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Abstract. This article is devoted to results of in-depth analysis of the system of binary-oppositional 
structures in DNA n-plet alphabets and their algebraic-matrix representations. These results show 
that the molecular complementary replication of DNA strands is accompanied by the presence of 
an algebraic version of the principle "like begets like" in matrix representations of DNA alphabets 
having internal structures. This algebraic version is based on binary-oppositional structures in the 
genetic molecular system, which can be represented by bynary numbers and corresponding matri-
ces of DNA alphabets. The received results allow thinking that the phenomenon "like begets like" 
(or a complementary replication in a wide sense) is a systemic in the genetic organization and is 
connected with algebraic features of biological organization. Correspondingly, the biological prin-
ciple "like begets like" can be additionally modeled by algebraic-matrix methods and approaches. 
Such algebraic-matrix modeling of the genetic coding system gives new ways for studying and un-
derstanding a key role of the named principle in genetic and other inherited physiological com-
plexes. The author believes that further study of the algebraic relationships of the genetic system 
and inherited physiological complexes will be increasingly revealing  the key biological role of the 
ancient principle "like begets like" at different levels of biological organization. 
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1. Introduction 

The DNA double helix model created by J.D. Watson and F. Crick in 1953 gave a powerful impetus to the development 
of genetic research. It showed the world a recursive algorithm for the complementary replication of DNA strands, which 
ensures the replication of the genetic information recorded on these strands. Before the complementary replication, 
DNA is separated in two complementary strands. Each strand of the original DNA molecule serves as a template for 
the production of its new complementary counterpart. This seminal work by Watson and Crick was perceived as the 
discovery of a key secret of life, corresponding to the ancient notions that "like begets like". Scientists were struck by 
how simple and beautiful this explanation of the replication and preservation of genetic information based on the 
mechanism of complementarity turned out to be. It was emphasized that it is this complementarity that provides the 
most important properties of DNA as a carrier of hereditary information (see, for example, [Chapeville, Haenni,1974]). 

The complementary replication of DNA occurs in all living organisms acting as the most essential part for 
biological inheritance. This is essential for cell division during growth and repair of damaged tissues, while it also 
ensures that each of the new cells receives its own copy of the DNA. The cell possesses the distinctive property of 
division, which makes complementary replication of DNA essential. Complementary replication of DNA strands occurs 
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at an astonishing speed rate. For example, the well-known bacteria E. coli has a speed of replication of over 1,000 bases 
per second [Bank, 2022].  

The genetic information in DNA molecules is represented in the form of sequences of four types of nucleobases: 
adenine A, guanine G, cytosine C, and thymine T. Their set is often referred to as the 4-letter DNA alphabet. Along with 
it, other DNA alphabets exist: alphabets of 16 doublets, 64 triplets, 256 tetraplets, and other n-plets. In particular, the 
alphabet of 64 triplets is used in the genetic system to encode amino acids and termination signals of protein synthesis. 
Taking into account the existence of different alphabets of DNA n-plets turns out to be useful for revealing hidden 
regularities in the stochastic organization of genomic DNAs [Petoukhov, 2008, 2020, 2021; Petoukhov, He, 2010]. These 
DNA alphabets have binary-oppositional structures, which allow representing the alphabets in a comfortable form of 
(2n*2n)-matrices with dispositions - inside these matrices - of all corresponding n-plets in strict arrangements on the basis 
of their individual molecular peculiarities [Petoukhov, 2008; Petoukhov, He, 2010].  

The purpose of this article is to describe the author's results of an in-depth analysis of the system of binary-
oppositional structures in these DNA alphabets and their algebraic-matrix representations. These results show that the 
molecular complementary replication of DNA strands is accompanied by the presence of an algebraic version of the 
principle "like begets like" in the named matrix representations of DNA alphabets. This algebraic version is based on 
binary-oppositional structures in the genetic molecular system, which can be represented by bynary numbers and 
corresponding matrices of DNA alphabets. The received results allow thinking that the phenomenon "like begets like" 
(or a complementary replication in a wide sense) is a systemic in the genetic organization and is connected with 
algebraic features of biological organization. Correspondingly, the biological principle "like begets like" can be 
additionally modeled by algebraic-matrix methods and approaches. Such algebraic-matrix modeling of the genetic 
coding system gives new ways for studying and understanding a key role of the named principle in genetic and other 
inherited physiological complexes. 
 
2. Symmetries and binary principles in the molecular genetic system 
 
The four nucleobases of DNA are interrelated by their their symmetrical peculiarities into the united molecular 
ensemble having the three pairs of binary-oppositional traits or indicators [Fimmel, Danielli, Strüngmann, 2013; 
Petoukhov, 2008; Petoukhov, He, 20010; Stambuk, 1999]: 

- 1) Two letters are purines (A and G), and the other two are pyrimidines (C and T). From the standpoint of these 
binary-oppositional traits one can denote                C = T = 0, A = G = 1. From the standpoint of these 
traits, any of the DNA-sequences are represented by a corresponding binary sequence. For example, 
GCATGAAGT is represented by 101011110;  

- 2) Two letters are amino-molecules (A and C) and the other two are keto-molecules (G and T). From the stand-
point of these traits one can designate              A = C = 0, G = T = 1. Correspondingly, the same se-
quence, GCATGAAGT, as above, is represented by another binary sequence, 100110011;  

- 3) The pairs of complementary letters, A-T and C-G, are linked by 2 and 3 hydrogen bonds, respectively. From 
the standpoint of these traits, one can designate C = G = 0, A = T = 1. Correspondingly, the same sequence, 
GCATGAAGT, is read as 001101101. 

