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Abstract: The two main strategies used in this study are the binary representation and the
decomposition of a natural number into many compound functions of odd function and even
function. The Collatz conjecture regarding odd even numbers in number theory can be examined and
discussed using them in this way: The sequence created by the finite iterations of the Collatz function
becomes the ultimately periodic sequence if any natural number is the beginning value, proving the
conjecture that has been held for 85 years.
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1. Introduction

In the study of number theory, odd and even numbers are a fundamental pair of ideas. Natural
number sets come in two different varieties. Numerological theory frequently examines the connections
between various numbers. There are numerous conjectures that attempt to generalize the law of
different sorts of natural numbers discovered in a restricted range to the entire infinite set of natural
numbers. This article will examine the famous Collatz conjecture, which states that for each natural
number n, if it is even, divide by 2, if it is odd, multiply by 3, add 1, and so on, the result must
finally reach 1. It is also referred to as the 31 + 1 conjecture and was put forth in 1937 by Lothar
Collatz, also known as the 3n + 1 problem. The mathematician Paul Erdos once said of this conjecture:
"Mathematics may not be ready for such problems"2],

The inconsistencies between the finite and the infinite, as well as the relation between various
kinds, present difficulties in the study of number theory problems. We are talking about the connection
between two different mathematical ideas: the iterated sequence is a ultimately periodic sequence
whether the initial value is odd or even.

The finite and the infinite can be connected by the useful mathematical construct known as
a function, and the resulting outcomes will also be finite and infinite. A special function that has
particular significance in discrete mathematics is the piecewise function. Compound functions and
piecewise functions combined is a highly clever mathematical trick. Particularly in number theory,
which is the most fundamental idea and mathematical expression, the sequence of numbers is a close
connection between functions and finite and infinite. Numerous conjectures are obtained through
restricted iteration of an iterative algorithm, which is a widely used method in number theory, but
people typically lack the means to demonstrate the accuracy and reasoned nature of conjectures.
A fresh technique or new knowledge is frequently used to support a hypothesis. For the Collatz
conjecture, we can describe it as a function:

. (L1)

T(n) = 3n+1, if n is odd number,
N 5 if n is even number.

The following sequence is obtained via the composite function (iteration): a =
{n,T(n), T(T(n)), T(T(T(n))),---} = {n,T(n), T>(n),T3(n),---}. Consequently, the Collatz
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conjecture can be stated as follows: The sequence a always leads to the integer 1, regardless of
where you start with the natural number n, namely T (n) = 1. The series a is an infinite sequence of
ultimately period [>19): the preperiod # (1) varies with the initial value 7, but the ultimately period is
always {4,2,1}.

2. Composition of odd and even functions and binary representation of natural numbers

If a natural number can be divided by 2, it is said to be an even number; otherwise, it is said to
be odd number. The Peano’s Axiom states that 1 is the smallest natural number. The set of natural
numbers N = {1,2,3,- - - } may be separated into odd and even sets, we will utilize the standard
definition of natural numbers in this work.

{natural number} = {odd number} |J{even number}.

In the set of natural numbers where 1 is the smallest odd number and 2 is the smallest even
number, we can use the expression n = 2k — 1 to indicate that it is an odd, and the expression n = 2k
to indicate that it is an even, where k is any natural number.

We introduce two functions O(x) = 2x + 1 to express odd numbers greater than 1, and E(x) = 2x
to express even numbers.

Definition 1 A natural number 7 is obtained by composition of the odd function O(x) = 2x + 1
and the even function E(x) = 2x several times, namely n = f(f(--- f(1))) = f*(1), the function f is
either odd function O(x) or even function E(x).

Forexample, 7 =2%3+1=2%(2%1+1+1) =0(0(1)),189 =2 2% (2x44+1) =2% (2% (2%
(2%1))+1) = E(O(E(E(1)))). In order to more clearly express the odd-even composition process
of a natural number, we use binary representation of a natural number #, for example: 7 = (111),,
18 = (10010),.

