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Abstract

Most quantum gravity theories endow space-time with a discreet nature by space
quantization on the order of Planck length (£,). This discreetness could be
demonstrated by confirmation of Lorentz invariance violations (LIV) manifested at
length scales proportional to £,. In this paper, space-time line elements compatible with
the uncertainty principle are calculated for a homogeneous, isotropic expanding
Universe represented by the Friedmann-Lemaitre-Robertson-Walker solution to
General Relativity (FLRW or FRW metric). To achieve this, the covariant geometric
uncertainty principle (GeUP) is applied as a constraint over geodesics in FRW
geometries. A generic expression for the quadratic proper space-time line element is
derived, proportional to Planck length-squared and dependent on two contributions.
The first is associated to the energy-time uncertainty, and the second depends on the
Hubble function. The results are in agreement with space-time quantization on the
expected length orders, according to quantum gravity theories and experimental
constraints on LIV.

Keywords: Lorentz invariance violation, FRW metric, general relativity, quantum
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1. Introduction

General relativity (GR) is a background-independent geometric theory for gravitation in
which the space-time metric is the dynamical variable [1,2]. The solutions to Einstein’s
field equations correspond to space-time metrics defined by pseudo-Riemannian metric
tensors (g, ). In GR, particle trajectories follow geodesics in the geometries defined by
such metric tensors. As the momentum/position phase space is continuous in classical
GR [2], both momentum and position can be simultaneously known with absolute
certainty within the geodesic trajectories. As a consequence, particle geodesics can be
defined with absolute precision. This clashes with quantum mechanics, in which the
momentum/position phase space is quantized. As a consequence, the measurement of
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position introduces uncertainty in momentum and viceversa. Likewise, an uncertainty
relationship also exists between energy fluctuations and time intervals. These two
uncertainty relationships constitute the classical Heinsenberg’s uncertainty principle
inequalities of quantum mechanics [3,4]:

h h
|ApAx| 2 5, [AEAC| 2 <. (1)

where Ap and Ax represent the change in the magnitude of momentum and position,
respectively; AE and At represent the change in magnitude of energy and time,
respectively; h is the reduced Planck constant.

These inequalities inherently reflect the quantization of the momentum-position phase
space in units of A. From these inequalities it is deduced that the subjacent space-time
geometry must also be fundamentally discrete. Attempts to quantize the space-time
geometry by several methods have led to quantum gravity theories such as Loop
Quantum Gravity, or LQG [5,6]. From the process of space quantization, current
guantum gravity theories rely on a minimum space-time length for their formulation,
which is proportional to Planck length (£,,). For example, the quanta of area and volume
operators in LQG are proportional to fzz, and 313,, respectively [7-9]. Likewise, other
quantum gravity theories such as string theory also introduce ¢, as a fundamental
length element for particles [10-12]. Most quantum gravity theories predict phenomena
such as in vacuo dispersion of photons and neutrinos, and deviations of photon
polarization over astronomical distances caused by Lorentz invariance violations (LIV)
[13-18]. These phenomena are predicted to arise if indeed the space-time is discreet.
LIV confirmation could constitute a major step forward to proving quantum space-time
discreetness.

The process of spatial quantization or the establishment of a fundamental length
associated to particles alter the classical uncertainty principle, leading to formulations
such as the Generalized Uncertainty Principle, or GUP [19-21]:

hc?

h
|ApAX| = E + mApz. (2)

This expression includes a correction dependent on the particle mass, m, the proper
acceleration, A, the speed of light, ¢, and the quadratic form of the space-time length
element §s2.