These three types of binary representations form a common logic set on the basis of logic operation of 
modulo-2 addition denoted by the symbol ⊕: modulo-2 addition of any two such binary representations of 
the DNA-sequence gives a sum, which is equal to the third binary representation of the same DNA-sequence: 
for example, 101011110 ⊕ 100110011 = 001101101. One can here remind the rules of the bitwise modulo-
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2 addition: 0 ⊕ 0 = 0; 0 ⊕ 1 = 1; 1 ⊕ 0 = 1; 1 ⊕ 1 = 0. (The logic operation of modulo-2 addition is 
actively used in computer informatics and quantum informatics).  

It is convenient to represent DNA-alphabets of 4 nucleotides, 16 doublets, 64 triplets, …, 4n n-plets in 
a form of appropriate square tables (Fig. 1), whose rows and columns are numerated by binary symbols in line 
with the following principle. Entries of each column are numerated by binary indicators "pyrimidine or purine" 
(C = T = 0, A = G = 1);  for example, the triplet CAG and all other triplets in the same column are the 
combination “pyrimidine-purine-purine” and so this column is correspondingly numerated 011. By contrast, 
entries of each row are numerated by binary indicators "amino or keto "(C = A = 0, T = G = 1); for example, 
the same triplet CAG and all other triplets in the same row are the combination “amino-amino-keto” and so 
this row is correspondingly numerated 001. In such tables (Fig. 1), each of 4 letters, 16 doublets, 64 triplets, 
… takes automatically its own individual place and all components of the alphabets are arranged in a strict 
order. This strict ordering of the relative positions of all members of the DNA alphabets proves useful in 
revealing hidden regularities and rules in the genetic coding system. As it is known, these three separate ge-
netic tables (Fig. 1) form the joint tensor family of matrices [C, A; T, G](n), where the symbol (n) refers to 
tensor power n, since they are interrelated by the known operation of the tensor (or Kronecker) product of 
matrices [Petoukhov, 2008].  

 
 0 1    00 01 10 11 
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C 
 

 

A   00 CC CA AC AA 
1 T G   01 CT CG AT AG 

     10 TC TA GC GA 
     11 TT TG GT GG 

 

 

 

 

 
 
 
 
 
Fig. 1.  The square tables of DNA-alphabets of 4 nucleotides, 16 doublets and 64 triplets with a strict 
arrangement of all components. Each of tables is constructed in line with the principle of binary numeration 
of its columns and rows (from [Petoukhov, 2008; Petoukhov, He, 2010]). 
 

The presentation of ensembles of elements of the genetic coding system in the form of tensor families of genetic 
matrices has appeared as a useful tool to investigate structures of the genetic code from the viewpoint of their analogy 

 000 001 010 011 100 101 110 111 
000 CCC CCA CAC CAA ACC ACA AAC AAA 
001 CCT CCG CAT CAG ACT ACG AAT AAG 
010 CTC CTA CGC CGA ATC ATA AGC AGA 
011 CTT CTG CGT CGG ATT ATG AGT AGG 
100 TCC TCA TAC TAA GCC GCA GAC GAA 
101 TCT TCG TAT TAG GCT GCG GAT GAG 
101 TCT TCG TAT TAG GCT GCG GAT GAG 
111 TTT TTG TGT TGG GTT GTG GGT GGG 
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with the theory of discrete signals processing, noise-immunity coding, quantum informatics, etc. The scientific direction, 
which deals with such matrix presentation of the ensembles of genetic elements and their numeric parameters, is named 
“matrix genetics’ [Petoukhov, 2008; Petoukhov, He, 2010].  

 
3.  Complementary-replicated genetic matrices and an even-odd columns   
     decomposition of the matrix of 64 triplets 

 
As one can see from Fig. 1, binary numberings of columns and rows of the (2n*2n)-matrices of DNA alphabets belong to 
dyadic groups of binary numbers. For example, in the (8*8)-matrix of 64 triplets, its columns and rows are numerated 
by 3-bit binary numbers forming the corresponding dyadic group (1): 
 
                                         001, 000, 011, 010, 101, 100, 111, 110                                
(1) 
 
     This series (1) is a partcular example of dyadic groups, in which modulo-2 addition serves as the group operation 
[Harmuth, 1989]. The distance in dyadic groups is known as the Hamming distance. Since the Hamming distance 
satisfies the conditions of a metric group, the dyadic group is a metric group. The modulo-2 addition of any two binary 
numbers from (1) always results in a new number from the same series. The number 000 serves as the unit element of 
this group: for example, 010 ⊕ 000 = 010. The reverse element for any number in this group is the number itself: for 
example, 010 ⊕ 010 = 000.  
 

