess the amount of noise added, the
privacy budget ϵ and the amount of noise added are negatively correlated. The smaller the privacy
budget, the more noise is added and the greater the deviation of gradient information. Naturally, this
paper uses the privacy budget ϵ as a parameter to assess the degree of noise added and uses ϵ as one
of the weight parameters for model aggregation.

Combining the weight adjustment algorithm for outdated devices and the weight adjustment
algorithm for noise, this paper proposes the following aggregation scheme:

gt+1 ←
n

∑
i=1

ϵt
i λ

t
i |Di|

ϵt
1λt

1|D1|+ ϵt
2λt

2|D2|+ · · ·+ ϵt
nλt

n|Dn|
gt

i (8)

Where gt
i is the gradient of client i in round t. |Di| is the size of the dataset for client i. In this

formula, the more noise, the older the model, and the smaller the weight of the gradient provided by
the client. When the client continuously participates in training and adjusts the privacy budget ϵt

i , the
weight in the aggregation will increase.

Accordingly, the calculation method for the global model is:

Wt+1 ←Wt − η
n

∑
i=1

ϵt
i λ

t
i |Di|

ϵt
1λt

1|D1|+ ϵt
2λt

2|D2|+ · · ·+ ϵt
nλt

n|Dn|
gt

i (9)

The flowchart of the aggregation scheme is shown in Figure 2. As shown in the figure, in a training
round, the green portion represents the time window during which the server receives gradients from
clients. In contrast, the red portion represents the time window during which the server performs
aggregation and updates the global model. Clients that upload gradients during the green time
window are considered regular clients participating in aggregation. Clients who upload gradients
during the red time window or do not upload gradients are marked as lagging clients. For users
marked as lagging clients, their aggregation weights will decay exponentially over time, allowing
them to participate in normal model aggregation again.
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Figure 2. Asynchronous aggregation flowchart.

4.3. Adaptive Differential Privacy Federated Learning Algorithm

Based on the previously proposed method, we propose Adaptive Differential Privacy Federated
Learning (ADP-FL). Figure 3 is the overview of ADP-FL. Algorithm 2 shows the whole process of
ADP-FL. Fadp is the Adaptive Differential Privacy function. The specific details of the algorithm are as
follows:

Algorithm 2 ADP-FL

Input: initial paramenters w, privacy budget ϵ, maximum communication round E, accumulated
privacy budget ϵi = 0, Current communication round t, outdated level α.

1: Server does:
2: Send initial parameters w to all clients i
3: while t ≤ E do
4: gt+1 ← ∑n

i=1
ϵt

i λt
i

ϵt
1λt

1+ϵt
2λt

2+···+ϵt
nλt

n
gt

i

5: Return gt+1 to each selected client i
6: Set participating clients’λ to 1, other clients’λ = λ× α
7: end while
8: Client does:
9: Recieve initial parameters w

10: if client i selected and ϵi < ϵ then
11: receive gt from server
12: gt

i ← local train(gt + wt−1
i )

13: ϵt
i ← Fadp(t, ϵt−1

i , E)
14: ĝt

i ← add noise(gt
i , ϵt

i )

15: ϵi+ = ϵt
i

16: return ĝt
i , ϵt

i to server
17: end if
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Figure 3. The overview of ADP-FL.

(1) Steps 2 to 7 are performed by the server. In Step 2, the server initializes the model w and sends
it to all clients. Before reaching the maximum communication round E, the server receives the gradient
information sent by the clients, aggregates the gradients of each participating client according to the
aggregation scheme proposed in this paper, and updates the global model Wglobal = W − ηgt+1, then
Wglobal is sent to participating clients to update their local models. After the update is complete, the
server resets the obsolescence level of participating clients to 1 based on their participation in this
update, and sets the obsolescence level of non-participating clients to λα, thereby implementing the
algorithm.