Similarly, we can have a piecewise function

fn) = 2.2)

”Zil, if n is odd number,
%, if n is even number.

Ifn = f(f(--- f(1))) = fX(1), then the inverse function is f ~*(n) = 1.

For generalization, we give the definitions of three natural numbers:

Definition 2(i) By applying the odd function O(x) m compositions, a natural number, namely
O"(1) =2m -1 =2""1yom24 ... 4241 = (11---1),, is obtained. such as 3 = (11),,7 =
(111)2,15 = (1111)5,31 = (11111),,63 = (111111),, - - -, which we call it as pure odd number;

(ii) By applying the even function E(x) m compositions, a natural number, namely E” (1) = 2" =
(10---0)y, is obtained, such as, 2 = (10)3,4 = (100),,8 = (1000)5, 16 = (10000),32 = (100000)y, 64 =
(1000000),, - - -, which we call it as pure even number;

(iii) The natural number obtained by the composition of odd function O(x) and even function
E(x), we call it mixed number. Such as, 18 = (10010),,28 = (11100),,67 = (1000011),,309 =
(100110101)s.

In particular, the natural numbers obtained by the finite alternately composition of the odd
function O(x) and the even function E(x), namely, [E(O(1))]" = (101---101);. Such as 5 =
(101)2,21 = (10101),,85 = (1010101),,341 = (101010101),,1365 = (10101010101),,5461 =
(1010101010101)3, - - -, which we call hard number.

Definition 3 The binary string of a natural number is a representation of its odd-even composite
function, where the 1 in the i(i > 0)-bit from right to left is the i(i > 0) sub-odd function, and 0 is the
corresponding sub-even function.

For a natural number #, if its binary string has k bits, then the degree of composite function is
k — 1. The binary string of a pure odd number is made of all 1; and the binary string of a pure even
number is all 0 aside from one 1 in left; the binary string of a mixed number is made of many 0 and 1.
Figure 1 shows the decomposition of the composite function (inverse of the composite function) of 60.
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60=2% (2% (2% (2% (2%1+1) +1) +1) ) —E(%(lc)(

Figure 1. Natural number 60 is obtained from 1 through the composition of five even and odd functions,

L(Lm M=(1] 1{ ﬁog

its binary string is (111100)5.

In this way, we can classify the set of natural numbers in another way,

Property 4 The set of natural numbers can be divided into three different sets:

{ natural number } = { pure odd number } |J{ pure even number } | J{ mixed number }

The pure odd number is an odd number, the pure even number is an even number, and mixed
numbers can be either an odd number or an even number when compared to the conventional
classification. The last bit of the binary string, which is either 0 or 1, indicates whether it is even or odd.
The entire binary string implicitly indicates one of the following three types: all bits are Os with the
exception of one 1 in the left implicitly pure even, all bits are 1s implicitly pure odd, and there are 0
and 1 in any number of bits of the binary string implicitly mixed.

Example1 (1)60, 97 are mixed numbers.

(2)64,1180591620717411303424 are pure even numbers.

(3)63,1180591620717411303423 are pure odd numbers.

60 =230 =2x(2%15) = 2%« (2% (2%x74+1))) =2x (2%« (2« (2% (2%3)+1)+1))) =
2% (2% (2% (2% (2% (2%141)+1)+1))) = E(E(O(O(0O(1)))) = (111100)>;

97 = 2%48+1=2x% (2%24) +1=2x (2% (2%12)) +1 =2 (2% (2% (2%6))) +1=2%
2x(2*x(2%(2%3)))+1=2x(2*x(2*x (2% (2% (2%x1+1))))+1=O(E(E(E(E(O(1)))))) =
(1100001)5.

64 = 2° = (1000000)2, 1180591620717411303424 = 27% = (10000 - - - 0) are pure even numbers:

63 = 26 —1 = (111111),,1180591620717411303423 = 27 —1 = (11---1); are pure odd
numbers.