Two binary numbers that are converted into each other under inter-replacing 0↔1 will be called complementary. 
For example, in the dyadic group (1), the pairs of complementary numbers are the following: 000-111, 001-110, 010-101, 
011-100 (in the decimal system, they correspond to pairs of numbers 0-7, 1-6, 2-5, 3-4). In a pair of complementary 
numbers, one of them is always even and the other is odd, that is, any pair of complementary numbers is the pair of 
even and odd numbers (or Yin and Yang numbers in line with ancient Chinese notions). Accordingly, any two columns 
(rows) that are enumerated by complementary binary numbers are called complementary. In the genetic matrices in 
Fig. 1, complementary columns are located mirror-symmetrical in the left and right halves of the matrices, and 
complementary rows are located mirror-symmetrical in the upper and lower halves.  

One should emphasize that, in the matrix in Figs. 1 and 2, any column enumerated by even number contains 
only triplets ending by pyrimidines C or T; in contrast, any column enumerated by odd number contains only triplets 
ending by purines A or G. The mentioned numeric inter-replacing 0↔1 in numberings of columns symbolizes the 
molecular inter-replacing: it means the transition from columns with triplets ending in pyrimidines to columns with 
triplets ending in purines and vice versa. Similarity to this, any row enumerated by even number contains only triplets 
ending by amino-molecules A or C; in contrast, any row enumerates by odd number contains only triplets ending by 
keto-molecules G or T. The mentioned numeric inter-replacing 0↔1 in numberings of rows symbolizes the molecular 
inter-replacing: it means the transition from rows with triplets ending in amino-molecules to rows with triplets ending 
in keto-molecules and vice versa. 

Let us remind one more phenomenological symmetry connected with the known binary-oppositional 
separation of the DNA alphabet of 64 triplets - according to their code properties - into two equal sub-alphabets: 32 
triplets with strong roots (i.e. triplets starting with 8 strong duplets CC, CT, CG, AC, TC, GC, GT, GG) and 32 triplets 
with weak roots (i.e. triplets starting with other 8 duplets) [Rumer, 1968; Fimmel, Strüngmann, 2016]. Coding value of 
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triplets with strong roots is independent of a letter on their third position. For example, the four triplets with the same 
strong root CGC, CGA, CGT, CGC encode the same amino acid Arg, though they have different letters on their third 
position. By contrary, the coding value of triplets with weak roots depends on a letter on their third position. For 
example, in the grouping of the four triplets with the same weak root CAC, CAT, CAA, and CAG, two triplets (CAC, 
CAT) encode the amino acid His and the other two (CAA, CAG) encode another amino acid Gln. In Fig. 2, which repeats 
Fig. 1 in some detail, all triplets with strong roots are marked by black color in contrast to triplets with weak roots 
denoted by white color. 

 

 
 
Fig. 2.  Black-and-white mosaics of the matrix [C, A; T, G](3) of 64 triplets from the tensor family [C,A; T,G](n) (from Fig. 
1) show the binary-oppositional separations of the alphabet of 64 triplets into the sub-alphabet of 32 triplets with strong 
roots (denoted by black) and the sub-alphabets of n-plets with weak roots. At the right of the matrix, Rademacher 
functions illustrate meander-like mosaics of its rows. 
 
 

In the matrix in Fig. 2, a sequence of black and white cells in each row has a meander-like character: black 
fragments and white fragments have identical length. Such mosaic of each row corresponds to a meander-like form of 
one of Rademacher functions that take only two values «+1» and «-1» and whose examples are shown in Fig. 2. 
Rademacher functions are connected with the theory of orthogonal series and theory of probabilities. For example, 
every statement about the Rademacher functions can be interpreted from the point of view of the theory of probability 
(see details in [Alexits, 1961, §7; Petoukhov, 2021]).  

Black and white cells of the symbolic matrices in Fig. 2 reflect the binary opposition of triplets with strong and 
weak roots and therefore can be represented by elements +1 and -1 in them. In this representation, a numeric matrix 
appears (Fig. 3, at top). Since this numerical matrix is closely related to the Rademacher functions, it is conventionally 
called Rademacher genetic matrix of 64 triplets. Does this Rademacher genetic matrix have any essential algebraic 
meaning? Yes, it has. Let us show this. 

This Rademacher genetic matrix is a sum of two sparse matrices shown in Fig. 3 at bottom. One of these sparse 
matrices, called as an even-columns matrix, contains only columns with even numberings; the second sparse matrix, 
called as an odd-columns matrix, contains only columns with odd numberings. 

