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Abstract. This article is devoted to results of in-depth analysis of the system of binary-oppositional
structures in DNA #n-plet alphabets and their algebraic-matrix representations. These results show
that the molecular complementary replication of DNA strands is accompanied by the presence of
an algebraic version of the principle "like begets like" in matrix representations of DNA alphabets
having internal structures. This algebraic version is based on binary-oppositional structures in the
genetic molecular system, which can be represented by bynary numbers and corresponding matri-
ces of DNA alphabets. The received results allow thinking that the phenomenon "like begets like"
(or a complementary replication in a wide sense) is a systemic in the genetic organization and is
connected with algebraic features of biological organization. Correspondingly, the biological prin-
ciple "like begets like" can be additionally modeled by algebraic-matrix methods and approaches.
Such algebraic-matrix modeling of the genetic coding system gives new ways for studying and un-
derstanding a key role of the named principle in genetic and other inherited physiological com-
plexes. The author believes that further study of the algebraic relationships of the genetic system
and inherited physiological complexes will be increasingly revealing the key biological role of the
ancient principle "like begets like" at different levels of biological organization.

Keywords: DNA strands; complementary replication; DNA alphabets; binary opposition; binary
numbers; dyadic groups; matrices; algebras; split-quaternions

1. Introduction

The DNA double helix model created by J.D. Watson and F. Crick in 1953 gave a powerful impetus to the development
of genetic research. It showed the world a recursive algorithm for the complementary replication of DNA strands, which
ensures the replication of the genetic information recorded on these strands. Before the complementary replication,
DNA is separated in two complementary strands. Each strand of the original DNA molecule serves as a template for
the production of its new complementary counterpart. This seminal work by Watson and Crick was perceived as the
discovery of a key secret of life, corresponding to the ancient notions that "like begets like". Scientists were struck by
how simple and beautiful this explanation of the replication and preservation of genetic information based on the
mechanism of complementarity turned out to be. It was emphasized that it is this complementarity that provides the

most important properties of DNA as a carrier of hereditary information (see, for example, [Chapeville, Haenni,1974]).

The complementary replication of DNA occurs in all living organisms acting as the most essential part for
biological inheritance. This is essential for cell division during growth and repair of damaged tissues, while it also
ensures that each of the new cells receives its own copy of the DNA. The cell possesses the distinctive property of

division, which makes complementary replication of DNA essential. Complementary replication of DNA strands occurs
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at an astonishing speed rate. For example, the well-known bacteria E. coli has a speed of replication of over 1,000 bases
per second [Bank, 2022].

The genetic information in DNA molecules is represented in the form of sequences of four types of nucleobases:
adenine A, guanine G, cytosine C, and thymine T. Their set is often referred to as the 4-letter DNA alphabet. Along with
it, other DNA alphabets exist: alphabets of 16 doublets, 64 triplets, 256 tetraplets, and other n-plets. In particular, the
alphabet of 64 triplets is used in the genetic system to encode amino acids and termination signals of protein synthesis.
Taking into account the existence of different alphabets of DNA n-plets turns out to be useful for revealing hidden
regularities in the stochastic organization of genomic DNAs [Petoukhov, 2008, 2020, 2021; Petoukhov, He, 2010]. These
DNA alphabets have binary-oppositional structures, which allow representing the alphabets in a comfortable form of
(272m)-matrices with dispositions - inside these matrices - of all corresponding n-plets in strict arrangements on the basis
of their individual molecular peculiarities [Petoukhov, 2008; Petoukhov, He, 2010].

The purpose of this article is to describe the author's results of an in-depth analysis of the system of binary-
oppositional structures in these DNA alphabets and their algebraic-matrix representations. These results show that the
molecular complementary replication of DNA strands is accompanied by the presence of an algebraic version of the
principle "like begets like" in the named matrix representations of DNA alphabets. This algebraic version is based on
binary-oppositional structures in the genetic molecular system, which can be represented by bynary numbers and
corresponding matrices of DNA alphabets. The received results allow thinking that the phenomenon "like begets like"
(or a complementary replication in a wide sense) is a systemic in the genetic organization and is connected with
algebraic features of biological organization. Correspondingly, the biological principle "like begets like" can be
additionally modeled by algebraic-matrix methods and approaches. Such algebraic-matrix modeling of the genetic
coding system gives new ways for studying and understanding a key role of the named principle in genetic and other

inherited physiological complexes.
2. Symmetries and binary principles in the molecular genetic system

The four nucleobases of DNA are interrelated by their their symmetrical peculiarities into the united molecular
ensemble having the three pairs of binary-oppositional traits or indicators [Fimmel, Danielli, Striingmann, 2013;
Petoukhov, 2008; Petoukhov, He, 20010; Stambuk, 1999]:

- 1) Two letters are purines (A and G), and the other two are pyrimidines (C and T). From the standpoint of these
binary-oppositional traits one can denote C=T=0,A=G=1.Fromthe standpoint of these
traits, any of the DNA-sequences are represented by a corresponding binary sequence. For example,
GCATGAAGT is represented by 101011110;

- 2)Two letters are amino-molecules (A and C) and the other two are keto-molecules (G and T). From the stand-
point of these traits one can designate A=C=0,G=T-=1. Correspondingly, the same se-
qguence, GCATGAAGT, as above, is represented by another binary sequence, 100110011;

- 3) The pairs of complementary letters, A-T and C-G, are linked by 2 and 3 hydrogen bonds, respectively. From
the standpoint of these traits, one can designate C=G =0, A =T = 1. Correspondingly, the same sequence,
GCATGAAGT, is read as 001101101.

These three types of binary representations form a common logic set on the basis of logic operation of
modulo-2 addition denoted by the symbol &@: modulo-2 addition of any two such binary representations of
the DNA-sequence gives a sum, which is equal to the third binary representation of the same DNA-sequence:
for example, 101011110 ¢ 100110011 = 001101101. One can here remind the rules of the bitwise modulo-
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2addition: 0 0=0;089 1=1;1 0=1;1 & 1=0. (The logic operation of modulo-2 addition is
actively used in computer informatics and quantum informatics).

