

Review

Not peer-reviewed version

The Therapeutic Potential of Insulin Eye Drops in Neurotrophic Keratopathy: A Comprehensive Review

Anca Georgiana Onofrei *, Oana Roxana Scripcă, <u>Sinziana Luminita Istrate</u> *, Emil Ungureanu, <u>Stefan Oprea</u>, <u>Nicoleta Anton</u>, <u>Marius Alexandru Moga</u>, <u>Madalina Boruga</u>

Posted Date: 30 April 2025

doi: 10.20944/preprints202504.2618.v1

Keywords: insulin eye drops; topical insulin; neurotrophic keratopathy; corneal ulcer

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

The Therapeutic Potential of Insulin Eye Drops in Neurotrophic Keratopathy: A Comprehensive Review

Roxana Scripcă ¹, Sinziana Istrate ³, Emil Ungureanu ³, Ștefan Oprea ^{3,4}, Nicoleta Anton ⁵, Madalina Boruga ⁶, Marius Alexandru Moga ¹ and Ancuța-Georgiana Onofrei ^{2,3,*}

- Ophthalmology Department ,Medicine Faculty at University Transilvania Brasov, Bulevardul Eroilor 29, Brasov 500036, Romania
- ² Department of Ophthalmology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- ³ BINE Ophthalmology Clinic, 020483 Bucharest, Romania
- Department of Anatomy, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Ophthalmology, Gr. T. Popa University of Medicine and Pharmacy Iasi, 700115, Romania
- 6 Department of Toxicology, Victor Babeş University of Medicine and Pharmacy Timişoara, 300041, Romania
- * Correspondence: ancuta-georgiana.onofrei@drd.umfcd.ro; Tel.: +40-751538886

Abstract: This review explores the potential role of topical insulin drops in corneal regeneration by analyzing the mechanism of action and clinical outcomes. Corneal integrity restauration is crucial for ocular surface healing. This review synthesizes current literature on topical insulin for neurotrophic keratopathy (NK), highlighting its mechanism of action, therapeutic potential, and clinical outcomes. Recent studies report high rates of epithelial regeneration, suggesting that topical insulin may be an effective adjunct or alternative to conventional treatments. Further randomized controlled trials are needed to confirm its long-term efficacy and optimal dosing. Methods: Considering the limited regenerative capacity of the corneal epithelium in NK and the increasing interest in novel therapy, we review existing literature to evaluate the role and extent of topical insulin's contribution to corneal healing, by applying the PICO framework, which allows for a clear and systematic approach to literature selection and evaluation. The literature search and study selection were conducted manually following PRISMA guidelines. Conclusions: Most of the studies resulting from the selection have small samples and there is a lack of large, randomized clinical trials. The evidence reviewed in this study suggests that topical insulin is a promising therapy for promoting corneal healing in neurotrophic keratopathy. While clinical trials have demonstrated significant epithelial regeneration, optimal dosing and long-term safety require further investigation. Compared to conventional treatments such as autologous serum or growth factor therapy, insulin eye drops provide a cost-effective alternative. Additional research through controlled trials is needed to formulate standardized therapeutic protocols and verify long-term outcomes.

Keywords: insulin eye drops; topical insulin; neurotrophic keratopathy; corneal ulcer

1. Introduction

The cornea exhibits dense sensory innervation, predominantly supplied by the ophthalmic branch of the trigeminal nerve, which contributes to epithelial turnover, neurotrophic support, reflex lacrimation, and the orchestration of wound healing mechanisms [1]. As seen in neurotrophic keratopathy (NK), damage to corneal nerves disrupts these mechanisms, leading to persistent epithelial defects and potential corneal perforation [2]. Emerging evidence suggests that topical insulin may facilitate corneal healing by stimulating epithelial proliferation, reducing inflammation, and restoring cellular homeostasis.

1.1. Anatomy of the Cornea

The anterior segment is composed of the conjunctiva, cornea, lens, ciliary body, iris, and aqueous humor. The cornea and sclera form the outer protective layer of the eye. The cornea is a transparent, avascular tissue that contributes approximately two-thirds of the eye's refractive power (40–44 D) and has a 1.376 refractive index. The cornea is horizontally round, convex, and aspheric. The confines of the anterior curve are 7.8 mm, and the posterior curve is roughly 6.5 mm [3].