 

 

 000 (0) 001 (1) 010 (2) 011 (3) 100 (4) 101 (5) 110 (6) 111 (7)  

000 (0) +1 +1 -1 -1 +1 +1 -1 -1  
001 (1) +1 +1 -1 -1 +1 +1 -1 -1  
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010 (2) +1 +1 +1 +1 -1 -1 -1 -1  

011 (3) +1 +1 +1 +1 -1 -1 -1 -1 = 

100 (4) +1 +1 -1 -1 +1 +1 -1 -1  

101 (5) +1 +1 -1 -1 +1 +1 -1 -1  

110 (6) -1 -1 -1 -1 +1 +1 +1 +1  

111 (7) -1 -1 -1 -1 +1 +1 +1 +1  

 
 

 (0) (1) (2) (3) (4) (5) (6) (7)   (0) (1) (2) (3) (4) (5) (6) (7) 

(0) +1  -1  +1  -1   (0)  +1  -1  +1  -1 
(1) +1  -1  +1  -1   (1)  +1  -1  +1  -1 

(2) +1  +1  -1  -1   (2)  +1  +1  -1  -1 

(3) +1  +1  -1  -1  + (3)  +1  +1  -1  -1 

(4) +1  -1  +1  -1   (4)  +1  -1  +1  -1 

(5) +1  -1  +1  -1   (5)  +1  -1  +1  -1 

(6) -1  -1  +1  +1   (6)  -1  -1  +1  +1 

(7) -1  -1  +1  +1   (7)  -1  -1  +1  +1 

 
Fig. 3. The even-odd representation of the Rademacher genetic matrix of 64 triplets (from Fig. 2) as the sum of two 
sparse complementary matrices: at left, the even-columns matrix containing only non-zero columns having even 
numberings; at right, the odd-columns matrix containing only non-zero columns having odd numberings. Empty cells 
contain zero entries. Numbers in brackets are decimal values of binary numberings of columns and rows. 
 

The even-columns (8*8)-matrix in Fig. 3 is the sum of 4 sparse (8*8)-matrices s0+s1+s2+s3 shown in Fig. 4  (such 
decomposition is conditionally called the column dyadic-tensor-shift decomposition since it is associated with the well-
known dyado-shift decomposition of matrices  [Ahmed, Rao, 1975], which has undergone a certain complication based 
on the tensor product). The set of these 4 matrices s0, s1, s2, s3 is closed relative to multiplication and corresponds to a 
certain multiplication table in Fig. 4, at right. This table matches to the multiplication table of the 4-dimensional algebra 
of Cockle split-quaternions [https://en.wikipedia.org/wiki/Split-quaternion], which is used in the Poincare conformal 
disk model of hyperbolic geometry [Karzel, Kist, 1985]. Some connections of hyperbolic geometry with structural 
peculiarities of inherited physiological systems were described in [Bodnar, 1992, 1994; Kienle, 1964; Petoukhov, 1989; 
Smolyaninov, 2000]. 
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Fig. 4. The column dyadic-tensor-shift decomposition of the even-columns matrix (from Fig. 3 at left) into 4 sparse 
matrices s0, s1, s2, s3, whose set is closed relative to multiplication; s0 plays a role of the identity matrix in this set. The 
multiplication table for this set is shown at right, which matches with the multiplication table of the 4-dimensional 
algebra of Cockle split-quaternions used in the Poincare conformal disk model of hyperbolic geometry. The symbol of 
this model is presented.  
 

Analogically, the odd-columns matrix (Fig. 3, at right) is the sum of 4 sparse matrices p0+p1+p2+p3 shown in Fig. 
5. The set of these 4 matrices p0, p1, p2, p3 is closed regarding multiplication and defines the multiplication table in Fig. 
5, at right. This multiplication table coincides with the multiplication table of the 4-dimensional algebra, which was 
received above for the even-columns matrix (Fig. 4). Both the even-columns matrix and the odd-columns matrix present 
Cockle’s split-quaternions with unit coordinates (these split-quaternions have different forms of their matrix 
representations, with which these even-columns and odd-columns genetic matrices turn out to be associated). 
Correspondingly, both these genetic matrices are connected with the Poincare conformal disk model of hyperbolic 
geometry. 

 
p0 = 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 
 

p1 = 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 
 

p2 = 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 -1 0 0 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 -1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 
 

p3 = 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 -1 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 
 

* p0 p1 p2 p3 

p0 p0 p1 p2 p3 

p1 p1 -p0 p3 -p2 

p2 p2 -p3 p0 -p1 

p3 p3 p2 p1 p0 

 

 
Fig.  5. The column dyadic-tensor-shift decomposition of the odd-columns matrix (from Fig. 3, at left) into 4 sparse 
matrices p0, p1, p2, p3, whose set is closed relative to multiplication; p0 plays a role of the identity matrix inside this set. 
The multiplication table for this set is shown, which matches the multiplication table of the Cockle split-quaternions 
algebra used in the Poincare conformal disk model of hyperbolic geometry. The symbol of this model is presented.  
 

Now let us show that the summation of the even-columns and odd-columns matrices, which are 
complementary each other and connected with the 4-dimensional algebra, gives the combined matrix W as a new 
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algebraic entity, which is connected already with the 8-dimensional algebra. This combined matrix (Figs. 3 and 5) - 
under its column dyadic-tensor-shift decomposition – is the sum of 8 sparse matrices v0+v1+v2+v3+v4+v5+v6+v7 shown in 
Fig. 6. The set of these matrices v0, v1, v2, v3, v4, v5, v6, v7 is closed relative to multiplication and matches to the 
multiplication table (Fig. 6 , at bottom) of a certain 8-dimensional algebra. This algebra has interesting properties, which 
were described in previous publications without a connection with the presented topic of complementary replications 
[Petoukhov, 2008a-c; Petoukhov, He, 2010]. 