It is convenient to represent DNA-alphabets of 4 nucleotides, 16 doublets, 64 triplets, ..., 4" n-plets in
a form of appropriate square tables (Fig. 1), whose rows and columns are numerated by binary symbols in line
with the following principle. Entries of each column are numerated by binary indicators "pyrimidine or purine”
(C=T=0,A=G=1); for example, the triplet CAG and all other triplets in the same column are the
combination “pyrimidine-purine-purine” and so this column is correspondingly numerated 011. By contrast,
entries of each row are numerated by binary indicators "amino or keto "(C = A =0, T = G = 1); for example,
the same triplet CAG and all other triplets in the same row are the combination “amino-amino-keto” and so
this row is correspondingly numerated 001. In such tables (Fig. 1), each of 4 letters, 16 doublets, 64 triplets,
... takes automatically its own individual place and all components of the alphabets are arranged in a strict
order. This strict ordering of the relative positions of all members of the DNA alphabets proves useful in
revealing hidden regularities and rules in the genetic coding system. As it is known, these three separate ge-
netic tables (Fig. 1) form the joint tensor family of matrices [C, A; T, G]™, where the symbol (n) refers to
tensor power n, since they are interrelated by the known operation of the tensor (or Kronecker) product of
matrices [Petoukhov, 2008].

0|1 00 | 01 | 10 | 11
C|A 00JCC| CA]AC | AA
11T |G 01| CT | CG | AT | AG

10 TC| TA ] GC | GA
11| TT | TG | GT | GG

000 | 001 010 011 100 101 110 111

000 CCC | CCA | CAC | CAA JACC | ACA | AAC | AAA
001 § CCT | CCG | CAT | CAG J ACT | ACG | AAT | AAG
010 § CTC | CTA | CGC | CGA | ATC | ATA | AGC | AGA
011 § CTT | CTG | CGT | CGG J ATT | ATG | AGT | AGG
1008 TCC | TCA | TAC | TAARGCC | GCA | GAC | GAA
101 § TCT | TCG | TAT | TAG | GCT | GCG | GAT | GAG
101 § TCT | TCG | TAT | TAG | GCT | GCG | GAT | GAG
111 § TTT | TTG | TGT | TGG § GTIT | GTG | GGT | GGG

Fig. 1. The square tables of DNA-alphabets of 4 nucleotides, 16 doublets and 64 triplets with a strict
arrangement of all components. Each of tables is constructed in line with the principle of binary numeration
of its columns and rows (from [Petoukhov, 2008; Petoukhov, He, 2010]).

The presentation of ensembles of elements of the genetic coding system in the form of tensor families of genetic

matrices has appeared as a useful tool to investigate structures of the genetic code from the viewpoint of their analogy
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with the theory of discrete signals processing, noise-immunity coding, quantum informatics, etc. The scientific direction,
which deals with such matrix presentation of the ensembles of genetic elements and their numeric parameters, is named
“matrix genetics’ [Petoukhov, 2008; Petoukhov, He, 2010].

3. Complementary-replicated genetic matrices and an even-odd columns

decomposition of the matrix of 64 triplets

As one can see from Fig. 1, binary numberings of columns and rows of the (2"*2")-matrices of DNA alphabets belong to
dyadic groups of binary numbers. For example, in the (8*8)-matrix of 64 triplets, its columns and rows are numerated

by 3-bit binary numbers forming the corresponding dyadic group (1):

001, 000, 011, 010, 101, 100, 111, 110
1)

This series (1) is a partcular example of dyadic groups, in which modulo-2 addition serves as the group operation
[Harmuth, 1989]. The distance in dyadic groups is known as the Hamming distance. Since the Hamming distance
satisfies the conditions of a metric group, the dyadic group is a metric group. The modulo-2 addition of any two binary
numbers from (1) always results in a new number from the same series. The number 000 serves as the unit element of
this group: for example, 010 @ 000 = 010. The reverse element for any number in this group is the number itself: for
example, 010 & 010 = 000.

Two binary numbers that are converted into each other under inter-replacing 0e1 will be called complementary.
For example, in the dyadic group (1), the pairs of complementary numbers are the following: 000-111, 001-110, 010-101,
011-100 (in the decimal system, they correspond to pairs of numbers 0-7, 1-6, 2-5, 3-4). In a pair of complementary
numbers, one of them is always even and the other is odd, that is, any pair of complementary numbers is the pair of
even and odd numbers (or Yin and Yang numbers in line with ancient Chinese notions). Accordingly, any two columns
(rows) that are enumerated by complementary binary numbers are called complementary. In the genetic matrices in
Fig. 1, complementary columns are located mirror-symmetrical in the left and right halves of the matrices, and
complementary rows are located mirror-symmetrical in the upper and lower halves.

One should emphasize that, in the matrix in Figs. 1 and 2, any column enumerated by even number contains
only triplets ending by pyrimidines C or T; in contrast, any column enumerated by odd number contains only triplets
ending by purines A or G. The mentioned numeric inter-replacing 0ol in numberings of columns symbolizes the
molecular inter-replacing: it means the transition from columns with triplets ending in pyrimidines to columns with
triplets ending in purines and vice versa. Similarity to this, any row enumerated by even number contains only triplets
ending by amino-molecules A or C; in contrast, any row enumerates by odd number contains only triplets ending by
keto-molecules G or T. The mentioned numeric inter-replacing 0ol in numberings of rows symbolizes the molecular
inter-replacing: it means the transition from rows with triplets ending in amino-molecules to rows with triplets ending
in keto-molecules and vice versa.

