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Abstract: The two main strategies used in this study are the binary representation and the

decomposition of a natural number into many compound functions of odd function and even

function. The Collatz conjecture regarding odd even numbers in number theory can be examined and

discussed using them in this way: The sequence created by the finite iterations of the Collatz function

becomes the ultimately periodic sequence if any natural number is the beginning value, proving the

conjecture that has been held for 85 years.
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1. Introduction

In the study of number theory, odd and even numbers are a fundamental pair of ideas. Natural

number sets come in two different varieties. Numerological theory frequently examines the connections

between various numbers. There are numerous conjectures that attempt to generalize the law of

different sorts of natural numbers discovered in a restricted range to the entire infinite set of natural

numbers. This article will examine the famous Collatz conjecture, which states that for each natural

number n, if it is even, divide by 2, if it is odd, multiply by 3, add 1, and so on, the result must

finally reach 1. It is also referred to as the 3n + 1 conjecture and was put forth in 1937 by Lothar

Collatz, also known as the 3n + 1 problem. The mathematician Paul Erdos once said of this conjecture:

"Mathematics may not be ready for such problems"[1,2].

The inconsistencies between the finite and the infinite, as well as the relation between various

kinds, present difficulties in the study of number theory problems. We are talking about the connection

between two different mathematical ideas: the iterated sequence is a ultimately periodic sequence

whether the initial value is odd or even.

The finite and the infinite can be connected by the useful mathematical construct known as

a function, and the resulting outcomes will also be finite and infinite. A special function that has

particular significance in discrete mathematics is the piecewise function. Compound functions and

piecewise functions combined is a highly clever mathematical trick. Particularly in number theory,

which is the most fundamental idea and mathematical expression, the sequence of numbers is a close

connection between functions and finite and infinite. Numerous conjectures are obtained through

restricted iteration of an iterative algorithm, which is a widely used method in number theory, but

people typically lack the means to demonstrate the accuracy and reasoned nature of conjectures.

A fresh technique or new knowledge is frequently used to support a hypothesis. For the Collatz

conjecture, we can describe it as a function:

T(n) =

{

3n + 1, if n is odd number,
n
2 if n is even number.

(1.1)

The following sequence is obtained via the composite function (iteration): a =

{n, T(n), T(T(n)), T(T(T(n))), · · · } = {n, T(n), T2(n), T3(n), · · · }. Consequently, the Collatz
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conjecture can be stated as follows: The sequence a always leads to the integer 1, regardless of

where you start with the natural number n, namely Tm(n) = 1. The series a is an infinite sequence of

ultimately period [9,10]: the preperiod η(n) varies with the initial value n, but the ultimately period is

always {4, 2, 1}.

2. Composition of odd and even functions and binary representation of natural numbers

If a natural number can be divided by 2, it is said to be an even number; otherwise, it is said to

be odd number. The Peano’s Axiom states that 1 is the smallest natural number. The set of natural

numbers N = {1, 2, 3, · · · } may be separated into odd and even sets, we will utilize the standard

definition of natural numbers in this work.

{natural number} = {odd number}
⋃

{even number}.

In the set of natural numbers where 1 is the smallest odd number and 2 is the smallest even

number, we can use the expression n = 2k − 1 to indicate that it is an odd, and the expression n = 2k

to indicate that it is an even, where k is any natural number.

We introduce two functions O(x) = 2x + 1 to express odd numbers greater than 1, and E(x) = 2x

to express even numbers.

Definition 1 A natural number n is obtained by composition of the odd function O(x) = 2x + 1

and the even function E(x) = 2x several times, namely n = f ( f (· · · f (1))) = f k(1), the function f is

either odd function O(x) or even function E(x).

For example, 7 = 2 ∗ 3 + 1 = 2 ∗ (2 ∗ 1 + 1 + 1) = O(O(1)), 189 = 2 ∗ 2 ∗ (2 ∗ 4 + 1) = 2 ∗ (2 ∗ (2 ∗

(2 ∗ 1)) + 1) = E(O(E(E(1)))). In order to more clearly express the odd-even composition process

of a natural number, we use binary representation of a natural number n, for example: 7 = (111)2,

18 = (10010)2.

