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Abstract The Rasch model is one of the most prominent item response models.
In this article, different item parameter estimation methods for the Rasch model are
compared through a simulation study. The type of ability distribution, the number of
items, and sample sizes were varied. It is shown that variants of joint maximum like-
lihood estimation and conditional likelihood estimation are competitive to marginal
maximum likelihood estimation. However, efficiency losses of limited-information
estimation methods are only modest. It can be concluded that in empirical stud-
ies using the Rasch model, the impact of the choice of an estimation method with
respect to item parameters is almost negligible for most estimation methods. Inter-
estingly, this sheds a somewhat more positive light on old-fashioned joint maximum
likelihood and limited information estimation methods.
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1 Rasch Model

The Rasch model [9, 18] is likely the most important item response model. It is of in-
terest to select appropriate estimation methods in a diverse applications. A variety of
estimation methods has been proposed. In this article, a comprehensive comparison
of different estimation methods for the Rasch model is conducted. We manipulate
the factors test length (i.e., number of items), sample size, and type of ability of
distribution.

For a number of items Xi (i = 1, . . . , I) and a random variable θ (ability), the item
response function for the Rasch model is given as
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P(Xi = 1|θ ;bi) =Ψ(θ −bi) , θ ∼ F (1)

where Ψ is the logistic link function, bi is the item difficulty, and F is some distribu-
tion for ability θ . In addition, items Xi are assumed to be locally independent, that
is P(X1, . . . ,XI |θ) = ∏

I
i=1 P(Xi|θ). Importantly, the sum score S = ∑

I
i=1 Xi is a suf-

ficient statistic for θ if maximum likelihood (ML) estimation is employed. Hence,
all items are equally weighted in θ , which eases the interpretation of Rasch model
parameters. Moreover, because in the Rasch model, only a single parameter is esti-
mated per item, low sample sizes are required for reliable estimation.

2 Estimation Methods for the Rasch Model

A variety of estimation methods has been proposed for the Rasch model [16]. In the
Rasch model, item parameters b = (b1, . . . ,bI) and distribution parameters of F are
estimated. Assume that item responses xpi are available for persons p = 1, . . . ,P and
items i = 1, . . . , I. Denote by xp the vector of item responses and by sp the sum score
of person p.

In marginal maximum likelihood estimation (MML; [4]), latent variables θ are
integrated out by posing some distributional assumption Gγγγ for θ , where distribu-
tion parameters γγγ are simultaneously estimated with b. The log-likelihood function
l(b,γγγ) is maximized. The likelihood contribution for person p is given by lp(b,γγγ) =
log
[∫

∏
I
i=1 P(Xi = xpi|θ ;bi)dGγγγ(θ)

]
. If Gγγγ differs from the data-generating distri-

bution F , biased item parameters can occur. Frequently, a normal distribution for
θ is posed (MML-N), and a standard deviation σ is estimated. The integral in the
likelihood function is evaluated by numerical integration. Alternatively, a multino-
mial distribution for θ can be estimated. This approach starts with a fixed grid of θ

points θ1, . . . ,θC and estimates probabilities γc =P(θ = θc). A log-linear smoothing
of these probabilities has been proposed in the so-called general diagnostic model
(MML-LM; [19, 22]). Typically, smoothing is performed for up to three or four mo-
ments. In a located latent class model with C classes, the values of the grid points θc
are estimated in addition to probabilities γc (MML-LC; [7, 10]). It has been shown
that in the Rasch model with I items, at most C = I/2 latent classes can be identified.
The MML-LC approach imposes the weakest assumptions about F .

In conditional maximum likelihood estimation (CML; [1]), a conditioning step
on the sum score S is performed that eliminates θ from estimation equations. In
more detail, lp(b) = logP(X = xp|S = sp) is evaluated that is independent of θ . In
joint maximum likelihood estimation (JML; see [16] for an overview), persons are
regarded as fixed effects, and person parameters γγγ = (γ1, . . . ,γP) are simultaneously
estimated with item parameters b. In practice, the estimation JML algorithm alter-
nates between θθθ and b parameter estimation in one iteration. Because the number
of estimated parameters grows with sample size, a bias correction for item parame-
ters is required [14, 21]. With obtained item parameters b̂i, the bias-corrected item
parameter is computed as (I− 1)/I · b̂i. In order to include all persons in the es-
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timation (because an ML estimate for θ is not defined for persons with extreme
scores sp = 0 or sp = I), weighted likelihood estimation (WLE; [20]) as person
parameter estimates. As an alternative to WLE, the ε-algorithm of Bertoli-Bersotti
(JMLε; [3]) employs a modified likelihood by replacing the sufficient statistic sp
with ε + (sp− 2ε)/I using an appropriate ε > 0. In penalized JML (PJML; [5]),
a ridge penalty term is added to the log-likelihood function. This approach corre-
sponds to assuming a normal prior distribution θ ∼ N(0,σ2

