Pre prints.org

Article Not peer-reviewed version

Systematic Literature Review Report on
the Challenges of Agile Scrum

Melaku Girma Lemma , Nuno Garcia , Mesfin Kifle

Posted Date: 2 June 2025
doi: 10.20944/preprints202506.0080.v1

Keywords: agile scrum; systematic review; issues of agile scrum; successes of scrum; challenges of agile
scrum; agile scrum SLR

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4493707
https://sciprofiles.com/profile/334007

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Systematic Literature Review Report on the
Challenges of Agile Scrum

Melaku Girma *, Nuno Garcia 2 and Mesfin Kifle 3

! Addis Ababa University; melaku.girma@aau.edu.et

2 University of Lisbon; nmgarcia@fc.ul.pt

3 Addis Ababa University; mesfin kifle@aau.edu.et

* Correspondence: melaku.girma@aau.edu.et; Tel.: (+251 977 32 73 82)

Abstract: Agile in general and SCRUM Agile in particular have widely been employed in the software
development arena ranging from small to medium to large and multinational projects. There are
empirical studies, experience reports, and case studies that have reported the successes, issues and
challenges of using the methodology in large-scale software development projects context. This
Systematic Literature review employs the PRISMA methodology for searching case studies,
experience reports and empirical research related to successes, issues, and challenges faced by
software companies that fully harnessed Agile Scrum method for large-scale software development
projects. A search protocol and context were prepared to guide the search task. Several papers
published over more than a decade from multiple scientific databases, including IEEE Xplore and
SCOPUS were analyzed. An iterative coding of themes had been employed to identify and categorize
the key themes in the papers. Accordingly, eight main themes and 46 subthemes had been identified.
These are Dependency issues, Agile Difficult to Implement, Multi-team Environment Challenges,
Challenges of Requirement Engineering, Knowledge Issues, Resistance to Change, Organizational
Structure and Boundaries, and Quality Assurance Challenges. Agile Difficult to Implement, Multi-
team Environment Challenges and Challenges of Requirement Engineering are the most mentioned
themes in order.

Keywords: Agile Scrum; Systematic Review; Issues of Agile Scrum; Successes of Scrum; Challenges
of Agile Scrum; Agile Scrum SLR

1. Introduction

Agile is a set of methodologies that share common software development philosophical
foundations and practices. However, this paper focuses on one of the highly harnessed Agile
methodologies called Scrum. Scrum framework composed of roles, ceremonies, and artifacts [1]. The
three distinct roles in the Scrum process are the Product Owner, the Team and the Scrum master [2].
Daily Scrum Meeting, the Daily Scrum of Scrums Meetings, the Sprint Review Meetings and the
Sprint Planning Meetings constitute Agile Scrum ceremonies. The Agile Scrum process also employs
three artifacts, known as Product Backlog, the Sprint Backlog, and the Burndown Chart.

Agile in general and Agile SCRUM in particular method has intensively been harnessed to meet
the ever-increasing market need for short development cycles and quick lead time to release software
products [3].

2. Background

Large Software companies such as Google, Apple, Ericson, and Amazon are venturing into Agile
SCRUM as there has been an increasing need to develop competencies in continuous software
engineering. The multinational and big companies realize the competitive advantages that agility can
provide [4]. Despite the high promises of delivering quality software with short lead time in an
iterative process, the existing agile SCRUM framework should be tailored to the needs of the software

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

2 of 25

development companies to meet their large-scale, multi and diverse teams development environment
[5]. In this paper, we adopted the definition of large-scale software development as “software
development organizations with 50 or more people or at least six teams” [6].

This systematic literature review is envisaged to investigate the body of knowledge on successes,
issues and challenges faced by large-scale software development companies that fully harnessed
Agile SCRUM for large software development projects. A systematic literature review (often referred
to as a systematic review) is a means of identifying, evaluating and interpreting all available research
relevant to a particular research question, or topic area, or phenomenon of interest. It is carried out
to summarize the existing evidence concerning a certain topic of interest, to identify any gaps in
current research in order to suggest areas for further investigation, and/or, to provide a
framework/background in order to appropriately position new research activities [7].

A search protocol and context were prepared to guide the searching task. Several papers
published over more than a decade from scientific databases from IEEE Xplore and SCOPUS were
analyzed. An iterative coding of themes had been employed to identify and categorize the key themes
in the papers. The main contributions of this systematic review are identification and categorizations
of substantive themes derived from journal articles identified through the search processes. These
themes are contributions to the existing body of knowledge in Agile software development arena and
useful references to the industry in its attempt to harness Agile SCRUM as the premier software
development method.

Similar Systematic Review had been carried out by [6]. Our review adds more context and
themes to their findings. However, a detailed comparison of our work against this review has not
been made.

3. Research Methods

The systematic review is carried out by employing the methodological framework of the
“Preferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA), harnessing
specific inclusion and exclusion protocols and clearly articulated search phrases to search and collect
articles highly relevant to the research topic. Then, duplicates, additional unrelated or incomplete
articles, and papers that slept through a thorough screening process are removed from the results [8].
The review also follows the guidelines for performing Systematic Literature Reviews in Software
Engineering [7].

3.1. Research Questions

This paper presents the results of a systematic literature review on the topic of challenges and
scaling practices in using agile Scrum for Large-scale software development projects. Industry
experiences reports, case studies, and empirical research works in the field of software engineering
have systematically been reviewed. The review processes have been performed in view of the
following research question.

RQ1. Whatare the specific problems that software companies face when trying to implement
Agile SCRUM method, in particular related to the implementation of large projects?

This paper presents the findings of the quest for challenges of Agile SCRUM for large software
projects.

3.2. Search Strategy

The search approach in this paper harnesses PRISMA technique to find and analyze case studies,
experience reports, empirical research published between January 2011 and October 2023. We
employed key terms search approach to identify these papers in IEEE Xplore digital libraries and
SCOPUS database. The advanced search facilities of the library and database were used based on the
selected search keywords and phrases. Then all articles returned by these systems were analyzed for

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025

3 of 25

selecting relevant papers while eliminating irrelevant ones. The iteratively improved search facets,
phrases and keywords in the research are exhibited in Table 1.

Table 1. Search Facets and Keywords.

Facet Keywords
Agile Method Scrum OR Agile AND Scrum
Large OR “Large Scale” OR “Large team” OR
Development Context “Large Project” OR “Large Software” OR

“Large Software Development”
challenges OR practices OR “success factors” OR
application OR use

Scrum Issues

3.3. Inclusion Criteria

We defined four facets to guide our inclusion/exclusion decisions: Agile software development,
large-scale, Context and source type. In addition, the year and language of publication as well as
number of citations were used to discriminate irrelevant papers while selecting relevant ones. Table

2 lists the facets and gives examples on matching topics and non-relevant topics. A primary study
that fully meets the facets was included in the search result.

Table 2. Inclusion Criteria.

E le of non-rel
Facet Relevant topics xample o n‘on relevant
topics
The Company is a Agile Scrum
Agile Software software organization manufacturing; Scrum in
Development that employs Scrum management boards
Methodology Comparison
Scrl%m/{%glle Serum Scaling up from small; a
applied in large scale . . .
Large Scale single agile team in a
software development ,
. large setting
projects
Challenges, Practices, comparlson' of
methodologies;
Context Success factors, .
o comparison of before and
Application and Use
after
Source Tvbe Journal Books, Book Series and
A Conference Proceedings
Yeér of 2011-2023 Any pub'hcatlon out of
Publication this range
Publication English Publication language
Language except English
Nu'mb'er of .3 3
Citation

The actual title, abstract, and keyword search used on the SCOPUS and IEEExplore is exhibited
in Table 3.

Table 3. Title Abstract Keyword Search.

TITLE-ABS-KEY ((scrum OR agile AND scrum) AND (large OR "Large Scale" OR "Large team"
OR "Large Project" OR "Large Software" OR "Large Software Development") AND (challenges
OR practices OR "success factors" OR application OR use)) AND PUBYEAR > 2010 AND

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

doi:10.20944/preprints202506.0080.v1

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

4 of 25

PUBYEAR < 2024 AND (LIMIT-TO (PUBSTAGE, "final")) AND (EXCLUDE (
PREFNAMEAUID , "Undefined")) AND (LIMIT-TO (LANGUAGE , "English")) AND (
LIMIT-TO (DOCTYPE , "ar"))

3.4. Research Processes

The research process embraces four main phases as depicted in Figure. 1. The primary studies
selection was carried out in two phases, phase one was using keyword-based database searches to
identify potentially relevant sources, and then the researchers manually extracted the search results.
Data extraction was performed by qualitative coding of the selected primary studies. Finally, the
results were elicited by aggregating and analyzing the coding of the primary documents.