Similarly, we can have a piecewise function

f−1(n) =

{

n+1
2 , if n is odd number,
n
2 , if n is even number.

(2.2)

If n = f ( f (· · · f (1))) = f k(1), then the inverse function is f−k(n) = 1.

For generalization, we give the definitions of three natural numbers:

Definition 2(i) By applying the odd function O(x) m compositions, a natural number, namely

Om(1) = 2m − 1 = 2m−1 + 2m−2 + · · · + 2 + 1 = (11 · · · 1)2, is obtained. such as 3 = (11)2, 7 =

(111)2, 15 = (1111)2, 31 = (11111)2, 63 = (111111)2, · · · , which we call it as pure odd number;

(ii) By applying the even function E(x) m compositions, a natural number, namely Em(1) = 2m =

(10 · · · 0)2, is obtained, such as, 2 = (10)2, 4 = (100)2, 8 = (1000)2, 16 = (10000)2, 32 = (100000)2, 64 =

(1000000)2, · · · , which we call it as pure even number;

(iii) The natural number obtained by the composition of odd function O(x) and even function

E(x), we call it mixed number. Such as, 18 = (10010)2, 28 = (11100)2, 67 = (1000011)2, 309 =

(100110101)2.

In particular, the natural numbers obtained by the finite alternately composition of the odd

function O(x) and the even function E(x), namely, [E(O(1))]m = (101 · · · 101)2. Such as 5 =

(101)2, 21 = (10101)2, 85 = (1010101)2, 341 = (101010101)2, 1365 = (10101010101)2, 5461 =

(1010101010101)2, · · · , which we call hard number.

Definition 3 The binary string of a natural number is a representation of its odd-even composite

function, where the 1 in the i(i > 0)-bit from right to left is the i(i > 0) sub-odd function, and 0 is the

corresponding sub-even function.

For a natural number n, if its binary string has k bits, then the degree of composite function is

k − 1. The binary string of a pure odd number is made of all 1; and the binary string of a pure even

number is all 0 aside from one 1 in left; the binary string of a mixed number is made of many 0 and 1.

Figure 1 shows the decomposition of the composite function (inverse of the composite function) of 60.
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60=2*✁2*✁2*✁2*✁2*1+1）+1）+1））= E(E(O(O(O(1))))=(111100)2

Figure 1. Natural number 60 is obtained from 1 through the composition of five even and odd functions,

its binary string is (111100)2.

In this way, we can classify the set of natural numbers in another way,

Property 4 The set of natural numbers can be divided into three different sets:

{ natural number} = {pure odd number}
⋃

{pure even number}
⋃

{mixed number}

The pure odd number is an odd number, the pure even number is an even number, and mixed

numbers can be either an odd number or an even number when compared to the conventional

classification. The last bit of the binary string, which is either 0 or 1, indicates whether it is even or odd.

The entire binary string implicitly indicates one of the following three types: all bits are 0s with the

exception of one 1 in the left implicitly pure even, all bits are 1s implicitly pure odd, and there are 0

and 1 in any number of bits of the binary string implicitly mixed.

Example 1 (1)60, 97 are mixed numbers.

(2)64,1180591620717411303424 are pure even numbers.

(3)63,1180591620717411303423 are pure odd numbers.

60 = 2 ∗ 30 = 2 ∗ (2 ∗ 15) = 2 ∗ (2 ∗ (2 ∗ 7 + 1))) = 2 ∗ (2 ∗ (2 ∗ (2 ∗ (2 ∗ 3) + 1) + 1))) =

2 ∗ (2 ∗ (2 ∗ (2 ∗ (2 ∗ (2 ∗ 1 + 1) + 1) + 1))) = E(E(O(O(O(1)))) = (111100)2;

97 = 2 ∗ 48 + 1 = 2 ∗ (2 ∗ 24) + 1 = 2 ∗ (2 ∗ (2 ∗ 12)) + 1 = 2 ∗ (2 ∗ (2 ∗ (2 ∗ 6))) + 1 = 2 ∗

(2 ∗ (2 ∗ (2 ∗ (2 ∗ 3))) + 1 = 2 ∗ (2 ∗ (2 ∗ (2 ∗ (2 ∗ (2 ∗ 1 + 1)))) + 1 = O(E(E(E(E(O(1)))))) =

(1100001)2.