Let us remind one more phenomenological symmetry connected with the known binary-oppositional
separation of the DNA alphabet of 64 triplets - according to their code properties - into two equal sub-alphabets: 32
triplets with strong roots (i.e. triplets starting with 8 strong duplets CC, CT, CG, AC, TC, GC, GT, GG) and 32 triplets
with weak roots (i.e. triplets starting with other 8 duplets) [Rumer, 1968; Fimmel, Stringmann, 2016]. Coding value of
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triplets with strong roots is independent of a letter on their third position. For example, the four triplets with the same
strong root CGC, CGA, CGT, CGC encode the same amino acid Arg, though they have different letters on their third
position. By contrary, the coding value of triplets with weak roots depends on a letter on their third position. For
example, in the grouping of the four triplets with the same weak root CAC, CAT, CAA, and CAG, two triplets (CAC,
CAT) encode the amino acid His and the other two (CAA, CAG) encode another amino acid Gln. In Fig. 2, which repeats
Fig. 1 in some detail, all triplets with strong roots are marked by black color in contrast to triplets with weak roots

denoted by white color.

000 001 010 011 100 101 110 111
000 | CCC | CCA | CAC | CAA | ACC | ACA | AAC | AAA
001 | CCT | CCG | CAT | CAG | ACT | ACG | AAT | AAG
010 | CTC | CTA | CGC | CGA ATC | ATA | AGC | AGA

=
UL
g —
011 | CTT | €TG | CGT | €GG | ATT | ATG | AGT | AGG | —__
UL
=
—I
—I

100 | TCC | TCA | TAC | TAA | GCC | GCA | GAC | GAA

101 TCT | TCG | TAT | TAG GCT | GCG | GAT | GAG
110 TTC | TTA | TGC | TGA GTC | GTA | GGC | GGA
111 TTT | TTG | TGT | TGG GTT | GTG | GGT | GGG

Fig. 2. Black-and-white mosaics of the matrix [C, A; T, G]® of 64 triplets from the tensor family [C,A; T,G]® (from Fig.
1) show the binary-oppositional separations of the alphabet of 64 triplets into the sub-alphabet of 32 triplets with strong
roots (denoted by black) and the sub-alphabets of n-plets with weak roots. At the right of the matrix, Rademacher

functions illustrate meander-like mosaics of its rows.

In the matrix in Fig. 2, a sequence of black and white cells in each row has a meander-like character: black
fragments and white fragments have identical length. Such mosaic of each row corresponds to a meander-like form of
one of Rademacher functions that take only two values «+1» and «-1» and whose examples are shown in Fig. 2.
Rademacher functions are connected with the theory of orthogonal series and theory of probabilities. For example,
every statement about the Rademacher functions can be interpreted from the point of view of the theory of probability
(see details in [Alexits, 1961, §7; Petoukhov, 2021]).

Black and white cells of the symbolic matrices in Fig. 2 reflect the binary opposition of triplets with strong and
weak roots and therefore can be represented by elements +1 and -1 in them. In this representation, a numeric matrix
appears (Fig. 3, at top). Since this numerical matrix is closely related to the Rademacher functions, it is conventionally
called Rademacher genetic matrix of 64 triplets. Does this Rademacher genetic matrix have any essential algebraic
meaning? Yes, it has. Let us show this.

This Rademacher genetic matrix is a sum of two sparse matrices shown in Fig. 3 at bottom. One of these sparse
matrices, called as an even-columns matrix, contains only columns with even numberings; the second sparse matrix,

called as an odd-columns matrix, contains only columns with odd numberings.

000 (0) | 001 (1) | 010 (2) | 011 (3) | 100 (4) | 101 (5) | 110 (6) | 111 (7)

000 (0) +1 +1 -1 -1 +1 +1 -1 -1
001 (1) +1 +1 -1 -1 +1 +1 -1 -1
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010 (2) +1 +1 +1 +1 -1 -1 -1 -1
011 (3) +1 +1 +1 +1 -1 -1 -1 -1 =
100 (4) +1 +1 -1 -1 +1 +1 -1 -1
101 (5) +1 +1 -1 -1 +1 +1 -1 -1
110 (6) -1 -1 -1 -1 +1 +1 +1 +1
111 (7) -1 -1 -1 -1 +1 +1 +1 +1

O] ]2 ][G) @& ][G)]®) () 0 M2 ]G |@&H]G)]O)]7)
0) | +1 -1 +1 -1 0) +1 -1 +1 -1
(1)1 +1 -1 +1 -1 (1) +1 -1 +1 -1
21 +1 +1 -1 -1 (2) +1 +1 -1 -1
()N B2 +1 -1 -1 + | (3) +1 +1 -1 -1
41+ -1 +1 -1 (4) +1 -1 +1 -1
G+ -1 +1 -1 (5) +1 -1 +1 -1
6)1 -1 -1 +1 +1 6) -1 -1 +1 +1
| -1 -1 +1 +1 (7) -1 -1 +1 +1

Fig. 3. The even-odd representation of the Rademacher genetic matrix of 64 triplets (from Fig. 2) as the sum of two
sparse complementary matrices: at left, the even-columns matrix containing only non-zero columns having even
numberings; at right, the odd-columns matrix containing only non-zero columns having odd numberings. Empty cells

contain zero entries. Numbers in brackets are decimal values of binary numberings of columns and rows.

The even-columns (8*8)-matrix in Fig. 3 is the sum of 4 sparse (8*8)-matrices sotsi+s2tss shown in Fig. 4 (such
decomposition is conditionally called the column dyadic-tensor-shift decomposition since it is associated with the well-
known dyado-shift decomposition of matrices [Ahmed, Rao, 1975], which has undergone a certain complication based
on the tensor product). The set of these 4 matrices so, s, s, s3 is closed relative to multiplication and corresponds to a
certain multiplication table in Fig. 4, at right. This table matches to the multiplication table of the 4-dimensional algebra

of Cockle split-quaternions [https://en.wikipedia.org/wiki/Split-quaternion], which is used in the Poincare conformal

disk model of hyperbolic geometry [Karzel, Kist, 1985]. Some connections of hyperbolic geometry with structural
peculiarities of inherited physiological systems were described in [Bodnar, 1992, 1994; Kienle, 1964; Petoukhov, 1989;
Smolyaninov, 2000].
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S0= 51= 2= 83 =

