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Article

Mass, Forces, and the Dark Sector in a Kaluza-Klein
Model with Compact Dimensions
Manfred Vieten

Universtiy of Konstanz, Konstanz, Germany; manfred.vieten@uni-konstanz.de

Abstract: This study investigates hadronic masses with a focus on scalar/vector mesons and baryons
with spins of ℏ

2 and 3ℏ
2 , excluding orbital angular momentum. A novel model based on Kaluza-Klein

theory is presented, simulating the Standard Model and expanding it to ten dimensions: one temporal,
three spatial, and six compactified. The model proposes that excitations, similar to light-speed ripples
in 10D spacetime, generate mass in a 4D universe and exhibit unique spin traits. Parameters are
derived from the electron’s g-factor and measured masses of charged leptons, the proton, neutron,
and mesons π+, ϕ, ψ, Υ. Crucial parameters include the compactification radius ρ, weak interaction
coupling αw, strong interaction coupling αs, and the antineutrino-to-neutrino density ratio δ. Mass
calculations for 102 hadrons are performed, with 70 compared to experimental values. A relative error
under 0.05 appears in 56% of cases and below 0.1 in 84%, with a correlation coefficient of r = 0.997
(p < 10−78). Additionally, masses for 32 hadrons are predicted. The model anticipates sterile particles
interacting gravitationally, potentially constituting dark matter. The model’s analysis involves the
strong, electromagnetic, and weak forces, depicted with equations and figures. Notably, asymmetry in
electromagnetic, and to a lesser extent, weak forces might elucidate dark energy.

Keywords: hadron masses; Kaluza-Klein theory; geodesic equation; Standard Model; antineu-
trino/neutrino density; fundamental forces (strong, electromagnetic, weak); neutrino mass; dark
matter; dark energy

1. Introduction
The Standard Model of particle physics [1–7] stands as one of the most triumphant theories in

the realm of physics. It excels at elucidating the fundamental interactions among particles through
bosons [8]: the photon governs electromagnetism, the eight gluons oversee the strong force, and
the W+, W−, and Z bosons manage the weak force. A significant accomplishment of the Standard
Model is its accurate determination of the electron’s anomalous magnetic dipole moment via quantum
corrections. Julian Schwinger introduced this as a first-order adjustment to the Dirac equation in
1948 [9]. Subsequently, higher-order corrections achieved an extraordinary concordance between
theoretical predictions and experimental data, with accuracy extending to 12 significant figures [10].
Despite its remarkable successes, the Standard Model has important gaps, such as its inability to explain
dark matter and dark energy [11], and its exclusion of gravity. Currently, no effective explanation
for dark matter and dark energy exists within the Standard Model’s framework. As for gravity,
while extensions like quantum gravity theories [12] suggest a spin-2 graviton as a potential mediator,
no experimental evidence supports this. Another challenge is its partial success in calculating the
masses of mesons and baryons—key components of ordinary matter—and predicting the behavior of
unstable particles in high-energy collisions. The Standard Model employs quantum fields in a flat four-
dimensional spacetime, whereas general relativity [13] interprets gravity using curved spacetime over
cosmic distances, serving as the backbone of contemporary cosmology [14]. However, could a higher-
dimensional spacetime offer another way to unify the strong, electromagnetic, and weak interactions
without a quantum gravity graviton? The earliest attempt at such a unification was made by Theodor
Kaluza in 1921 [15,16], proposing a five-dimensional theory that included electromagnetism. Oskar
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Klein added the quantum perspective in 1926 [17,18]. A comprehensive summary of these ideas was
published in 1987 by Appelquist, Chodos, and Freund in the work *Modern Kaluza-Klein Theories* [19].
Paul Wesson provided an update in 1999 [20], followed by a further update in 2018 [21]. Numerous
investigations into Kaluza-Klein theories explore the integration of electromagnetism into a five-
dimensional spacetime by frequently developing a corresponding five-dimensional metric and Einstein
tensor. Higher-dimensional extensions emerge in string theory [22–24], a field rich in mathematical
complexity but still lacking testable predictions. Conversely, the Standard Model effectively explains
the quantum architecture of elementary particles and predicts their decay probabilities [25], but it does
not provide a comprehensive method for calculating hadron masses [26,27]. Consequently, there is a
need for an alternative approach that places particle physics within the context of a higher-dimensional
spacetime framework. Should one abandon the Standard Model in favor of a theory that adeptly
represents gravity yet falters in particle physics? Alternatively, could both the Standard Model and a
higher-dimensional relativity coexist as complementary perspectives? Perhaps they are dual facets of a
more profound theoretical structure, akin to wave-particle duality. This potential is reminiscent of the
renowned double-slit experiment [28], which reveals both wave and particle characteristics. This paper
presents a model that reinterprets the Standard Model through a *Kaluza-Klein-like theory*—offering
not a contradiction, but a different perspective. The presented framework features ten adaptable
dimensions: one temporal, three large-scale spatial, and six compact spatial dimensions. Within this
ten-dimensional spacetime, an *excitation*—a transient deformation—consistently travels at the speed
of light. In four-dimensional space, such an excitation appears as a gravitational wave, whereas in a
compact dimension, a stable excitation has a clearly defined length based on the dimension’s radius.
The six compact dimensions’ radii dynamically change according to specific excitations, which relate
to particle properties. As the model is developed, the explicit spacetime structure is devised. Further
steps involve elucidating the three fundamental interactions and devising formulas for computing
particle masses, with particles identified in relation to the six compact dimensions. The model’s
essential parameters are determined using empirical data, incorporating the known masses of the
charged leptons, the proton, the neutron, and mesons π+, ϕ, ψ, Υ, as well as the electron’s magnetic
moment. Key parameters include the compactification radius ρ, the weak coupling constant αw, the
strong coupling constant αs, the magnetic moment’s constant M, the magnetic field’s constant N, the
flavor constants A, and the neutrino-to-antineutrino density ratio δ. Once established, no further
free parameters exist. Subsequently, the model outlines rules for calculating the mass of scalar and
vector mesons, along with spin- 1

2 and spin- 3
2 baryons without orbital angular momentum. It calculates

masses for 102 hadrons, which are then compared to experimental data when available, with the
relative error between observed and predicted masses being under 0.05 for most hadrons. The model
also accommodates sterile leptons and hadrons, which interact solely through gravitational forces,
thus constituting dark matter. Finally, the evaluation of the model includes an analysis of the strong,
electric, and weak forces, which are described with equations and illustrations. The electric force, and
to a lesser extent the weak force, show asymmetrical behavior, which may offer an explanation for
dark energy. Ultimately, to evaluate the model, two experiments conducted in a laboratory setting and
one observation from astronomical data are proposed.

2. Methods/Model
2.1. Embedding and Container Space

We begin with a 10-dimensional framework comprising a single time dimension alongside nine
spatial dimensions. The familiar concept of spacetime includes the time and three of these spatial
dimensions, whereas the six additional dimensions are compactified. To facilitate computation, this
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10-dimensional framework is embedded within a 20-dimensional container. The correlation between
the 10D spacetime coordinates, xi, and the coordinates of the container space, yj, is expressed by:

y0 = ct (1)

y1 = x1

y2 = x2

y3 = x3

yi = ri cos(φi) = ri cos
(

xi

ri

)
for i = 4, 5, 6, 7, 8, 9

y10 = 0

y11 = 0

y12 = 0

y13 = 0

yi+10 = ri sin(φi) = ri sin
(

xi

ri

)
for i = 4, 5, 6, 7, 8, 9

Here, ri represents the radius of the compactified dimension. The container space is equipped with a
simple flat metric of the form:

ηab = diag(1, 9 × (−1), 1, 9 × (−1)) (2)

where indices a, b range from 0 to 19. The connection between the 10-dimensional physical space and
the 20-dimensional container space is expressed as:

gµν =
∂ya

∂xµ

∂yb

∂xν
ηab (3)

This results in a spacetime signature of diag(1,−1,−1,−1,−1,−1,−1,−1,−1,−1) for the undeformed
10D spacetime. The six compactified dimensions are categorized based on their roles in fundamental
interactions: - Strong interaction: dimensions 4 to 6 - Electromagnetic interaction: dimension 7 -
Weak interaction: dimensions 8 and 9

2.2. Angular Momentum of a Stable Excitation in a Compactified Dimension

A particle is viewed as an aggregate of associated excitations that move as waves through one or
more of the six compactified cylindrical dimensions. The signal speed around any cylinder consistently
equals c, the speed of light. Completing one full circuit of a cylinder (encompassing double the typical
phase space) is expressed as:

4πri = niλi (4)

where ni is an integer and λi, the wavelength, is linked to the frequency f and the speed of light
through the usual formula:

c = f λ (5)

The excitation’s momentum is defined as:

pi = h̄ki (6)
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where ki = 2π/λi represents the wave vector. Using these definitions, the spin (angular momentum)
of an excitation in a compactified dimension is calculated as:

si = ri pi = ri 2πh̄
λi = ri ni h̄

2ri = ni h̄
2

(7)

This outcome does not depend on the cylinder’s radius.