Extracting Relevant Coding Analysis nf(ljod%ng and
Sources Categorization
i F Iterative Coding and Analysis JJ

Source
Identification

Figure 1. Outline of Research Process.

We developed a context code to categorize the identified papers for review into business area,
organization size, and research processes as exhibited in Table 4. The business area delineates the
unique area it operates in. The size of the organization was identified provided it was clearly
mentioned in the respective empirical studies. The research process employed by each of the papers
selected for review has been identified. The context coding result is lucidly exhibited in Appendix B
and Appendix C.

Table 4. The Context Code used to Categorize papers Identified for the Review.

Context Code Explanation
Business area The business area in which the organization
operates
Organization Size | Identifying the size of the organization whenever
possible
Research Process The employed research process in each primary
study

4. Analysis

As explained in the foregoing discussion, the search protocols were applied to searching in
SCOPUS and IEEExplore databases. A total of 183 papers were returned as depicted in Table 5.
After the inclusion and exclusion facets were applied, twenty-six papers were selected for full review.
After full review of these papers, only eighteen of them were considered for the study. Eight papers
were excluded because they didn’t qualify the research topic and overall context of the review. The
inclusion and exclusion processes are exhibited in the PRISMA format, as depicted in Figure 2. These
eighteen papers selected for review year of publication are lucidly displayed in Table 6. The list of
papers reviewed are depicted in Appendix D.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

5 of 25
Table 1. Aggregate Search Results.
Database URL Number of
Matches
IEEExplore http://ieeexplore.ieee.org 5
Scopus http://www.scopus.com/home.url 178

Table 2. Papers for review year of publication.

Year Frequency
2018 4
2017 2
2016 2
2015 3
2014 2
2013 2
2012 2
2011 1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

6 of 25

'
Records identified through Additional records identified
s database searching through other sources
F= (n=183) (n=0)
S
s
=}
c
[}
S
-/ y \ 4
Records after duplicates removed and
'
without Author (n = 179)
g A
'g Records screened Records excluded
e (n=26) (n=153)
wv
—
'
A
Full-text articles assessed Full-text articles excluded,
for eligibility > with reasons
(n=18) (n=8)
9
] '
i Studies included in
qualitative synthesis
(n=18)
v
Studies included in
E guantitative synthesis
%’ (meta-analysis)
= (n=0)
—

Figure 2. The PRISMA Model of the Papers Selection Processes.

The eight substantive themes identified through iterative coding are described in the subsequent
sections and subsections. Appendix A exhibits these themes and subthemes.

4.1. Agile Scrum Challenges Themes and Subthemes

Eight main themes were identified through iterative coding of agile Scrum large-scale
implementation issues and challenges. Each of them contains many subthemes. The following
sections describe the themes and subthemes identified through iterative coding.

4.1.1. Challenges of using Agile Scrum/Results

Agile methods were initially aimed at small, collocated teams. Due to the success stories of small-
scale agile projects, it has been widely used to large-scale and mission/safety-critical software
development projects involving multiple teams composed of across different geographic locations
[9]. Despite the increasing demands of using agile Scrum for large-scale software developments,
many challenges have been reported. This section is meant to provide answer (s) for research
questions, RQ1: What are the specific problems that software companies face when trying to
implement Agile Scrum method, in particular related to the implementation of large projects? We
organized the identified 35 challenges, each mentioned by several sources, into nine categories. The

categories are summarized in Appendix A.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

7 of 25

4.1.1.1. Dependency Issues

General Lack of Task Dependency Awareness. In this paper, we are using dependency and
interdependency interchangeably. In large-scale software development many tasks are
interdependent. Dependency exists between people, groups, tasks, and artefacts, including the
software components under construction. It is paramount important that stakeholders in the software
development recognize this fact. Lack of dependency awareness leads to ineffective coordination in
Agile Scrum Development [P01]. For example, in large agile development, there are hundreds of
teams working on the same project, which might have interdependent features. Lack of awareness of
dependencies among the agile inter-teams’ development resulted ineffective coordination [P02,P09].
Stakeholders in the software development should make sure that there is no interdependency
between two different features, otherwise undesirable coupling arises [P07,P15].

Dependency happens when the progress of one action relies upon the timely output of a
previous action, or the presence of specific thing [P08]. In the application of Agile Scrum for large-
scale software development, knowledge, process, and resource dependencies along with their
defining characteristics have been identified [P08].

It is reported that agile teams are self-organizing and choose what to develop in a sprint by
themselves without external interferences, at least in agile principle. Unless features selected for
development by one team is not done in view of other teams’ features, features dependency is going
to occur, which impedes the development progress[P15].

Expertise Dependency. Agile relies on people and self-organizing teams that are empowered to
choose the software features they want to develop in time-boxed fashion, called sprint, by themselves
than processes. To this end, agile process lends itself to expertise dependency, which refers to
technical or task information is known only by a particular person or group and this affects, or has
the potential to affect, project progress [P08].

In Software development there are three expertise. These are technical expertise (knowledge
about a specialized technical area), design expertise (knowledge about software design principles
and architecture), and domain expertise (knowledge about the application domain area and client
operations) [P08]. As agile development heavily emphasizes in the expertise of people, this may lead
to expertise dependency, which adversely affects large-scale software projects’ success if the expertise
is not readily available in a timely fashion, particularly in a time-boxed development [P09,P11,P12].

Business Process and Historical Dependency. Business process dependency is a situation
wherein an existing business process causes tasks to be carried out in a certain order, and this affects,
or has the potential to affect, project progress, whereas Historical dependencies are defined as the
need to mine organizational memory or old code versions for previous decisions [P08]. In large
bureaucratic organizations wherein, there are hierarchical and top-down relationships among
different entities, both dependencies said to have occurred in agile scrum projects [P08,P11].

Agile implementation in large organizations that has codified and written bureaucratic
processes, rules and regulations, should recognize these dependencies and work towards mitigating
their impact on the software projects.

Entity Dependency. In software development, entities refer to as physical things such as people,
servers, data, and documents. Entity dependency is as a situation wherein a resource (person, place,
or thing) is not available, and this affects, or has the potential to affect, project progress [P08]. For
example, the entity dependency between development teams and User Experience (UX) design team,
where the development teams couldn’t proceed with the development as they were waiting input
from the UX team [P18].

Technical Dependency. This occurs when technical aspect of development affects progress,
such as when one software component must interact with another software component, and its
presence or absence affects or has the potential to affect, project progress [P08]. This is further
elaborated in [P14], where agile projects that are integrated with software product line should
acknowledge the complex technical infrastructure, data security issues and system portfolio. Each of
these items are interdependent and don’t exist in isolation. There are technical dependencies between

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

8 of 25

the back-end and front-end developments [P15]. The front-end agile teams should not be developing
applications without creating a big-picture of the technicalities of the back-end development teams.
In addition, the research in [P18] identified the technical dependencies between agile development
and UX design teams. The agile feature development teams were forced to re-work because of the
late submissions of the UX design team. Hence, technical dependency is one of the challenges in
successfully employing agile in large-scale software development projects.

Social Loafing. A concept taken from social psychology that defines a phenomenon of a person
exerting less effort to achieve a goal when he or she works in a group than when working alone [10].
As agile framework recognizes and empowers teams working together to achieve a goal, this
phenomena had been reported in two case studies [P04,P10].

4.1.1.2. Agile Difficult to Implement

Old Software Culture to move to Agile and Lean. Change is inevitably happening in today fast-
pace growing world. However, it is not easy to give-up or overthrow the old culture and swiftly shift
to the new culture. Despite the many success case studies and experience reports, organizations still
found it difficult to come by to fully shift their culture into Agile and Lean development. Particularly,
the upper management requirements of documentation norms is a challenge in instilling agile culture
in the minds of individuals in the organization[P15,P17]. In Agile projects the old software culture
assumes initial estimates are fixed and committed to [P06].

Paasivaara and Ebert in their case study on Comptel telecommunication company found out
that introducing agile development was challenged by the culture and mind-set of the stakeholders
[P05]. They further described instilling the agility culture requires long-term commitment, big
investments, and customization to a company’s specific situation. In organizations that had been
using Traditional Software Development Methods (TSDM), which also called heavy-weight or plan-
driven methodologies, trying to adopt agile scrum method at their core development processes have
been challenged by the old mentality/culture of the need to have up-front documentation [P10].