1.2. Corneal Histology

The corneal surface is composed of a multi-layered squamous epithelium that does not undergo keratinization, particularly at the periphery. Basal epithelial cells exhibit a polygonal morphology, transitioning into progressively flattened cells as they approach the superficial strata. Within the epithelial layers, immune-responsive Langerhans cells can be observed, typically identifiable by CD1a expression. Bowman's layer contributes significantly to the anterior stroma. The central stroma, which constitutes approximately 90% of the corneal thickness, is acellular and contains uniformly spaced collagen fibrils interspersed with mucoproteins and glycoproteins—essential components responsible for maintaining corneal transparency. This layer measures approximately 8 to 14 microns in thickness and lacks regenerative capacity. Descemet's membrane, synthesized by corneal endothelial cells, measures around 10–12 microns in adults and also does not regenerate after injury. The innermost layer, the endothelium, is composed of a single layer of flattened cells that play a vital role in maintaining corneal deturgescence through active ionic transport mechanisms, thereby ensuring tissue transparency [4].

1.3. Corneal Innervation and Sensation

The cornea receives extensive sensory innervation, accompanied by a smaller proportion of autonomic fibers. These nerve fibers originate primarily from the ophthalmic branch of the trigeminal nerve. At the corneal periphery, both unmyelinated C fibers and myelinated Aδ fibers penetrate the stroma. As they extend toward the central cornea, they lose their myelin sheath, a physiological adaptation that contributes to maintaining corneal transparency [2]. Corneal innervation plays a vital role in promoting tear secretion, blinking reflexes, and the release of trophic factors necessary for epithelial maintenance. When corneal nerves are damaged, these processes are disrupted, leading to reduced corneal sensitivity, persistent epithelial defects, and, in severe cases, corneal perforation [5]. Approximately 20% of the sensory fibers are mechanoreceptors that detect mechanical stimuli and transmit sharp pain signals through thin myelinated Aδ fibers. Around 70% are polymodal nociceptors that respond to chemical mediators (e.g., acetylcholine, prostaglandins, bradykinin), thermal, and mechanical stimuli via slow-conducting unmyelinated C fibers [6]. The remaining 10% are cold thermoreceptors that are activated by tear film evaporation or exposure to cold air or solutions, and signal through both Aδ and C fibers [7].

1.4. The Involvement of Insulin in the Corneal Healing Process

Insulin is a hormone with an essential role in cellular metabolism, closely related to the insulin growth factor (IGF), which is capable of stimulating keratinocyte migration. At the ocular surface, insulin stimulates the proliferation and migration of corneal epithelial cells and the synthesis of growth factors involved in tissue regeneration and significantly reduces inflammatory biomarkers [8]. The mechanism by which insulin contributes to the regeneration of the corneal epithelium is not fully understood, and the optimal dose has not yet been established in studies. Bartlett et al. applied eye drops of insulin in concentrations of 100 IU/mL to eight healthy eyes and demonstrated the safety of topical insulin in the form of drops [9].

The Mackie classification stages the severity of the lesions as follows [10]:

Table 1. The Mackie classification [10].

Stage	Clinical Features
Stage 1	dry and cloudy corneal epithelium, the presence of superficial punctate keratopathy and edema
Stage 2	recurrent and/or persistent epithelial defects with an oval or circular shape in the upper half of the cornea.
Stage 3	corneal ulcer with stromal involvement, stromal melting phenomena, and progression to corneal perforation.

2. Results

For this review, a systematic search was performed in PubMed using the terms: "Insulin Eye Drops" OR "Topical Insulin" AND "Neurotrophic Keratopathy" OR "Corneal Ulcer". We selected studies published between 2020 and 2025. Included studies were analyzed according to the method used, number of patients, dose administered, and reported outcomes.

Inclusion criteria

Clinical studies (RCTs, observational, case series) evaluating the effect of topical insulin on neurotrophic keratopathy.

Preclinical studies (in vitro, animals) exploring the mechanism of action of insulin in corneal healing.

Meta-analyses and systematic reviews synthesizing relevant data on ophthalmic insulin.

Clinical guidelines mentioning insulin as a possible therapeutic option.