2.3. The Electric Interaction – Dimension 7

The derivation begins with a point-particle current (as observed in four-dimensional spacetime)
with four-velocity wµ:

Jµ
e =

e
3
· o7 · δ3(x⃗ − y⃗) · wµ (8)

The corresponding covariant Liénard-Wiechert potential [29], generated by a point particle with
four-velocity vµ, is given by:

Aµ
e =

e
3 · n7

4πε0c2 · vµ

|⃗y − x⃗0|
(9)

The potential energy between these two particles is:

Ue
no(|⃗x − x⃗0|) =

∫∫∫ ∞

−∞
Jµ
e Ae

µdy1dy2dy3 (10)

=
e2n7o7

4πε0c29
·

wµvµ

|⃗x − x⃗0|
=

αech̄n7o7 fno(z)
9ρz

where |⃗x − x⃗0| is abbreviated as ρ · z, with ρ being a constant with units of length and z a dimensionless
parameter. The invariant form is given by:

wαvα = gαβwαvβ = c2 fno(z) (11)

where

wµ
o = [γo, γoβo, 0, 0, |signum(oi)|] · c (12)

and

vµ
n = [γn, γnβn, 0, 0, |signum(ni)|] · c (13)

for i = 4, 5, 6, 7, 8, 9 (see Appendix B.1). The function signum is defined such that signum(0) = 0. The
function fno(z) encapsulates z-dependent terms, including the metric tensor gµν(z), the normalized
velocity β = v/c, and the Lorentz factor γ = 1/

√
1 − β2. The force acting on a particle is given by:

F⃗e(z) = −1
ρ

∂

∂z

(
αech̄n7o7 fno(z)

9ρz

)
=

αech̄n7o7 fno(z)
9ρ2z2 −

αech̄n7o7
∂ fno(z)

∂z
9ρ2z

(14)

The total electric energy of an excitation o7 consists of rest and kinetic energy:

Ee
o(z) =

(
h̄ω(ro) +

A|o7|αech̄
9ρ

)
γo(z) =

(
o7ch̄
ro(z)

+
A|o7|αech̄

9ρ

)
γo(z) (15)
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where the second term represents a constant multiplied by the Lorentz factor γo. Since total energy is
conserved, we obtain:

0 =
∂

∂z
(Ee

o(z) + Ue
no(z)) (16)

0 = − o7h̄c
r2(z)

d
dz

r(z)γo(z) +
(

o7h̄c
r(z)

+
A|o7|αech̄

9ρ

)
d
dz

γo(z)

+
αech̄n7o7

d
dz fno(z)

9ρz
− αech̄n7o7 fno(z)

9ρz2

Solving this differential equation allows us to determine the cylinder radius of dimension 7, where o7

and n7 represent excitation numbers:

ro7(z) =
9γo(z)ρzo7

−A|o7|αeγo(z)z − αen7o7 fno(z) + 9Cρzo7
(17)

In the limit as z → ∞, the undisturbed radius is given by:

lim
z→∞

ro7 =
9ρo7γo(∞)

−A|o7|αeγo(∞) + 9Cρo7
=

9ρ

αe signum(o7)
(18)

which allows us to fix the constant C as:

C =
αe|o7|(1 + A)γo(∞)

9o7ρ
(19)

where ρ is identified as the compactification radius, which will be determined later. Substituting this
into equation (17), we obtain:

ro7(z) =
9γo(z)ρ signum(o7)

αe

(
γo(∞)(1 + A)− n7 signum(o7) fno(z)

z − γo(z)A
) (20)

Finally, inserting equation (20) into equation (15), the electric energy is given by:

Ee
o(z) =

αech̄
9ρ

(
γo(∞)|o7|(1 + A)− n7o7 fno(z)

z

)
(21)

Since mass is obtained by adding potential energy (10) and dividing by c2, the electric mass is:

mo7 =
Ee

o(z) + Ue
no(z)

c2 =
αe h̄|o7|(1 + A)γo(∞)

9cρ
(22)

which is independent of z. The mass is caused by a excitation with the excitation number o7, a
sinusoidal wave of wavelength λ = 4πr7

|o7|
. A is interpreted a excitation in form of a standing wave

with equal numbered positive and negative excitations. It does not give rise to an additional force or
additional spin. Therefore, A is either zero or a positive even number.

2.4. The Strong Interaction – Dimensions 4, 5, and 6

At this stage, the color representation is introduced as:

cred =

 1
−1
0

, cgreen =

 0
1
−1

, cblue =

 −1
0
1

 (23)
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For an anti-color, each component is multiplied by −1. The calculation of the cylinder radii follows the
same approach as in the electric case. Again, starting with a point-particle current of four-velocity wµ,
the current in each relevant dimension is:

Jµ
s = es · δ3(x⃗ − y⃗) · wµni, i = 4, 5, 6 (24)

The vector potential, assuming a simplified ansatz [30–33], depends linearly on the distance between
the two color charges:

Aµ
s =

es

4πε0c2 · |⃗y − x⃗0|
ρ2 vµoi =

es

4πε0c2 · z
ρ

vµoi (25)

The potential energy between two particles is then:

Us
no(z) =

∫∫∫ ∞

−∞
Jµ
s As

µdy1dy2dy3 (26)

=
e2

s no
4πε0c2 · wµvµ · nioi ·

z
ρ

=
αsch̄nioi

ρ
· fno(z) · z

The force is given by:

F⃗s = −1
ρ

∂

∂z
Us

no(z) (27)

= −αsch̄nioi
ρ2 ·

(
d fno(z)

dz
· z + fno(z)

)
The rest and kinetic color energy of a cylinder excitation follows the same structure as in the electric
case:

Es
o(z) =

(
oich̄
ro(z)

+
αsch̄A|oi|

ρ

)
· γo(z) (28)

As before, energy conservation gives:

0 =
∂

∂z
(Es

o(z) + Us
no(z)) (29)

=

(
oich̄
ro(z)

+
αsch̄A|oi|

ρ

)
∂γo(z)

∂z
− oich̄γo(z)

r2
o(z)

∂ro

∂z

+
αsch̄nioi

ρ

(
d fno(z)

dz
· z + fno(z)

)
Solving for the radii of the color cylinders (i = 4, 5, 6), we obtain:

roi (z) =
ρoiγo(z)

−αs Aγo(z)− αsnioi fnoz + Cρoi
(30)

The constant is determined by:

lim
z→0

roi =
oiργo(0)

−αs A|oi|γo(0) + oiρC
=

ρ

αs signum(oi)
(31)

which leads to:

C =
αs|oi|(1 + A)γo(0)

oiρ
(32)
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Thus, the cylinder radius is:

roi (z) =
ρ signum(oi)γo(z)

αs(γo(0)(1 + A)− signum(oi)ni fno(z) · z − γo(z)A)
(33)

Without including potential energy, the color energy simplifies to:

Es
o(z) =

αsch̄
ρ

(|oi|(1 + A)γo(0)− ni signum(oi) · fno(z) · z) (34)

Finally, the color mass is:

moi =
Es

o(z) + Us
no(z)

c2 =
αs h̄
cρ

· |oi| (1 + A)γo(0) (35)

2.5. The Weak Interaction – Dimensions 8 and 9

The point-particle currents associated with the weak interaction are given by:

Jµ
w = ew · δ3(x⃗ − y⃗) · wµni, i = 8, 9 (36)

In the electric case, the vector potential follows a 1/z dependence, while in the strong interaction, it
exhibits a linear z dependence. The electric force acts in one dimension, whereas the strong interaction
spans three dimensions. The weak interaction, which occupies two dimensions, suggests a logarithmic
dependence for the potential as a natural functional form for this number of dimensions:

Aµ
w =

ew

4πε0c2 · vµ

ρ
oini · ln(z) (37)

The associated potential energy, following the same derivation as in previous cases, is given by:

Uw
no(z) =

∫∫∫ ∞

−∞
Jµ
w Aw

µ dy1dy2dy3 (38)

=
e2

w
4πε0c2 ·

wµvµ

ρ
oini · ln(z)

= αw · ch̄oi · ni · ln(z) fno(z)
ρ

The force acting on a particle is then:

F⃗w = −1
ρ
· ∂

∂z
Uw

no(z) (39)

= −αwch̄oini
ρ2 ·

(
ln(z) · ∂ fno(z)

∂z
+

fno(z)
z

)
Following the same considerations as in previous cases, the rest and kinetic energy can be expressed
as:

Ew
o (z) =

(
oich̄

roi (z)
+

αwch̄A|oi|
ρ

)
· γo(z) (40)
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As before, total energy conservation requires:

0 =
∂

∂z
(Es

o(z) + Us
no(z)) (41)

0 =

(
och̄

ro(z)
+

αwch̄A|oi|
ρ

)
∂γo(z)

∂z
− och̄γo(z)

r2
o(z)

∂ro

∂z

+
αwch̄oini

ρ

(
ln(z) · ∂ fno(z)

∂z
+

fno(z)
z

)
From this, the radius of the compactified weak interaction dimensions (i = 8, 9) is found to be:

roi (z) =
oiργo(z)

−A|oi|αwγo(z)− αwoini ln(z) fno(z) + Cρoi
(42)

Neutrino Screening Effect
A crucial aspect not previously mentioned is a screening effect due to nearby neutrinos and

antineutrinos. Particles interacting via the weak force are influenced by their surrounding neutrino
and antineutrino distributions. This means that, in addition to direct interactions with another specific
particle, there is an additional contribution from nearby neutrinos and antineutrinos.