1/o[ojolo[oo[o] [o]o]-1]ofofoo Jo| [o [ofo [o]o [o]-1]o] [ofolo [o[i]o]o [o] | * [se]si]s2]ss
1Jolofolojololo| [olo}-1]ololo[o [o| fo [ofo [olo Jo[-1]o] [ofofo lo[t]ofo [o] | s fses: sz ss
olo[1]ooololo] [1]o]o Jololo]o Jo| o Jofo fo]-1]olo fo] [oofo JofoJof-1]o] [Fs: fsif-so| s [-s2
olo[1]oofololo] [1]o]o Jolo[o[o Jo| [0 Jofo fo]-1]o]o o] [olofo lofolof-1o] [%s: fszl-ss| so [-s:
ololofo[1]ololo] [ololo Jolo[o[-1]o] o [o[-10]o Jolo o] [t]ofo Jofolofo [o] ['ssfss|sz|s1|so
olojojo]1[ofojo| [olojo [olojo]-1]o| o fo[-1olo [oo |o] [1o]o Joolojo |o

olololololo[1]o] |olo]o Jo[t]olo Jo] [-1]o]o Jolo Jolo Jo| [o]o]-1]ofo]olo Jo

ololofolojof1]o| [ololo fo1]o}o [o| [-1]ofo Jolo Jolo fo| |oo]-1]ofoofo o

Fig. 4. The column dyadic-tensor-shift decomposition of the even-columns matrix (from Fig. 3 at left) into 4 sparse
matrices so, s1, sz, 53, whose set is closed relative to multiplication; so plays a role of the identity matrix in this set. The
multiplication table for this set is shown at right, which matches with the multiplication table of the 4-dimensional
algebra of Cockle split-quaternions used in the Poincare conformal disk model of hyperbolic geometry. The symbol of

this model is presented.

Analogically, the odd-columns matrix (Fig. 3, at right) is the sum of 4 sparse matrices po+pi1+p2+ps shown in Fig.
5. The set of these 4 matrices po, p1, p2, ps is closed regarding multiplication and defines the multiplication table in Fig.
5, at right. This multiplication table coincides with the multiplication table of the 4-dimensional algebra, which was
received above for the even-columns matrix (Fig. 4). Both the even-columns matrix and the odd-columns matrix present
Cockle’s split-quaternions with unit coordinates (these split-quaternions have different forms of their matrix
representations, with which these even-columns and odd-columns genetic matrices turn out to be associated).

Correspondingly, both these genetic matrices are connected with the Poincare conformal disk model of hyperbolic

geometry.
po= p1= p2= ps = * |po|p1|p2|p3
ojtlojopolololo]  [ofoloroolol | ofo folo oo fol-1| fojojolo ool | [l e el pe
oftjolololololo|  [ololol-lolololo | folo Jolo folo [of1| [olo]olo foft[ofo Y O Y
olololzlolololo|  [o[tfolo Jolololo | folo Jolo fol-z[olo | [ofololo fololof-1 oal pel-pal o g
ojojolzlolololo|  [oftlolo Jolololo | folo folo fol-z[ojo | [ofololo fololof1
olojololoftlolo|  [olololo Jololol1| folo fo[-1lolo [ofo | [oft]olo fololofo
ololololo[lolo|  [olololo ololol1|  folo [of-x]olo folo | [oft]olo [olofoo
ojojolololololz|  [olololo Jofzlolo | fo[-Ljolo folo [ofo | [ololol-2jolololo
ololololololofz|  [olololo Jofzlolo | fo[-Llolo folo [ofo | [ofo]of-2lololofo

Fig. 5. The column dyadic-tensor-shift decomposition of the odd-columns matrix (from Fig. 3, at left) into 4 sparse
matrices po, p1, p2, p3, whose set is closed relative to multiplication; po plays a role of the identity matrix inside this set.
The multiplication table for this set is shown, which matches the multiplication table of the Cockle split-quaternions

algebra used in the Poincare conformal disk model of hyperbolic geometry. The symbol of this model is presented.

Now let us show that the summation of the even-columns and odd-columns matrices, which are

complementary each other and connected with the 4-dimensional algebra, gives the combined matrix W as a new
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algebraic entity, which is connected already with the 8-dimensional algebra. This combined matrix (Figs. 3 and 5) -
under its column dyadic-tensor-shift decomposition — is the sum of 8 sparse matrices vot+vi+vz+vst+vatvstvetvy shown in
Fig. 6. The set of these matrices vo, vi, v2, v3, v4, V5, Ve, v7is closed relative to multiplication and matches to the
multiplication table (Fig. 6, at bottom) of a certain 8-dimensional algebra. This algebra has interesting properties, which
were described in previous publications without a connection with the presented topic of complementary replications
[Petoukhov, 2008a-c; Petoukhov, He, 2010].

Vo Vi V2 V3
1/olofololololo oftjolololololo| | olof-t/olololo o] | [ololof-1/olololo
1)o{ofolofololo otlolololololo] | folol-tfolololo o] | [olofol-1lolofoo
olo[1jolololofo ojololzlolololo| | [tlojo Jolololo o] | [oft[ofo olololo
ofoltjoololofo ojololzlolololo| | [tlofo Jolololo o] | [o[t[ofo olololo
ololololt/ololo ojojololoftloo| | lolofo Jololol-1o] | [olololo ojolol-1
olololo[t[ololo ojolololoftloo] | lolofo Jololol-1o] | folololo ololol-1
olololololofzlo ojolololololofz| | [olofo Jofzlolo o] | [ololofo ofzlolo
olololololo[zfo ojojolololololz| | lolojo Jofzlolo o] | [ololofo ofzlolo
Vi V5 Ve V7

ofojo oftfofo o] | loolo foftloo| | fo lolo [olo fof-1lo| | folo [ofo Jolo fo-1
olojo Joftfolo [} lololofo foftlolo] o oo folo [ol-2lo| | fofo [ofo Jolo [o-1
ofojo ofofof-1]o] | folofolo lololol1| | fo folo [of-olo fo| | olo [olo [of-1/ofo
ofolo ofofof-1]o] | fololofo lololol1| | fo folo [o-tlolo fo| | folo [olo [of-t/olo
1jolo ofolofo o] oftlofo Jolololo | | fo fol-tlofo Jolo fo| | Jolo [ol-1[ofo Jolo
1ofo ooloo o] foftlofo Jolololo | | fo fol-tlofo Jolo fo| | Jolo [o]-1[ofo olo
ofo2lofofofo o] | folofof-2lololofo| | Fxlolo [ofoolo fo| | ok-2lolo [ofo Jolo
ofoltlofolofo o] | folofof-2lololofo| | Fxlolo [ofoolo fo| | ok-xlolo [ofo Jolo