64 = 26 = (1000000)2, 1180591620717411303424 = 270 = (10000 · · · 0) are pure even numbers:

63 = 26 − 1 = (111111)2, 1180591620717411303423 = 270 − 1 = (11 · · · 1)2 are pure odd

numbers.

This composite function has special significance, for example,

Example 2 Let [x] be x the integer part, that is, [x] = max{y ∈ Z : y ≤ x}, {x} be fractional

part, namely {x} = x − [x]. Assuming g(x) = 1
[x]−{x}+1

, is rational set Q+ and rational set Q can

be expressed as respectively

Q+ = {g(0), g2(0), g3(0), · · · },

Q = {0, g(0),−g(0), g2(0),−g2(0), g3(0),−g3(0), · · · } .

See the references[5] for proof.

3. Tabular and algebraic expressions

For the Collatz conjecture, if expressed by the function T(n), we find that Tk(n) = 1.

For the sake of discussion, we combine the compound function (iterative relation) to get the

reduced Collatz function

RT(n) =

{

3n+1
2m , if n is odd number,

n
2r if n is even number.

(3.3)

The result is an odd number. We introduce tabular form and algebraic expression to express the

reduced Collatz function RT(n).

For example, for n = 67 we use the formula (1.1) and iteration, get the following table. Where the

last column is its algebraic expression:.
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67→ 202 → 101 38

219 · 67 37

219

101→ 304→ 152→ 76→ 38→ 19 36

218

19→ 58→ 29 35

214

29→ 88→ 44→ 22→ 11 34

213

11→ 34→ 17 33

210

17→ 52→ 26→ 13 32

29

13→ 40→ 20→ 10→ 5 3
27

5→ 16→ 8→ 4→ 2→ 1 1
24

1

Representing the numbers in the table by its binary string to get

1000011→ 11001010→ 1100101 38

219 · 67 37

219

1100101→ 100110000→ 10011000→ 1001100→ 100110→ 10011 36

218

10011→ 111010→ 11101 35

214

11101→ 1011000→ 101100→ 10110→ 1011 34

213

1011→ 100010→ 10001 33

210

10001→ 110100→ 11010→ 1101 32

29

1101→ 101000→ 10100→ 1010→ 101 3
27

101→ 10000→ 1000→ 100→ 10→ 1 1
24

1

The above table is simplified with the help of the reduced Collatz function, and the simplified

binary string table obtained is as follows, and we will use this form as the default table in the rest of

this article.

1000011→ 11001010→ 1100101 38

219 · 67 37

219

1100101→ 100110000→ 10011 36

218

10011→ 111010→ 11101 35

214

11101→ 1011000→ 1011 34

213

1011→ 100010→ 10001 33

210

10001→ 110100→ 1101 32

29

1101→ 101000→ 101 3
27

101→ 10000→ 1 1
24

1

In the future, we will use this table as a research tool to write the algebraic expression of the last

column in the table:

T27(67) = T(8, 19, 67) =
1

24
+

3

27
+

32

29
+

33

210
+

34

213
+

35

214
+

36

218
+

37

219
+

38

219
· 67 = 1

In general, the algebraic expressions are obtained: Starting from the last row of the table and

going up to the binary corresponding to the initial value n of the first row, the numerator is 3k, k =

0, 1, 2, 3, · · · , The denominator is 2rk , r0 = m0, rk = rk−1 + mk, k = 1, 2, 3, · · · , mk here for the before

k lines at the end of the second column of binary string number 0. The details are expressed in the last

line of the corresponding table, and we write out the algebraic expression of them as follows:
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T106(31) =
1