Too many and Long Scrum Meetings. Agile framework consists of many ceremonies (daily
standup meetings, product backlog grooming meetings, sprint retrospective, sprint review/demo,
Release Iteration Planning sessions, Scrum of Scrum (SoS), Community of Practice (CoP), etc.). These
meetings are perceived to less important and considered as waste of important software development
time [P02]. For example, Practices like SoS had discovered to be inefficient in large projects [9] (as it
was hard to find the right level of details in discussions to keep the forum interesting for many
participants [P13]. It was reported that as the number of teams and its size increases, it becomes
difficult to gather a large team for excessive meetings such as daily standup meetings [P04]. Bass
identified appropriate and balanced agile ceremonies through studying artefacts from TSDM [P07].

As companies shifting from TSDM to Agile development, they certainly face different culture of
development and practices, which is responsible to create the mind-set among people that agile
contains a lot of unnecessary and long meetings [P17].

Improper implementation of Agile Processes. Many organizations think that they are agile
because of the mere reason of adopting the framework without proper implementation knowledge
and agile mind-set. To this end, a case study reports on the failure of Agile Scrum adoption in U.A.E.
mainly due to improper implementation of the processes and lack of Agile coach who can guide the
implementation [P17]. Furthermore, Bass’s case study uncovered the absence of agile ceremonies for
managing shared artefacts presents a challenge for practitioners [P07].

Lack of guidance from Literature. The successful implementation or adoption of Agile
development methods demands for appropriate guidance from literature, which is hardly found [6].
For example, a longitudinal case study at F-Secure Corporation identified inefficient Release Iteration
Planning because of lack of guidance from literature [P10]. Similarly, a case study Agile development
and UX design teams coworking culture reported that due to the unavailability of literature that
guides best collaboration mechanisms, many dependencies had happened between these two teams
[P18].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

9 of 25

Agile Software Development (ASD) doesn't encourage reuse. ASD focuses on delivering single
products for the customer. The method doesn’t explicitly support the development of artifacts for
reuse because agile discourages early upfront architecture and requirements documentations [P14].
Reusability of components is usually defined in the architecture, which is not sufficiently addressed
in ASD [P07,P11]. To identify the possible Scrum tailoring to incorporate architectural extensions
from Software Product Line (SPL), a case study was carried out on Large Financial IT Systems [P07].
Agile methods seem to be more suitable for new product development projects than maintenance
projects, which tend to include legacy subsystems and monolithic functionality that can be hard to
decompose into small independent pieces for agile software production [P14].

Agile Projects' Contract and Risk Management Issues. Agile methods emphasize individuals
and interactions over processes and tools, working software over comprehensive documentation,
customer collaboration over contract negotiation, and responding to change over following a plan
[11]. The emphasis on individuals and interactions as well customer collaboration works well
provided there are motivated and experienced agile developers together with customers who
understand the core principles of agile. For example, the case study by Sundararajan & Bhasi [P12]
on the risk management practices in large offshore-outsourced Agile Scrum software project,
identified that agile scrum development was appropriate for such an environment provided “risks
unique to such model are identified, assessed and appropriate risk resolution techniques deployed.”
In addition, as agile discourages upfront documentation, which may be required by regulatory
authorities, particularly in financial sectors to forecast risks, agile development may pose serious
challenges [P14]. Furthermore, architecture designers see agility to also contain risks and potentially
challenging [P14].

Agile relies on self-motivated and highly empowered teams for a high-quality software
production. When projects are completed, these important personnel are laid off if the company does
not have projects in the pipeline. The high turnover of agile project team members has posed a
serious a problem [P12,P14]. There is also critic that Agile favors team than rewarding high-
performing individuals in the team. This results in high-caliber individuals to contribute less to the
group [P12,P17]. In addition, Contract management of agile development estimates evolve and
progress is not measurable in terms of earned value [P15,P17].

Project size. Many research work, experience, case study reports in the early adoption (2001 to
2010) of agile methodologies confirmed that it was useful for and successfully employed in small
software development projects [6]. However, in recent years, agile methodologies are increasingly
adopted in large-scale software development projects despite its shortcomings [12]. However, agile
scrum applications for a team size exceeding 25 as well as when there are many teams and inter-
teams interactions, is challenged [P01,P02,P04]. The optimal team size was suggested to be 5 to
maximum 10, which ultimately enhances customers’ feedback [P04]. When the back-end and front-
end development is carried out by one scrum team, the amount of involved IT staff then easily
exceeds the generally agreed upon maximum Scrum team size of 10 members [P09]. Conversely, a
case study conducted by Riaz, Athar, and Buriro [P03] reported that they couldn’t find any
relationship between project size and its success. This calls for a further empirical study to accept
their conclusion.

To address the project size issue, many Agile Scaling Frameworks have been introduced over
the last eight years such as Scaled Agile Framework (SAFe) and Large Scale Scrum (LeSS) have been
proposed by consultants and practitioners [5].

Agile practices adoption degree (Lacking Agile mindset). The degree of agile practices has
direct impact on the success of agile projects [P03]. The practices adoption degree refers to perception
of agility among project team members. The higher the perception of agility, the successful the project
is. Some companies think that they are agile for the mere fact that they adopted the agile framework.
This doesn’t qualify them to be an agile company. It is the mind-set, practices, and adoption degree
all together make a company agile [P01,P06,P10,P12,P13].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

10 of 25

Challenges in portfolio management. A company’s software portfolio management penetrates
multiple systems, software architectures, and features. Portfolio management is crucial for handling
interdependencies and mitigating associated risks [P02]. Information Technology functionality in
large companies is delivered by a portfolio of interdependent applications, not just a single
application [13]. The iterative nature agile methods introduces new challenges in portfolio
management that necessitate different patterns of action [P02]. Hence, agile teams lack portfolio-
level understanding of projects they are involved in [P09]. It is extremely complex for an agile team
to have a complete understanding of a company’s portfolio unless product backlogs are created from
it, where different products under one portfolio will be visible to all teams in different projects [P14].
For example, Bass’s case study reported that there was comparatively little evidence of interaction
between projects and the central release plan used for portfolio management [P07]. On the other
hand, a case study carried out by Gren, Torkar, & Feldt reported that the application of Scrum
adoption took longest within IT portfolio management [P06].

Over-optimism towards the New System. Agile methods don’t warrant success in themselves
per se but the mind-set of the people. Unless the mind-set of the people working in the software
development is agile, the mere adoption of Scrum methodology doesn’t bring the anticipated results
[P17]. For example, a case study [P10] on a large-scale architecture development for an existing
product project embracing many teams reported the over-optimism of the new software
methodology, Scrum, made them to over-estimate the release iteration planning.

4.1.1.3. Multi-team Environment Challenges

Inter-team coordination Challenges. This has been identified among others as the most
pertinent large-scale agile challenges demanding immediate research attention [14]. Coordination is
defined as “managing dependencies between activities” [15]. Three classes of coordination have been
discussed (1) mechanistic coordination — coordination by plan or rules with little communication, (2)
organic coordination — coordination by means of mutual adjustment or feedback via interaction,
which can be formal and planned or informal and spontaneous and (3) cognitive coordination — based
on explicit and tacit knowledge the actors have about each other, such as a shared mental model [13].

In agile scrum development, group codependent teams are working on a project, which
naturally creates dependencies and calls for effective coordination. Many software projects failure
are associated with ineffective inter-team coordination [16]. To this end, many case studies on large-
scale agile scrum development reported that inter-team coordination is the biggest challenge
[P01,P02,P04,P05]. Out of the 18 cases identified in this study, 13 reported inter-team coordination is
a huge challenge in large-scale agile scrum development, Appendix A exhibits specific cases.

Inter-team Communication Challenges. Effective coordination requires effective and
appropriate communication. There are various definitions of coordination from a technical point
view to organizational point of view [15]. In our context, we define Inter-team communication as how
a codependent agile scrum teams can come to have “common knowledge” on software artefacts,
which includes but not limited to common understanding of backlog items, release iteration
planning, architecture, progress of other teams, and dependencies among features as well as software
components. Failure to share and communicate these artefacts among agile Scrum teams were
reported as challenges in large-scale software development. Of the 18 cases identified in this research,
14 reported this as a challenge [P01,P02,P03]. The full list of cases is exhibited in Appendix A. For
example, the case study [P01] reported that there was a little communication or exchange about epics
between the individual teams, inter-teams. The development teams were aware of other teams’
general responsibilities but knew only little about their currently assigned epics [P01]. This made it
difficult to clearly identify dependencies that happened in the inter-teams before the development
begun.