Let δ be the ratio of the average neutrino distance zv to the average antineutrino distance zv̄.
This is equivalent to the cubic root of the ratio of antineutrino density ρv̄ to neutrino density ρv. In a
homogeneous density, this relationship holds for any given volume V, where:

V = nvz3
vρ3 = nv̄z3

v̄ρ3 (43)

which gives:

ρv̄

ρv
=

nv̄

V
· V

nv
=

nv̄nvz3
vρ3

nvnv̄z3
v̄ρ3

=
z3

v

z3
v̄
= δ3 (44)

This establishes the neutrino-to-antineutrino distance ratio:

δ =
zv

zv̄
=

(
ρv̄

ρv

) 1
3

(45)

The presence of δ modifies the undisturbed cylinder radii of the weak interaction. Consequently, fixing
the free constant requires:

lim
z→1

roi =
oiργo(1)

Cρoi − αw A|oi|γo(1)
=

ρ

αw(signum(oi)− ln(δ))
(46)

which leads to the final expression:

roi (z) =
ρ signum(oi)γo(z)

Numerator
(47)

Numerator = αw([(1 − signum(oi) ln(δ)) + A]γo(1)

− fno(z) ln(z)ni signum(oi)− Aγo(z))

The overall neutrino-antineutrino distribution, characterized by δ, contributes only a small correction
to a particle’s energy:

Ew
o (z) =

αw h̄c
ρ

(((A + 1)|oi| − ln(δ)oi)γo(1)− ln(z) fno(z)nioi) (48)
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Finally, the weak interaction mass is:

moi =
Ew

o (z) + Uw
no(z)

c2 =
αwγo(1)h̄|oi|

ρc
· (A + 1 − ln(δ) signum(oi)) (49)

2.6. The Undisturbed Cylinder Radii

The undisturbed radius of a cylinder is its natural radius, unaffected by any potential energy
dependent on z. The remaining energy is given by:

Eundisturbed =
ch̄oγo

r(z = ∞, 0, 1)
=

αch̄oγo

ρ
· F(o, n, . . .), (50)

which must be nonzero to satisfy energy conservation. Solving for r yields:

r =
ρ

α · F(o, n, . . .)
(51)

The function F(o, n, . . .), which characterizes the interactions, is defined as:

F(o7, n7) = signum(o7) · signum(|n7|) ⇒ r =
ρ

αe · signum(o7)
(52)

F(o4,5,6, n4,5,6) = signum(o4,5,6) · signum(|n4,5,6|) ⇒ r =
ρ

αs · signum(o4,5,6)

F(o8,9, n8,9) = signum(o8,9) · signum(|n8,9|)− ln(δ)

This leads to the following expressions for the undisturbed weak interaction radius:

r =


ρ

αw ·(signum(o8,9)−ln(δ)) , if entangled with another particle
−ρ

αw ·ln(δ) , if not entangled
(53)

Role of the Screening Effect
The additional term ln(δ) arises from the weak interaction potential energy (38), where mean

distances to neutrinos and antineutrinos play a role:

Uw =
αwch̄oiγo

ρ
· (− ln(zve) + ln(zv̄e)) = −αwch̄oiγo

ρ
· ln(δ) (54)

Since this "potential" is independent of z, it does not contribute to any force.

2.7. The Particle Mass from Strong, Electric, and Weak Interactions

The Lorentz factors for all three interactions at their respective fixed points (see Appendix B.2),
where their radii equal the undisturbed radii, are:

γos(0) = 1, γoe(∞) = 1, γow(1) = 1 (55)

For all additional dimensions associated with the strong, electric, and weak interactions, the total
particle mass mo, excluding contributions from "magnetism," is given by:

mo =
h̄
cρ

[[
αs(|o4|+ |o5|+ |o6|) +

αe|o7|
9

]
(1 + A) (56)

+
αw

2

9

∑
i=8

|oi|(1 + A − signum(oi) ln(δ))

]
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2.8. Masses Solely Dependent on the Weak Sector

The situation differs for particles affected exclusively by the weak interaction. In this case, only
nearby neutrinos and antineutrinos influence the radii of the weak interaction cylinders. As a result,
(38) simplifies to:

Uw
o (z) = 0 (57)

Consequently, no force acts on the particle:

F⃗w = −1
ρ

∂

∂z
Uw

no(z) = 0 (58)

The excitation energy in the rest frame retains the same structure as in the general weak interaction
case (40) but without z dependence:

Ew
o =

oich̄
roi

+
αwch̄A|oi|

ρ
(59)

Since the cylinder radius remains constant, it is given by:

roi =
−ρ

αw ln(δ)
(60)

Thus, the excitation energy becomes:

Eo =
αwch̄|oi|

ρ
(A − signum(oi) ln(δ)) (61)

Finally, the corresponding mass for i = 8, 9 is:

moi =
Eo + Uw

o (z)
c2 =

αw h̄|oi|
cρ

(A − signum(oi) ln(δ)) (62)

3. Results - Model’s Calculated Values
3.1. Calculation of the Model’s Constants
3.1.1. The Compactification Radius ρ

The time required for an electron excitation (of length λ = 4π|r|/3 and velocity c) to complete
one revolution around the cylinder is:

∆T =
3λ

c
=

4π|r|
c

(63)

From this, the electric current is calculated as:

I = − e
∆T

= − ec
4π|r| (64)

The classical magnetic dipole moment, defined with winding number n = 2 and current loop area A,
is:

µ = nIA = −2 · ec
4π|r| · π|r|2 = − ec|r|

2
(65)
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For a single electron in the compactified dimension, with |r| = 9ρ
αe

, the Bohr magneton µB = eh̄
2me

, and
the z-component of spin Se = 3h̄/2 (corresponding to the spin of the electric dimension), the magnetic
dipole moment is:

µS = − geµBSe

h̄
= −3geeh̄

4me
(66)

By comparing these two expressions and using the measured g-factor of an electron ge =

2.00231930436182(52), the compactification radius ρ is determined as:

ρ =
ge h̄αe

6mec
= 9.4040252(14)× 10−16 m (67)

Having achieved the numerical value of the compactification radius ρ, the g-factor of any Dirac particle
can be calculated. With the mass mn (56) and the generalized particle magneton µP = ee h̄

6m the g-factor
becomes

g(n) =
18cρmn

neℏαe(1 + A)
(68)

The g-factor is dependent on the mass of the first generation particles only. In general a particle’s
magnetic dipole moment is

µn =
g(n)eeneℏ

12mn
(69)

3.1.2. The Weak Coupling αw and the Neutrino Distribution Ratio δ

The masses of the three charged leptons (e, µ, τ) are calculated using Equation (56) but without
an active color charge:

me,µ,τ =
h̄
cρ

[
αs Ae,µ,τ +

αe

3
(1 + Ae,µ,τ) + 2αw(1 + ln(δ) + Ae,µ,τ)

]
(70)

At this stage, the weak coupling αw and the neutrino distribution ratio δ are unknown. However, by
writing the masses of the electron (71) and the the positron (72), assuming Ae = 0

me− =
h̄

cre
+

h̄
crw

=
h̄
cρ

[αe

3
+ 2αw(1 + ln(δ))

]
(71)

me+ =
h̄

cre
+

h̄
crw

=
h̄
cρ

[αe

3
+ 2αw(1 − ln(δ))

]
(72)

the system allows us to determine αw and estimate δ. The experimental upper bound on the positron-
electron mass difference,

|me+ − me− |
maverage

< 8 × 10−9 [34,35] (73)

allows the calculation of an interval with δ within:

αw =
3cρmaverage − h̄αe

6h̄
= 1.41040(26)× 10−6 (74)

δ ≷ exp

(
∓

cρmaverage · 2 × 10−9

h̄αe

)

=

0.9999965467(64), if me+ > me−

1.0000034530(64), if me+ < me−
(75)
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It is known that αw ∼ 10−6 [36], which agrees well with the result in (74). This supports the assumption
that Ae = 0. A second argument supporting this result comes from the higher-dimensional structure
of the photon, which will be derived later in this paper. In order for the photon to be massless, the
condition Afirst generation = 0 must hold.

From this point onward, calculations are performed under the assumption:

Ae = Ave = Ad = Au = 0 (76)

To complete the list of lepton constants, the measured masses of the muon and tau, along with
Equations (70), are used to determine their values. The results are Aµ = 0.97 and Aτ = 16.32. We use
αs = 0.51638925(12), a result that is independently received later (see Table 2). Flavor constants must
be zero or even integers. Taking into account the statistical, observational, and numerical errors of
the calculation results, the flavor constants are close to integers. However, Aµ cannot take a value
other than 1. Therefore, the muon is regarded as a superposition of the electron and a respective
second-generation lepton, leading to the results, which are used in all further calculations (see Table 1).

Table 1. Lepton Constants

Ae = 0 Aµ = 1 Aτ = 16
Ave = 0 Avµ = unknown Avτ = unknown

3.1.3. Hadron Mass Formulas

Using Equation (56), the mass contributions from the strong, electric, and weak interactions for
quarks can be expressed as:

md,s,b =
h̄
cρ

[
2αs +

1
9

αe + 2αw

]
(1 + Ad,s,b) +

2αw h̄
cρ

· ln(δ) (77)

md,s,b =
h̄
cρ

[
2αs +

1
9

αe + 2αw

]
(1 + Ad,s,b)−

2αw h̄
cρ

· ln(δ) (78)

mu,c,t =
h̄
cρ

[
2αs +

2
9

αe + αw

]
(1 + Au,c,t)−

αw h̄
cρ

· ln(δ) (79)

mu,c,t =
h̄
cρ

[
2αs +

2
9

αe + αw

]
(1 + Au,c,t) +

αw h̄
cρ

· ln(δ) (80)

The differences in quark masses are not solely due to the interaction strengths but are also significantly
influenced by the flavor constants Ad,s,b,u,c,t. As previously stated, all first-generation constants are
set to zero (76). Excluding magnetic field contributions, the first-generation meson masses m̃ are
given by:

m̃π0 =
m̃dd̄ + m̃uū

2
=

md + md̄
2

+
mu + mū

2
= m̃ρ0 (81)

m̃π+ = m̃ud̄ = mu + md̄ = m̃ρ+ .