24
+

3

29
+

32

210
+

33

211
+

34

214
+

35

218
+

36

220
+

37

222
+

38

226
+

39

227

+
310

228
+

311

229
+

312

232
+

313

233
+

314

234
+

315

235
+

316

236
+

317

237
+

318

239

+
319

240
+

320

242
+

321

243
+

322

244
+

323

247
+

324

249
+

325

250
+

326

251
+

327

252

+
328

254
+

329

255
+

330

256
+

331

258
+

332

259
+

333

261
+

334

263
+

335

264
+

336

265

+
337

266
+

338

267
+

339

267
· 31

= 1

T107(63) =
1

24
+

3

29
+

32

210
+

33

211
+

34

214
+

35

218
+

36

220
+

37

222
+

38

226
+

39

227

+
310

228
+

311

229
+

312

232
+

313

233
+

314

234
+

315

235
+

316

236
+

317

237
+

318

239

+
319

240
+

320

242
+

321

243
+

322

244
+

323

247
+

324

249
+

325

250
+

326

251
+

327

252

+
328

254
+

329

255
+

330

256
+

331

258
+

332

259
+

333

263
+

334

264
+

335

265
+

336

266

+
337

267
+

338

268
+

339

268
· 63

= 1

T118(97) =
1

24
+

3

29
+

32

210
+

33

211
+

34

214
+

35

218
+

36

220
+

37

222
+

38

226
+

39

227

+
310

228
+

311

229
+

312

232
+

313

233
+

314

234
+

315

235
+

316

236
+

317

237
+

318

239

+
319

240
+

320

242
+

321

243
+

322

244
+

323

247
+

324

249
+

325

250
+

326

251
+

327

252

+
328

254
+

329

255
+

330

256
+

331

258
+

332

259
+

333

261
+

334

263
+

335

264
+

336

265

+
337

266
+

338

269
+

339

270
+

340

271
+

341

273
+

342

275
+

343

275
· 97

= 1

T91(10027) =
1

24
+

3

29
+

32

210
+

33

211
+

34

214
+

35

218
+

36

220
+

37

222
+

38

226
+

39

227

+
310

228
+

311

229
+

312

232
+

313

233
+

314

234
+

315

235
+

316

236
+

317

237
+

318

239

+
319

242
+

320

243
+

321

244
+

322

245
+

323

248
+

324

249
+

325

253
+

326

256
+

327

258

+
328

260
+

329

261
+

330

261
· 10027

= 1
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4. The characteristics of sequence of binary string of the Collatz function iteration

The Collatz function is expressed in binary form as

T(n) =

{

(11)2 · (1 × · · · × 1)2 + 1 = (1 ××× 10 · · · 0)2, if n is odd number,
(1×···×10···00)2

(10)2
= (1 × · · · × 10 · · · 0)2, if n is even number.

(4.4)

The characteristics of the first and last parts are represented by the Figure 2.

1

0

Grows to the left 

by two bits 10.

The last bit must be 0,and 

the penultimate bit does not 

change.

1 1 y x 1

1 1 y x 1

0 z x1

1

0

Grows to the left by 

one bit 1.

1 0 0 x 1

1 0 0 x 1

1 1 x

The last bit must be 0,and 

the penultimate bit does not 

change.

Figure 2. Binary representation of the Collatz function, add up at most two digits from the left side of

the binary string, subtract at least one digit from the right side of the binary string.

By observing the binary strings of iterated Collatz functions with initial values of 31,63 (see the

tabulation procedure in reference [7]) and 97,10027 as the follows, we get some laws of pure even, pure

odd and mixed numbers with initial values. In the following, we will analyze and discuss the table of

the iterative process of the Collatz functions from the two dimensions of row and column of the tables.
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343