Exclusion criteria

Studies analyzing systemic insulin without ophthalmological applicability

Studies on other corneal conditions not relevant to neurotrophic keratopathy.

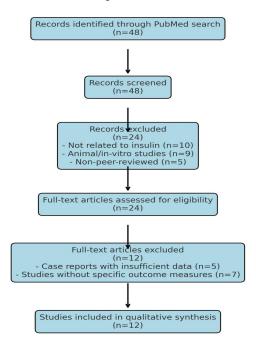
Letters to the editor, opinions, and articles without peer review.

2.1. Search Strategy and Study Selection

A comprehensive systematic literature search was conducted using PubMed to identify relevant studies published between 2020 and 2025. The search was performed using the following key terms and Boolean operators: ("Insulin Eye Drops" OR "Topical Insulin") AND ("Neurotrophic Keratopathy" OR "Corneal Ulcer").

Filters were applied, such as "Include only human studies", "Exclude animal studies and in vitro research," and "Select clinical trials, observational studies, case reports, and systematic reviews."

2.2. Inclusion Criteria


Clinical studies (randomized controlled trials, observational studies, case series) evaluating topical insulin for neurotrophic keratopathy

- Preclinical studies investigating the mechanism of action of insulin in corneal wound healing

- Systematic reviews and meta-analyses summarizing the efficacy of insulin in ocular surface pathology

2.3. Exclusion Criteria

- Studies analyzing systemic insulin therapy without ophthalmic application
- Research on other corneal diseases without direct relevance to neurotrophic keratopathy
- Editorials, letters to the editor, and non-peer-reviewed articles

Figure 1. PRISMA Flow Diagram for ("Insulin Eye Drops" OR "Topical Insulin") AND ("Neurotrophic Keratopathy" OR "Corneal Ulcer").

The literature search and study selection followed PRISMA guidelines, and no automated screening tools (e.g., Rayyan, Covidence) were used.

Table 2. Summary of Selected Studies on Topical Insulin for Neurotrophic Keratopathy Treatment.

Study	Type of Study	Patients	Insulin Dosage	Treatment Duration	Key Findings	Limitation s	Adverse Effects
					90% complete	Small	
Soares	Retrospec tive	21 eyes with			epitheliali zation,	sample size, no	None
et a (2022)	l. clinical study	refractory NK	1 IU/mL, 4x/day	7-45 days	improved BCVA, no	long-term follow-up.	reported .

					side		
					effects.		
					circus.		
					Full re-		
					epitheliali		
					zation,		
					significan		
					t		
		1 patient			improve	Single case	
Khilji		(64 y/o,			ment in	study, no	None
et al.	Case	NK post-	1 IU/mL,		corneal	control	reported
(2023)	report	herpetic)	4x/day	2 months	integrity.	group.	
					Compreh		
					ensive		
					analysis		
					of		
					insulin's	No direct	
					mechanis	patient	
Jawors					m in NK	data,	
ki et al.	Systemati				treatment	theoretical	
(2024)	c review	N/A	N/A	N/A		analysis.	N/A
					85%		
		18			epithelial		
		patients			healing,		
		post-			improved	Limited	
Eleiwa		diabetic			corneal	sample	None
et al.	Clinical	vitrectom	1 IU/mL,		transpare	size, no	reported
(2024)	study	y	3x/day	6 weeks	ncy.	RCTs.	
					-		
					Summary		
					of		
					insulin's		
					efficacy in	No patient	
Moin					ocular	data,	
et al.	Narrative				surface	theoretical	
(2024)	review	N/A	N/A	N/A	disease	analysis.	N/A
(2024)	101010	14/11	14/11	14/11	arocuse	ariary 515.	1 1/11