(2) Steps 8 to 15 are performed by the client. During the preparation phase of federated learning
training, the client receives the initial model w. When the client is selected and the privacy budget has
not been fully consumed, the client first receives the latest model parameters Wglobal from the server.
Based on the local dataset and the latest global model Wglobal , local training is performed to obtain the
local gradient gi

t. The privacy budget for this round of training is calculated as ϵi
t ← Fadp(t, ϵi

t−1, E).
Based on the privacy budget ϵi

t and the Laplace mechanism or Gaussian mechanism, perturbation
noise is generated and added to the gradient information, yielding the perturbed gradient information
ĝi

t, while the cumulative consumed privacy budget is updated as ϵi = ϵi
t + ϵi.

5. Experiment
5.1. Experimental Environment

The experimental environment of this paper is AMD Ryzen 7 5800H with Radeon Graphics @3.20
GHz processor and NVIDIA GeForce RTX 3060 Laptop GPU, and the operating system is Windows10.

The experiment simulated a server and 50 local client nodes. Non-IID data was constructed based
on the MNIST, EMNIST and CIFAR10 datasets. In order to test the effect of the algorithm on highly
non-independent and identically distributed data, each client was randomly assigned two kinds of
labels, and the data of each client accounts for 10 percents of the data set. The neural network model
are RNN, VGG9 and CNN models. Their detailed parameters are shown in Table 1.

Table 1. Details of datasets and models.

Dataset #Records #Features #Classes Model #Parameters
MNIST 70000 784 10 RNN 24714

EMNIST 814255 784 62 CNN 206922
CIFAR10 60000 1024 10 VGG9 3491530

The baseline algorithm used in this paper is the FedAvg algorithm, which evenly distributes
the privacy budget. It is also the most commonly used algorithm in current research on federated
learning based on differential privacy. Let the total privacy budget for each client be ϵ, the number of
clients selected by the server each time be n, the total number of clients be N, and the total number of
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communication rounds in federated learning be E. Then, for a single client i, the differential privacy
budget ϵi for each upload is:

ϵi =
Nϵ

nE
(10)

To test the algorithm’s impact on highly non-IID data, each client was randomly assigned two
labels, with each client’s data accounting for 10% of the dataset. The learning rate of the gradient
descent model used was 0.01, and the batch size was 16. The number of local training rounds was 3,
and the optimizer was SGD. The loss function was CrossEntropyLoss. When testing the accuracy of
the ADP-FL algorithm and the baseline algorithm, the privacy budget was set to 1, 5, and 10, with the
differential privacy relaxation parameter δ of the Gaussian mechanism set to 0.00001. When testing the
impact of different noise mechanisms, the privacy budget was set more loosely to 10, 20, 30, 40, and 50
to better observe the experimental results.

5.2. Accuracy of Algorithm on Different Datasets

This paper tests the accuracy of the FedAvg algorithm without privacy protection, the FedAvg
algorithm with evenly distributed privacy budgets (baseline algorithm), and the ADP-FL algorithm on
three datasets under non-IID conditions. The total privacy budget is set to 1, 5, and 10, respectively.

Figure 4, 5, and 6 show the accuracy rates of the proposed method and the baseline algorithm on
the MNIST, CIFAR10, and EMNIST datasets, with all final accuracy rates listed in Table 2. Among these,
“Non” denotes the FedAvg algorithm without privacy protection, and “Nan” denotes the algorithm
failing to converge. Non-convergence occurred on the CIFAR10 and EMNIST datasets when ϵ = 1,
as seen in the figure, where the accuracy rate remained at a low level. This paper speculates that
this is due to the privacy budget being too small, resulting in excessive noise addition and making it
difficult for complex models to converge. In contrast, under the same privacy budget, the algorithm
successfully converged on the MNIST dataset with lower complexity.

Table 2. Accuracy of baseline and ADP-FL algorithms under different privacy budgets ϵ.