This composite function has special significance, for example,

Example 2 Let [x] be x the integer part, thatis, [x] = max{y € Z:y < x}, {x} be fractional

part, namely {x} = x — [x]. Assuming g(x) = [

1 . . + .
{1 18 rational set Q™ and rational set Q can

be expressed as respectively
Q" = {5(0),8%(0),8°(0),--- },
Q = {0,5(0), _3(0)132(0)1 —gZ(O),g?’(O), _33(0)1 o}

See the references!®! for proof.

3. Tabular and algebraic expressions

For the Collatz conjecture, if expressed by the function T(n), we find that T*(n) = 1.
For the sake of discussion, we combine the compound function (iterative relation) to get the
reduced Collatz function

Sl if n is odd number
RT _ S ’ 3.3
() { ” if n is even number. 33

The result is an odd number. We introduce tabular form and algebraic expression to express the
reduced Collatz function RT (n).

For example, for n = 67 we use the formula (1.1) and iteration, get the following table. Where the
last column is its algebraic expression:.

doi:10.20944/preprints202309.1200.v1
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67— | 202 — [ 101 567 %
101— | 304— | 152~ | 76— | 38— [ 19 &
19— [ 58— |29 i
29— 88— |4~ | 22— |11 i
11— [34—> |17 &
17— | 52— [26— |13 i
13— [40— [20— | 10— |5 &
5+ 16— [8—= [4—= |2 |1 3
1

Representing the numbers in the table by its binary string to get

1000011— | 11001010— | 1100101 67 %
1100101— | 100110000— | 10011000— | 1001100— | 100110— | 10011 | 3
10011— 111010— 11101 E
11101— 1011000— 101100— 10110— 1011 i
1011— 100010— 10001 5
10001— 110100— 11010— 1101 >
1101— 101000— 10100— 1010— 101 5
101— 10000— 1000— 100— 10— 1 =
1

The above table is simplified with the help of the reduced Collatz function, and the simplified
binary string table obtained is as follows, and we will use this form as the default table in the rest of

this article.

1000011— | 11001010— [ 1100101 | %5 -67 [ 35
1100101— | 100110000— | 10011 il
10011— | 111010— 11101 2
11101— | 1011000— | 1011 il
1011— 100010— 10001 .
10001— | 110100— 1101 5
1101— 101000— 101 &
101— 10000— 1 =
1

In the future, we will use this table as a research tool to write the algebraic expression of the last

column in the table:

1 3 32 33 34 35 36 37 38
27 _ _ —
T (67)—T(8/19/67)—?+?+F+ﬁ+2ﬁ+2ﬂ+ﬁ+ﬁ+ﬁ'67—l

In general, the algebraic expressions are obtained: Starting from the last row of the table and
going up to the binary corresponding to the initial value n of the first row, the numerator is 3%, k =
0,1,2,3,- -, The denominator is 2%, rg = mg, r = r—1 +my, k =1,2,3,- -+, my here for the before
k lines at the end of the second column of binary string number 0. The details are expressed in the last
line of the corresponding table, and we write out the algebraic expression of them as follows:
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1 3 3 3 3 35 36 37 38 3
106 —
TReY) = atptmtaitamtmtmtmtamty
310 311 12 13 14 15 16 317 318

319 320 21 22 23 24 25 326 327
twtTomtomtomtowtomtom Tt om
328 329 30 31 32 33 34 335 336
+254+255+256+258+ﬁ+ﬁ+2ﬁ+2ﬁ+ﬁ
337 338 39
+35% + 35 + 5w
1