As the space-time metric in GR is shaped by energy-momentum densities through the
energy-momentum tensor, vacuum energy and momentum fluctuations from the
uncertainty principle should perturb the space-time [19,22]. Indeed, very early on it was
assumed that in the context of a quantum description of gravity, quantum fluctuations
caused by Heisenberg’s principle play a major role [23]. In semi-classical descriptions of
quantum gravity, a putative metric tensor operator, g, is decomposed in the classical
pseudo-Riemannian metric tensor, g,, , and a fluctuating tensor operator of quantum
origin, 6§uv, which introduces a differential perturbation [24]:


https://doi.org/10.20944/preprints202110.0452.v1

guv =9w t+ 6guv . 3)

The indices, denoted by Greek letters take on the values 0, 1, 2 and 3, defining the
temporal and spatial components in standard relativistic tensor notation. The
expectation value of the perturbation is then identified with a quantum-associated
classical tensor T}y, :

(6Gu) = Ty - (4)

A more direct relationship between the uncertainty principle and alterations to the
metric can be formulated with quantum mechanics commutators, used in string theories
and quantum topology [19]. A momentum-position commutator is thus associated to
the Minkowski metric tensor, that is then generalized to curved space-time through a
pseudo-Riemannian metric tensor:

[PH,XV] = —ihn ,  [P*,X"] = —ihg". (5)

where P*, XV stand for the components of momentum and position 4-vector operators.
n*v, g"v represent the contravariant Minkowski and pseudo-Riemannian metric
tensors, respectively.

Independently of the specific model for quantum gravity, uncertainty fluctuations
introduce a perturbation in the metric that is unrelated to classical gravitation, but can
be otherwise related to a minimal length for the space-time line element [19,22,25-27].
However, the use of a fixed length for the line element clashes with classical relativity.
Indeed, the LQG minimal length could be considered a “free parameter” [28], complying
with Lorentz co-variance [21]. This has led to corrections to the canonical GUP
momentum-position commutator for Minkowski space as shown in [21]:

[PH, XV] = —iAn* — ihAn*Y —ih B(PH,PY) . (6)
with A and B being functions of momentum.

The classical uncertainty principle can also be reformulated as a relativistic covariant
form in terms of the proper space-time line element (72) and Planck length, €, [29]. This
reformulation allows its application as a mathematical constraint over GR geodesics
without an explicit quantization of space-time. The differential quadratic proper space-
time line element is then defined as a function of Planck length through a geodesic-
derived scalar, Ggeo:

|Ggeo d7%| = (1 +) €3. (7

where dt is the proper space-time line element, and the gamma factor y and Geodesic
scalar are defined:
dt E
V=ar="m "’

Geeo = 26m |UgT" O USUP | + 26m |UsT 4 U@UP |. (8)
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where E corresponds to the total energy of the particle; m corresponds to its mass-
energy in unitsof csetto 1; I o’fﬁ corresponds to Christoffel symbols calculated from the
pseudo-Riemannian metric tensor; G is the universal gravitational constant; U,, U% are
covariant and contravariant components of proper velocity. The indices, denoted by
Greek letters take on the values 0, 1, 2 and 3, defining the temporal and spatial
components in standard relativistic tensor notation.

This formulation sets a length limit for the quadratic proper space-time line element
which is proportional to £2, and defined by the metric tensor. This covariant form of the
classical uncertainty principle can be applied to any GR solution. For example, a well-
defined minimum space-time line element in a Schwarzschild black hole singularity at
radial position R=0 was calculated in [29]:

|dt?| > M )

Where M is the mass of the black hole generating the gravitational field, and m is the
mass of the particle.

The exact solution to Einstein’s field equations for a homogeneous, isometric Universe
that expands following Hubble’s law corresponds to the FRW (or FLRW) metric [30,31].
This solution represents a first approximation to the standard model of Cosmology. In
units of ¢ set to 1 with a (- + + +) Lorentzian metric signature, its line element is
represented:

2
dr? = —dt? + a> — % 4 0?R?d0? + a?R?sin?0dg? | (10)
1 — KR?
Where t corresponds to the temporal coordinate and R, 8 and @ to dimensionless co-
moving polar coordinates. The time-dependent universal scale factor, a, provides
dimensions of length to the co-moving coordinates, and determines the physical size of
the Universe; The curvature constant, K, takes on values of 1, 0 or -1, depending on the
model of the expanding Universe; closed-spherical, flat or open-hyperbolic, respectively.
Although the Universe presents a very small positive curvature, for practical purposes it
can be discarded. Indeed current measurements of cosmological parameters are in
agreement with a spatially-flat cosmology [32]. Hence, K set to zero could be justified to
describe the current state of the Universe.