MNIST CIFAR10 EMNIST
Non 87.24 56.08 67.26

Baseline ϵ = 1 51.38 Nan Nan
Baseline ϵ = 5 86.20 56.92 65.43

Baseline ϵ = 10 86.25 62.15 64.16
ADP-FL ϵ = 1 66.73 Nan Nan
ADP-FL ϵ = 5 87.40 54.35 64.62

ADP-FL ϵ = 10 92.36 63.85 69.55
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 ADP-FL =10

Figure 4. Accuracy of ADP-FL on the MNIST dataset under different privacy budgets.

 ADP-FL =10

Figure 5. Accuracy of ADP-FL on the CIFAR10 dataset under different privacy budgets
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Figure 6. Accuracy of ADP-FL on the EMNIST dataset under different privacy budgets.

Compared to the baseline algorithm, the method proposed in this paper achieves higher accuracy
and faster convergence speed. When the privacy budget is relatively lenient, the accuracy rate is even
higher than that of methods without differential privacy. When ϵ = 1, compared to the baseline on
MNIST, the proposed method improves accuracy by 15.35%. This is because the proposed aggregation
method not only considers the impact of noise but also adjusts the weights of lagging clients. Compared
to the baseline algorithm, ADP-FL can effectively address the impact of lagging clients. From the
experimental results, it can be seen that in most cases, ADP-FL achieves higher accuracy compared to
traditional local differential privacy algorithms.

5.3. Accuracy of Algorithm under Differential Privacy Mechanisms

In order to verify the accuracy of the adaptive differential privacy algorithm on different differ-
ential privacy mechanisms, this paper conducted comparative experiments on differential privacy
algorithms based on Laplace and Gaussian mechanisms. The experimental results are shown in Table
3 and Table 4. Intuitive experimental results are shown in Appendix A.

Table 3. Comparison of accuracy between ADP algorithm and baseline algorithm under different differential
privacy mechanisms and privacy budgets on different datasets.

Gaussian
ϵ 10 20 30 40 50

MNIST Baseline 73.46 85.82 82.32 83.3 80.28
ADP-FL 75.04 86.91 82.26 84.91 80.60

CIFAR10 Baseline 25.22 41.13 48.6 47.68 51.4
ADP-FL 26.98 42.39 50.11 46.34 53.56

EMNIST Baseline 88.47 97.12 98.05 97.85 98.40
ADP-FL 90.45 97.70 97.26 98.00 98.91
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Table 4. Comparison of accuracy between ADP algorithm and baseline algorithm under different differential
privacy mechanisms and privacy budgets on different datasets.

Laplace
ϵ 10 20 30 40 50

MNIST Baseline 80.95 82.28 82.86 84.74 87.37
ADP-FL 82.75 80.89 83.67 86.59 87.24

CIFAR10 Baseline 50.23 28.88 43.3 51.53 49.39
ADP-FL 35.99 46.61 46.64 51.91 49.41

EMNIST Baseline 97.77 98.35 98.30 98.33 98.24
ADP-FL 97.80 95.55 98.46 98.41 97.90

From the experimental results, it can be seen that in the vast majority of cases, the ADP algorithm
has higher accuracy compared to traditional privacy budget allocation algorithms. Especially under
the premise of the same privacy budget, the adaptive differential privacy algorithm proposed in this
article performs better in accuracy than traditional differential privacy algorithms with average privacy
budget allocation in most cases, whether it is the Laplacian mechanism or the Gaussian mechanism.
Especially on the CIFAR10 dataset, the accuracy of the ADP algorithm is generally higher than that
of the baseline algorithm. This article speculates that this is because on more complex datasets, the
noise added by differential privacy significantly increases, and the superiority of ADP algorithm in
reasonable allocation of privacy budget can be better reflected. On the MNIST dataset, the accuracy of
the ADP algorithm can exceed that of the baseline algorithm in most cases. The performance is not
significant on the EMNIST dataset, because the accuracy of the EMNIST dataset is relatively high, and
there is limited room for improvement. A large number of experiments have shown that the ADP
algorithm has a certain improvement in accuracy compared to the baseline algorithm.