 

v0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 1 0 
 

v1 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 
 

v2 

0 0 -1 0 0 0 0 0 

0 0 -1 0 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 
 

v3 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 
 

 
v4 

0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 -1 0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 -1 0 0 0 0 0 

0 0 -1 0 0 0 0 0 
 

 
v5 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 -1 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 
 

 
v6 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 -1 0 0 0 

0 0 0 0 -1 0 0 0 

0 0 -1 0 0 0 0 0 

0 0 -1 0 0 0 0 0 

-1 0 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 
 

 
v7 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 -1 0 0 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 -1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 
 

 

* v0 v1 v2 v3 v4 v5 v6 v7 

v0 v0 v1 v2 v3 v4 v5 v6 v7 

v1 v0 v1 v2 v3 v4 v5 v6 v7 

v2 v2 v3 -v0 -v1 -v6 -v7 v4 v5 

v3 v2 v3 -v0 -v1 -v6 -v7 v4 v5 

v4 v4 v5 v6 v7 v0 v1 v2 v3 

v5 v4 v5 v6 v7 v0 v1 v2 v3 

v6 v6 v7 -v4 -v5 -v2 -v3 v0 v1 

v7 v6 v7 -v4 -v5 -v2 -v3 v0 v1 
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Fig. 6 . The column dyadic-tensor-shift decomposition of the sum of the even-columns matrix and the odd-columns 
matrix (this summary matrix is shown in Fig. 3) into 8 sparse matrices v0, v1, v2, v3, v4, v5, v6, v7, whose set is closed 
relative to multiplication. The multiplication table for this set is shown at bottom. 
 

This summary matrix W generates algorithmically its complementary-replicated analogue WR by means of the 
interchange of numbers 0↔1 in the binary numerating of its columns with the corresponding rearrangement of the 
columns (that is, rearrangements of columns located mirror symmetrically in the left and right halves of the matrix). 
This interchanging algorithm 0↔1 in binary numbers provides interchange in any pair of complementary columns that 
differ from each other in the content of triplets with purine and pyrimidine endings, in some analogy with the 
complementarity of purines and pyrimidines in DNA double strands. For example, the column with number 110 (which 
corresponds to the nucleotide order "purine-purine-pyrimidine" in all its triplets) takes the place of the column with 
number 001 (which corresponds to the order "pyrimidine-pyrimidine-purine" in all its triplets). Fig. 7 shows the 
summary matrix W and its complementary-replicated analogue WR, which is generated by this algorithm based on 
binary-oppositions in the DNA nucleobases alphabet and which is also connected by its meander like mosaic with 
meander-like Rademacher functions. 

 

 
 
Fig. 7. The Rademacher genetic matrix W of 64 triplets (from Fig. 3, at top) and its complementary-replicated matrix WR, 
which are transformed each to other by the interchanging algorithm based on binary-oppositions in the DNA 
nucleobases alphabet (the purine-pyrimidine transformation, see explanations in the text). Black cells containing entries 
+1 correspond to locations of triplets with strong roots. The numbering of columns and rows is shown in the decimal 
system. 
 

Applying this complementary-replicating algorithm to the complementary-replicated matrix WR generates the 
original Rademacher matrix W, that is, matrices W and WR is mutual complementary-replicated matrices resembling 
two complementary strings of DNA. This algorithm is recursive and its applying allows generate such pairs of 
complementary-replicated matrices again and again. So, the ancient notions that "like begets like" surprisingly turn out 
to be realized in genetics not only for complementary strings of DNA but also for the phenomenological structure of 
the genetic matrix presented properties of the alphabet of 64 triplets. In other words, molecular complementary-
replicated properties of DNA strings exist jointly with algebraic complementary-replicated properties of the considered 
alphabetical matrices of the genetic code. Both of these properties are parts of genetics of the whole organisms and so 
interrelated. These algebraic complementary-replicated properties of genetic matrices allow applying effective algebraic 
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methods for further study of genetics to include it in the field of modern mathematical natural sciences in connection 
with multi-dimensional algebras, hyperbolic geometry, theory of resonances, etc.  

The complementary-replicated matrix WR – under its column dyadic-tensor-shift decomposition – is the sum of 
8 sparse matrices q0+q1+q2+q3+q4+q5+q6+q7 shown in Fig. 8. The set of these matrices q0, q1, q2, q3, q4, q5, q6, q7 is closed 
relative to multiplication and matches to the multiplication table (Fig. 8, at bottom) of a certain 8-dimensional algebra. 
This new multiplication table is a complementary analogue of the multiplication table shown for the similar 
decompositions of the matrix W in Fig. 6 : in these multiplication tables, each value of the multiplication qi*qk is equal 
to the value vi*vk but taking with an opposite sign (here indexes i, k = 0, 1, 2, 3, 4, 5, 6, 7). 