Alignment Issues between teams and other stakeholders. Alignment issue is the difference in
deadline between Scrum teams. When one teams submitted what was assigned to it while the others
had not finished yet, the work of the finished team waited until the other team’s work was completed

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

11 of 25

to start feature testing [P09]. Although Scrum has a prescribed structure, the working processes can
be implemented in many ways, leading to such misalignments. Definition of “done”, which defines
the work completed, is another factor that creates misalignment between teams. For example, one
team define it as delivered before system testing and another team defines the same as delivered
including system testing. Furthermore, misalignment between teams happened was due to
misalignment of the start, the finish and duration of the sprints. One Scrum team has a two-weeks
cycle and another team has a monthly cycle. Again, another alignment issue was the misalignment
of test activities and test results between Scrum teams [P01,P02,P09]. The misalignment between
codependent Scrum teams causes unpredictability and delivery delays [P02]. For instance, if the
sprint of team B ends two weeks later than team A the delivery of the feature is delayed until team B
had completed its sprint.

The misalignment between on-site customers and other stakeholders' goals, among the on-site
customers, and between on-site customer and construction (Developers) was observed in the case
study carried out by [P02]. These stakeholders” different priorities and goals created misalignments
[P03,P10]. Therefore, there is a need to align activities at the program-level through Combining
Product Backlogs and End-to-End Representation in Team [P15].

Geographic Distribution Challenges. In large-scale global software development, teams and
their members are composed of from geographically distributed locations. This has created a
challenge in the adoption and use of Agile development, which encourages face-to-face and
collocated teams and its members. Teams in geographically dispersed locations have differences in
cultural, time zone, language and ethnic group, which have created coordination and communication
challenges [P04,P06,P07,P09,P12,P13,P15]. The camaraderie or team identity, and hold each other
accounted, were problems within the distributed teams [P06]. Virtual teams and members were
reported to be reluctance to accept responsibilities [P04,P06,P18]. In addition, the decisions are
unclear among the virtual team members [P04,P06].

Unpredictability of delivery to commitment. One of the key predictability issues is the
development of a single software package, by multiple Scrum teams in parallel, which makes it
complex to correctly and collectively deliver the promised feature or product [P02,P04,P09,P18].

Group Maturity Issues. The agile methods trusts autonomous and empowered self-organizing
individuals in a team than rigorous processes [11]. It also presumes self-reliant and experienced
developers in a team. However, from the group development point of view, the team can’t fully be
autonomous. For example, the case study [P06] identified that there was a need from the team to be
managed at the beginning.

The fact that a team is labeled as an agile team and doing agile practices does not mean it is a
high performing team, that depends on the group maturity [P06]. Group development was found
to be most important for better Performance, as defined in Social Psychology, [P06,P08,P09].

Visibility of Product Backlog and Operations Issues. The case study on three cases
(telecommunications, insurance, and retail banking) [P09] reveled that a lack of information visibility
in the chain (The lack of information visibility about the status and progress) as well as lack of
supporting IT tools that could provide such visibility were perceived as serious issues in large-scale
agile scrum teams. In general, lack of all backlog items, overall operational visibility and transparency
front- to back-end were challenges in Agile Scrum [P07,P09,P10].

Collaboration Challenges. Agile Scrum teams should be self-organizing and empower to
develop a set of user stories or requirements in a time-boxed time frame called sprint [11]. Members
in the team are encouraged to work in an open environment to encourage collaboration and improve
communication [6,9,17]. In additional, other scaling practices have been experimented and
recommended for large-scale agile development’s inter-team collaboration, such as CoP [17] and SoS
[18]. The inter-teams collaboration, particularly back- to front-end teams collaboration had been
report as a challenge [P0,P04,P09,P15].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

12 of 25

4.1.1.4. Challenges of Requirement Engineering

Requirements volatility and interdependencies. Requirements are volatile and subject to
change [P01]. Often than not requirements are interdependent each other. It is paramount importance
to recognize the volatility and interdependence nature of requirements. Case studies reported that
these behavior of requirements make it challenging for agile teams to operate autonomously
[PO1][P02][PO8][P09][P10].

Lack of Software Architecture Solutions Description/Documentation. Agile is a light-weight
iterative development framework, which discourages huge upfront documentations. On contrary
to this, in large-scale, mission-critical, safety-critical software development, it is strongly
recommended that the architecture should clearly documented be documented upfront
[PO1][PO2][PO7][PO8][P11][P13][P14]. “Agile Software Development does not promote formal
documentation that may be required for regulatory, company policy and maintenance reasons within
the financial services community” [P09]. Agile doesn’t precisely prescribe to allocate time for
architecture planning [P10].

Misalignment of Specification. In Large-Scale Agile Scrum development high-level also called
epic, which is coarse grained requirements/product and release backlogs/ , are prepared by product
owner and the low-level fine grained sprint backlogs are further drilled down into detail user stories
by teams. The product owners may not have technical knowledge to identify the potential
dependencies at the high-level requirements and teams have the technical knowledge but don’t have
access to and visibility of product as well as release backlog items. This lead to misalignment of
specifications and inter-team dependencies [P01][P08]. In addition, misalignment happened because
of multiple styles of documentation [P04].

Misalignment of Backlog Prioritization. This makes each Scrum teams concurrently
developing different functionality for different features, which impedes the delivery of a feature at
the end of the sprint. When backlog items are prioritized by a product owner without synchronizing
the task with other product owners’ goals resulted in mismatch between front- to back-end chain
[PO1][P02][PO8][P09][P14][P18][P15]. In addition, there was case study reported in which the explicit
criteria for requirements prioritization was lacking [P10].

Misalignment of Effort Estimation. This happens when high-level coarse-grained product and
release backlog items are estimated without involvement of teams [P01][P04][P07]. This invisibility
of effort estimation prevented development teams from knowing exactly when to expect handovers
from other teams [P01][P12][P15]. Besides, unrealistic scope and of the project led to misaligned effort
estimation [P10].

Misaligned Planning. This happened when agile teams plan the next iteration, also called Sprint
in isolation with other teams, which created inconsistency in delivery of features, particularly back
to front end-to-end development [PO1][P02]. A case study [P09][P10] a lack of misaligned planning
and communication between teams had been reported as a serious issue.

Unclear Decision Among Team Members. The decision among the virtual members of the team
was not every time communicated and made clear to other core teams. This resulted in confusion
among and between team members [P04]. Involvement of every member of the team and clear
communication was reported as a useful technique to mitigate this problem [P06].

Misalignment of Task Allocation. When task allocations are not aligned across single teams
(and central institutions) to provide all parties with the same understanding of dependencies, the
teams will find themselves difficult to identify who they depend on [P01][P04][P08].

Customer Involvement Issues. In large-scale agile scrum development, many case studies
reported that the involvement of large number of customers made it challenging to maintain the
autonomy of teams in-line with the agile philosophy as well as increases the risk of failure because
of the challenge of establishing a common understanding among all on-site customer representatives
[PO1][P0O2][P04][PO8][P09][P10][P12][P15]. Another case studies [P04][P09][P10][P12][P15] confirmed
that customer feedback and the participation of members in a team was largely affected by the team
size.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

13 of 25

Requirements Management in Waterfall Mode. There is a tendency to manage software
requirements as it used be managed in waterfall by Project Managers. This is against agile principles,
which states the team should be free to select the one they want to develop. Case studies as in
[P10][P15] observed this as a challenge in large-scale agile scrum development.

Issues of release planning. The release planning specifies how many user stories or features
should be fully developed before a release. The challenges reported here is in the equation of
identifying the optimal number of sprints/iterations in a release [P02] [P10]. Again, the successful
release plan was highly dependent on the identification and handling of risky or conflicting feature
development plans [P10]. In addition, increased configuration management effort due to an increased
number of releases was reported [P09]. It was suggested that releasing planning to be guided by
hiring external consultant to improve the processes [P15].