275 · 97

97 = (1100001)2 → (100100100)2 → (1001001)2
342

275

73 = (1001001)2 → (11011100)2 → (110111)2
341

273

55 = (110111)2 → (10100110)2 → (1010011)2
340

271

83 = (1010011)2 → (11111010)2→ (1111101)2
339

270

125 = (1111101)2→ (101111000)2→ (101111)2
338

269

47 = (101111)2 → (10001110)2 → (1000111)2
337

266

71 = (1000111)2 → (11010110)2→ (1101011)2
336

265

107 = (1101011)2→ (101000010)2→ (10100001)2
335

264

161 = (10100001)2→ (111100100)2→ (1111001)2
334

263

121 = (1111001)2→ (101101100)2→ (1011011)2
333

261

91 = (1011011)2→ (100010010)2→ (10001001)2
332

259

137 = (10001001)2→ (110011100)2→ (1100111)2
331

258

103 = (1100111)2→ (100110110)2→ (10011011)2
330

256

155 = (10011011)2→ (111010010)2→ (11101001)2
329

255

233 = (11101001)2→ (1010111100)2→ (10101111)2
328

254

175 = (10101111)2→ (1000001110)2→ (100000111)2
327

252

263 = (100000111)2→ (1100010110)2→ (110001011)2
326

251

395 = (110001011)2→ (10010100010)2→ (1001010001)2
325

250

593 = (1001010001)2→ (11011110100)2→ (110111101)2
324

249

445 = (110111101)2→ (10100111000)2→ (10100111)2
323

247

167 = (10100111)2→ (111110110)2→ (11111011)2
322

244

251 = (11111011)2→ (1011110010)2→ (101111001)2
321

243

377 = (101111001)2→ (10001101100)2→ (100011011)2
320

242

283 = (100011011)2→ (1101010010)2→ (110101001)2
319

240

425 = (110101001)2→ (10011111100)2→ (100111111)2
318

239

319 = (100111111)2→ (1110111110)2→ (111011111)2
317

237

479 = (111011111)2→ (10110011110)2→ (1011001111)2
316

236

719 = (1011001111)2→ (100001101110)2→ (10000110111)2
315

235

1079 = (10000110111)2→ (110010100110)2→ (11001010011)2
314

234

1619 = (11001010011)2→ (1001011111010)2→ (100101111101)2
313

233

2429 = (100101111101)2→ (1110001111000)2→ (1110001111)2
312

232

911 = (1110001111)2→ (101010101110)2→ (10101010111)2
311

229

1367 = (10101010111)2 (1000000000110)2 (100000000011)2
310

228

2051 = (100000000011)2→ (1100000001010)2→ (110000000101)2
39

227

3077 = (110000000101)2→ (10010000010000)2→ (1001000001)2
38

226

577 = (1001000001)2→ (11011000100)2→ (110110001)2
37

222

433 = (110110001)2→ (10100010100)2→ (101000101)2
36

220

325 = (101000101)2→ (1111010000)2→ (111101)2
35

218

61 = (111101)2→ (10111000)2→ (10111)2
34

214

23 = (10111)2→ (1000110)2→ (100011)2
33

211

35 = (100011)2→ (1101010)2→ (110101)2
32

210

53 = (110101)2 (10100000)2 (101)2
3
29

5 = (101)2 (10000)2 (1)2
1
24
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330