 
 
 
 
 
 
 
 

q0 

-1 0 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 

0 0 -1 0 0 0 0 0 

0 0 -1 0 0 0 0 0 

0 0 0 0 -1 0 0 0 

0 0 0 0 -1 0 0 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 -1 0 
 

q1 

0 -1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 -1 
 

q2 

0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 

-1 0 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 1 0 

0 0 0 0 -1 0 0 0 

0 0 0 0 -1 0 0 0 
 

q3 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 

0 -1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 -1 0 0 
 

 
q4 

0 0 0 0 -1 0 0 0 

0 0 0 0 -1 0 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 1 0 

-1 0 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 
 

 
q5 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 

0 -1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 
 

 
q6 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 1 0 

0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 

0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 
 

 
q7 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 
 

 

* q0 q1 q2 q3 q4 q5 q6 q7 

q0 -q0 -q1 -q2 -q3 -q4 -q5 -q6 -q7 

q1 -q0 -q1 -q2 -q3 -q4 -q5 -q6 -q7 
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q2 -q2 -q3 q0 q1 q6 q7 -q4 -q5 

q3 -q2 -q3 q0 q1 q6 q7 -q4 -q5 

q4 -q4 -q5 -q6 -q7 -q0 -q1 -q2 -q3 

q5 -q4 -q5 -q6 -q7 -q0 -q1 -q2 -q3 

q6 -q6 -q7 q4 q5 q2 q3 -q0 -q1 

q7 -q6 -q7 q4 q5 q2 q3 -q0 -q1 

 
 
Fig. 8. The column dyadic-tensor-shift decomposition of the matrix WR (Fig. 7) into 8 sparse matrices q0, q1, q2, q3, q4, q, 
q6, q7, whose set is closed relative to multiplication. The multiplication table for this set is shown at bottom. 
 

The action of complementary-replicated (8*8)-matrices W and WR on an arbitrary 8-dimensional vector 𝑋𝑋 
generates two new vectors that are complementary to each other: the corresponding coordinates of both generated 
vectors are the same in their absolute values, but have opposite signs. A numerical example of this with a voluntary 
vector 𝑋𝑋 = [1, 2, 3, 4, 5, 6, 7, 8] is shown by expression (2): 

 
     𝑋𝑋*W =  [1, 2, 3, 4, 5, 6, 7, 8]*W  =  [6,  6,  -22,  -22,  22,  22, -6, -6] =  𝑌𝑌� 
     𝑋𝑋*WR = [1, 2, 3, 4, 5, 6, 7, 8]*WR = [-6,  -6,  22,  22, -22, -22,  6,  6] = -𝑌𝑌�         (2)      
 
     Another interesting property of the Rademacher genetic complementary-replicated matrices W and WR is that - 
by their repeated action on the emerging vectors (2) - one can generate as many complementary-replicated vectors as 
desired. In this case, the quadrupling of coordinate values in the vectors occurs, reminiscent of the quadrupling of 
genetic information during the meiosis division of germ cells, under which one cell generates 4 similar cells with a 
complete set of DNAs in each. The following example (3), using the denotations from (2), illustrates this quadrupling 
of coordinate values with a regular changing of signs “+” and “–“: 
 
       𝑌𝑌�*WR = -4*𝑌𝑌�;   𝑌𝑌�*WR2 = 42*𝑌𝑌�;   𝑌𝑌�*WR3 = -43*𝑌𝑌�;   𝑌𝑌�*WR4 = 44*𝑌𝑌�;  etc.            (3) 

 
The expression (4) shows one more property of the Rademacher complementary-replicated matrices W and WR: 
 

                                                 W*WR = WR*W = -4WR                                             
(4) 

 
The matrix W/4 is an oblique projector since (W/4)2 = W/4. In contrast, the matrix WR corresponds to another 

condition: (WR/4)2 = -WR/4. 
Each of the resulting vectors 𝑋𝑋*W and 𝑋𝑋*WR is always a complementary palindrome: the sequence of its 

coordinates, which is read in forward order, coincides with the sequence, which is read in reverse order and having 
coordinates with the opposite sign (see the example (2)). This algebraic feature of the action of complementary-
replicated matrices on voluntary vectors is interesting, since in molecular genetics the problem of complementary 
palindromes has long been known. Here one should remind about the difference in notions of an ordinary palindrome 
and a complementary palindrome. By definition, an ordinary palindrome is a string that reads the same from beginning 
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and from the end. By contrast, a complementary palindrome in molecular genetics is a fragment of a chain of DNA or 
RNA, which becomes an ordinary palindrome, if each symbol in one half of the fragment is replaced by its 
complementary symbol (A↔T, C↔G) [Gusfield,1997]. For instance, AGCTCGCGAGCT is a complementary palindrome. 
In nucleotide sequences of DNA and RNA, a great number of complementary palindromes and ordinary palindromes 
exists [Gusfield, 1997; Lehninger, 1982]. For instance, families of repetitive sequences occupy about one-third of the 
human genome. The importance of the problem of repeats in genetic sequences is reflected in the fact that during 20 
years before 1991 on this subject was published 6000 articles [Gribskov, Devereux, 1991].  
 One should add that the theme of the complementary columns (and rows) in the described genetic matrices is 
also essential in connection with the universal rules of stochastic organization of DNA in genomes of higher and lower 
organisms [Petoukhov, 2022a,b]. These rules include approximate equalities of sums of probabilities of triplets 
belonging to the even column and the odd column of each pair of complementary columns (the same is true for each 
pair of complementary rows). 
 