4.1.1.5. Knowledge Issues

Ineffective Leadership. Agile promotes organic leadership-flexible and participative
encouraging cooperative social action is aimed at small and medium-sized organizations [12].
Applying organic leadership in large-scale agile scrum development teams where hundreds and
thousands stakeholders are involved had been reported a huge challenge [P01][P02][P03][P15].
Hence, mix of mechanistic and organic leadership style had been suggested. However, the adoption
of mix of these leadership styles were challenged due to lack of continuous improvement as well as
lack of training and support during the adoption [P05].

Tacit knowledge management challenges. Agile development emphasis people than processes.
This implies individual knowledge and experiences more important than formal defined and
rigorous processes. However, tacit knowledge management had extremely been reported as a
challenging venture in large-scale agile scrum development [P02][P06][P08][P11][P12][P13]. For
example, some specialized highly specialized skills couldn’t be shared easily[P09].

End-to-end implementation knowledge Issues. Often than not front- and back-end specialized
agile teams work independently as reported in the case studies. Knowledge, Skills and Competency
level of the Project Stakeholders lacked end-to-end feature(s) implementation knowledge, which led
to dependencies and misalignment between teams [P01][P02][PO8][P10][P12].

Fragmented view of the system. Lack of common understanding, holistic, or fragment view of
the system among all customer representatives and the system stakeholders created misalignments
among teams and challenged predictable feature(s) delivery. It was reported to be one source of
dependencies between teams and features [P02][PO5][P09][P10][P14][P18]. For example, in a case
study [P10], stakeholders who participated in the release iteration planning session thought that they
were drafting a plan that would serve until the next iteration planning (after three months). However,
the idea was as much as possible to have the best plan that could be used as a base and would be
modified within its timespan (three months). The stakeholder had no unified view of the system
to understand what was meant by initial iteration planning.

Proof of Concepts with Core Technology. This highlights the need for experiments with new
technologies before they are actually chosen and being used in the production of a system under
consideration. By experimenting with the concepts with core technologies, a development team is
familiarizing itself with the tools, methods, techniques and applications to succeed in these new
technologies. As clearly mentioned in [P02], Flex Technology that was acquired for GUI layer had not
been clearly understood by the developers for it to be used effectively and establish sound application
architecture guidelines. The lack of resource allocation for concept proofing with new core
technologies is also mentioned as a challenge, ibid. In a bid to avoid surprises, proof of concept
prototypes had been employed to confirm architecture functionality [P14].

4.1.1.6. Resistance to Change

Skepticism towards the new Software Method. The fast adoption and improper
implementation of the agile method resulted in a decrease in developers’ productivity, which in turn

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

14 of 25

created resentment and skepticism among the development teams [P17]. Hence, the team resorted to
the previous waterfall method.

Agile promotes independent team working in time-boxed and is shielded from external
influences. If teams have a high degree of independence, it results in a challenge to collaborate
between enterprises, hence, the need for a chain of codependent teams to have a standard way to
manage similar work while allowing local variations [P09]. Without this adjustment, there will be
resentment by enterprises to adopt agile.

Management Resistance to Change. The top-level management commitment to change is of
paramount importance for a smooth transition from water to the new methods, agile. The upper
management concerns on the effectiveness and success of the transition to a new method is one of
the stumbling blocks for agile transition [P17]. Agile can not thrive in within the organization without
getting top-level management buy-ins. Their hesitation and resistance to resort to the new methods
is a hiccup for agile adoption [P15].

4.1.1.7. Organizational Structures and Boundaries

Traditional IT Organizational Structure. With traditional IT organizational structure, which is
centralized IT department, ensuring business involvement is the most challenging part of the agile
adoption process [P15]. Because of the centralization of the IT department, the top-level management
wants to keep control and assigns the Product Owner role to IT employees rather than business
stakeholders [P12]. This creates havoc and less urgency among business representatives as they are
not part of the development team [P15]. This coupled with the still presence of traditional project
organization, which demands a marketing brief, project brief and written project initiation, consumes
development time.

Superfluous Old Organizational Processes. Traditional large organizations have mechanistic
organogram, which are rigid and bureaucratic with high formalization, and institutionalized
processes that are poor fit to agile development [P13]. Agile requires an organic structure that is
flexible and participative. It demands encouraging cooperative social actions. Codified rigid
organizational processes are reported as the stumbling block for a successful agile implementation
[P13] [P17].

4.1.1.8. Quality Assurance Challenges

Compromised Quality With the Smaller Releases. As the size and distribution of team
increases, it is difficult to control the quality of documentation standards and design features [P04].
This same reference mentioned the size of the team is directly proportional to the Quality Assurance
(QA) teams’ support ability. The bigger the size and distribution of teams, the tougher it is for the
QA to support the entire development team. This makes it challenging to accurately estimate
developers’ and QA’s efforts on the onset of a certain project. With larger development and QA
teams, iterative development such as agile development creates collaboration and coordination
challenges, hence, the quality of minor smaller releases is compromised.

The 3C (Collaboration, Coordination, and Communication) challenges have been encountered
by large and distributed development and QA teams, which in turn contributed to compromised
quality in smaller releases [P09]. In addition, continues integration related issues have been identified
[P10] “(1) the sensitivity of integration mistakes by the packaging maintainer which blocks the
integration automation and (2) developers using own testing environments which are incompatible
with the integrated testing environment, blocking the integration test.” The dauting and challenging
environment to realize continuous testing regimes using agile approaches is cited as a serious concern
with smaller and continues releases [P15].

Lack of Automated Testing. Itis researched that exploratory and collaborative testing are the
essential factors in agile development. With a larger team, it will be unmanageable to keep the team
in collaboration so that it performs well [P04]. Test effort and coverage are key challenges in agile

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

15 of 25

scaling practices [P09]. Lack of an IT chain process automation to support a codependent chain of
scrum team is identified as one of agile adoption issues [P09].

5. Discussions

Eighty-nine percent (16 out of the total eighteen cases) of the papers identified Agile difficult to
implement as the critical challenges for harnessing agile Scrum for large-scale software development
projects. 33% of these cases unveiled that lack of agile mindset deterred adoption degree of Agile
practices while 28% of them found old software culture to move to Agile and Lean, too many and
long Scrum meetings, project size and challenges in portfolio management are the primary reasons
for failing to fully utilize agile Scrum for large-scale software development projects. Four cases (22%)
are associated with Agile projects' contract and risk management issues. It is also interesting to find
out that improper implementation of Agile processes and lack of guidance from literature, 11%, are
among the challenges of adopting Agile Scrum for large development projects. ASD (Agile Software
Development) doesn't encourage reuse, 17%, discovered in this main category.

Following agile difficult to implement challenges, the multi-team environment challenges
constitute 83% (i.e. 15 out of eighteen reviewed papers’ cases). Inter-team communication challenges
(78%, 14 cases), inter-team coordination challenges (72%, 13 cases), and geographic distribution
challenges (50%, 9 cases), and 33% (6 cases) discovered alignment issues between teams and other
stakeholders as hiccups for full realization of agile Scrum for large software development projects.
Similarly, seventy-eight percent (14 out of 18 cases) found out that challenges of engineering
requirement are the scaling agile Scrum issue. Of this theme, lack of software architecture solutions
description/documentation (50%-9 cases) unveiled as the main challenge in harnessing Agile Scrum
for large-scale software projects. So do misalignment of backlog prioritization and customer
involvement issues, each account for 44% (8 cases), under this substantive theme. Furthermore,
misalignment of effort estimation as well as requirements volatility and interdependencies are among
the top identified challenges, each accounting for 33% and 28%, respectively. Misaligned planning
and issues of release planning equally contribute to the complexity, 22% cases, to the matter.

Knowledge Issues, 13 papers out of 18 reviewed journal articles, i.e. 72%, is the third top-ranked
theme. Of the subthemes under this category, tacit knowledge management challenges, which was
identified in seven cases (39%), takes the first row. Fragmented view of the system 33% (6 cases)
contributes to the knowledge issues. Ineffective leadership and end-to-end implementation
knowledge issues equally contribute, 28%, to this substantive theme. Proof-of-concepts with core
technology, 11%, found to be one of the identified hurdles in successfully harnessing Agile in large
software development projects.

The overlapping and interdependent nature of software features created a dependency issue in
agile development. To this end, 12 (67%) cases of the reviewed papers’ cases found dependency
issues. General lack of task dependency awareness is cited in 8(44%) cases under this category.
Furthermore, expertise as well as technical dependencies equally, (4 cases-22%), orchestrate to the
deterring adoption of agile. Similarly, business process and historical dependency, entity
dependency, and social Loafing each contributing 11% to the issue.