266 267

1 3 3 3 3 3 36 37 38 39
107
T7(e3) = ?+F+ﬁ+ﬁ+zﬂ+ﬁ+ﬁ+ﬁ+ﬁ+zﬂ

310 311 12 13 314 15 16 317 318
tam T tm Tt tom tow T ot ow
319 320 21 22 23 24 25 326 327
328 329 30 31 32 33 34 335 336
tomtom Tt om T tos T oa T s T 56
337 338 339

oo+

1

267 268+W.63

1 3 3 3 3 35 36 37 38 3
118 —
TR0 = atptmtaitamtmtmtmtamty
310 311 12 13 14 15 16 317 318
319 320 21 22 23 24 25 326 327
328 329 330 331 332 333 334 335 336
tomtom Tomtom T toa T e tToa T 56
337 338 39 40 41 42 43
+og+
1

266 T o600 T om0t o T om T o T 5797

1 3 3 3 3 35 36 37 38 39
91 _

310 311 12 13 14 15 16 317 318
BT T m T om T T T o T T o
319 320 21 22 23 24 25 326 327

+
328 329 330
+

+

tmtoam Tt Tomtomtom tom T 5m
+7

260

1
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4. The characteristics of sequence of binary string of the Collatz function iteration
The Collatz function is expressed in binary form as
(11)2- (1 X+ X1)24+1=(1X X X10---0)2, if n is odd number,
T(n) = (1x+:x10-00)2 _ (4 10--.0 . b (4.4)
T_( X+ X10---0)2, if n is even number.

The characteristics of the first and last parts are represented by the Figure 2.

1 1 y X 1
1 1 v X 1
1 0 Z X 0

The last bit must be 0, and
th ltimate bit d t
Grows to the left cthzinu Hate bl oes no
by two bits 10. '

v v

1 0 0 X 1
1 0 0 X 1
1 1 X 0

The last bit must be 0, and

v v
th ltimate bit d t
Grows to the left by € penuitimate 0es no
. change.
one bit 1.

Figure 2. Binary representation of the Collatz function, add up at most two digits from the left side of
the binary string, subtract at least one digit from the right side of the binary string.

By observing the binary strings of iterated Collatz functions with initial values of 31,63 (see the
tabulation procedure in reference [7]) and 97,10027 as the follows, we get some laws of pure even, pure
odd and mixed numbers with initial values. In the following, we will analyze and discuss the table of
the iterative process of the Collatz functions from the two dimensions of row and column of the tables.
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397
97 = (1100001), — (100100100), — (1001001), ¥
73 = (1001001), — (11011100) — (110111), i
55 = (110111); — (10100110), — (1010011) o
83 = (1010011); — (11111010),— (1111101), o
125 = (1111101),— (101111000), — (101111), ®
47 = (101111), — (10001110), — (1000111). %
71 = (1000111); — (11010110),— (1101011), 2
107 = (1101011),— (101000010),— (10100001), =
161 = (10100001),— (111100100), — (1111001), 2
121 = (1111001),— (101101100),— (1011011) %
91 = (1011011),— (100010010)>— (10001001) 3
137 = (10001001),—> (110011100),— (1100111) =
103 = (1100111),— (100110110), — (10011011), 2
155 = (10011011),— (111010010), — (11101001), =
233 = (11101001),— (1010111100), — (10101111), %ﬁ
175 = (10101111),— (1000001110), — (100000111), =
263 = (100000111)2—> (1100010110),— (110001011), o
395 = (110001011),— (10010100010), — (1001010001) %
593 = (1001010001),—> (11011110100), — (110111101), 3
445 = (110111101),— (10100111000), — (10100111), 2
167 = (10100111),— (111110110),— (11111011), i
251 = (11111011),— (1011110010),— (101111001), 2
377 = (101111001),— (10001101100), — (100011011), 2o
283 = (100011011),— (1101010010), — (110101001), %
425 = (110101001), — (10011111100), — (100111111) %12
319 = (100111111),— (1110111110), — (111011111), %
479 = (111011111), — (10110011110), — (1011001111), %
719 = (1011001111),—> (100001101110), — (10000110111), | 35
1079 = (10000110111),— | (110010100110);— (11001010011), %
1619 = (11001010011);— | (1001011111010),— | (100101111101); | 35
2429 = (100101111101),— | (1110001111000),— | (1110001111); | %5
911 = (1110001111),—> (101010101110), — (10101010111), | 35
1367 = (10101010111), (1000000000110), (100000000011); | 35
2051 = (100000000011),— | (1100000001010),— | (110000000101); | 3,
3077 = (110000000101)>— | (10010000010000)— | (1001000001), o
577 = (1001000001),— (11011000100), — (110110001), =
433 = (110110001),— (10100010100), — (101000101) 23%‘0
325 = (101000101),— (1111010000), — (111101), zSTSS
61 = (111101),— (10111000), — (10111), z%
23 = (10111),— (1000110), — (100011), o
35 = (100011),— (1101010), — (110101) 7
53 = (110101), (10100000) (101), »
5 = (101), (10000), (1)2 7