Each quark and antiquark behaves as a dipole and possesses a magnetic field corresponding to each
excited compactified dimension but do cancel except for the electric dimension (details see Appendix
C). The magnetic field within the compactified dimension is derived from the Biot-Savart law for
quarks (A14) and antiquarks (A17) within the compactified electric dimension. The leaking of the
magnetic field into 3D space generates mass contributions for mesons

mB(on̄) =


ℏαe

(
|n7|2−2|n7||o7|+|o7|2

)
9czρ · N (Scalar Mesons)

ℏαe

(
|n7|2+2|n7||o7|+|o7|2

)
9czρ · N (Vector Mesons)

(82)
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and for baryons

mB(nop) =



ℏαe(|n7|2+2|n7||o7|+|o7|2+|p7|2)
9czρ · N, (Spin-1/2)

ℏαe(|n7|+|o7|+|p7|)2

9czρ · N, (Spin-3/2, 2 or 3 quarks flavors)

ℏαe

(
|p7|2+2|n7||p7|+|n7|2+|o7|2

)
9czρ · N, (Spin-3/2, one quark flavor)

(83)

A further mass contribution comes from dipoles within the magnetic fields of the partner quarks/antiquarks
with

mM(on̄) =

+ ℏ((A1+1)|n7|+|o7|(A2+1))
2(A1+1)ρ(A2+1)c · M (Scalar Mesons)

− ℏ((A1+1)|n7|+|o7|(A2+1))
2(A1+1)ρ(A2+1)c · M (Vector Mesons)

(84)

for mesons, and

mM(nop) =



− ℏ((A1+1)|n7|+|o7|(A2+1))
2(A1+1)(A2+1)cρ

· M

− ℏ((A1+1)(A2+2+A3)|n7|+(A2+1)(A1+2+A3)|o7|+(A3+1)(A1+2+A2)|p7|)
2(A1+1)(A2+1)(A3+1)cρ

· M

− ℏ((A1+1)|n7|+|p7|(A3+1))
2(A1+1)(A3+1)cρ

· M

(85)

for baryons of spin 1/2 and 3/2 (third equation for baryons with identical quark flavors). Mass
contributions for mesons and baryons differ due to their internal field interactions.

Meson Mass Formula

mon̄ = mo + mn̄ + mB(on̄) + mM(on̄). (86)

Using this framework, the mass formulas for the first-generation mesons are given by:

mπ0 =
(md + mu + md̄ + mū)

2
+

3ℏM
2cρ

, (87)

mπ+ = mu + md̄ +
ℏαeN
9czρ

+
3ℏM
2cρ

,

mρ0 =
(md + mu + md̄ + mū)

2
+

10ℏαeN
9czρ

− 3ℏM
2cρ

,

mρ+ = mu + md̄ +
ℏαeN
czρ

− 3ℏM
2cρ

.

Baryon Mass Formula

mnop = mn + mo + mp + mB(nop) + mM(nop) (88)

Baryons consist of three quarks and exist, when without orbital rotation, in two spin states: h̄/2 and
3h̄/2. For spin h̄/2, one of the quarks (the p-quark) undergoes a spin flip, breaking the symmetry. As
a result, different quark configurations—despite having the same quark content—can lead to different
baryon masses. A clear example of this is the mass difference between the Λ0 (1116 MeV) and the
Σ0 (1193 MeV) baryons, both of which share the quark content (d, u, s). This symmetry breaking,
combined with the selection rules given below, alters the calculation of additional mass terms.

Selection Rules for spin h̄/2-Baryons

1. For baryons consisting of a mixture of u-like (u, c, t) and d-like (d, s, b) quarks, the non-flipped
quarks always represent a u-d-like combination.
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2. In case of a baryon consisting of a u-d-mixture built of three different quark species, there always
exist two combinations with a different quark flipped. These are baryons with identical excitation
numbers but a dissimilar mass.

3. For those baryons consisting of purely u- or d-like quarks the non-flipped quark pair consists of
different flavors.

For spin 3h̄/2 baryons, each quark interacts with its two neighboring quarks, making the order
of quarks irrelevant. Consequently, each unique quark combination corresponds to a single mass
value and all quarks are treated equally. One exception, however, is when 3 identical quarks build one
spin 3h̄/2-baryon. In this case, an exclusion principle - two identical quarks within one compactified
tube only - arranges two quarks within one cylinder and the third quark within a different one.

3.1.4. Mass Formulas for the Proton and Neutron

For a baryon with quark content udu (proton), where one u-quark is flipped, only one configura-
tion exists. The total mass of the proton is:

mProton = md + 2mu +
13ℏαeN

9zcρ
− 3ℏM

2cρ
. (89)

Similarly, for the neutron (dud), where one d-quark is flipped, the mass is given by:

mNeutron = 2md + mu +
10ℏαeN

9zcρ
− 3ℏM

2cρ
. (90)

3.1.5. Evaluation of Field Multipliers and Strong Coupling Constant αs

To determine the field multipliers N and M and the strong coupling constant αs, which affects
the binding energy of hadrons, we utilize the three most accurately measured hadron masses: the
charged pion (87), the proton (89), and the neutron (90). Including statistical uncertainties, the values
obtained are M = −0.9329033(37), N = −1.4335289(80), and αs = 0.51638925(12). These calculations
derive solely from the three specified hadrons. The value of N (refer to (82) and (83)) is contingent
on an average value of z, whose precise value remains unknown. However, it suffices to understand
the relative distance z between baryons and mesons. The calculation of N will thus refine itself. The
strong interaction chiefly determines the separation within quarks of baryons and mesons, resulting in
zbaryon = 1

2 in relation to zmeson = 1
3 , values utilized for the calculations. Although M is independent

of z, it may vary slightly between different particles. Consequently, calculations were performed on all
20 combinations of first-generation particles Proton, Neutron, π0, π+, ρ0, and ρ+, and the standard
deviations were computed. These standard deviations are applied in subsequent calculations for N
and M. αs remains unaffected, and the original value is used as shown in Table 2.

Table 2. Field Multiplier Values and Strong Coupling Constant

M = −0.93(25)) N = −1.434 ± 15.22 αs = 0.51638925(12)

3.2. Particle Identification

The identification of fermions is straightforward. Color charge and electric charge are easily
assigned:

• A quark carries one of the three colors: red, green, or blue, along with its respective excitation
numbers.

• The electric excitation number is:

– −1 for a down quark
– +2 for an up quark
– −3 for an electron
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• Each excitation number contributes a spin of h̄/2 times the excitation number. To ensure an
overall spin of h̄/2, the weak excitations are adjusted accordingly.

• A neutrino consists exclusively of weak excitations and is described as a superposition of weak
excitation states. Its excitation number, formally written as (−1), is the same as the weak
excitation contribution of a u-quark (see Table 3).

Table 3. Fermions of the First Generation

3.2.1. Higher-Generation Particles and Antiparticles

For higher-generation particles, the excitation settings remain identical to those of the first
generation. Antiparticles are obtained by multiplying all excitation numbers by −1.

3.2.2. Excitation Numbers of Photons and Gluons

The excitation numbers of the Standard Model gauge bosons can be inferred from known decay
processes. For example, in electron-positron annihilation [37], two photons are produced:

e+ + e− → 2γ
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This corresponds to the following excitation number transformation:

0
0
0
3

(−2)
(−2)


+



0
0
0
−3
(2)
(2)


→



0
0
0
0
(1)
(−1)


+



0
0
0
0
(1)
(−1)


Two real, measurable photons are created. As follows using Equation (62), photons are massless. A
related example is the ηb meson, which has a decay mode producing three gluons [38]:

bb̄ → 3g

highlights the structure of a gluon and shows the correspondence with the excitation numbers trans-
formation: 

1
−1
0
−1
(2)
(2)





−1
1
0
1

(−2)
(−2)


→



1
−2
1
0
(0)
(0)


+



1
1
−2
0
(0)
(0)


+



−2
1
1
0
(0)
(0)


The Standard Model of Particle Physics explains that the main interaction among quarks within
hadrons results from gluon exchange. According to this Kaluza-Klein perspective, the strong force
emerges due to the curvature of spacetime. Taking into account both the Standard Model and the
Kaluza-Klein model as complementary frameworks, the gluon mass within hadrons can be interpreted
as:

mgluon =
4αsℏ

cρ
= 433.42082(12)

MeV
c2 (91)

Using the evolution equation [3] to scale up αs to Z0-boson energy, we obtain:

αs(Z0) =
αs

1 +
(11Nc−2N f )

12π · αs · ln
(

m2
Z0

m2
gluon

) = 0.11816 (92)

for three colors (Nc = 3) and five flavors (N f = 5). The Particle Data Group (PDG) reports the strong
coupling at the Z0 energy scale as 0.1180(9), demonstrating excellent agreement with the model’s
prediction.

3.2.3. Summary of Gauge Bosons

In Table 4, the photon and the color-altering gluons (distinct from the eight gluons in the Standard
Model) are delineated. The W+, W−, and Z0 bosons are not highlighted, as they seem to exert minimal
influence on the calculation of the hadron masses.
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Table 4. Intermediate Bosons

3.2.4. Mass Generation via Compactified Dimensions

In this model, mass arises from excitations of the compactified dimensions. - Excitations always
travel at the speed of light in higher dimensions. - When an excitation is projected into 4D spacetime,
it manifests as mass. Thus, particles gain their mass due to their interaction within higher dimensions.