prior) with an appropriate
choice of the regularization parameter σprior > 0. This approach also circumvents
the exclusion of persons with extreme scores from CML. It has been demonstrated
that JML and CML can be considered particular variants of MML estmation [13].

Several simpler estimation alternatives (so-called limited in- formation methods)
do not rely on the full item response pattern xp. In pairwise MML (PMML; [15])
person contributions P(Xi = xpi,X j = xp j) are considered by integrating out the la-
tent variable θ as in MML. Typically, a normal distribution is employed. In pairwise
CML (PCML; [23]), the conditioning P(Xi = xpi,X j = xp j)/P(Xi +X j = xpi + xp j)
is used for optimization that also removes θ from estimation equations as in CML.
The row averaging approach (RA; [6]), the eigenvector method (EVM; [12]; see
also [2]) as well as the MINCHI method [8] only rely on the evaluation of bivariate
frequencies P(Xi = x,X j = y) (x,y = 0,1) and do not require assumptions about the
distribution F of θ .

3 Simulation Study

3.1 Method

In the simulation study, item response data has been generated for the Rasch model.
We varied the number of items (I = 10, and 30) and sample sizes (N = 100, 250,
500, and 1,000). We chose I equidistant item parameters in the interval −1.5 and
1.5. Three types of ability distributions were simulated. First, we assumed a normal
distribution N(0,1) (Normal) for θ . Second, we simulated a standardized chi-square
(Chi2) distribution with one degree of freedom. Third, we simulated a located latent
class Rasch model with three classes (LC3) and θ points −0.790, 1.033, 2.248 with
corresponding probabilities .60, .35, and .05.

As analysis models, we implemented the estimation methods described in Sec-
tion 2. For MML-LM estimation, we used a log-linear smoothing up to three and
four moments. We specified MML-LC with 3, 4, and 5 located latent classes. For
JMLε estimation, we tried values ε = 0.1, 0.3, and 0.5. In PJML estimation, we
chose normal priors N(0,σ2

prior) with σprior = 1, 1.5, and 2.
The whole simulation was carried out in R [17] utilizing the R packages immer,

pairwise and sirt. To enable comparisons of estimated item parameters across es-
timation methods, the set of item parameters were centered after estimation (i.e.,
they have a mean of 0). In total, 5,000 replications were conducted in each cell
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of the simulation design. Bias, standard deviation (SD), and root mean square er-
ror (RMSE) were estimated for all item parameters. We consider two summary
measures of item parameter recovery. First, the average absolute bias AAB(b̂) =
I−1

∑
I
i=1 |Bias(b̂i)| quantifies the average bias of item parameters. Second, bias and

variability is summarized in the average relative RMSE (RRMSE) that is defined as
RRMSE(b̂) =

[
∑

I
i=1 |RMSE(b̂i)|

]
/
[
∑

I
i=1 |SDMML−N(b̂i)|

]
, where SDMML−N is the

SD of item parameters using MML-N estimation. Hence, MML estimation using
the normal distribution serves as the reference method.

3.2 Results

We only report JMLε with ε = .3 and PJML with σprior = 1.5 that performed best on
average across conditions for lack of space. We also only state results for MML-LM
with smoothing 4 moments (MML-LM4) which was superior to only using three
moments). MML-LC is reported for 3 located latent classes (MML-LC3), but the
there were only low efficiency losses when using 4 or 5 classes.

The bias (i.e., the MAB) of item parameters was highest for JML with using
WLE (JMLW) for short test length (I = 10) but vanished in a long test (I = 30).
However, MML using an incorrect normal distribution (MML-N) produced slightly
biased item parameters in the case of non-normal distributions (Chi2 and LC3). Sur-
prisingly, the normal distributional misspecification in pairwise MML (PMML) had
even worse consequences than in MML-N. Bias and RRMSE values were averaged
across conditions for each methods and ranked. These ranks are shown in Table 1.
Overall, CML, the limited information methods EVM, RA, and CCML as well as
MML-LC3 and MML-LM4 performed best in terms of bias. It may also be sur-
prising that MML with located latent classes (MML-LC3) also performs well for
continuous ability distributions.