7 of 12
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310027
10027=(10011100101011); — | (111010110000010)2 — | (11101011000001); | 2
15041=(11101011000001); — | (1011000001000100); — | (10110000010001), | 35
11281=(10110000010001); — | (1000010000110100)2 — | (10000100001101), | 35
8461=(10000100001101); — | (110001100101000); — | (110001100101), 2
3173=(110001100101); — (10010100110000); — | (1001010011), g;
595=(1001010011); — (11011111010); — | (1101111101) ;;j
893=(1101111101); — (101001111000); — | (101001111), o
335=(101001111); — (1111101110); — | (111110111), g;f;
503=(111110111), — (10111100110); — | (1011110011) g;
755=(1011110011); — (100011011010); — | (10001101101), ki
1133=(10001101101); — (110101001000); — | (110101001), o
425=(110101001); — (10011111100); — | (100111111), g;
319=(100111111); — (1110111110); — | (111011111), -
479=(111011111), — (10110011110); — | (1011001111), g;
719=(1011001111); — (100001101110); — | (10000110111), g;
1079=(10000110111); — (110010100110); — | (11001010011) .
1619=(11001010011); — (1001011111010); — | (100101111101), e
2429=(100101111101); — (1110001111000); — | (1110001111), e
911=(1110001111), — (101010101110); — | (10101010111); o
1367=(10101010111); — (1000000000110) — | (100000000011), 3
2051=(100000000011); — (1100000001010), — | (110000000101), 23;,
3077=(110000000101); — (10010000010000)2 — | (1001000001), 4
577=(1001000001); — (11011000100); — | (110110001), il
433=(110110001); — (10100010100)2 — | (101000101), 2
325=(101000101)2 — (1111010000), — | (111101), 2
61=(111101); — (10111000); — | (10111), il
23=(10111); — (1000110); — | (100011), o
35=(100011); — (1101010) — | (110101), =
53=(110101); — (10100000); — | (101), 3
5=(101); — (10000), — )2 s

4.1. Row characteristic

1) In each row, the first column is always odd (empty when the initial value is even), and the last
bit of its binary string must be 1,

The second column must be even, its binary string must end with at least one 0, the number of
subsequent even numbers must be as many as the number of zeros at the end of the second column’s
binary string, and the number of zeros at the end of each even number to the right is one less than the
previous one, until all zeros are deleted to become the last odd number in the row.

The last column must be odd, and the last bit of its binary string must be 1.

2) When there are only three numbers in a row, that is, only one even number, the last odd number
must be greater than the first odd number (the first column); When there are more than three numbers
in a row, that is, more than two even numbers, the last odd number must be smaller than the first odd
number.

3) The preceding binary string is identical from the second column to the last column in one line,
except for the all 0 at the end.

4.2. Column characteristic

From top to bottom, the binary string in the first column of two adjacent rows has the following
two characteristics:
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1) If the number of bits of 1 in the last substring of the previous row is greater than 1, the number
of bits of 1 in the last substring of the next row is reduced by one, and the momentum of this reduction
of one bit remains unchanged until it finally becomes only one; The corresponding number is greater
than the number in the previous row;

2) If the last substring of the binary string in a row contains only one bit of 1, then the last substring
of the binary string in the next row contains either one bit of 1 or many bits of 1, and the corresponding
number is smaller than the number in the previous row;

3) Within each line, the number of bits in the first binary string is increased by 1 bit with the
number in the second binary string, but for hard numbers, the number is increased by 2 bits. The
reduction is at least 1 bit, and when it is a hard number of m bits, the number is reduced by m 4 1.