Vo | V1 V2 V3 Vi V5 Ve | V7

Vo | Vo | V1 V2 V3 Vi V5 | V6 | V7

VijVvo |Vl V2 V3 Vi V5 Ve | V7

V2 V2|V3]|~=Vo|[|~-V1|~=V6|=V7 | V4| V5

V3| V2|V3]|~-Vo|[|~-V1|~-V6 | =V7 | V4a]| V5

V4 ] V4 [ V5 Vo v7 Vo Vi V2 | V3

Ve Q V6 | V7 | =V4 | =V5 | =V2 | =V3 [ V0 | V1

V7 Ve | V7| =V4s | =V5 ]| =V2]| =V3 [ V0| V1
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Fig. 6 . The column dyadic-tensor-shift decomposition of the sum of the even-columns matrix and the odd-columns
matrix (this summary matrix is shown in Fig. 3) into 8 sparse matrices vo, vi, v, v3, v4, Vs, Vs, V7, whose set is closed

relative to multiplication. The multiplication table for this set is shown at bottom.

This summary matrix W generates algorithmically its complementary-replicated analogue Wr by means of the
interchange of numbers 0ol in the binary numerating of its columns with the corresponding rearrangement of the
columns (that is, rearrangements of columns located mirror symmetrically in the left and right halves of the matrix).
This interchanging algorithm Oe1 in binary numbers provides interchange in any pair of complementary columns that
differ from each other in the content of triplets with purine and pyrimidine endings, in some analogy with the
complementarity of purines and pyrimidines in DNA double strands. For example, the column with number 110 (which
corresponds to the nucleotide order "purine-purine-pyrimidine" in all its triplets) takes the place of the column with
number 001 (which corresponds to the order "pyrimidine-pyrimidine-purine” in all its triplets). Fig. 7 shows the
summary matrix W and its complementary-replicated analogue Wz, which is generated by this algorithm based on
binary-oppositions in the DNA nucleobases alphabet and which is also connected by its meander like mosaic with

meander-like Rademacher functions.

W= Wr =

Ol 1 {23 4|5|6]7 7 6 5 |4 3 2 1 0
oFT ot 1] 0 [T 1110 1T |1 [T 1
1 1 I |-11-17]1 1]-1]-1 1 -1 (-1 |1 1 -1 -1 |1 1
2 1| 11|01 [-1]-1]-1]-1 < Dlalala g 1 1 1
3 1 1 1 I | -1]-1]-1]-1 3 -1 -1 -1 | -1 1 1 1 1
4 1 I |-11-1]1 | -1] -1 4 -1 (-1 |1 1 -1 -1 |1 1
5 I |1 |[-1]-1f1|1]|-1]-1 5 -1 -1 |1 1 -1 [-1 |1 1
6 §-1|-1|-1]-1 1 1 1 1 6 1 1 1 1 -1 -1 | -1 | -1
7 0-1-1-1]-1]1 1 1 1 7 1 1 1 1 -1 f-1 [ -1 | -1

Fig. 7. The Rademacher genetic matrix W of 64 triplets (from Fig. 3, at top) and its complementary-replicated matrix Wr,
which are transformed each to other by the interchanging algorithm based on binary-oppositions in the DNA
nucleobases alphabet (the purine-pyrimidine transformation, see explanations in the text). Black cells containing entries
+1 correspond to locations of triplets with strong roots. The numbering of columns and rows is shown in the decimal

system.

Applying this complementary-replicating algorithm to the complementary-replicated matrix Wr generates the
original Rademacher matrix W, that is, matrices W and Wr is mutual complementary-replicated matrices resembling
two complementary strings of DNA. This algorithm is recursive and its applying allows generate such pairs of
complementary-replicated matrices again and again. So, the ancient notions that "like begets like" surprisingly turn out
to be realized in genetics not only for complementary strings of DNA but also for the phenomenological structure of
the genetic matrix presented properties of the alphabet of 64 triplets. In other words, molecular complementary-
replicated properties of DNA strings exist jointly with algebraic complementary-replicated properties of the considered
alphabetical matrices of the genetic code. Both of these properties are parts of genetics of the whole organisms and so

interrelated. These algebraic complementary-replicated properties of genetic matrices allow applying effective algebraic
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methods for further study of genetics to include it in the field of modern mathematical natural sciences in connection
with multi-dimensional algebras, hyperbolic geometry, theory of resonances, etc.

The complementary-replicated matrix Wr — under its column dyadic-tensor-shift decomposition — is the sum of
8 sparse matrices qotqitqetqstqatqstqetqz shown in Fig. 8. The set of these matrices qo, q1, g2, @3, q4, g5, g6, g7 is closed
relative to multiplication and matches to the multiplication table (Fig. 8, at bottom) of a certain 8-dimensional algebra.
This new multiplication table is a complementary analogue of the multiplication table shown for the similar
decompositions of the matrix W in Fig. 6 : in these multiplication tables, each value of the multiplication qi*qx is equal

to the value vi*vi but taking with an opposite sign (here indexesi, k=0, 1, 2, 3,4, 5, 6, 7).