In Table 1, the ranks of estimation methods across all conditions and results for
10 items are shown for the RRMSE. The findings for 30 items were similar but
less pronounced. Overall, JML estimation methods performed well, in particular
the ε-algorithm JMLε . Notably, MML with more flexible distributions and CML
produced low RRMSE values. Interestingly, misspecified MML using a normal dis-
tribution (MML-N) outperformed limited information estimators with respect to
variability (PMML, CMML, EVM, RA, MINCHI). Hence, the potential bias intro-
duced by MML-N compared to the latter estimation methods can be compensated
by smaller variability. It is likely that these findings also transfer to test designs with
missing data.
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Table 1 Performance ranks and relative RMSE (RRMSE) of item parameters in the Rasch model
for different ability distributions and estimation methods as a function of the number of items I and
sample size N

Rank Relative RMSE

Normal, I = 10 Chi2, I = 10 LC3, I = 10

sample size N sample size N sample size N

Method Bias RMSE 100 250 500 1,000 100 250 500 1,000 100 250 500 1,000

MML-N 9 6 100.1 100.1 100.0 100.0 100.4 100.8 101.6 103.2 100.1 100.3 100.6 101.3
MML-LM4 6 3 100.2 100.1 100.1 100.1 101.1 100.7 100.3 99.9 100.8 100.1 99.6 99.1
MML-LC3 4 2 100.2 99.7 99.5 99.4 100.8 100.2 99.7 99.3 100.3 99.6 99.1 98.8
CML 1 4 100.2 100.2 100.1 100.1 100.8 100.5 100.1 99.8 100.0 99.9 99.8 99.5
JMLW 12 5 97.0 98.8 102.0 107.8 97.6 98.6 100.7 104.8 97.0 98.7 102.1 108.3
JMLε 7 1 98.2 98.4 98.6 98.8 99.0 99.3 99.5 99.7 98.0 98.2 98.4 98.6
PJML 10 7 99.3 99.5 99.5 99.5 102.6 103.6 104.8 107.1 98.7 99.0 99.2 99.7
PMML 11 8 100.1 100.1 100.0 100.0 100.5 101.0 102.0 104.1 100.4 100.7 101.2 102.2
CCML 5 9 103.2 102.7 102.4 102.5 103.5 102.7 102.4 101.8 103.1 102.8 102.2 102.0
EVM 2 10 104.0 103.5 103.2 103.3 104.3 103.5 103.2 102.5 104.1 103.7 103.1 102.9
RA 3 11 104.1 103.6 103.3 103.4 104.4 103.6 103.3 102.6 104.2 103.8 103.2 103.0
MINCHI 8 12 106.1 104.4 103.9 103.9 106.2 104.3 103.7 103.0 106.1 104.8 103.8 103.4

Note. Bias = average absolute bias (AAB); RMSE = relative root mean square error (RRMSE);
Normal = θ ∼N(0,1); Chi2 = θ ∼ χ2(d f = 1) with subsequent transformation such that E(θ) = 0
and Var(θ) = 1; Discrete = discrete ability distribution with 3 support points (see ”Method”);
MML-N = marginal maximum likelihood estimation (MML) with normal distribution; MML-LM4
= MML with log-linear smoothing up to 4 moments; MML-LC3 = MML with 3 located latent
classes; CML = conditional maximum likelihood; JMLW = joint maximum likelihood estimation
(JML) with WLE person parameter estimation and bias correction; JMLε = JML with ε-algorithm
using ε = 0.3; PJML = penalized maximum likelihood estimation with prior N(0,1.52); PMML
= pairwise MML; PCML = pairwise CML; EVM = eigenvector estimation method; RA = row
averaging method; MINCHI = Fischer’s Minchi estimation method. Ranks smaller than 7 and
RRMSE values smaller than 100.5 are colored in gray.

4 Discussion

In this article, we compared several estimation methods for the Rasch model. It
has been shown that the choice of the ability distribution impacts estimated item
parameters. However, differences between estimation methods are only modest, in
particular for longer test lengths. Interestingly, joint maximum likelihood estimation
methods outperformed conditional and marginal maximum likelihood as well as
limited information estimation methods. Prior distributions for item parameters can
further improve estimation in small samples [11].
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