4.  Complementary-replicated genetic matrices and an even-odd rows  
     decomposition of the matrix of 64 triplets 
 
Let us show that similar algebraic results arise in the case of “the rows dyadic-tensor-shift decomposition” of the same 
mosaic matrix of 64 triplets from Fig. 3. This matrix has pairs of complementary rows, which are located mirror-
symmetrical in its top and bottom halves; as it was noted above, each of such pair contains one row with even number 
and one row with odd number. Fig. 9 shows that the numeric presentation of this matrix, containing entries +1 and -1 
(whose locations correspond to triplets with strong and weak roots), is the sum of two sparse matrices, one of which 
contains only non-zero rows enumerated by even numbers and the other contains only non-zero rows enumerated by 
odd numbers. Each of the pairs of complementary rows is separated among these two matrices. Correspondingly, the 
sparse matrix with even-numerated rows is conditionally called the even-rows matrix of the row type; all its non-zero 
rows correspond to triplets, which contain amino-molecules A or C at their ends (by this reason, this sparse matrix can 
be also called the amino-rows matrix). The sparse matrix with odd-numerated rows is called the odd-rows matrix; all 
its non-zero rows correspond to triplets, which contain keto-molecules G or T at their ends (by this reason, this sparse 
matrix can be also called the keto-rows matrix). 
 

 000 (0) 001 (1) 010 (2) 011 (3) 100 (4) 101 (5) 110 (6) 111 (7)  

000 (0) +1 +1 -1 -1 +1 +1 -1 -1  
001 (1) +1 +1 -1 -1 +1 +1 -1 -1  

010 (2) +1 +1 +1 +1 -1 -1 -1 -1  

011 (3) +1 +1 +1 +1 -1 -1 -1 -1 = 

100 (4) +1 +1 -1 -1 +1 +1 -1 -1  

101 (5) +1 +1 -1 -1 +1 +1 -1 -1  

110 (6) -1 -1 -1 -1 +1 +1 +1 +1  

111 (7) -1 -1 -1 -1 +1 +1 +1 +1  

 
 (0) (1) (2) (3) (4) (5) (6) (7)   (0) (1) (2) (3) (4) (5) (6) (7) 

(0) +1 +1 -1 -1 +1 +1 -1 -1  (0)         

(1)          (1) +1 +1 -1 -1 +1 +1 -1 -1 
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(2) +1 +1 +1 +1 -1 -1 -1 -1  (2)         

(3)         + (3) +1 +1 +1 +1 -1 -1 -1 -1 

(4) +1 +1 -1 -1 +1 +1 -1 -1  (4)         

(5)          (5) +1 +1 -1 -1 +1 +1 -1 -1 

(6) -1 -1 -1 -1 +1 +1 +1 +1  (6)         

(7)          (7) -1 -1 -1 -1 +1 +1 +1 +1 

 
Fig.  9. The even-odd presentation of the mosaic matrix of 64 triplets (from Fig. 3) as the sum of two sparse 
complementary matrices: the left matrix, called the even-rows matrix, contains only non-zero rows having even 
numberings; the matrix at right, called the odd-rows matrix, contains only non-zero rows having odd numberings. 
Empty cells contain zero entries. Numbers in brackets are decimal values of binary numberings of columns and rows. 

 
The even-rows (8*8)-matrix in Fig. 9 is the sum of 4 sparse (8*8)-matrices u0+u1+u2+u3 shown in Fig. 

10. The set of these 4 matrices u0, u1,u2, u3 is closed relative to multiplication and corresponds to a certain 
multiplication table in Fig. 10  at right. This table is again the multiplication table of the 4-dimensional alge-
bra of Cockle split-quaternions, which we met above in Figs. 4, 5 and which is used in the Poincare conformal 
disk model of hyperbolic geometry. 

 

 
 

Fig. 10. The row dyadic-tensor-shift decomposition of the even-row matrix (from Fig. 9, at left) into 4 sparse matrices 
u0, u1, u2, u3, whose set is closed relative to multiplication; u0 plays a role of the identity matrix in this set. The 
multiplication table for this set is shown at right, which matches with the multiplication table of the 4-dimensional 
algebra of Cockle split-quaternions used in the Poincare conformal disk model of hyperbolic geometry. The symbol of 
this model is presented.  
  