4.3. Comprehensive characteristic

1) The substring at the end of the binary (right) is observed that when the substring is 1,
the units digit of the corresponding decimal number can be any one of 1,3,5,7,9. For instance,
161 = (10100001),, 433 = (110110001)z, 325 = (101000101);, 577 = (1001000001),, 2429 =
(100101111101)5.

2) The number ending in decimal is 9 and the corresponding binary number can end in any
digits of 1, for instance, 319 = (100111111)3, 479 = (111011111)2,719 = (1011001111)3,1079 =
(10000110111),,1619 = (11001010011)5,2429 = (100101111101),.

3) When the last substring of binary is reduced by one bit from many, the corresponding decimal
number’s units are always reciprocated within the three groups of numbers: 1,7, or 3,5, and unit bit is
always 9.

4.4. 4.4 Discussion according three sets

The following is a discussion of the natural numbers according to our classification, that is, when
the initial value of the iteration process of the Collatz function is pure even, pure odd and mixed
numbers, it always reaches the smallest natural number 1, thus proving the establishment of Collatz
conjecture.

(1)For a pure even n = 2K = (10---0)y, it requires only an iteration of the k times Collatz
function to reach the smallest natural number 1, that is, the conjecture holds.

(2)For a special class of mixed numbers, if aj, in the iteration sequence a of the Collatz function is

a special class of mixed numbers - the hard number 4’(3—_1 = (101- - - 101),, then its sequent iteration
result is
4k —1 k _ 2k
a = —5— = (101--:101--:101)2, a5+ =4 =2 =(10:-:0)2,++ , a3x+1 = 1.

This means that the Collatz conjecture is valid at this point. For ordinary mixed numbers, this is a
complicated process, which is carried out in conjunction with the discussion of pure odd numbers in
follows.

(3) For a pure odd number n = 2K — 1 = (11 - - 1)y, if the Collatz function is iterated in binary
form, that is, the second column in the preceding table becomes a mixed number, which can be
observed by several examples. Research papers on this topic are [678]. By checking the change law of
the last substring in the binary string and the change law of the total length of the binary string, we
show that the Collatz function always reaches the minimum natural number 1 in the finite iteration
value, thus proving the correctness of Collatz conjecture.

In view of the general, a pure odd n = 2" — 1, there is a mathematical formula: 2" —1 =
2r—1 4 or=2 4 or=3 4 ... 4 2 4+ 1. Two numbers r and m in the following tables are the values we
verify for the Collatz conjecture by iterating T (2" —1) = 1,r = 1,2,3, - - - ,203 in the Maple program
below:

restart;
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i:=2"—-1;
convert(i, binary, decimal);
ji=0;

while i #1 do

i:= piecewise(irem(i,2) = 0, (1/2)i,3i +1);

convert(i, binary, decimal);

ji=ji+1

enddo

By verifying the first 203 pure odd number 2" — 1, we can get the following rule:

1) Odd number r greater than 1, the corresponding test Collatz function value has the following
relation:

if T"(2" — 1) = 1, then T" 1 (271 —1) = 1.