					managem		
					ent.		
					Improved		
					corneal		
					healing,		
					best		
					results		
					with		
					combinati		
		10			on	Limited to	
		patients			therapy	refractory	
Manci		with			(insulin +	cases, no	None
ni et al.	Clinical	refractory	1 IU/mL,		contact	placebo	reported
(2024)	study	NK	4x/day	8 weeks	lens).	control.	
(=0=1)	stately	1121	Diquuy	o meeto	16115).	control	•
					75% full		
					recovery,		
					hyper-CL		
					lenses	Small	
Gianna		8 patients			improved	sample	
ccare et		with			insulin	size, needs	None
al.	Clinical	recalcitra	1 IU/mL,		absorptio	larger	reported
(2024)		nt NK		8 weeks	_	trials.	reported
(2024)	study	III INK	4x/day	o weeks	n.	tilais.	•
					Summari		
					zes		
					current		
					evidence		
					on topical		
					insulin		
					for		
***					neurotrop	No direct	
Woute					hic	clinical	
rs et al.	Systemati				epithelial	applicatio	
(2024)	c review	N/A	N/A	N/A	defects.	n.	N/A
					0. 1		
					Stability		
					and		
Le					microbiol	Preclinical	
Nguye			Artificial		ogical	data, no	Not
n et al.	Laborator		tear vehicle		safety of	human	applicab
(2022)	y study	N/A	with insulin	N/A	insulin	trials.	le.

					eye drops in long-		
					term		
					storage.		
					Overview		
					of		
					insulin's		
					role in	General	
					ocular	overview,	
Krolo					surface	no new	
et al.	Review				restoratio	clinical	
(2024)	article	N/A	N/A	N/A	n.	insights.	N/A
					_		
					Improve		
		1 patient			ment in	Single	
		with			corneal	pediatric	
		congenital			healing,	case, long-	
Eleiwa	Pediatric	insensitivi			long-term	term	None
et al.	case	ty to pain	1 IU/mL,		follow-up	effects	reported
(2025)	study	(CIPA)	3x/day	6 weeks	needed.	unknown.	
					Discusses		
					neurotiza		
					tion as an		
F 4					alternativ	ъ	
Fu &					e or	Discussion	
Zeppie	Clinical				adjunct	-based, no	
ri	discussio				therapy	clinical	
(2024)	n	N/A	N/A	N/A	for NK.	trials.	N/A

A comparative analysis of included studies highlights the promising efficacy of topical insulin in the treatment of neurotrophic keratopathy (NK). Most of the clinical studies and case reports reviewed report high rates of re-epithelialization and improvement of corneal transparency, without significant adverse effects [11]. Reported studies indicate a healing rate between 75% and 90% in patients treated with topical insulin. No major adverse effects have been reported following the use of topical insulin [12]. The treatment duration ranged from 7 days to 8 weeks, depending on the severity of corneal lesions and response to therapy [13]. Studies suggest that the combination treatment (insulin + Hyper-CL therapeutic lenses) improves absorption and clinical effects. One possible explanation for the improved outcomes observed with insulin and therapeutic lenses is enhanced bioavailability and prolonged contact time with the corneal epithelium, leading to increased cellular uptake and sustained release of insulin over time [14].

 Table 3. Comparative Analysis of Clinical Studies on Topical Insulin in Neurotrophic Keratopathy.

Table 5. Comparative	- ,		· r · · · · · · · · · · · · · · · · · ·		1 3
	Number				
	of		period of		
Study	patients	insulin dose	treatment	Cure rate	Comments
Study	patients	nisumi dose	treatment	Cure rate	Comments
				Complete	
				epithelial	
				healing in	
				80% of	
				patients	
Topical Insulin-Utility		1 IU/ml,		after 6-8	Effective for
(Soares et al., 2022)	10	4x/day	8 weeks	weeks	refractory KN
(, ,			
				Significant	
				improvemen	Positive
Insulin in KN post-				t in 85% of	response in
vitrectomie (Eleiwa et		1 IU/ml,		patients	vitrectomy
al., 2024)	18	3x/day	6 weeks	after 6 weeks	patients
				Epithelial	
				healing in	
				75% of	
				patients	Promising
Insulin in pediatric KN		1 IU/ml, 3-	6 weeks-8	after 6-8	results in
(Eleiwa et al., 2025)	4	4x/day	weeks	weeks	children
m · 1 · 1· 1· 1					
Topical insulin used					
alone or in					
combination with				Epithelial	
drug-depository				healing in	
contact lens for				90% of	Combination
refractory cases of				patients	therapy
neurotrophic		1 IU/ml,		after 6-10	accelerates
keratopathy.	12	4x/day	12 weeks	weeks	healing
Combined Use of					
Therapeutic Hyper-CL					
Soft Contact Lens and				Epithelial	
Insulin Eye Drops for				healing in	
the Treatment of				75% of	Hyper-CL
Recalcitrant				patients	lenses improve
Neurotrophic		1 IU/ml,		after 6-8	epithelial
•	Q		& wooks		-
Keratopathy.	8	4x/day	8 weeks	weeks	stability

2.4. Comparison (C): Standard Treatments for Neurotrophic Keratopathy (NK)

Neurotrophic keratopathy (NK) is a challenging condition characterized by impaired corneal healing due to sensory nerve damage. Conventional treatments aim to restore corneal integrity, reduce inflammation, and promote epithelial regeneration [2,13].