       Analogically, the odd-rows matrix (Fig. 9, at right) is the sum of 4 sparse matrices a0+a1+a2+a3 shown 
in Fig. 11. The set of these 4 matrices a0, a1, a2, a3 is closed regarding multiplication and defines the multipli-
cation table in Fig. 11, at right. This multiplication table coincides with the multiplication table of the 4-
dimensional algebra, which was received above for the even-rows matrix (Fig. 10) and for even-columns and 
odd-columns matrices (Figs. 4 and 5). Both the even-rows matrix and the odd-rows matrix represent Cockle’s 
split-quaternions with unit coordinates, which are connected with the Poincare conformal disk model of hy-
perbolic geometry. 
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Fig. 11. The row dyadic-tensor-shift decomposition of the even-row matrix (from Fig. 9, at right) into 4 sparse matrices 
a0, a1, a2, a3, whose set is closed relative to multiplication; a0 plays a role of the identity matrix in this set. The 
multiplication table for this set is shown at right, which matches with the multiplication table of the                4-
dimensional algebra of Cockle split-quaternions used in the Poincare conformal disk model of hyperbolic geometry. 
The symbol of this model is presented.  
 

 The sum of the even-rows matrix and the odd-rows matrix gives the genetic matrix W in Fig. 3 at top, which was 
above analyzed jointly with its complementary-replicated analogue WR (Figs. 6-8).  

 Similar approaches using even-odd structures and dyadic-tensor-shift decompositions are also appropriate to 
analyze complementary replicated properties of Rademacher genetic matrices of higher orders, for example, the (16*16)-
matrix of 256 tetraplets. 

Different forms of implementation of the fundamental biological principle “like begets like” (or a 
complementary replication in a wide sense) can be seen at different levels of inherited biological organization. For 
example, in the brain of humans and animals, which has mirror complementary hemispheres (left and right), mirror 
neurons are known. A mirror neuron is a neuron that fires both when an animal acts and when the animal observes the 
same action performed by another. Thus, the neuron "mirrors" the behavior of the other, as though the observer were 
itself acting. 

The theme of mirror neurons, whose functioning is based on one of the forms of the principle “like begets like”, 
provokes wide scientific researches and debates since it concerns cognitive functions, an origin of language, learning 
facilitation, automatic imitation, motor mimicry, autism, human capacity of emotions such as empathy, and many other 
problems (see for example [Morsella, Bargh, Gollwitzer, 2009; Rizzolatti, Sinigaglia, 2008]). In 2014, Philosophical 
Transactions of the Royal Society B published a special issue entirely devoted to mirror neuron research [Ferrari, 
Rizzolatti, 2014]. One of the arisen questions is the following: where do mirror neurons come from? [Heyes, 2010].  

The above-described results of our studies in the field of matrix genetics give pieces of evidence that the system 
of mirror neurons and the system of DNAs complementary replication are not isolated parts of the organism, but they 
are particular parts of a bio-algebraic complex realizing inherited phenomena “like begets like”.  Other examples of 
manifestation of this complex are, for example, structured DNA alphabets in their matrix representation forms, as well 
as universal rules for even-odd stochastic organization of genomic DNAs of higher and lower organisms [Petoukhov, 
2022a,b]. Our body structure with its left and right halves, having left-and-right sensory-motor systems, also can be 
considered as one of the manifestations of this complementary-replicating complex. Another example is given by our 
visual perception whose optical system of the eye provides the transmission of the external image to the retina in 
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complementary inverted and reduced forms. Although the image on the retina is inverted, we can see objects in a direct 
form by some complementary-replicating action of our brain. 

Correspondingly, complementary replication is a systemic phenomenon in the genetic organization. It's not that 
the molecules of two strands of DNA randomly docked, formed a complementary pair and began to repeat the process 
of complementary replication at breakneck speed. Another point of view is proposed: the DNA filaments replication 
phenomenon is a part of a holistic bio-algebraic genetic complex of complementary replication, parts of which manifest 
themselves at different levels of organization of the living, up to the functioning of the brain with its mirror neurons 
and the ability to empathize and imitate external events. This bio-algebraic complex can be considered as responsible 
for the implementation of the ancient principle "like begets like" at different levels of biological organization in the 
course of biological evolution.  

 
Some concluding remarks 
 
The described results gives new materials for confirmation that the ancient principle “like begets like” plays important 
role in the structurization of genetic molecular system. Moreover, they show that this  principle is essential for studying 
and modeling of algebraic features of molecular ensembles of the genetic code including binary-oppositional properties 
among separate members and their groupings in these ensembles. New biological symmetries, connected with this 
principle, were revealed in the families of the genetic matrices. Complementary replication in a wide sense is a systemic 
phenomenon in the genetic organization concerning also algebraic features of molecular genetic ensembles.  

The new received knowledge about the algebraic features of the genetic molecular systems opens new 
approaches to understand interconnections of the genetic system with structural peculiarities of inherited physiological 
systems. All physiological systems should be coordinated with the genetic code to be genetically encoded for their 
transmition to next generations. This determines the importance of studying the algebraic features of the molecular 
genetic system for understanding the origin and modeling of structures of inherited physiological complexes, and also 
for the development of evolutionary biology and genetic biomechanics. The author believes that further study of the 
structural relationships of the genetic system and inherited physiological complexes will be increasingly revealing  the 
key biological role of the ancient principle "like begets like" at different levels of biological organization including 
phenomena of biological symmetries, brain functions, sensory-motor systems, morphogenesis, biological intelligence, 
etc. 
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