2) T856(257 _ 1) — T856(265 _ 1) =1

3) T857(258 _ 1) — T857(266 _ 1) =1

4) THS1(286 _ 1) = TMS1(2117 1) =1

5)’1"1455(290 _ 1) — T1455(2121 _ 1) =1

6)T1456(291 _ 1) — T1456(2122 _ 1) =1

7)T1457(292 _ 1) — T1457(2123 _ 1) =1

8)'1"1458(293 _ 1) — T1458(2124 _ 1) =1

m r m r m r m r m r m r m
0 30 | 449 || 59 | 858 88 1360 || 117 | 1451 || 146 | 2010 || 175 | 2039
7 31 | 450 || 60 | 859 89 1454 || 118 | 1452 || 147 | 2011 || 176 | 2040
16 32 | 451 || 61 | 860 90 1455 || 119 | 1484 || 148 | 2012 || 177 | 2041
17 33 | 527 || 62 | 861 91 1456 || 120 | 1485 || 149 | 2013 || 178 | 2042
106 || 34 | 528 || 63 | 862 92 1457 || 121 | 1455 || 150 | 2014 || 179 | 2061
107 || 35 | 529 || 64 | 863 93 1458 || 122 | 1456 || 151 | 2015 || 180 | 2062
46 36 | 530 || 65 | 856 94 1459 || 123 | 1457 || 152 | 2016 || 181 | 2063
47 37 | 531 || 66 | 857 95 1460 || 124 | 1458 || 153 | 2017 || 182 | 2064
9 61 38 | 532 || 67 | 729 96 1461 || 125 | 1658 || 154 | 2018 || 183 | 2047
10 | 62 39 | 533 || 68 | 730 97 1462 || 126 | 1659 || 155 | 2019 || 184 | 2048
11 | 156 || 40 | 534 || 69 | 930 98 1463 || 127 | 1660 || 156 | 2020 || 185 | 2049
12 | 157 || 41 | 535 || 70 | 931 99 1464 || 128 | 1661 || 157 | 2021 || 186 | 2050
13 | 158 || 42 | 536 || 71 | 932 100 | 1465 || 129 | 1662 || 158 | 2022 || 187 | 2069
14 | 159 || 43 | 586 || 72 | 933 101 | 1466 || 130 | 1663 || 159 | 2023 || 188 | 2070
15 | 129 || 44 | 587 || 73 | 934 102 | 1467 || 131 | 1995 || 160 | 2024 || 189 | 2071
16 | 130 || 45 | 588 || 74 | 935 103 | 1437 || 132 | 1996 || 161 | 2025 || 190 | 2072
17 | 224 || 46 | 589 || 75 | 1073 || 104 | 1438 || 133 | 1604 || 162 | 2026 || 191 | 2073
18 | 225 || 47 | 590 || 76 | 1074 || 105 | 1439 || 134 | 1605 || 163 | 2027 || 192 | 2074
19 | 177 || 48 | 591 || 77 | 938 106 | 1440 || 135 | 1606 || 164 | 2028 || 193 | 2972
20 | 178 || 49 | 592 || 78 | 939 107 | 1441 || 136 | 1607 || 165 | 2029 || 194 | 2973
21 | 303 || 50 | 593 || 79 | 940 108 | 1442 || 137 | 1608 || 166 | 2030 || 195 | 2974
22 | 304 || 51 | 594 || 80 | 941 109 | 1474 || 138 | 1609 || 167 | 2031 || 196 | 2975
23 | 473 || 52 | 595 || 81 | 1446 || 110 | 1475 || 139 | 2003 || 168 | 2032 || 197 | 2728
24 | 474 || 53 | 852 || 82 | 1447 || 111 | 1476 || 140 | 2004 || 169 | 2033 || 198 | 2729
25 | 444 || 54 | 853 || 83 | 1448 || 112 | 1477 || 141 | 1961 || 170 | 2034 || 199 | 2730
26 | 445 || 55 | 598 || 84 | 1449 || 113 | 1646 || 142 | 1962 || 171 | 2035 || 200 | 2731
27 | 384 || 56 | 599 || 85 | 1450 || 114 | 1647 || 143 | 2007 || 172 | 2036 || 201 | 2980
28 | 385 || 57 | 856 || 86 | 1451 || 115 | 1648 || 144 | 2008 || 173 | 2037 || 202 | 2981
29 | 448 || 58 | 857 || 87 | 1359 || 116 | 1649 || 145 | 2009 || 174 | 2038 || 203 | 2085