261 ·10027

10027=(10011100101011)2 → (111010110000010)2 → (11101011000001)2
329

261

15041=(11101011000001)2 → (1011000001000100)2 → (10110000010001)2
328

260

11281=(10110000010001)2 → (1000010000110100)2 → (10000100001101)2
327

258

8461=(10000100001101)2 → (110001100101000)2 → (110001100101)2
326

256

3173=(110001100101)2 → (10010100110000)2 → (1001010011)2
325

253

595=(1001010011)2 → (11011111010)2 → (1101111101)2
324

249

893=(1101111101)2 → (101001111000)2 → (101001111)2
323

248

335=(101001111)2 → (1111101110)2 → (111110111)2
322

245

503=(111110111)2 → (10111100110)2 → (1011110011)2
321

244

755=(1011110011)2 → (100011011010)2 → (10001101101)2
320

243

1133=(10001101101)2 → (110101001000)2 → (110101001)2
319

242

425=(110101001)2 → (10011111100)2 → (100111111)2
318

239

319=(100111111)2 → (1110111110)2 → (111011111)2
317

237

479=(111011111)2 → (10110011110)2 → (1011001111)2
316

236

719=(1011001111)2 → (100001101110)2 → (10000110111)2
315

235

1079=(10000110111)2 → (110010100110)2 → (11001010011)2
314

234

1619=(11001010011)2 → (1001011111010)2 → (100101111101)2
313

233

2429=(100101111101)2 → (1110001111000)2 → (1110001111)2
312

232

911=(1110001111)2 → (101010101110)2 → (10101010111)2
311

229

1367=(10101010111)2 → (1000000000110)2 → (100000000011)2
310

228

2051=(100000000011)2 → (1100000001010)2 → (110000000101)2
39

227

3077=(110000000101)2 → (10010000010000)2 → (1001000001)2
38

226

577=(1001000001)2 → (11011000100)2 → (110110001)2
37

222

433=(110110001)2 → (10100010100)2 → (101000101)2
36

220

325=(101000101)2 → (1111010000)2 → (111101)2
35

218

61=(111101)2 → (10111000)2 → (10111)2
34

214

23=(10111)2 → (1000110)2 → (100011)2
33

211

35=(100011)2 → (1101010)2 → (110101)2
32

210

53=(110101)2 → (10100000)2 → (101)2
3
29

5=(101)2 → (10000)2 → (1)2
1
24

4.1. Row characteristic

1) In each row, the first column is always odd (empty when the initial value is even), and the last

bit of its binary string must be 1,

The second column must be even, its binary string must end with at least one 0, the number of

subsequent even numbers must be as many as the number of zeros at the end of the second column’s

binary string, and the number of zeros at the end of each even number to the right is one less than the

previous one, until all zeros are deleted to become the last odd number in the row.

The last column must be odd, and the last bit of its binary string must be 1.

2) When there are only three numbers in a row, that is, only one even number, the last odd number

must be greater than the first odd number (the first column); When there are more than three numbers

in a row, that is, more than two even numbers, the last odd number must be smaller than the first odd

number.

3) The preceding binary string is identical from the second column to the last column in one line,

except for the all 0 at the end.

4.2. Column characteristic

From top to bottom, the binary string in the first column of two adjacent rows has the following

two characteristics:
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1) If the number of bits of 1 in the last substring of the previous row is greater than 1, the number

of bits of 1 in the last substring of the next row is reduced by one, and the momentum of this reduction

of one bit remains unchanged until it finally becomes only one; The corresponding number is greater

than the number in the previous row;

2) If the last substring of the binary string in a row contains only one bit of 1, then the last substring

of the binary string in the next row contains either one bit of 1 or many bits of 1, and the corresponding

number is smaller than the number in the previous row;

3) Within each line, the number of bits in the first binary string is increased by 1 bit with the

number in the second binary string, but for hard numbers, the number is increased by 2 bits. The

reduction is at least 1 bit, and when it is a hard number of m bits, the number is reduced by m + 1.

4.3. Comprehensive characteristic

1) The substring at the end of the binary (right) is observed that when the substring is 1,

the units digit of the corresponding decimal number can be any one of 1, 3, 5, 7, 9. For instance,

161 = (10100001)2, 433 = (110110001)2, 325 = (101000101)2, 577 = (1001000001)2, 2429 =

(100101111101)2.

2) The number ending in decimal is 9 and the corresponding binary number can end in any

digits of 1, for instance, 319 = (100111111)2, 479 = (111011111)2,719 = (1011001111)2,1079 =

(10000110111)2,1619 = (11001010011)2,2429 = (100101111101)2.

3) When the last substring of binary is reduced by one bit from many, the corresponding decimal

number’s units are always reciprocated within the three groups of numbers: 1, 7, or 3, 5, and unit bit is

always 9.

4.4. 4.4 Discussion according three sets

The following is a discussion of the natural numbers according to our classification, that is, when

the initial value of the iteration process of the Collatz function is pure even, pure odd and mixed

numbers, it always reaches the smallest natural number 1, thus proving the establishment of Collatz

conjecture.

(1)For a pure even n = 2k = (10 · · · 0)2, it requires only an iteration of the k times Collatz

function to reach the smallest natural number 1, that is, the conjecture holds.

(2)For a special class of mixed numbers, if ak in the iteration sequence a of the Collatz function is

a special class of mixed numbers - the hard number 4k−1
3 = (101 · · · 101)2, then its sequent iteration

result is

ak =
4k − 1

3
= (101 · · · 101 · · · 101)2, ak+1 = 4k = 22k = (10 · · · 0)2, · · · , a3k+1 = 1.