Quality assurance challenges (Compromised Quality with the Smaller Releases and lack of
automated testing) and organizational as well as boundaries (traditional IT organizational structure
and superfluous old organizational processes) each account for 22% of their respective themes. In
addition, resistance to change in which skepticism towards the new software method and
management resistance to change subthemes are found to be the contributing factors for agile
adoption reservation in the software development industry.

5.1. Limitations of the research

In the inclusion and exclusion criteria, the researchers’ bias might have influenced the selection
of primary studies, as well as data extraction. We used number of citations and language of
publications as the delimiting criteria for inclusion and exclusion. In so doing, we might have

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

16 of 25

excluded important journal articles. The number of citations is considered to select papers that have
attracted the attention of industry and researchers alike. This, we believed, unveils the true challenges
of adopting agile for large software development projects. Publication language was set to english
only because of the researchers’ language skills. There might have been important research papers
excluded because of this.

Another challenge in the review processes was the limitations of Boolean keyword searches in
online databases. It took iterations of keyword searches tests before landing on the ones identified in
the faces.

6. Conclusions

The systematic review uncovered that agile Scrum has been widely adopted by large-scale
software development projects, but with challenges and limitations. The review identified eight
substantive themes and 46 subthemes under each of these main themes from eighteen full journal
article reviews. Agile difficult to implement is found to be a stumbling block for adopting Agile
Scrum for large-scale software development projects. Lack of agile mindset, the high frequency of
Scrum meetings coupled with improper implementation of Agile processes, challenges in portfolio
management, and project size challenged the adoption of the method. When the project and team
size increases, companies find it challenging to fully realize Scrum. Nonetheless, today’s large-scale
software development projects calls for communication and collaboration of diverse teams from
across the globe with significantly varying time zones. “Agile Projects' Contract and Risk
Management Issues” happen because agile emphasis team interaction over rigid processes,
collaboration over contractual agreements and discourages upfront documentation. Some projects
inherently require the identification of risks way before the actual development kicks off. This
seriously challenges the agile Scrum tenets. Hence, there is a need to tailor the method in abid to
make it fit for large-scale development endeavors. In this case, the risks should be clearly articulated
and experienced developers who can quickly understand and adjust according to business needs.
Improper implementation of the agile processes by businesses is another staggering challenge for
agile Scrum. In addition, old software culture to move towards agile and lean, too many and long
Scrum meetings, and over-optimism, taking agile Scrum as “a silver bullet”, are another stumbling
block for agility. Furthermore, the multi-team development environment of today’s global software
practices makes inter-team coordination, collaboration and communication a dauting task. The
invisibility of product backlogs to all teams across the globe participating in the development created
hiccups. The requirement engineering challenges such as lack of upfront architectural
documentation, fragility of agile requirements, misalignment of prioritized backlogs, customer
involvement issues and others are orchestrators to the challenge. Tacit knowledge management,
fragmented view of the system, and others mentioned in the subthemes contribute to the knowledge
management challenges of agile Scrum.

7. Recommendations for future Studies

The following points enrich and solidify the findings of the present research.

The researchers considered only eighteen full journal articles for review. However, considering
more empirical papers will enrich the findings of this paper.

Considering journal articles published in other languages other english language might give
more context.

Appendix A
Appendix A.1

Table A1. Challenges of Using Agile Scrum for Large-Scale Software Development.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025

doi:10.20944/preprints202506.0080.v1

17 of 25
#of
cas
Challenge Type Primary Sources Case Organization es
Dependency Issues (12)-67%
General Lack of Task P01,P02,P04,P07,P08,P09,P | C01,C02,C04,C07,C08,C09, | 8(44
Dependency Awareness 10,P15 C10,C15 %)
4(22
Expertise dependency P08,P09,P11,P12 C08,C09,C11,C12 %)
Business process and 2(11
Historical dependency P08,P11 Co08,C11 %)
2(11
Entity Dependency P08,P18 C08,C18 %)
4(22
Technical Dependency P08,P14,°15,P18 C08,C14,C15,C18 %)
2(11
Social Loafing P04,P10 C04,C10 %)
Agile Difficulty to implement
(16)-89%
Old Software Culture to move 5(28
to Agile and Lean P05,P06,P10,P15,P17 C05,C06,C10,C17,C15 %)
Too many and Long Scrum 5(28
Meetings P02,P04,P07,P13,P17 C02,C07,C04,C17,C13 %)
Improper implementation of 2(11
Agile Processes P07,P17 Cc07,C17 %)
Lack of guidance from 2(11
Literature P10,P18 C10,C18 %)
ASD (Agile Software
Development) doesn't 3(17
encourage reuse P07,P11,P14 C07,C11,C14 %)
Agile Projects' Contract and 4(22
Risk Management Issues P12,P14,P15,P17 C12,C14,C15,C17 %)
5(28
project size P01,P02,P03,P04,P09 C01,C02,C03,C04,C09 %)
Agile practices adoption
degree (Lacking Agile 6(33
mindset) P01,P03,P06,P10,P12,P13 | C01,C03,C06,C10,C12,C13 | %)
challenges in portfolio 5(28
management P02,P06,P07,P09,P14 C02,C06,C07,C09,C14 %)
2(11
Over-optimism P10,P17 C10,C17 %)
Multi-team Environment
Challenges (15)-83%
P01,P02,P04,P05,P06,P07,P | C01,C02,C04,C05,C06,C07,
Inter-team coordination 08,P09,P10,P13,P14,P15,P1 | C08,C09,C10,C13,C14,C15, | 13(7
Challenges 8 C18 2%)
P01,P02,P03,P04,P05,P06,P | C01,C02,C03,C04,C05,C06,
Inter-team Communication 07,P08,P09,P12,P13,P14,P1 | C07,C08,C09,C12,C13,C14, | 14(7
Challenges 5,P18 C15,C18 8%)
Alignment Issues between 6(33
teams and other stakeholders | P01,P02,P03,P09,P10,P15 | C01,C02,C03,C09,C10,C15 | %)
Geographic Distribution P04,P06,P07,P09,P10,P12,P | C04,C06,C07,C09,C10,C12, | 9(50
Challenges 13,P15,P18 C13,C15,C18 %)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025

doi:10.20944/preprints202506.0080.v1

18 of 25
unpredictability of delivery to 4(22
commitment P02,P04,P09,P18 C02,C04,C09,C18 %)
3(17
Group Maturity Issues P06,P08,P09 C06,C08,C09 %)
Visibility of Product Backlog 3(17
and Operations Issues P06,P07,P10 C06,C07,C10 %)
4(22
Collaboration Challenges P03,P04,P09,P15 C03,C04,C09,C15 %)
Challenges of Requirement
Engineering (14)-78%
Requirements volatility and 5(28
interdependencies P01,P02,P08,P09,P10 C01,C02,C08,C09,C10 %)
Lack of Software Architecture
Solutions P01,P02,P07,P08,P09,P10,P | C01,C02,C07,C08,C09,C10, | 9(50
Description/Documentation 11,P13,P14 C11,C13,C14 %)
3(17
Misalignment of Specification P01,P04,P08 C01,C04,C08 %)
Misalignment of Backlog P01,P02,P08,P09,P10,P14,P | C01,C02,C08,C09,C10,C14, | 8(44
Prioritization 18,P15 C18,C15 %)
Misalignment of Effort 6(33
Estimation P01,P04,P07,P10,P12,P15 C01,C04,C07,C10,C12,C15 | %)
4(22
misaligned planning P01,P02,°09,P10 C01,C02,C09,C10 %)
Unclear Decision Among 2(11
Team Members P04,P06 C04,C06 %)
Misalignment of Task 3(17
Allocation P01,P04,P08 C01,C04,C08 %)
P01,P02,P04,P08,P09,P10,P | C01,C02,C04,C08,C09,C10, | 8(44
Customer Involvement Issues 12,P15 C12,C15 %)
Requirements Management in 2(11
Waterfall Mode P10,P15 C10,C15 %)
4(22
Issues of release planning P02,°09,P10,P15 C02,C09,C10,C15 %)
Knowledge Issues (13)-72%
5(28
Ineffective Leadership P01,P02,P03,P05,P08 C01,C02,C03,C05,C08 %)
Tacit knowledge management | P02,P06,P08,P09,P11,P12,P | C02,C06,C08,C09,C11,C12, | 7(39
challenges 13 C13 %)
End-to-end implementation 5(28
knowledge Issues P01,P02,P08,P10,P12 C01,C02,C08,C10,C12 %)
Fragmented view of the 6(33
system P02,P05,P09,P10,P14,P18 C02,C€05,C09,C10,C14,C18 | %)
Proof-of-concepts with core 2(11
technology P02,P14 C02,C14 %)
Resistance to Change (3)-17%
Skepticism towards the new 2(11
Software Method P09,P17 C09,C17 %)
Management resistance to 2(11
Change P15,P17 C15,C17 %)