5.4. Time Complexity of Algorithm Under Differential Privacy Mechanisms

Table 5 shows the computational time costs of the baseline algorithm and ADP-FL algorithm
across different datasets. Since federated learning focuses more on client performance, and servers
typically have powerful computational resources, this paper selected the average time consumption
of the client when calculating time consumption, primarily including local training, noise addition,
and gradient transmission processes, and did not test the time consumption of the server. The results
clearly show that the ADP-FL algorithm proposed in this paper has less time consumption and is more
advantageous in terms of aggregation efficiency.

Table 5. Time complexity of the baseline algorithm and ADP-FL algorithm on different datasets, in minutes.

MNIST CIFAR10 EMNIST
Baseline 28 45 159
ADP-FL 22 32 122

5.5. Gradient Leakage Attack

Figure 7 shows the performance of the ADP-FL algorithm in the face of gradient leakage attacks.
From the experimental results, it can be concluded that under the premise of privacy budget ϵand
relaxation term δwithin the conventional value range, the ADP-FL algorithm in this paper has a
significant effect on gradient leakage attacks.
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Figure 7. The effectiveness of ADP in combating gradient leakage attacks

After multiple tests, we found that the ADP-FL algorithm failed when the privacy budget ϵ = 1000
and the slack term δ = 0.1. At this point, the privacy budget and relaxation term settings have far
exceeded the parameter range in general situations. It can be concluded that the ADP-FL algorithm
proposed in this paper can resist gradient leakage attack.

6. Conclusion
In the paper, We proposes ADP-FL, a federated learning method based on adaptive differential

privacy. First, based on Newton’s cooling law, ADP-FL dynamically adjusts the privacy budget ϵ

according to the training progress and accuracy changes. Additionally, this paper optimizes the
federated learning aggregation scheme by changing the aggregation weights based on the privacy
budget and model obsolescence. Based on MNIST, CIFAR10, and EMNIST, this paper constructs
corresponding Non-IID datasets and validates them using RNN, VGG9, and CNN networks. Extensive
experiments are conducted on differential privacy algorithms based on Gaussian mechanisms and
Laplace mechanisms. The experimental results show that, under the same privacy budget, ADP-FL
achieves higher accuracy and lower communication overhead compared to baseline algorithms.

In future work, we will explore the method of introducing cluster[21] into ADP-FL algorithm,
while better compressing the parameters of the model, improving communication efficiency[22] while
improving the security of federated learning. Author Contributions: Conceptualization, J.W. and G.X.;

methodology, J.W.; investigation, H.H. and C.Y.; writing—original draft preparation, J.W. and Y.Z.; writing—
review and editing, H.L.; visualization, J.W. and H.L.; supervision, G.X.; All authors have read and agreed to the
published version of the manuscript.
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Appendix A
Intuitive experimental results are shown in Figure A1, A2, and A3. The red line represents the

accuracy of the baseline algorithm, and the green line represents the accuracy of the ADP-FL algorithm.
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Figure A1. On the MNIST dataset, adaptive differential privacy algorithms based on Laplace and Gaussian
mechanisms were tested against the baseline algorithm, with privacy budgets ϵ set to 10, 20, 30, 40, and 40 from
top to bottom.
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Figure A2. On the CIFAR10 dataset, adaptive differential privacy algorithms based on Laplace and Gaussian
mechanisms were tested against the baseline algorithm, with privacy budgets ϵ set to 10, 20, 30, 40, and 40 from
top to bottom.
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Figure A3. On the EMNIST dataset, adaptive differential privacy algorithms based on Laplace and Gaussian
mechanisms were tested against the baseline algorithm, with privacy budgets ϵ set to 10, 20, 30, 40, and 40 from
top to bottom.
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