In principle, it could be considered that the lengths for the space-time line element in
the FRW metric depend on two factors: first, energy-time quantum fluctuations, and
second, the expansion rate of the Universe as defined by Hubble’s function, H,
calculated from the scale factor:

Hu a . da an

= — ’ a=—

a dt
In this paper, GeUP was applied to the FRW solution to define length restrictions on the
space-time line element in the context of a covariant formulation which conserves
Lorentz invariance. The results from the calculations are then discussed in the context
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of the predicted length elements in quantum gravity theories, and the experimental
restrictions upon Lorentz invariance violations calculated from experimental
observations.

2. Space-time line element for a particle at rest in the FRW metric.

Unless otherwise stated, the equations will be expressed in units of ¢ set to 1. Standard
relativistic tensor notation will used, with temporal and polar spatial coordinates
designated as: (X°,t); (X1, R); (X? 60); (X3 ¢).The most general FRW solution is
given by equation (10). A particle at rest implies the following statements on proper
velocities:

Ut=02=03=0 , U%,=-1. (12)

To apply GeUP from inequality (7), the geodesic scalar is first calculated:
Ggeo = 2Gm |Uol' 5y UU° | . (13)

The only Christoffel connector that participates in the calculationis T (?0 , Which is zero
in the FRW metric. Hence, the geodesic scalar is also 0, leading to a contradiction in
inequality (7) unless Plank length is considered zero in the non-quantum limit:

0= (1+y)¢;. (14)

Therefore, the classical FRW metric is incompatible with the uncertainty principle unless
a t-dependent differential perturbation function, ¢, is introduced in the gyo component
of the metric, following a similar approach by semi-classical quantum gravity and
developed for Minkowski space in [29]:

Joo = —1—¢(t). (15)

The introduction of this differential perturbation in the FRW metric leads to a
compatible solution with the uncertainty principle without modifying the overall
solution:

2

2 _ _ 2 2
dt (1+¢)dt +a1—KR2

+ a?R?d0? + a’R?sin?0d p? . (16)
The term (1 + y) in inequality (7) takes a value of 2 for a particle at rest. After the
calculation of the geodesic scalar and Christoffel connector as described in [29], one
obtains inequality (7) as:

242 _ de

E=—. 17)

dt?| > ————
| |_|GP0$| dt

This expression can be re-written according to the classical energy-time uncertainty:

|P°dedt|>h , P°de =dE . (18)
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where P%de corresponds to energy variations of the particle in the geodesic in units of
c set to 1. Therefore, P° ¢ corresponds to time-dependent energy fluctuations of the
particle in the geodesic:

PO,_POde_dE_
T Tar dr

(19)

where dots over variables represent derivatives of the indicated variables with the time
coordinate. And after recovering c in inequality (17), one ends in units of time with:
392

! 0(10734).. (20)

|dt?] 2 — e~ e
GIE] |E]

2. Generic solution for the FRW space-time line element for a moving particle in the R
coordinate

The FRW symmetry allows simplification of calculations by considering geodesics
moving in the R coordinate without displacements in the angular coordinates. In this
condition only the components of proper velocities for t and R coordinates will
contribute to the calculation of the Geodesic scalar:

— 0 1
Ggeo = 2G |UoT" 35 UCUP | +26 |U11"a/3 ueyh | . 1)
Expanding this expression one gets:
Ggeo = 26 |UgT gy UOU® + 20T & UCUY + Ul & UV |
1 1 1
+2G|UsT 3, UOU° +20,T J, UMV +UiT [ U0t | (22)

The contributing Christoffel connectors are:

Foh=ort ; T&=Tdh=0 ; TIh=—t%__

00 2(1+8) ) 01 00 ’ 11 (1—KR2)
Lo aa N a’KRR R — KRR )3
U7 1+e)(1-KR?)  (1+e)(1—-KR?»2 ~ 107 1—kgz 3

where dots over the R coordinate, the scale factor and the metric perturbation indicate
differentiation by time coordinate. Calculating the geodesic scalar with the non-zero
terms one gets:

Geeo = 2Gm |Ugl" § U°U° +UgT 0, UMY |
+2Gm [20,T UtV +upT | Ut (24)

And introducing the explicit terms for the Christoffel connectors one gets:
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GgeoEZGm UomUOUO
- aa a’KRR
+UlU'U ((1+e)(1—KR2) + (1+s)(1—KR2)2)
- KRR
KR
+U1U1U1(m> . (25)

The expression can be simplified as a function of contravariant U° and the use of some
equalities:

1 — KR?
U' = U g™ + Upg® = Uy 2z
UO = Uogoo = _(1 +€) UO B
U, U + U, U = —1. (26)

which leaves the geodesic scalar:

Goeo =26 m|(—1 - U, U)———U° - U, U° H+ﬂ
geo 721+ ¢) ! 1 — KR?
+26m |20, UU° [ H + KRR
e 1— KR?
+U U1U1< KR ) 27
and it is equivalent to:
o = [pema+ruUhe o oy s KRR
geo = 2(1+¢) met 1— KR?
1771
+ 26mUUU (1—KR2> . (28)
To simplify the expression, a curvature-associated factor, F, is defined:
F = KR 29
~ 1—-KR? "~ 29
and the Geodesic scalar takes the final form of:
Gm (1 + U UY) ¢ .
Ggeo = ( ) U® 4+ 6GmUU,U°(H + FR) + 26mU,U*U* F|.  (30)

1+¢

Incorporating this term into inequality (7):
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1+y)¢3
|dt?| > L+ 1)

(1+U0,UY) € (3D

G 1+¢

PO +6UWU,P°(H + FR) + 2U,U'P1 F

A flat space-time is an accurate model for current cosmological models, which
corresponds to F set to zero. Additionally, the epsilon correction can be ignored in 1 +
E:

2> A +y)5
= GPO\6UUH — U, ¢ | -

|dt (32)
The quadratic length for the FRW space-time line element thus depends on two factors.
The first one, a function derived from the energy-time uncertainty (E,,,), and the second
one dependent on the expansion rate of the universe (H,,):

E,,=U,é¢ , H,, = 6U'U;H

2

|dt2| = (1 +7) i (33)
- GpolHex - Eunl

3. Specific solutions for the FRW space-time line element for a moving particle in the
R coordinate

One can consider several scenarios depending on which of the functions is dominant in
the denominator of inequality (33). If E,, is several orders of magnitude larger than H,,,
then the expression simplifies as:

1+ )5

|dt?| > - )
GP°|-U%U, ¢ |

(34)

Considering the following equalities for a particle at non-relativistic velocities in units of
csettol:

. E?
(1+y)=2 , P%=E ;UOUOEW. (35)

And after incorporating these equalities into inequality (34), it takes the form:
2m24

dr?| > —F— .
ITl‘(;|15215 |

(36)
In units of ¢ set to 1, the mass term, m, is of the same order of energy than the total
energy of particles moving with non-relativistic velocities. This will lead to further

simplifications, and after re-introducing c one gets:

(37)
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The minimum allowed length for the space-time line element in the FRW metric is
inverse to the rate of change of energy fluctuations of the particle in the geodesic. The
guadratic space-time line element is then :

1
|dt?|~—0(10718). (38)
|E|
This expression is the same as inequality (20) but in units of length.
Quantum energy fluctuations can be neglected, for example, in large objects moving at
non-relativistic velocities, then the following equalities are fulfilled:
El~0  ; (Q+y)=2. (39)
This condition makes the H,, term dominant in inequality (33):

2

dr?| > ——t—— .
N YT

(40)
To simplify this expression, the mass, m, can be incorporated into one of the radial
proper velocities to convert it to proper momentum:

2
m s

dr?|>— P
1471 = S PO UL |

(41)

In units of ¢ set to 1, the mass-energy term, m, is of the same order than P° leading to
their simplification:

2

|dz?| = WPIAHI : (42)
And recovering c into the equation:
592 1
|d72| > SG|P151H I~ HE. 0(10718) (43)

P1U, is a term proportional to proper kinetic energy. The minimum quadratic length for
the space-time line element, which is of the order of 10718, is modified by the kinetic
energy of the particle and the expansion rate of the Universe.