3.3. Hadron Masses

The field multipliers and coupling constants are assumed to be independent of particle gen-
eration. The quark flavor constants As, Ac, Ab are determined using the known formulas and the
measured masses of the ϕ, ψ, and Υ mesons.

mϕ(ss) =
ℏ
(

2
(
2αs +

αe
9 + 2αw

)
(As + 1) + 4αe N

3 − M
As+1

)
cρ

(93)

mψ(cc) =
ℏ
(

2
(

2αs +
2αe
9 + αw

)
(Ac + 1) + 16αe N

3 − 2M
Ac+1

)
cρ

mY

(
bb
)
=

ℏ
(

2
(
2αs +

αe
9 + 2αw

)
(Ab + 1) + 4αe N

3 − M
Ab+1

)
cρ

The flavor constants are calculated solving the system of three equations (93) with the results: As = 1.15,
Ac = 6.03, and Ab = 22.09. It is assumed that flavor constants are the result of standing waves within
the compactified cylinders, meaning equal numbers of positive and negative excitation numbers.
Therefore, those numbers must be even. However, the s-quark is regarded as a superposition of the d
and the respective quark s′ of the second generation with As =

Ad+As′
2 . Taking statistical, observational,

and numerical errors of the calculation results into account, the flavor constants are

Table 5. Flavor Constants

Ad = 0 Au = 0 As = 1 Ac = 6 Ab = 22

These values then allow for the calculation of hadron masses. First, the masses of scalar and
vector mesons are computed, followed by the masses of baryons with spin h̄/2 and 3h̄/2. The
reference list of particles was primarily obtained from Wikipedia [39,40], where the lowest mass
states for each quark combination are listed. However, it is not entirely clear whether these values,
particularly for baryons, are the most suitable for comparison. Nevertheless, the measured particle
masses listed in these sources are used for comparison against the calculated values, and to estimate
the relative error caused by uncertainties in determined masses. All other calculations are based on
the latest data from the Particle Data Group (PDG) [34]. The tables presented in this section include:
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• Particle name and symbol
• Quark content
• Measured and calculated masses (in MeV/c2 and kg)
• Standard deviations
• Relative error
• Mass formula used for the calculation

The measured masses in kilograms are provided without standard deviations, as these values
are not used in subsequent calculations.

3.3.1. Meson Masses

For scalar mesons, the quark and antiquark spins are aligned antiparallel, resulting in a net
spin of S = 0. The corresponding masses are listed in Table 6.

Table 6. Masses of Scalar Mesons

For vector mesons, the quark and antiquark spins are aligned parallel, leading to a net spin of
S = h̄. The corresponding masses are presented in Table 7.

Table 7. Masses of Vector Mesons

3.3.2. Baryon Masses

A baryon consists of three quarks, each with spin h̄/2. If one quark undergoes a spin flip, the
resulting baryon has a total spin of h̄/2 (Table 8). The masses are calculated using equation (88).
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Table 8. Masses of Baryons with Spin h̄/2

If all three quarks, each with spin h̄/2, align in the same direction, the baryon has a total spin of
3h̄/2 (Table 9).
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Table 9. Masses of Baryons with Spin 3h̄/2

3.4. Correlation Between Measured and Calculated Hadron Masses

The correlation between measured and calculated hadron masses demonstrates the accuracy and
reliability of the mass calculation model (Table 10 and Figure 1).
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Table 10. Pearson’s Correlation Between Measured and Calculated Hadron Masses. The table presents Pearson’s
correlation coefficient r and the associated significance p.

Number of Hadrons Particle Group Pearson’s r p
13 Scalar Mesons 0.998 2.2 × 10−14

13 Vector Mesons 0.999 7.6 × 10−18

24 Spin- 1
2 Baryons 0.999 2.1 × 10−30

20 Spin- 3
2 Baryons 0.998 2.1 × 10−22

Figure 1. Correlation Between Measured and Calculated Masses. The diagonal line represents the ideal case
where measured and calculated masses are identical.

3.5. Sterile Dirac Particles

Equation (56) indicates the plausible existence of Sterile Leptons and Sterile Quarks, charac-
terized by Ai engaging in direct interaction with the couplings, bypassing a possible dependence on
charges. With appropriate conditions, a Sterile Dirac Particle might be formed via a collision, possibly
resulting in a mass given by

msterile =
h̄
cρ

[
αs · (A4 + A5 + A6) +

αe

9
· A7 +

1
2

(
αw · A8 + αw · A9)] (94)

, where Ai = |npi| + |nni| is zero or a positive even integer, the sum of the positive and negative
excitation numbers with |npi| = |nni| and i = 4, ..., 9. Sterile particles interact solely through gravity.

3.6. Calculation of Particle Acceleration and Force

In a coordinate system with the two interacting particles aligned along the z = z1-axis with
z2 = z3 = 0, the velocity is expressed as a function depending on the separation between the particles.
Employing the metric tensor from Equation (3), the Christoffel symbols are calculated in the standard
manner by summing over repeated indices from 0 to 9:

Γµ
vξ =

1
2

gµκ
(
∂vgκξ + ∂ξ gκv − ∂κ gvξ

)
. (95)

The acceleration is then determined using the geodesic equation:

aµ
s,e,w = −Γµ

vξ uvuξ . (96)
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The forces exerted on the particle can be described by:

Fµ
s,e,w(z) =

Es,e,w
o

c2 · aµ
s,e,w. (97)

The energies involved are of equations (21), (34), and (48).

3.7. The Constant Scalar fno(z) =
wµvµ

c2

In conventional four-dimensional spacetime, the velocity four-vector uα is defined as:

uα = γβαc (98)

where it adheres to the conservation relation:

uαuα = c2, where α = 0, 1, 2, 3. (99)

Within a 10-dimensional spacetime, the conservation principle extends based on the quantity of
compact active dimensions ncd:

uαuα = (1 − ncd)c2. (100)

The additional dimensions are indexed as α = 4, 5, 6, 7, 8, 9.
The computation of force is feasible solely when the function fno(z) is available. Thankfully, it

stays the same since its derivative is zero, indicating that it is constant.

d
dτ

fno(z) =
d

dτ

(
gαβwαvβ

)
c2 =

gαβ

c2

(
aα

wvβ + wαaβ
v

)
= −

gαβ

c2

(
mvaα

vvβ

mw
+

mwwαaβ
w

mv

)
= 0 (101)

This result aligns with Newton’s third law, mw · aα
w = −mv · aα

v , and is evidently zero since the derivative
of equation (100) is zero. The value of fno(z) is determined when both particles are stationary, ensuring
its validity at any speed. Specifically, for charged leptons, we find:

fno(z, βo = 0, βn = 0) = −1 (102)

= g00 + g77 + gkk

, where k = 8, 9 denotes contributions from the two weak dimensions in superposition. For quarks
located within a baryon relative to one of the other two accompanying quarks, we find:

fno(z, βo = 0, βn = 0) = −2 (103)

= g00 + gii + g77 + gkk

, and in the context of quarks inside a meson:

fno(z, βo = 0, βn = 0) = −3 (104)

= g00 + gii + gjj + g77 + gkk

, where i, j = 4, 5, 6 (with i ̸= j) pertain to active color contributions, and k = 8, 9 reflects the effect of
weak interactions. The invariant’s result remains constant but varies for distinct particle types:

f leptons
no (z) = −1 f baryons

no (z) = −2 f mesons
no (z) = −3. (105)
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3.8. Coulomb Force Between Two Slowly Moving Charges

The calculation of the electric force between two charges, q1 = e
3 · o7 and q2 = e

3 · n7 is performed
for slowly movement, where β ≪ 1, and fno = −1 is used. The radius expression from Equation (20)
simplifies to:

ro7(z) =
9ρ signum(o7)

αe

(
1 + n7 signum(o7)

z

) (106)

Ee
o is the energy of Equation (21), and it interacts with the Christoffel symbols. Although solving

Equation (97) completely is intricate, the initial terms of the series expansion in ρ are still tractable:

F1(R) = −Ee
o

c2 · Γ1
µνuµuν (107)

= −Ee
o

c2 · Γ1
77 · c2 + . . .

=
αe h̄cn7o7

9R2 +
18ℏ|n7|co2

7βnρ3

αeR5 + O(ρ5)

where R = ρ · z is the physical distance in meters. Since ρ is on the order of a femtometer, for distances
above 10−13 m, the first term in Equation (107) dominates. This term is equivalent to the well-known
Coulomb force formula from classical electrostatics:

F =
qoqn

4πϵ0R2 (108)

where qo and qn represent the two charges, and ϵ0 is the vacuum permittivity.

3.9. Force Calculations and Asymptotic Behavior

By establishing the invariant expression fno(z) (refer to Equations (11) and (101)) and acknowl-
edging its uniformity across particle types, the model provides for the direct computation of the
strong, electric, and weak forces. These forces are influenced by the particle’s velocity, which can be
approximated using the Uncertainty Principle. Quarks are localized to an area around ∆z ≈ 1 with
∆p = m·c·β√

1−β2
, leading to

ρmcβ√
1 − β2

≥ ℏ
2

. (109)

The estimated velocity of the quark, based on the masses provided in Appendix A2, is detailed in
Table 11.

Table 11. Approximated Velocity of Quarks within Baryons

Quark Mass [MeV/c2] β γ Flavor Constant A
d 216.9 0.44 1.112 0
u 217.1 0.44 1.112 0
s 433.8 0.24 1.029 1
c 1519.4 0.07 1.002 6
b 4988.3 0.02 1.000 22

The equations are expressed as functions involving z, which represents the normalized distance
separating the particles. The Figures 2, 3, and 4 illustrate the forces, with γn = 1√

1−β2
n

, and βn the

normalized particle velocity.
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Strong Force

(110)

Figure 2. Strong Force between two Quarks within Baryons.

Electric Force

(111)

Figure 3. Electric Force acting on a d/s/b-Quark interacting with a u/c/t-Quark inside a Baryon.

Weak Force

(112)
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Figure 4. Weak Force acting on a d/s/b-Quark interacting with a u/c/t-Quark inside a Baryon.

An unforeseen result is the asymmetric influence of the electric and weak forces on d- and u-
quarks within nucleons (see Figure 5). The electric force disparity amounts to 137N at z = 0.1, whereas
the weak force difference at the same point amounts to just 0.12N.