qQ @ q Q@
-1jojo folo [ofo Jo| | Jok-1]olo [o]o [olo 0 Jo[1lolo [ololo 0/0 Joftlolo [olo
1Jofo Jofo folo o] | lof-2lolo [ofo [o]o 0 Jo[1lolo [ololo olo Joflolo [olo
o Joflofo folo o] | folo [ol-1[ofo [o]o -1)olololo [ololo ol-1/ofololo [olo
0 Jof-1jolo Jolo fo| | [o[o Jol-x[olo [olo -1j0[ololo ololo ol-1jololojo Jolo
o Jolo Jol-tlolo o] | folo [olo [of-1[olo 0 Jolololo Joltlo olo Jolololo [ols
0 loo [o[-1loo [o| | folo [olo [ol-1lolo 0 Jolololo [o[zo 0lo Jolololo [o]t
0 Jojo [olo [o}-1jo| {]oo folo [olo [of-1| [0 [ololol-1]ololo 00 Jololol-1jojo
o Jolo Jolo fol1lo| | folo [olo [ofo of-2| | fo [olo[o]-1/o]olo olo Jofolof-1Jolo
@ as q @
0 lololof-1[ololo 0lo [olofol-1folo olololololofzlo olofololololoft
0 lololol-1[ololo 0lo [ololol-1lolo ololololololtlo ololololololoft
0 lolololo [oftfo 0o [olofolo ot olofolo[t[ololo olofololoft/olo
0 lolololo [oftfo 0lo Jolololo [o]t ololololt/ofolo ololololo[1folo
-1olololo [ololo of-1jolololo [ofo olo[tlololololo ololol/olololo
-1Jojololo [ololo of-1jolololo [olo olo[1/ololofolo olojo[t|olololo
0 Jofzjolo [ololo 0o Jofzlolo [olo 1lololololololo olt/ojololololo
0 ofzlolo [olofo 0o Joftlolo [ofo 1Jololololololo olt/ofololololo

Tldo |9 |92 | Q3| Qs | Q5|95 | @7

@ |-q0 |-q1|-q2 | -qs | -1 | -qs | -qs | a7

@ |-q0|-q|-q:|-qs | -1 |-qs | -qs | -ar
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qz)-qz (-q3| qo | q1 | qs | 97 [-q4 | -q5
qs)-q2 (-q3| qo | q1 | qs | q7 [-q4 | -q5
qs]1-94 (95 | -qs | -q7 | -qo [ -q1 [ -q2 | -3
qs]1-94 | -q5 | -qs | -q7 | -qo0 | -q1 [ -q2 | -q3
qe)-qe (-q7 | q+ | 95 | q2 | Q3 [-qo | -q1
qQ71-9e (-q7 | 94 | 95 | 92 | Q3 [-q0 | -q1

Fig. 8. The column dyadic-tensor-shift decomposition of the matrix Wr (Fig. 7) into 8 sparse matrices qo, q1, 92, g3, g4, q,

gs, q7, whose set is closed relative to multiplication. The multiplication table for this set is shown at bottom.

The action of complementary-replicated (8*8)-matrices W and Wr on an arbitrary 8-dimensional vector X
generates two new vectors that are complementary to each other: the corresponding coordinates of both generated
vectors are the same in their absolute values, but have opposite signs. A numerical example of this with a voluntary

vector X = [1,2,3,4,5,6,7, 8] is shown by expression (2):

X*W= [1,2,3,4,56,78*W = [6 6 -22, -22, 22, 22,-6,-6]= ¥
X*Wr=1[1,2,3,4,56,7 8*Wr=[-6, -6, 22, 22,-22,-22, 6, 6]=-7 )

Another interesting property of the Rademacher genetic complementary-replicated matrices W and Wk is that -
by their repeated action on the emerging vectors (2) - one can generate as many complementary-replicated vectors as
desired. In this case, the quadrupling of coordinate values in the vectors occurs, reminiscent of the quadrupling of
genetic information during the meiosis division of germ cells, under which one cell generates 4 similar cells with a
complete set of DNAs in each. The following example (3), using the denotations from (2), illustrates this quadrupling

of coordinate values with a regular changing of signs “+” and “~*:
Y*Wr=-4*Y; Y*Wr2=42Y; V*Wrd=-43Y; Y*Wri=44Y; etc 3)
The expression (4) shows one more property of the Rademacher complementary-replicated matrices W and Wr:

W*Wr = Wr*W = -4Wr
4)

The matrix W/4 is an oblique projector since (W/4)2 = W/4. In contrast, the matrix Wr corresponds to another
condition: (Wr/4)2 = -Wr/4.

Each of the resulting vectors X*W and X*Wkr is always a complementary palindrome: the sequence of its
coordinates, which is read in forward order, coincides with the sequence, which is read in reverse order and having
coordinates with the opposite sign (see the example (2)). This algebraic feature of the action of complementary-
replicated matrices on voluntary vectors is interesting, since in molecular genetics the problem of complementary
palindromes has long been known. Here one should remind about the difference in notions of an ordinary palindrome

and a complementary palindrome. By definition, an ordinary palindrome is a string that reads the same from beginning
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and from the end. By contrast, a complementary palindrome in molecular genetics is a fragment of a chain of DNA or
RNA, which becomes an ordinary palindrome, if each symbol in one half of the fragment is replaced by its
complementary symbol (AT, CoG) [Gusfield, 1997]. For instance, AGCTCGCGAGCT is a complementary palindrome.
In nucleotide sequences of DNA and RNA, a great number of complementary palindromes and ordinary palindromes
exists [Gusfield, 1997; Lehninger, 1982]. For instance, families of repetitive sequences occupy about one-third of the
human genome. The importance of the problem of repeats in genetic sequences is reflected in the fact that during 20
years before 1991 on this subject was published 6000 articles [Gribskov, Devereux, 1991].

One should add that the theme of the complementary columns (and rows) in the described genetic matrices is
also essential in connection with the universal rules of stochastic organization of DNA in genomes of higher and lower
organisms [Petoukhov, 2022a,b]. These rules include approximate equalities of sums of probabilities of triplets
belonging to the even column and the odd column of each pair of complementary columns (the same is true for each

pair of complementary rows).