Organizational Structure and
Boundaries (4)-22%

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025

doi:10.20944/preprints202506.0080.v1

19 of 25
Traditional IT Organizational 2(11
Structure P12,P15 C12,C15 %)
Superfluous Old 2(11
Organizational Processes P13,P17 C13,C17 %)
Quality Assurance Challenges
(4)-22%
Compromised Quality with 4(22
the Smaller Releases P04,P09,P10,P15 C04,C09,C10,C15 %)
2(11
Lack of Automated Testing P04,P09 C04,C09 %)
Appendix B
Appendix B.1
Table A2. Categorization of Papers for Review Based on Context Code.
Study Type (C- | Paper | Company Business area Software Operating
case study, ER- | (s) Organization Locations
Experience Size
Report,
Empirical
Study-ES)
o1 P01 | Anonymous | Enterprise Software | 13 devteams | China, India
Solutions (Each and Germany
consists of 6
to 16
developers)
and total of
over 140
Employees
C02 P02 | Norwegian Automation of 12 collocated Norway
Public Public Service development
Service Pension Fund teams with
Pension more 175
Fund (the people
“Pension involved.
Fund”) The
Developed development
by the ran for four
Pension years.
Fund
internal
development
unit, and
Accenture
and Steria
Consulting
Firms
C03 (ES) P03 | Anonymous Pakistan
C04 (ES) P04 | Anonymous Researchers
from Pakistan

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025

doi:10.20944/preprints202506.0080.v1

20 of 25
C05 (ER) P05 Comptel Telecommunications 750+ Finland
employees
C06 (ER) P06 | Anonymous Different
places
C07 (ES) P07 | Anonymous Companies
involved in the
study were
based in U.K.
and India
Co08 P08 | Anonymous Government, Three New Zealand
Commercial service companies
provider, and with 2000,
Commercial 200, and 20
software employees,
development firm respectively
C09 P09 | Anonymous Retail Banking, 150 Scrum Netherlands
Telecommunications, Teams, 34
Insurance Scrum
Teams, and 5
Scrum
Teams,
respectively.
Each of this
case
organizations
have from
250 to 1500
IT
development
employees.
C10 P10 F-Secure PC, Mobile and Data More than Finland
Security 800 (Development
Employees teams from
Poland and
Malaysia were
involved)
C11 (ES) P11 | Anonymous
C12 P12 | Anonymous | Healthcare provider Six Agile The
in the USA Scrum Teams | Development
(Each was carried
contains six out in three
to seven locations
developers) (US.A.
(Owner of the
Project),
Chennai and
Bangalore)
C13 P13 Ericsson Telecommunication | 400 persons Finland,
in 40 Scrum | Hungary and
teams at the US
three sites

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

21 of 25
C14 P14 | Anonymous Financial Very big Not mentioned
Financial IT
Systems
C15 P15 | Anonymous Financial and 26,000 and Netherlands
Manufacturing more than
100,000
employees,
respectively
Cl6 P16 | Anonymous Rapid application More than | Not mentioned
development and 20,000
production tool employees
and has
clients in 70
countries
C17 (ER) P17 | Anonymous | Telecommunications More 200 U.A.E
C18 P18 | Anonymous | Media Organization Not Not mentioned
mentioned
Appendix C
Appendix C.1
Table A3. Categorization of Papers for Review Based on Context Code of Research Processes.
Case Study Focus Key Results the Subject
Study Focuses On
Co1 Coordination Planning 23 semi-structured interviews
Challenges in Large- | misalignment leads to with key informants and
Scale Software lack of dependency analysis of documents.
Development awareness, which
ultimately leads to
coordination
challenges
C02 Adoption of Agile customer group interviews with 24
Scrum in Large-Scale involvement, participants and documents
Software software architecture,
Development and inter-team
coordination were
identified as key
challenges
ES03 Social Success visionary leadership, | Interviews with 271 software
Factors Affecting degree or level of professionals representing 28
Implementation of Agile software companies
Agile Software practices, congruence
Development value, etc. were
Methodologies identified as
significant
contributors to the
success of a project
ES04 Preference of Using Agile scrum is Survey data was collected
Agile Scrum with preferred to be used | from several software houses
Large Team size when the team size is in a developing country
less than 25

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025

doi:10.20944/preprints202506.0080.v1

22 of 25

ER05 Adoption of SAFe Key areas for Interviews with key
(Scaled Agile successful adoption of informants
Framework) in two the agile framework
business lines of
Comptel
ES06 Group development group Ten semi-structured
and group maturity developmental Interviews with individuals
when building agile | aspects is key factors from four companies and 66
teams to a successful agile Surveys from another four
transition companies, a total of eight
companies
ES07 Identifying Agile By way of Identifying 46 practitioner interviews,
Artefacts to enrich the Agile Artefacts documentary sources and
traditional Agile additional Agile observations, in nine
Ceremonies Ceremonies were international companies
identified
Co08 Taxonomy of Identified the key 11 interviews (project leader,
dependencies to dependency developer, business analyst,
apply appropriate taxonomy and domain expert, or tester)-Each
coordination in Agile Suitable Agile Interview lasted 40 to 90 min
coordination following a semi-structured
interview schedule.
C09 Identify the governance Three case studies (9, 6, 3
collaboration related | framework to manage Product Owners, Line
issues in chains of chains of Scrum Managers and Scrum Masters
Scrum teams teams were interviewed from each
case, respectively).
C10 Release Iteration Benefits and best Two Case Studies (Interviews
Planning in Agile practices of Release and Observation)
Development Iteration Planning in
Agile
ES11 Case Based CBR to learn from Experiment and survey (27
Reasoning (CBR) in | past projects in Agile developers from two
Agile Scrum Scrum is useful companies)
Development
C12 risk management in a Risk identification 1 Offshore Development
large offshore- and mitigation Center Project Manger and 2
outsourced Agile techniques in a large Scrum Masters)
Scrum software offshore-outsourced
development Agile Scrum Software
Development
C13 Community of CoPs is supporting 52 semi-structured interviews
Practice (CoP) to help continuous on two sites
improve Agile organizational
Adoption improvements
C14 studying the adoption Methods and 21 interviews, including 33
and architectural Practices to adopt specialists
extensions of the Agile Scrum in from the case organization’s
Scum method in large | Financial IT Sector different areas and managerial
Financial IT Systems levels (each interview lasted
1.5-2 hours) and workshops
were organized

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025

doi:10.20944/preprints202506.0080.v1

23 of 25

C15 Challenges and Suggested mitigation Interviews with 21 Agile
Remedies of Strategies to coexist Practitioners from two Large
Coexistence of Plan- the two Enterprise Organizations
driven and Agile methodologies. (duration of Interview 1 to 1.5
Methods hours)
Cl16 onside customer Scrum can be Interview, Observation,
involvement in Agile successfully used Survey, and Document
Scrum development without intensive analysis.
involvement of onsite
customer
ER17 Agile Scrum Agile Scrum Experience report on Agile
Adoption Strategy Adoption Failure, Scrum Adoption
case study
C18 User Experience (UX) | cooperation between | Observation of and interview
Design and Agile the Agile developers | with 14 Agile Developers and
Method and UX designers 2 UX Designers
was achieved through
ongoing articulation
work by the
developers
Appendix D.

Appendix D1. List of References for the Review

PO1. Bick, S.; Spohrer, K.; Hoda, R.; Scheerer, A.; Heinzl, A. Coordination Challenges in Large-Scale Software
Development: A Case Study of Planning Misalignment in Hybrid Settings. IEEE Transactions on Software
Engineering 2018, 44, 932-950, doi:10.1109/TSE.2017.2730870.

P02. Dingseyr, T.; Moe, N.B.; Feegri, T.E.; Seim, E.A. Exploring Software Development at the Very Large-Scale:
A Revelatory Case Study and Research Agenda for Agile Method Adaptation. Empir Softw Eng 2018, 23,
490-520, doi:10.1007/s10664-017-9524-2.