Figure 5. Electric force exerted on a u-quark when it interacts with a d-quark, and vice versa, within a baryon.

An intriguing outcome is the repulsion observed between particles with differing electric charges
when they are in close proximity and moving at velocity, as illustrated in Figure 6. Consider an
example of an electron-positron collision occurring at a velocity β = 0.999997, corresponding to an
invariant mass of 434 MeV/c2.
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Figure 6. Electromagnetic interactions involving e+e− pairs and e+e+/e−e− pairs at an invariant mass of
434 MeV/c2 are depicted for the range 4.5 × 105 ≤ z ≤ 5 × 106.

This electric repulsion remains consistent whether dealing with electron-positron pairs or electron-
electron/positron-positron combinations, up to a distance of roughly z = 10−15 (Figure 7):

Figure 7. Electromagnetic interactions among e+e− and e+e+/e−e− are analyzed at an invariant mass of
434 MeV/c2, within the range 2 × 10−16 ≤ z ≤ 10−14.

The scenario was computed assuming a constant velocity. However, due to the repulsion, the
velocity decreases, which leads to the attraction between the electron and positron taking effect at a
greater distance than depicted in the example.

3.9.1. Key Results on Force Strengths

• Strong Force:

– Predominant within hadrons.
– Attractive Forces:

* Baryons: Exerts 17.5 kN at z = 1/2 for d- and u-quarks, much lower for other quarks.

* Mesons: Displays 26 kN at z = 1/3 per compactified dimension for d- and u-quarks,
considerably weaker for other quarks.

– Repulsive Force characteristics occur for:

* z > 1.3 (baryons).

* z > 1 (mesons).

• Electric force:

– Inside hadrons: < 270N when z > 0.1.
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– At the value z = 10−4, the force surpasses 300 kN.
– No matter the charge configuration, the force is consistently repulsive over the range

< za(β)− zb(β) >, which significantly relies on the particles’ speed. For instance, in the
case illustrated by Figures 6 and 7, involving a e+ − e− collision with an invariant mass of
434 MeV/c2 leading to a velocity of β = 0.999997, the range is < 10−15 − 106 >. However,
deceleration was not taken into account, hence, attraction will commence sooner.

• Weak force:

– |Fw| < 14N when z > 0.01.
– |Fw| ≈ 3600N when z = 10−4.
– The force is repulsive if the charge signs differ, and otherwise attractive.

3.9.2. Asymmetric Forces in Electric and Weak Interactions of ud-Hadrons

In ud quark combinations, the electric force and, to a lesser extent, the weak force manifest
asymmetrically. This results in a disparity where the force exerted on a d-quark differs from that on a
u-quark (refer to Figure 5). Without rotational motion, these quarks exhibit a type of Zitterbewegung,
distinct from the electron’s Zitterbewegung [41]. Conversely, if rotational motion occurs, the hadron
engages in a sort of random walk [38].

3.9.3. Particle Transformation in Collision Processes

Up to this point, the discussion of collision processes has been omitted in this article. In the
Standard Model of Particle Physics, particle formation is explained via boson exchange mechanisms
(involving photons, Z, W, and Higgs bosons) or through vector meson exchange. Within this Kaluza-
Klein Model, transformation of particles occurs when the colliding particles come to rest and merge. A
commonly recognized process is the conversion of a e+-e− pair into a π+-π− pair, described by:

e+ + e− → γ∗ → π+ + π−

accompanied by the excitation table:

0
0
0
3

(−2)
(−2)


+



0
0
0
−3
(2)
(2)


→



0
0
0

3 − 3
(−2) + (2)
(−2) + (2)



→



1
−1
0
2

(−1)
(−1)





−1
1
0
1

(−2)
(−2)


+



1
−1
0
−1
(2)
(2)





−1
1
0
−2
(1)
(1)


The dynamics of this process are exclusively governed by electromagnetic forces. As demonstrated in
Figures 6 and 7, collisions between electrons and positrons exhibit a repulsive interaction, resulting in
deceleration and eventual merging. The complexity of equation (111) has hindered detailed computa-
tion of the process, wherein the deceleration affects the velocities of the leptons, modifying the force as
function of z and β. Implementing a numerical iterative method could potentially provide insights
into the detailed transmutation.
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4. Discussion
The described Kaluza-Klein analogue employs the fundamental version of a Calabi-Yau man-

ifold [42], characterized in this context by a 10-dimensional spacetime organized in the following
manner:

• One dimension for time
• Three standard spatial dimensions
• Six compactified dimensions, each shaped like perpendicular cylinders.

In this 10D spacetime, there are no strings or additional elements; instead, it acts as a structural
framework where disturbances propagate at light speed, altering the topology and breaching Ricci
flatness [43]. Most disturbances are transient ripples within the 10D spacetime; however, some become
stable excitations within the compactified dimensions, manifesting as particles in 4D spacetime yet
still traveling at light speed in 10D. A stable excitation within a compactified dimension of radius
r can be viewed as a sinusoidal wave with a wavelength λ, which adheres to condition (4). By
employing de Broglie’s formula [44], one can describe the energy of a stable excitation, which enables
summarization of the total energy of a hadron as comprising:

• Excitation energies
• Potential energies
• Contributions from magnetic fields and dipoles

4.1. Hadron Masses

Using Einstein’s energy-mass equivalence, one can compute meson and baryon masses. In 56%
of the comparisons, the relative error between observed and predicted masses is below 0.05, while
84% show errors under 0.1. The model is grounded in the framework of the Standard Model of
particle physics, encompassing the three foundational interactions—strong, electromagnetic, and
weak—while extending the mathematical principles of general relativity to 10 dimensions. Thus,
gravity plays an integral role within this framework. The model stipulates that the six compactified
dimensions account for the strong (dimensions 4–6), electromagnetic (dimension 7), and weak
(dimensions 8 & 9) interactions. Within this framework, stable waves around compactified cylinders
emerge naturally and constitute the primary source of mass. A significant portion of a particle’s mass,
particularly for the light quarks, originates from the magnetic field of the compactified dimension 7.
For example, the mass contributions from magnetic fields and dipole interactions are:

• Proton (udu): 31%
• Neutron (dud): 31%
• Lambda (sud): 18%
• Bottom Xi (bus): 2%
• Charged rho (ud): 40%
• Upsilon (bb): 0.06%

The field constants N, M, and the strong coupling constant αs were determined using the
most precisely measured hadron masses, namely those of the pion plus, proton, and neutron.
However, certain first-generation meson masses still show minor discrepancies between measured
and calculated values.

Additionally, spin-h̄/2 baryons consisting of three different quark flavors can exist with two
slightly different masses. This model successfully accounts for these differences. For example, the Λ0

and Σ0 baryons share the same quark content (d, s, u) but exhibit different masses—a difference the
model is able to calculate. Within this model, the potential to generate sterile hadrons and leptons (94),
which could be a candidate for dark matter, emerges.
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4.2. Summarizing the Fundamental Constants

During the development of this model, it was both possible and necessary to determine several
important physical constants (Table A1):

• The compactification radius: ρ

• The weak coupling constant: αw

• The strong coupling constant: αs

• The neutrino distribution ratio: δ

• The constant scalar: fno(z)
• The flavor constants: Ai

The parameter δ arises from the two compactified weak-interaction dimensions and exhibits
a logarithmic dependence on the particle’s mean distance towards neutrinos and antineutrinos.
Consequently, δ is responsible for the extremely low neutrino mass.

From the maximum possible mass difference between the positron and electron, an upper limit
on the lightest neutrino mass is derived:

mve =
2h̄
cρ

· αw ln(δ) ≤ 0.001
eV
c2 (113)

It remains uncertain what the masses of the second- and third-generation neutrinos might be. How-
ever, the upper bound mve ≤ 0.001 eV

c2 aligns with previous estimates:

• KATRIN collaboration: mve ≤ 1.1 eV
c2 [45]

• Chandra astrophysical observations: mve ≤ 0.33 eV
c2 [46]

Further theoretical and experimental work is required to explore potential spatial variations
in neutrino-to-antineutrino ratios. If such differences exist, they might be measurable through
extremely small variations in fundamental particle properties, such as:

• Electron mass
• Magnetic moment

4.3. Force Calculations and Metric Tensors

In general relativity, the tensor formalism is applied individually to each type of interaction.
This distinction is vital as the masses influenced by strong, electric, or weak forces are dictated solely
by the corresponding metric tensors. However, quarks experience all three interactions concurrently.
Rather than a unified calculation, Equation (97) is used to perform three distinct force calculations, each
tailored to one interaction. The outputs offer the specific force equations and graphical depictions
found in Section 3.9. Aggregating these forces determines the net force on a particle. Furthermore,
the invariant function fno(z) (Section 3.7) is found to be constant but varies among different particle
types. Thus, in this model, all interactions emerge purely from the curvature of a 10-dimensional
spacetime. The asymmetric nature of the electric force results in continuous movement resembling a
random walk. However, matter bonds through multiple forces, particularly the strong force, overall
electric force, and gravitational force. Consequently, the random walk of hadrons does not lead to
disintegration. Yet, a significant cumulative force might cause matter clusters to dislodge from one
another, potentially explaining the phenomenon referred to as dark energy.