4. Complementary-replicated genetic matrices and an even-odd rows

decomposition of the matrix of 64 triplets

Let us show that similar algebraic results arise in the case of “the rows dyadic-tensor-shift decomposition” of the same
mosaic matrix of 64 triplets from Fig. 3. This matrix has pairs of complementary rows, which are located mirror-
symmetrical in its top and bottom halves; as it was noted above, each of such pair contains one row with even number
and one row with odd number. Fig. 9 shows that the numeric presentation of this matrix, containing entries +1 and -1
(whose locations correspond to triplets with strong and weak roots), is the sum of two sparse matrices, one of which
contains only non-zero rows enumerated by even numbers and the other contains only non-zero rows enumerated by
odd numbers. Each of the pairs of complementary rows is separated among these two matrices. Correspondingly, the
sparse matrix with even-numerated rows is conditionally called the even-rows matrix of the row type; all its non-zero
rows correspond to triplets, which contain amino-molecules A or C at their ends (by this reason, this sparse matrix can
be also called the amino-rows matrix). The sparse matrix with odd-numerated rows is called the odd-rows matrix; all
its non-zero rows correspond to triplets, which contain keto-molecules G or T at their ends (by this reason, this sparse

matrix can be also called the keto-rows matrix).

000 (0) | 001 (1) | 010 (2) | 011 (3) | 100 (4) | 101 (5) | 110 (6) | 111 (7)
000 (0) +1 +1 -1 -1 +1 +1 -1 -1
001 (1) +1 +1 -1 -1 +1 +1 -1 -1
010 (2) +1 +1 +1 +1 -1 -1 -1 -1
011 (3) +1 +1 +1 +1 -1 -1 -1 -1 =
100 (4) +1 +1 -1 -1 +1 +1 -1 -1
101 (5) +1 +1 -1 -1 +1 +1 -1 -1
110 (6) -1 -1 -1 -1 +1 +1 +1 +1
111 (7) -1 -1 -1 -1 +1 +1 +1 +1
OM]@ |G |@H]|OG)]6)]7) O M@ |G |@H]6G)]6)]7)
O f+1 |+ | -1 | -1 |+1 |+ |-1]-1 0)
(1) O+ |+ -1 -1+ )+ -1]-1
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@+ |+ |+ | +1|-1]-1-1]-1 )
3) + @)+ |+ |+ | 41| -1 -1]-1]-1
@+ |+ -1|-1|+]+1]-1]|-1 4)
(5) Gyp+1r |+ | -1 -1+ +1]-1]-1
6)f -1 | -1 | -1 -1 ]+1]+1]+1]|+1 6)
(7) 7P -1 ] -1 -1 -1 |+1]+1]+1]|+1

Fig. 9. The even-odd presentation of the mosaic matrix of 64 triplets (from Fig. 3) as the sum of two sparse
complementary matrices: the left matrix, called the even-rows matrix, contains only non-zero rows having even
numberings; the matrix at right, called the odd-rows matrix, contains only non-zero rows having odd numberings.

Empty cells contain zero entries. Numbers in brackets are decimal values of binary numberings of columns and rows.

The even-rows (8*8)-matrix in Fig. 9 is the sum of 4 sparse (8*8)-matrices uo+us+ur+us shown in Fig.
10. The set of these 4 matrices Uo, U1,Uz, Uz IS closed relative to multiplication and corresponds to a certain
multiplication table in Fig. 10 at right. This table is again the multiplication table of the 4-dimensional alge-
bra of Cockle split-quaternions, which we met above in Figs. 4, 5 and which is used in the Poincare conformal
disk model of hyperbolic geometry.

= up = uz: = us =

1{1ofolofolojo] | {ofo]-1]-1]ofofo fo | [ Jofolo fo [t{tfofo||fofo oo oo |-1]1 *Luo | w | ue | ws
olofololofololo] | [ofofo fo fofojo fo || [o]olo o [olofo Jo | [fo fo Jofo fo Jofo [o | |{uofuoluuzus
olo1]1]ofofoo] | [1]1]o fo fololo Jo || [ofofo o [olo-1]-1] [fo fo fo fo Fil-tfo fo | | [ b [-uo|-us| v
oolofololofo[o] | [o]o]o Jo Jofofo fo || [o]ofo fo Jofofo Jo | |{o Jo fo Jo o Jo fo Jo | | Twzluz|us|wo|w
ololofo[1]1lo[o] | [o]olo fo fofof-1-1] | [ti]o Jo fofolo Jo | |]o o [il1loJo oo ws | [-wz|-us | e
olofololofololo] | [o]oo fo fololo fo || [olofo o folofoJo | {]o Jo fo fo fo fo fo fo

olofojolofol1]1] | [ofofo fo [1{t]o fo || [ool-1]-1folofo Jo | [|-1]-1]o o |o fo Jo [o

olofofolofofoo] | [o]oo Jo Jololo Jo || [olofo o fololo Jo ] {fo Jo Jo o Jo fo fo fo

Fig. 10. The row dyadic-tensor-shift decomposition of the even-row matrix (from Fig. 9, at left) into 4 sparse matrices
uo, u1, uz, us, whose set is closed relative to multiplication; uo plays a role of the identity matrix in this set. The
multiplication table for this set is shown at right, which matches with the multiplication table of the 4-dimensional
algebra of Cockle split-quaternions used in the Poincare conformal disk model of hyperbolic geometry. The symbol of

this model is presented.