4, Discussion

In this paper, a covariant form of the uncertainty principle [29] is applied as a constraint
over FRW geometries to obtain expressions for the quadratic space-time line elements
in a homogeneous, isometric Universe which expands according to Hubble’s law. The
imposition of GeUP introduces a quantization condition of the momentum-position
phase space on the classical GR geodesic. This mathematical process implicitly implies a
guantization of the subjacent space-time, leading to expressions for the quadratic
space-time line element which are proportional to Planck length squared. This is in
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agreement with most quantum gravity theories. It has to be remarked that this
mathematical constraint does not truly constitute a quantum gravity theory per se. It
relies on specific solutions to classical GR equations, without coupling an external mass
field, unlike semi-classical formulations of quantum gravity [22]. Explicit quantization of
space-time is not introduced as well. However, the results from this mathematical
constraint over classical GR solutions may approximate to the theoretical limits of
lengths for the space-time line element in specific GR solutions compatible with
guantum gravity phenomena.

The experimental determination of the length scales of space-time quantization is
critical to set up proper mathematical constraints for quantum gravity, and discard
incompatible scenarios [13]. For example, it would help on deciding the correct lattice
guantization of space-time in LQG, and its properties regarding the time problem and
the need for privileged reference frames [5,25,33,34]. Most current quantum gravity
theories such as LQG and string theory [6,10] predict that LIV occurs by the discrete
nature of space-time. Hence, the experimental testing of LIV could not only demonstrate
space-time quantization, but also the scales of lengths and energies in which quantum
gravity acts [18].

Putative upper limits to the constraints to LIV have been experimentally estimated by
several means [14-17]. LIV is predicted by quantum gravity theories to affect energy and
helicity-dependent photon propagation velocities, which could be measured when
accumulated over astronomical distances. Thus, by measuring deviations of photons
from gamma ray bursts (GRB 041219A) an upper limit of 1.1 10** on the vacuum
birefringence effect was estimated [16]. This constraint on Lorentz invariant violation
would translate into “spatial volume units” of the order of 102 or less. Some recent
studies are providing convincing LIV violations experimentally at different energy orders,
while other studies stablish very stringent constraints for LIV, or even fail to detect it
[13,15,16,35,36].

The constraints to the space-time line elements calculated in this paper are strictly
obtained using a relativistic covariant formulation of the uncertainty principle in
momentum and position 4-vectors. To obtain such constraints, GeUP [29] was applied
to the FRW metric as an approximation to current cosmological models [31]. More
specifically, a flat geometry condition was applied to the solution as it agrees with
current observations [32]. As expected, the length for the space-time line element
depends on terms derived from the energy-time uncertainty, and from the Hubble
function. This last term is only predominant if energy quantum fluctuations can be
ignored, for example in large astronomical objects.

The calculated lengths in this paper are compatible with those from other quantum
gravity theories, and with current constraints estimated for LIV. For example, the quanta
of area and volume in LQG are proportional to fzz, and {’f; [7,8,12], and £,, constitutes
a natural unit in string theories and doubly special relativity [10,11,37,38]. These
fundamental volume blocks would be in agreement with the experimental constraints
found for LIV. If confirmed, the discreet nature of space-time would have been proven.
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Such small quanta of space-time arise also in this paper. It has to be remarked that all
expressions for the quadratic line elements obtained in this paper are proportional to
{’IZ, , indicating that lengths of the order of £, constitute the “building blocks” of the
space-time. Nevertheless, the scales in which space-time quantisation could be
experimentally tested could be much wider. As shown in this paper, the calculated
quanta of volume would be on the range of 10?” m3 but further modified according to
corrections depending on quantum energy fluctuations and Hubble’s function.
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