This means that the Collatz conjecture is valid at this point. For ordinary mixed numbers, this is a

complicated process, which is carried out in conjunction with the discussion of pure odd numbers in

follows.

(3) For a pure odd number n = 2k − 1 = (11 · · · 1)2, if the Collatz function is iterated in binary

form, that is, the second column in the preceding table becomes a mixed number, which can be

observed by several examples. Research papers on this topic are [6,7,8]. By checking the change law of

the last substring in the binary string and the change law of the total length of the binary string, we

show that the Collatz function always reaches the minimum natural number 1 in the finite iteration

value, thus proving the correctness of Collatz conjecture.

In view of the general, a pure odd n = 2r − 1, there is a mathematical formula: 2r − 1 =

2r−1 + 2r−2 + 2r−3 + · · ·+ 2 + 1. Two numbers r and m in the following tables are the values we

verify for the Collatz conjecture by iterating Tm(2r − 1) = 1, r = 1, 2, 3, · · · , 203 in the Maple program

below:

restart;
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i := 2r − 1;

convert(i, binary, decimal);

jj := 0;

while i 6= 1 do

i := piecewise(irem(i, 2) = 0, (1/2)i̇, 3i̇ + 1);

convert(i, binary, decimal);

jj := jj + 1

enddo

By verifying the first 203 pure odd number 2r − 1, we can get the following rule:

1) Odd number r greater than 1, the corresponding test Collatz function value has the following

relation:

if Tm(2r − 1) = 1, then Tm+1(2r+1 − 1) = 1.

2) T856(257 − 1) = T856(265 − 1) = 1

3) T857(258 − 1) = T857(266 − 1) = 1

4) T1451(286 − 1) = T1451(2117 − 1) = 1

5)T1455(290 − 1) = T1455(2121 − 1) = 1

6)T1456(291 − 1) = T1456(2122 − 1) = 1

7)T1457(292 − 1) = T1457(2123 − 1) = 1

8)T1458(293 − 1) = T1458(2124 − 1) = 1

r m r m r m r m r m r m r m

1 0 30 449 59 858 88 1360 117 1451 146 2010 175 2039

2 7 31 450 60 859 89 1454 118 1452 147 2011 176 2040

3 16 32 451 61 860 90 1455 119 1484 148 2012 177 2041

4 17 33 527 62 861 91 1456 120 1485 149 2013 178 2042

5 106 34 528 63 862 92 1457 121 1455 150 2014 179 2061

6 107 35 529 64 863 93 1458 122 1456 151 2015 180 2062

7 46 36 530 65 856 94 1459 123 1457 152 2016 181 2063

8 47 37 531 66 857 95 1460 124 1458 153 2017 182 2064

9 61 38 532 67 729 96 1461 125 1658 154 2018 183 2047

10 62 39 533 68 730 97 1462 126 1659 155 2019 184 2048

11 156 40 534 69 930 98 1463 127 1660 156 2020 185 2049

12 157 41 535 70 931 99 1464 128 1661 157 2021 186 2050

13 158 42 536 71 932 100 1465 129 1662 158 2022 187 2069

14 159 43 586 72 933 101 1466 130 1663 159 2023 188 2070

15 129 44 587 73 934 102 1467 131 1995 160 2024 189 2071

16 130 45 588 74 935 103 1437 132 1996 161 2025 190 2072

17 224 46 589 75 1073 104 1438 133 1604 162 2026 191 2073

18 225 47 590 76 1074 105 1439 134 1605 163 2027 192 2074

19 177 48 591 77 938 106 1440 135 1606 164 2028 193 2972

20 178 49 592 78 939 107 1441 136 1607 165 2029 194 2973

21 303 50 593 79 940 108 1442 137 1608 166 2030 195 2974

22 304 51 594 80 941 109 1474 138 1609 167 2031 196 2975

23 473 52 595 81 1446 110 1475 139 2003 168 2032 197 2728

24 474 53 852 82 1447 111 1476 140 2004 169 2033 198 2729

25 444 54 853 83 1448 112 1477 141 1961 170 2034 199 2730

26 445 55 598 84 1449 113 1646 142 1962 171 2035 200 2731

27 384 56 599 85 1450 114 1647 143 2007 172 2036 201 2980

28 385 57 856 86 1451 115 1648 144 2008 173 2037 202 2981

29 448 58 857 87 1359 116 1649 145 2009 174 2038 203 2085

5. Comparison of two piecewise functions and the proof of Collatz conjecture

Comparing the Collatz function T(x) and the function f−1(x), if their domain is defined as the

set of natural numbers, we find that they have the following relation:

1) The function f−1(x) is strictly monotonically decreasing,
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2) When x is purely even, the function T(x) is only one case of the functions, is strictly

monotonically decreasing;

3) When x is a pure or mixed odd number, the function T(x) is wavy, which is increasing, followed

by one or more decreasing processes, that is, "increase – decrease – increase", or "increase – decrease

· · · decrease – increase". For example, Figure 3 and Figure 4 are the plots of the iterated sequence of

Collatz functions with initial values of pure odd 255 = 28 − 1 = (11111111)2 and mixed odd number

97 = (1100001)2, respectively.

Figure 3. Point plot of a sequence of 47 iterations of the Collatz function for pure odd 255.

Figure 4. Point plot of a sequence of 118 iterations of the Collatz function for mixed number 97.

Due to the fact that an odd number can be either pure or mixed, when x is odd, the Collatz

function 3x + 1 can be parted into two parts. i.e., 3x + 1 = 2x + (x + 1).

(i) when x is a pure odd number, i.e., x = 2r − 1, The binary string 2x = 2r+1 − 2 is even, with

just one 0 at the end, and the other part x + 1 = 2r is pure even. As a result, 3x + 1 = 2x + (x + 1) =

2r+1 + 2r − 2 is a mixed even number with only one 0 in the last bit and r − 1 bits 1 in the second-to-last

substring, corresponding 3x+1
2 = 2r + 2r−1 − 1 > x, it means function T(x) is increase.

(ii) When x is a mixed odd number, it just has one 1 in the last binary substring, the value
3x+1

2r < x, (r > 1) is smaller odd than x, it means function T(x) is decrease. The last binary substring

of number 3x+1
2r , (r > 1) has two kinds, which :

(a) There many 1 in the last binary substring. For example, 893 = (1101111101)2, 3×893+1
23 =

335 = (101001111)2 = 335, 335 < 893.
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(b) Only 1 in the last binary substring. For example, 17 = (10001)2, 3×17+1
22 = (1101)2 = 13,

13 < 17.

When the end of the binary substring is 1, using × denotes either 1 or 0, we discuss the changes

of the last substring three digits and four digits in the procedure of the Collatz function sequences:

×001 → ×× 100 → ×× 1, ×101 → ×000 → ×

×0101 → ×× 0000 → ××, ×1101 → ×× 1000 → ×× 1

3x + 1 can adjust the structure of its binary substring, when the end of the binary substring is 1,

the value of Collatz function T(x) = 3x+1
2r , r > 1 decrease, thus the number of binary string digits

decrease at least 2. This process continues several times, and eventually you can reach the minimum

value of 1. The Collatz function shows that the Collatz conjecture holds.

Another Proof We give the statement "period three implies chaos"[3] another interpretation: for

any positive integer n, the sequence of the Collatz is an ultimately periodic sequence, its preperiod

η(n) is a related-to n positive, and the least period {4, 2, 1}, ρ(n) = 3.

We use the inversion of "period three implies chaos"[3] is the Collatz sequence of any initial value

n. when the Collatz Conjecture is correct, then the reverse order of sequence obtained for any natural

initial n, the sequence of the Collatz function is an ultimately periodic of period 3, {1, 4, 2}.

6. Conclusion

From previous proof of the conjecture, it becomes a theorem.

Theorem For any natural number n, if it is even, divide by 2, if it is odd, multiply by 3, add 1, and

so on, the result must finally reach 1. Give another statement: for any positive integer n, the sequence

of the Collatz function is an ultimately periodic sequence, its preperiod η(n) is a related-to n positive,

and the least period {4, 2, 1}, ρ(n) = 3.

Funding: Educational technology innovation project of Gansu Province (No. 2022A-13).
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