Analogically, the odd-rows matrix (Fig. 9, at right) is the sum of 4 sparse matrices ap+a:+a>+az shown
in Fig. 11. The set of these 4 matrices ao, a1, az, as is closed regarding multiplication and defines the multipli-
cation table in Fig. 11, at right. This multiplication table coincides with the multiplication table of the 4-
dimensional algebra, which was received above for the even-rows matrix (Fig. 10) and for even-columns and
odd-columns matrices (Figs. 4 and 5). Both the even-rows matrix and the odd-rows matrix represent Cockle’s
split-quaternions with unit coordinates, which are connected with the Poincare conformal disk model of hy-
perbolic geometry.
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an = ar= ar= a3=

ololo[o]olo[olo] | [o[o]o o ololo [o | | o[oo o [olojo Jo | 1 fofo o Jofo Jofofo || [*]ad a1 | a: [as
1{1Jololo[ofolo] | [o[o]-1[-1]o]ojo Jo | | [oloo [o [t[1fo fo | [ o Jo o Jo Jo o [-1}-1] | fadael a1 | az |as
ololofololololo] | [oolo o Jolojo Jo | | [ofofo Jo Jolojofo || oo JoJo o JofoJo || farfai[-a0|-as|az
olo[1/1]ofololo] | [1]1]o o Joloo [o | | fololo fo [ofof-1]-1] | fo Jo fo Jo -1]-1fo fo

oloololofolo[o] | [ofofo o [oloo [o | | foolo o fojojo Jo | | fo Jo foJo Jo o fo fo

ooolo[1]1]o[o] | ofolo o [o[of-1[-1] | [1]lo o Joojo Jo | | fo Jo [-1]-1]o o fo o

olofololofololo] | [ofolo o Jofofo [o | | fofolo o foojo Jo | | fo fo ToJo Jo o fo o

olofololofo[1[1] | ofolo o [1[tfo o] | folo]-1]-t[ofojo Jo | | [-1]-1]o Jo Jo o fo o

Fig. 11. The row dyadic-tensor-shift decomposition of the even-row matrix (from Fig. 9, at right) into 4 sparse matrices
ao, a1, a2, a3, whose set is closed relative to multiplication; a0 plays a role of the identity matrix in this set. The
multiplication table for this set is shown at right, which matches with the multiplication table of the 4-
dimensional algebra of Cockle split-quaternions used in the Poincare conformal disk model of hyperbolic geometry.

The symbol of this model is presented.

The sum of the even-rows matrix and the odd-rows matrix gives the genetic matrix W in Fig. 3 at top, which was
above analyzed jointly with its complementary-replicated analogue Wk (Figs. 6-8).

Similar approaches using even-odd structures and dyadic-tensor-shift decompositions are also appropriate to
analyze complementary replicated properties of Rademacher genetic matrices of higher orders, for example, the (16*16)-
matrix of 256 tetraplets.

Different forms of implementation of the fundamental biological principle “like begets like” (or a
complementary replication in a wide sense) can be seen at different levels of inherited biological organization. For
example, in the brain of humans and animals, which has mirror complementary hemispheres (left and right), mirror
neurons are known. A mirror neuron is a neuron that fires both when an animal acts and when the animal observes the
same action performed by another. Thus, the neuron "mirrors" the behavior of the other, as though the observer were

itself acting.

The theme of mirror neurons, whose functioning is based on one of the forms of the principle “like begets like”,
provokes wide scientific researches and debates since it concerns cognitive functions, an origin of language, learning
facilitation, automatic imitation, motor mimicry, autism, human capacity of emotions such as empathy, and many other
problems (see for example [Morsella, Bargh, Gollwitzer, 2009; Rizzolatti, Sinigaglia, 2008]). In 2014, Philosophical
Transactions of the Royal Society B published a special issue entirely devoted to mirror neuron research [Ferrari,
Rizzolatti, 2014]. One of the arisen questions is the following: where do mirror neurons come from? [Heyes, 2010].

The above-described results of our studies in the field of matrix genetics give pieces of evidence that the system
of mirror neurons and the system of DNAs complementary replication are not isolated parts of the organism, but they
are particular parts of a bio-algebraic complex realizing inherited phenomena “like begets like”. Other examples of
manifestation of this complex are, for example, structured DNA alphabets in their matrix representation forms, as well
as universal rules for even-odd stochastic organization of genomic DNAs of higher and lower organisms [Petoukhov,
2022a,b]. Our body structure with its left and right halves, having left-and-right sensory-motor systems, also can be
considered as one of the manifestations of this complementary-replicating complex. Another example is given by our

visual perception whose optical system of the eye provides the transmission of the external image to the retina in
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complementary inverted and reduced forms. Although the image on the retina is inverted, we can see objects in a direct
form by some complementary-replicating action of our brain.

Correspondingly, complementary replication is a systemic phenomenon in the genetic organization. It's not that
the molecules of two strands of DNA randomly docked, formed a complementary pair and began to repeat the process
of complementary replication at breakneck speed. Another point of view is proposed: the DNA filaments replication
phenomenon is a part of a holistic bio-algebraic genetic complex of complementary replication, parts of which manifest
themselves at different levels of organization of the living, up to the functioning of the brain with its mirror neurons
and the ability to empathize and imitate external events. This bio-algebraic complex can be considered as responsible
for the implementation of the ancient principle "like begets like" at different levels of biological organization in the

course of biological evolution.

Some concluding remarks

The described results gives new materials for confirmation that the ancient principle “like begets like” plays important
role in the structurization of genetic molecular system. Moreover, they show that this principle is essential for studying
and modeling of algebraic features of molecular ensembles of the genetic code including binary-oppositional properties
among separate members and their groupings in these ensembles. New biological symmetries, connected with this
principle, were revealed in the families of the genetic matrices. Complementary replication in a wide sense is a systemic
phenomenon in the genetic organization concerning also algebraic features of molecular genetic ensembles.

The new received knowledge about the algebraic features of the genetic molecular systems opens new
approaches to understand interconnections of the genetic system with structural peculiarities of inherited physiological
systems. All physiological systems should be coordinated with the genetic code to be genetically encoded for their
transmition to next generations. This determines the importance of studying the algebraic features of the molecular
genetic system for understanding the origin and modeling of structures of inherited physiological complexes, and also
for the development of evolutionary biology and genetic biomechanics. The author believes that further study of the
structural relationships of the genetic system and inherited physiological complexes will be increasingly revealing the
key biological role of the ancient principle "like begets like" at different levels of biological organization including
phenomena of biological symmetries, brain functions, sensory-motor systems, morphogenesis, biological intelligence,

etc.
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