R J| O\ QI | W[N]

5. Comparison of two piecewise functions and the proof of Collatz conjecture

Comparing the Collatz function T(x) and the function f~1(x), if their domain is defined as the
set of natural numbers, we find that they have the following relation:
1) The function f~1(x) is strictly monotonically decreasing,
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2) When x is purely even, the function T(x) is only one case of the functions, is strictly
monotonically decreasing;

3) When x is a pure or mixed odd number, the function T'(x) is wavy, which is increasing, followed
by one or more decreasing processes, that is, "increase — decrease — increase", or "increase — decrease
- -+ decrease — increase". For example, Figure 3 and Figure 4 are the plots of the iterated sequence of
Collatz functions with initial values of pure odd 255 = 28 — 1 = (11111111) and mixed odd number
97 = (1100001),, respectively.
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Figure 3. Point plot of a sequence of 47 iterations of the Collatz function for pure odd 255.
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Figure 4. Point plot of a sequence of 118 iterations of the Collatz function for mixed number 97.

Due to the fact that an odd number can be either pure or mixed, when x is odd, the Collatz
function 3x + 1 can be parted into two parts. i.e.,, 3x +1 = 2x + (x + 1).

(i) when x is a pure odd number, i.e., x = 2" — 1, The binary string 2x = 2'+1 _ 2 jg even, with
just one 0 at the end, and the other part x +1 = 2" is pure even. Asaresult,3x +1=2x+ (x +1) =
27+1 4 27 _ 2 ig a mixed even number with only one 0 in the last bit and r — 1 bits 1 in the second-to-last

substring, corresponding @ = 2"+ 271 — 1 > x, it means function T(x) is increase.
(ii) When x is a mixed odd number, it just has one 1 in the last binary substring, the value
3x+1

5— < x,(r > 1) is smaller odd than x, it means function T(x) is decrease. The last binary substring
of number 33!, (r > 1) has two kinds, which :
(a) There many 1 in the last binary substring. For example, 893 = (1101111101),, ”82# =
335 = (101001111), = 335, 335 < 893.
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(b) Only 1 in the last binary substring. For example, 17 = (10001),, 3><;++1 = (1101), = 13,
13 <17.

When the end of the binary substring is 1, using X denotes either 1 or 0, we discuss the changes
of the last substring three digits and four digits in the procedure of the Collatz function sequences:

X001 — X X100 — X X1, X101 — X000 — X

X 0101 — X X 0000 — X X, X1101 — X X 1000 — X X 1

3x 4 1 can adjust the structure of its binary substring, when the end of the binary substring is 1,
the value of Collatz function T(x) = 3"2‘,H, r > 1 decrease, thus the number of binary string digits
decrease at least 2. This process continues several times, and eventually you can reach the minimum

value of 1. The Collatz function shows that the Collatz conjecture holds.
||[3]

Another Proof We give the statement "period three implies chaos"!>! another interpretation: for
any positive integer n, the sequence of the Collatz is an ultimately periodic sequence, its preperiod
#(n) is a related-to n positive, and the least period {4,2,1}, p(n) = 3.

We use the inversion of "period three implies chaos"[3! is the Collatz sequence of any initial value
n. when the Collatz Conjecture is correct, then the reverse order of sequence obtained for any natural
initial n, the sequence of the Collatz function is an ultimately periodic of period 3, {1,4,2}.

6. Conclusion

From previous proof of the conjecture, it becomes a theorem.

Theorem For any natural number #, if it is even, divide by 2, if it is odd, multiply by 3, add 1, and
so on, the result must finally reach 1. Give another statement: for any positive integer n, the sequence
of the Collatz function is an ultimately periodic sequence, its preperiod #(n) is a related-to n positive,
and the least period {4,2,1}, p(n) = 3.

Funding: Educational technology innovation project of Gansu Province (No. 2022A-13).
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