P03. Riaz, M.N.; Mahboob, A.; Buriro, A. Social Success Factors Affecting Implementation of Agile Software
Development Methodologies in Software Industry of Pakistan: An Empirical Study. International Journal
of Advanced Computer Science and Applications 2018, 9, doi:10.14569/IJACSA.2018.090713.

P04. Zia, A.; Arshad, W.; Mahmood, W. Preference in Using Agile Development with Larger Team Size.

Journal of Advanced 2018, 9,
doi:10.14569/IJACSA.2018.090716.

PO5. Ebert, C.; Paasivaara, M. Scaling Agile. IEEE Softw 2017, 34, 98-103, d0i:10.1109/MS.2017.4121226.

P06. Gren, L.; Torkar, R.; Feldt, R. Group Development and Group Maturity When Building Agile Teams: A
Qualitative and Quantitative Investigation at Eight Large Companies. Journal of Systems and Software 2017,
124, 104-119, doi:10.1016/j.js5.2016.11.024.

PO7. Bass, J.M. Artefacts and Agile Method Tailoring in Large-Scale Offshore Software Development
Programmes. Inf Softw Technol 2016, 75, 1-16, doi:10.1016/j.infsof.2016.03.001.

P08. Strode, D.E. A Dependency Taxonomy for Agile Software Development Projects. Information Systems
Frontiers 2016, 18, 23-46, doi:10.1007/s10796-015-9574-1.

P09. Vlietland, J.; van Vliet, H. Towards a Governance Framework for Chains of Scrum Teams. Inf Softw Technol
2015, 57, 5265, doi:10.1016/j.infsof.2014.08.008.

P010. Heikkild, V.T.; Paasivaara, M.; Rautiainen, K.; Lassenius, C.; Toivola, T.; Jarvinen, J. Operational Release

International Computer Science and Applications

Planning in Large-Scale Scrum with Multiple Stakeholders — A Longitudinal Case Study at F-Secure
Corporation. Inf Softw Technol 2015, 57, 116-140, d0i:10.1016/j.infsof.2014.09.005.

PO11. Turani, A. APPLYING CASE BASED REASONING IN AGILE SOFTWARE DEVELOPMENT. | Theor
Appl Inf Technol 2015, 78.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

24 of 25

P012. Sundararajan, S.; Bhasi, M.; Vijayaraghavan, P.K. Case Study on Risk Management Practice in Large
Offshore-outsourced Agile Software Projects. IET Software 2014, 8, 245-257, d0i:10.1049/iet-sen.2013.0190.

P013. Paasivaara, M.; Lassenius, C. Communities of Practice in a Large Distributed Agile Software
Development Organization - Case Ericsson. Inf Softw Technol 2014, 56, 1556-1577,
doi:10.1016/j.infsof.2014.06.008.

P014. Hajjdiab, H.; Taleb, A.S.; Ali,]. An Industrial Case Study for Scrum Adoption. Journal of Software 2012, 7,
237-242, doi:10.4304/jsw.7.1.237-242.

P015. Ihme, T. Scrum Adoption and Architectural Extensions in Developing New Service Applications of Large
Financial IT Systems. Journal of the Brazilian Computer Society 2013, 19, 257-274, d0i:10.1007/s13173-012-
0096-0.

P016. van Waardenburg, G.; van Vliet, H. When Agile Meets the Enterprise. Inf Softw Technol 2013, 55, 2154
2171, doi:10.1016/j.infsof.2013.07.012.

P017. Inayat, I; Noor, M.A; Inayat, Z. Successful Product-Based Agile Software Development without Onsite
Customer: An Industrial Case Study. International Journal of Software Engineering and Its Applications 2012,
6.

PO18. Ferreira, J.; Sharp, H.; Robinson, H. User Experience Design and Agile Development: Managing
Cooperation through Articulation Work. Softw Pract Exp 2011, 41, 963-974, d0i:10.1002/spe.1012.

References

1. Schwaber, Ken. Agile Project Management with Scrum. In; Microsoft Press, 2004 ISBN 9780735619937.

2. Schwaber, K.; Beedle, M. Agile Software Development with Scrum; Prentice Hall: Upper Saddle River, 2002;

3. Paasivaara, M. Adopting SAFe to Scale Agile in a Globally Distributed Organization. Proceedings - 2017
IEEE 12th International Conference on Global Software Engineering, ICGSE 2017 2017, 36-40.
https://doi.org/10.1109/ICGSE.2017.15.

4. Kasauli, R;; Knauss, E.; Kanagwa, B.; Balikuddembe, J.K.; Nilsson, A.; Calikli, G. Safety-Critical Systems
and Agile Development: A Mapping Study. 2018 44th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA) 2018, 470—-477. https://doi.org/10.1109/SEAA.2018.00082.

5. Ebert, C.; Paasivaara, M. Scaling Agile. IEEE Softw 2017, 34, 98-103.

6. Dikert, K; Paasivaara, M.; Lassenius, C. Challenges and Success Factors for Large-Scale Agile
Transformations: A Systematic Literature Review. Journal of Systems and Software 2016, 119, 87-108.
https://doi.org/10.1016/j.jss.2016.06.013.

7. Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering;
Budgen, D., Brereton, P., Linkman, M.T.S., Mendes, M.].E., Visaggio, G., Eds.; Version2.3.; Durham, UK,
2007;

8. Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.
Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015
Statement. Syst Rev 2015, 4, 1. https://doi.org/10.1186/2046-4053-4-1.

9. Paasivaara, M.; Lassenius, C.; Heikkild, V.T. Inter-Team Coordination in Large-Scale Globally Distributed
Scrum. Proceedings of the ACM-IEEE international symposium on Empirical software engineering and
measurement - ESEM "12 2012, 235. https://doi.org/10.1145/2372251.2372294.

10. Cho, J.J. An Exploratory Study on Issues and Challenges of Agile Software Development with Scrum. All
Graduate Theses and Dissertations 2010, 599.

11. Beck, K; Beedle, M.; Van Bennekum, A. Cockburn, A.; Cunningham, W.; Fowler, M.; Grenning, J;
Highsmith, J.; Hunt, A.; Jeffries, R.; et al. Manifesto for Agile Software Development Available online:
https://moodle2016-17.ua.es/moodle/pluginfile.php/80324/mod_resource/content/2/agile-manifesto.pdf
(accessed on 1 October 2018).

12. Dingseyr, T.; Moe, N.B.; Faegri, T.E.; Seim, E.A. Exploring Software Development at the Very Large-Scale:
A Revelatory Case Study and Research Agenda for Agile Method Adaptation. Empir Softw Eng 2018, 23,
490-520. https://doi.org/10.1007/s10664-017-9524-2.

13. Vlietland, J.; Van Vliet, H. Towards a Governance Framework for Chains of Scrum Teams. Inf Softw Technol
2015, 57, 52-65. https://doi.org/10.1016/j.infsof.2014.08.008.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2025 d0i:10.20944/preprints202506.0080.v1

25 of 25

14. Moe, N.B.; Olsson, H.H.; Dingseyr, T. Trends in Large-Scale Agile Development: A Summary of the 4th
Workshop at XP2016. In Proceedings of the Proceedings of the Scientific Workshop Proceedings of XP2016
on - XP 16 Workshops; ACM Press: New York, New York, USA, 2016; Vol. 1, pp. 1-4.

15. Malone, T.W.; Crowston, K. The Interdisciplinary Study of Coordination. ACM Computing Surveys (CSUR)
1994, 26, 87-119. https://doi.org/10.1145/174666.174668.

16. Bick, S.; Spohrer, K.; Hoda, R.; Scheerer, A.; Heinzl, A. Coordination Challenges in Large-Scale Software
Development: A Case Study of Planning Misalignment in Hybrid Settings. IEEE Transactions on Software
Engineering 2018, 44, 932-950. https://doi.org/10.1109/TSE.2017.2730870.

17. Paasivaara, M.; Lassenius, C. Communities of Practice in a Large Distributed Agile Software Development
Organization - Case Ericsson. Inf Softw Technol 2014, 56, 1556-1577.
https://doi.org/10.1016/j.infsof.2014.06.008.

18. Sutherland, J. Agile Can Scale: Inventing and Reinventing SCRUM in Five Companies. Cutter IT Journal
2001, 14, 5-11. https://doi.org/10.1093/glycob/cwq056.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0080.v1
http://creativecommons.org/licenses/by/4.0/