4.4. Two Possible Laboratory Experiments and One Astronomical Measurement to Assess the Model

The Kaluza-Klein model offers insights regarding sterile particles and force interactions. To
evaluate the model’s validity, two laboratory experiments and a cosmological observation are proposed:
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4.4.1. Creation of Dark Matter

Dynamic interactions among particles are expected to generate sterile particles (94). In this
framework, rapid incoming particles need to decelerate to unite and form sterile particles. A process
with a comparably low invariant mass that could yield sterile particles is as follows:

e+ + e− → γ∗ → S

with the excitation table:

0
0
0
3

(−2)
(−2)


+



0
0
0
−3
(2)
(2)


→



0
0
0

3 − 3
(−2) + (2)
(−2) + (2)


→



n − n
−n + n

0
3 − 3

(−2) + (2)
(−2) + (2)


The mass of the sterile particle S is expected to be

mS =
h̄
cρ

[
αs · 4 · n +

αe

9
· 6 +

αw

2

(
4 + 4)] (114)

To ensure the stability of a sterile particle, the invariant mass of the initial electron-positron pair must
match the mass permissible for a sterile particle; otherwise, it would decay into particles that interact
through strong, and/or electromagnetic and weak forces. Table 12 lists the invariant masses associated
with sterile particles generated in experiments where the initial mass is under 2.2 GeV/c2.

Table 12. Invariant Masses of light Sterile Particles

n m[kg] m[MeV/c2]
1 7.7446 · 10−28 434.44
2 1.5471 · 10−27 867.86
3 2.3198 · 10−27 1301.28
4 3.0924 · 10−27 1734.71
5 3.8650 · 10−27 2168.13

An experiment conducted to scan the energy range from 400 MeV/c2 to 2.2 GeV/c2 is expected to
detect an increased missing mass near the resonances at those specific mass values.

4.4.2. Nucleon’s Random Walk

Inside nucleons, we observe quark compositions made of one u-quark and one d-quark, primarily
bound by the strong force but also subject to electric and weak forces. The strong interaction exerts
an equal influence on both quarks, whereas the electric and weak forces exert differing degrees of
force. Consequently, nucleons may undergo a sort of erratic motion [47]. This dynamic differs from
Brownian motion [48], which describes how a fluid exerts thermodynamic effects on a suspended small
object. The movement of nucleons occurs on a much smaller scale s ≈ ρ, with their frequency given by
f = cβ

2ρ ≈ 1023 Hz. This renders directly measuring an individual nucleon improbable. Nevertheless, a
group of ultra-cold polarized neutrons could exhibit some secondary random walk behavior.

4.4.3. Decreasing Strength of Dark Energy

The process of hadronization, which involves the formation of protons and neutrons, began
approximately 10−6 seconds following the Big Bang [49–51]. If protons and neutrons, as hypothesized,
engage in a random walk (Section 3.9.2), this behavior might contribute to galaxies drifting apart.
Although the exact timeline and specifics are not covered in this discussion, if the random walk is
essentially synonymous with what is termed as dark energy, then it must diminish as matter transitions
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into sterile particles (Section 3.5), essentially becoming dark matter. Consequently, the proportion of
matter to dark matter would shift in favor of dark matter. This would lead to a reduction in the rate of
galactic acceleration. The initial indication of a deceleration is offered by the Euclid space telescope
[52]. Additional information is expected to be obtained when the Vera C. Rubin Observatory and
Nancy Grace Roman Space Telescope become operational.

4.5. Open Questions

Mass Formula
The mass of a hadron is expressed as the sum of its excitation energy, potential energy, and

the energies arising from the magnetic field and magnetic moments in the electric dimension. The
influences from both significant (strong dimensions) and minor (weak dimensions) magnetic sources
are disregarded, based on the assumption that the contributions from two dominant dimensions
negate each other, just as the effects from weak dimensions do. This is inferred because including
contributions from the strong or weak dimensions would lead to mass values significantly diverging
from observed measurements. Nonetheless, there are still observed differences between the calculated
and experimental masses that remain unexplained.

Sterile Masses
The standard expression for sterile particles is presented in equation (94). The premise underlying

the computation leading to the data in Table 12 is that surplus energy is confined within two out of the
three dimensions of strong interaction. Nonetheless, alternative configurations for energy storage are
feasible. Should missing mass resonances manifest in other energy sectors, the approach to energy
storage must be adjusted while adhering to (94).

Deceleration in Particle Collisions
When electrons and positrons collide, they exhibit deceleration, though the specifics of this

mechanism remain unclear. The complexity of Equation (111), due to its reliance on variables z and β,
obstructs straightforward calculations. Nonetheless, employing a numerical iterative approach may
elucidate the exact mechanisms underlying the collision. Notably, investigating the emergence of the
weak interaction at elevated beam energies could provide significant insights.

Computation of Flavor Constants
The derivation of flavor constants begins with the equations for the rest and kinetic energies of

the compactified cylinder, given by (15), (28), and (40), expressed as

Es
o(z) =

(
och̄

ro(z)
+

αch̄A|o|
ρ

)
· γo(z) (115)

An alternative formulation

Es
o(z) =

(
och̄

ro(z)
+

αch̄A
ρ

)
· γo(z) (116)

can be considered. This approach modifies the mass of a particle without magnetic effects from

moi =
αh̄
cρ

· |o| (1 + A) to moi =
αh̄
cρ

· (|o|+ A) (117)

While this modification does not affect first-generation particles, it causes a slight mass shift for second
and third-generation particles, with this shift being smaller than the predicted uncertainties.

4.6. Future Applications

Until now, this model has primarily focused on calculating hadron mass and forces, with
less attention to particle collisions or creation processes and no consideration of decay processes.
Nevertheless, this model might also effectively detail particle creation and decay dynamics — possibly
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without the need to use Feynman diagrams [53]. Undoubtedly, additional theoretical and experimental
studies are needed to thoroughly examine the potential and constraints of this method.

5. Conclusion
The objective of this project began as the calculation of hadron masses. It soon became apparent

that certain missing constants needed determination. The values for ρ, the compactification radius; αw,
the weak coupling constant; αs, the strong coupling constant; δ, the neutrino distribution ratio, enabling
mass calculation. The model additionally provided a way to derive formulas for sterile particles, which
interact gravitationally alone—specifically, dark matter. An experiment was proposed to assess the
concept (4.4.1). Moreover, once the invariant function fno(z) was derived, this method facilitated
the calculation of the strong, electromagnetic, and weak forces. An unexpected observation was the
asymmetrical behavior of the electric force, and to a lesser extent, the weak force, possibly causing
a random walk movement in particles with ud/ud/du/ud-quark combinations. An experiment is
proposed (Section 4.4.2). This phenomenon might contribute to the accelerated separation of galaxies,
a phenomenon attributed to dark energy. Here a astronomical measurement is proposed (Section
4.4.3). If the predictions of the model prove to be accurate, the implications are vast. It suggests
that an expanding force, resulting from the random walk of nucleons, existed abundantly after the
big bang. This likely generated an immense force that separated masses. Simultaneously, collision
processes were frequent, leading, as the model suggests, to the widespread creation of dark matter,
which reduced ordinary matter in favor of dark matter. Therefore, for this model to hold, a decrease
in the cosmological parameter is necessary. Moreover, the future of the universe is also noteworthy
because as the proportion of normal matter to dark matter shifts in favor of dark matter, gravity may
eventually dominate, leading to a potential final rebound. This could result in a cyclic universe.
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Appendix A
Appendix A.1. Statistical Error Analysis

The statistical deviations of the calculated constants, as well as quark and hadron masses, are
derived using Gaussian error propagation (A1):

sZ =

√(
∂Z
∂a

)2
s2

a +

(
∂Z
∂b

)2
s2

b + · · · (A1)

Equation (A1) computes the standard deviation of a quantity Z, which is calculated from parameters
given as mean values a, b, . . . and their corresponding standard deviations sa, sb, . . . . This method is
applied to the numerical results of Equations (67), (74), (75) and the data presented in Tables 2, 6, 7, 8,
9, A1, and A2 .

The error estimates, with the exception of those in Table 2, are exclusively statistical in nature.
Conversely, Table 2 incorporates considerations of systematic errors.
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Appendix A.2. Parameters Calculated Within the Model

Table A1. List of Model’s Derived Constants

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 April 2025 doi:10.20944/preprints202504.2317.v1

https://doi.org/10.20944/preprints202504.2317.v1


34 of 41

Table A2. Quark Masses (Excluding Magnetic Contributions). While quarks and antiquarks have distinct masses,
this variance is less than the error margin arising from parameter imprecision of the input measurements.

Appendix A.3. Parameters from Literature Used in the Calculations

Table A3. Measured Particle Masses Used in the Calculations [34]

Particle Symbol Mass (kg) Mass (MeV/c2)
Electron/Positron e 9.109384033(55)× 10−31 0.5109989461(31)
Muon µ 1.883531692(43)× 10−28 105.6583745(24)
Tau τ 3.16754(21)× 10−27 1776.86(12)
Pion+ π+ 2.4880683(32)× 10−28 139.57039(18)
Proton P 1.672621637(10)× 10−27 938.2720813(58)
Neutron N 1.674927558(10)× 10−27 939.5654133(58)
Phi Meson ϕ 1.817354(29)× 10−27 1019.461(16)
J/Psi Meson J/ψ 5.520726(11)× 10−27 3096.900(6)
Upsilon Meson Υ 1.786808(55)× 10−26 10023.26(31)

Table A4. Constants from Literature Used in the Calculations [34]

Constant Symbol Value
Speed of light c 299792458 m/s
Reduced Planck constant h̄ = h

2π 1.054571817 × 10−34 Js
Electron’s spin g-factor ge 2.00231930436182(52)
Electric coupling constant αe 7.2973525693(11)× 10−3

Appendix B
Appendix B.1. Coordinates and Velocities Within the Ten Dimensions

The coordinate origin is chosen to be at the location of the entangled partner particle. Thus,
z1 = z represents the normalized distance between two entangled particles. Only the relative distance
between the two particles is of interest; therefore, the coordinate system’s z1-axis is aligned along the
direction of the particle, while the other two spatial coordinates are set to zero.
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Within the compact dimensions, a stable excitation is distributed over the entire cycle 4πri. A
particular location along a compactified coordinate is defined as follows, where 0 ≤ K < 1 and with
K = 0 representing the intersection of the higher-dimensional space with the 4D-spacetime:

z1 = z, z2 = z3 = 0, zi =
K · 4πri

ρ
, i = 4, . . . , 9 (A2)

The velocity in three-dimensional space is less than c for massive particles (as induced by higher
dimensions) but equals the speed of light for photons and excitations of 4D spacetime, gravitational
waves. In the compactified dimensions, the velocity is always equal to the speed of light.

u0 = γc, u1 = γβc, u2 = u3 = 0, ui = | signum(oi)|c, i = 4, . . . , 9 (A3)

Appendix B.2. Lorentz Factors of Strong, Electric, and Weak Interactions at Their Fixed Points

The velocities corresponding to the fixed points for each of the three interactions are considered
individually. These fixed points represent the initial conditions where a particle begins to be affected
by the respective forces when its velocity is zero, thus:

γs(0) = 1 γe(∞) = 1 γw(1) = 1 (A4)

Appendix B.3. The Metric Tensor

The components of the metric tensor are influenced by the distance to the nearest particle and, to
a lesser extent, by the average distances to the nearest neutrino and anti-neutrino. However, the latter
effect is negligible and therefore omitted in the following equations. There exist three metric tensors,
one for each interaction, with the general form:

gs,e,w
µν (z) =



1 0 0 0 0 0 0 0 0 0

0 gs,e,w
11 (z) 0 0 gs

14(z) gs
15(z) gs

16(z) ge
17(z)

gw
18(z)
2

gw
19(z)
2

0 0 −1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0
0 gs

41(z) 0 0 −1 0 0 0 0 0
0 gs

51(z) 0 0 0 −1 0 0 0 0
0 gs

61(z) 0 0 0 0 −1 0 0 0
0 ge

71(z) 0 0 0 0 0 −1 0 0

0 gw
81(z)
2 0 0 0 0 0 0 −1 0

0 gw
91(z)
2 0 0 0 0 0 0 0 −1



(A5)

For z ≫ 1, all off-diagonal elements approach zero, and the diagonal component satisfies g11(z ≫ 1) =
−1. The metric components can be calculated directly using equation (3). Each interaction-specific mass
couples only to its respective Christoffel symbol. For instance, in the case of the electric interaction,
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the only nonzero off-diagonal elements are g71(z) = g17(z). Additionally, the diagonal elements differ
for each interaction, as indicated in equation (A5):

(A6)

(A7)

(A8)
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The off-diagonal elements take the following forms:

gs
14(z) = −

(
( fnoz + A + 1)

(
d
dz γn(z)

)
− γn(z) fno

)
z4

γn(z)(Aγn(z)− fnoz − A − 1)
(A9)

ge
17(z) = −

z7
(
(− fnoo7signum(n7) + z(A + 1))z

(
d
dz γn(z)

)
− γn(z)signum(n7) fnoo7

)
( fnoo7signum(n7) + z(Aγn(z)− A − 1))γn(z)z

(A10)

gw
18(z) =

−

(
((− fnoo8 ln(z)− ln(δ))signum(n8) + A + 1)z

(
d
dz γn(z)

)
+ signum(n8)γn(z) fnoo8

)
z8

zγn(z)(( fnoo8 ln(z) + ln(δ))signum(n8) + Aγn(z)− A − 1)
(A11)

Here, the indices 4, 7, and 8 on z correspond to the compactified dimensions’ contravariant coordinate
indices.

Appendix C. Magnetism
The Biot-Savart law in three-dimensional space is given by:

B⃗(R⃗) =
µ0

4π

∫
C

Id⃗l × R̂
R2 . (A12)

Here, the denominator R2 accounts for the weakening of the magnetic field as a function of distance R
from the dipole. However, in a compactified dimension, the magnetic field remains confined within
the curled-up dimension, where no such weakening occurs. As a result, the equation modifies to:

B⃗o (⃗z) =
µ0

4π

∫
C

Io d⃗l × ẑ =
µ0

4π

∫ 4π

0
Ioredθ


sin
(

1
2 α
)

− cos
(

1
2 α
)

0

 (A13)

which simplifies to:

B⃗o (⃗z) =
1

3 · 4π
µ0|o7|eec


sin
(

1
2 α
)

− cos
(

1
2 α
)

0

 (A14)

where:

Io =
o7eec

3 · 4π|re|
(A15)

d⃗l × ẑ = redθ


cos
(

1
2 α
)

sin
(

1
2 α
)

0

×

0
0
1

, (A16)

and α denotes the angle on the compactified dimension.
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A similar equation holds for the antiquark, with the substitution o −→ n. Since quarks and
antiquarks share a common compactified dimension but with a phase shift of π

2 , the corresponding
magnetic field is:

B⃗n̄ (⃗z) =
1

3 · 4π
µ0|n7|eec


sin
(

1
2 (α + π

2 )
)

− cos
(

1
2 (α + π

2 )
)

0

. (A17)

Thus, when a quark’s magnetic field is multiplied with the magnetic field of an antiquark a normalizing
factor

√
2 is necessary:

√
2 · B⃗o (⃗z) · B⃗n̄ (⃗z). (A18)

Magnetic Effects on the Masses of Leptons, Mesons, and Baryons
The additional mass contribution due to the magnetic field leaking into three-dimensional space-

time for lepton pairs and mesons is given by:

mB(on̄) = N
∫ 2π

0

∫ π

0

∫ ∞

zρ
2

(Bo + Bn̄)
2 sin ϑ

32µ0c2π2r2 drdϑdφ. (A19)

Evaluating the integral, we obtain:

mB(on̄) =


ℏαe(|n7|−|o7|)2

9czρ · N, (Spin anti-parallel)

ℏαe(|n7|+|o7|)2

9czρ · N, (Spin parallel)
(A20)

For baryons, the additional mass due to the magnetic fields is:

mB(nop) = N
∫ 2π

0

∫ π

0

∫ ∞

zρ
2

(
Bn + Bo + Bp

)2 sin ϑ

32µ0c2π2r2 drdϑdφ. (A21)

Evaluating this integral:

mB(nop) =



ℏαe(|n7|2+2|n7||o7|+|o7|2+|p7|2)
9czρ · N, (Spin-1/2)

ℏαe(|n7|+|o7|+|p7|)2

9czρ · N, (Spin-3/2, 2 or 3 quarks flavors)

ℏαe

(
|p7|2+2|n7||p7|+|n7|2+|o7|2

)
9czρ · N, (Spin-3/2, one quark flavor)

(A22)

In both expressions (A19) and (A21), the parameter N represents the magnetic field constant, which
absorbed the term 1/(4π)2. This constant is determined by solving the system of equations (87)
(charged pion), (89) (proton), and (90) (neutron), which at the same time provides the numerical values
of the constants M and αs.

Another contribution to the hadron mass arises from the dipole moment (69) of a quark within
the magnetic field of its partner quark:

µ⃗o =
g(o)o7eeℏ

12mo

 sin
(

α
2
)

− cos
(

α
2
)

0

, µ⃗n̄ =
g(n)n7eeℏ

12mn


sin
(

1
2 (α + π

2 )
)

− cos
(

1
2 (α + π

2 )
)

0

. (A23)

Magnetic Dipole Contribution to Mesons and Lepton Pairs

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 April 2025 doi:10.20944/preprints202504.2317.v1

https://doi.org/10.20944/preprints202504.2317.v1


39 of 41

The additional mass due to the dipole moment is given by:

mM(on̄) =
µ⃗o · B⃗n̄ (⃗z) + µ⃗n̄ · B⃗o (⃗z)

c2 ·
√

2 · M
ρ2 (A24)

=


+ ℏ((A1+1)|n7|+|o7|(A2+1))

2(A1+1)(A2+1)cρ
· M, (Spin anti-parallel)

− ℏ((A1+1)|n7|+|o7|(A2+1))
2(A1+1)(A2+1)cρ

· M, (Spin parallel)

Here, M is the magnetic moment constant. The term ρ2 in the denominator ensures dimensional
consistency, while making M dimensionless and

√
2 is the normalizing factor.

Magnetic Dipole Contribution to Baryon Mass
For baryons, the additional mass contribution due to dipole interactions is:

mM(nop) =
(
(µ⃗o + µ⃗p) · B⃗n (⃗z) + (µ⃗p + µ⃗n) · B⃗o (⃗z) + (µ⃗n + µ⃗o) · B⃗p (⃗z)

)
· M

c2ρ2 (A25)

=



− ℏ((A1+1)|n7|+|o7|(A2+1))
2(A1+1)(A2+1)cρ

· M

− ℏ((A1+1)(A2+2+A3)|n7|+(A2+1)(A2+2+A3)|o7|+(A3+1)(A1+2+A2))|p7|
2(A1+1)(A2+1)(A3+1)cρ

· M

− ℏ((A1+1)|n7|+|p7|(A3+1))
2(A1+1)(A3+1)cρ

· M

Here, the first equation is valid for spin-1/2 baryons, the second for spin-3/2 baryons with at least two
different quark flavors, and the third for spin-3/2 baryons with quarks of the same flavor.

Weak and Strong Magnetism
Given that all compactified dimensions exhibit comparable structures, it stands to reason to

anticipate that magnetism could arise from the weak and strong dimensions. However, the effective
range of these forces is exceedingly limited, suggesting the absence of magnetic fields originating from
the strong and weak dimensions. Calculations of these magnetic fields, based on analogies with the
magnetism linked to the electric force, produce values significantly higher than those inferred from
empirical data. In both the strong and weak forces, there are two identical contributions, which appear
to neutralize one another.
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