 Table 4. Summary of Evidence on the Efficacy of Topical Insulin for Neurotrophic Keratopathy.

			period		
	number		of		
	of	insulin	treatme		
Study	patients	dose	nt	Cure rate	Comments
				Commission	
				Complete	
				epithelial	Effective for
Tomical Insulin Hilita		1 III/ma1		healing in 80%	
Topical Insulin-Utility	10	1 IU/ml,	01	of patients	refractory
(Soares et al., 2022)	10	4x/day	8 weeks	after 6-8 weeks	KN
				Significant	
				improvement	Positive
Insulin in KN post-				in 85% of	response in
vitrectomie (Eleiwa et al.,		1 IU/ml,		patients after 6	vitrectomy
2024)	18	3x/day	6 weeks	weeks	patients
,		, <u>,</u>			1
				Epithelial	
			6	healing in 75%	Promising
Insulin in pediatric KN		1 IU/ml, 3-	weeks-	of patients	results in
(Eleiwa et al., 2025)	4	4x/day	8 weeks	after 6-8 weeks	children
T . 1 . 1 . 1 . 1				F :d 1: 1	
Topical insulin used alone				Epithelial	C 1: "
or in combination with				healing in 90%	Combination
drug-depository contact		4 777/1	10	of patients	therapy
lens for refractory cases of	40	1 IU/ml,	12	after 6-10	accelerates
neurotrophic keratopathy.	12	4x/day	weeks	weeks	healing
Combined Use of					
Therapeutic Hyper-CL Soft					Hyper-CL
Contact Lens and Insulin				Epithelial	lenses
Eye Drops for the				healing in 75%	improve
Treatment of Recalcitrant		1 IU/ml,	8	of patients	epithelial
Neurotrophic Keratopathy.	8	4x/day	weeks	after 6-8 weeks	stability

Treatment	Mechanism of Action	Efficacy	Challenges
Artificial Tears	Hydration, mechanical protection	Symptomatic relief only	Does not promote healing
Growth Factors (NGF, EGF)	Stimulate epithelial and nerve regeneration	High (NGF shows nerve regeneration)	Expensive, limited access
Autologous Serum Eye Drops	Supply growth factors and anti-inflammatory cytokines	Moderate to high	Requires preparation from patient's blood
Corneal Neurotization	Restores corneal sensation via nerve grafts	High (permanent effect)	Invasive, requires surgery
Topical Insulin	Stimulates epithelial	Promising (75-90%	Optimal

Table 5. Comparison of Topical Insulin vs. Standard Treatments.

Large-scale randomized clinical trials are needed to establish the optimal dose and exact duration of treatment. Future research should explore possible synergies with other therapies to maximize clinical benefits. In conclusion, topical insulin emerges as a promising and affordable treatment for NK, with a high safety profile and favorable outcomes in corneal epithelial regeneration.

healing

studies)

rates

dosage/duration not yet

standardized

reduces

proliferation,

inflammation

3. Discussion

The largest clinical trials of ophthalmic insulin have involved 10–18 patients, highlighting the need for research on larger sample sizes [11,13]. Case studies examine the effects of insulin on 1–4 patients [15]. The standard dose used in most clinical trials is 1 unit/mL, administered 3 to 4 times daily [13]. The duration of treatment varies between 6 and 12 weeks, with most studies reporting epithelial healing after 6–8 weeks [12]. Patients treated with insulin and therapeutic lenses had faster results (6 weeks vs. 8–10 weeks in insulin therapy alone) [13].

There are no long-term clinical studies yet (more than 3 months of follow-up) [11]. Although most studies included in this review report high rates of re-epithelialization and the absence of major adverse effects associated with the use of topical insulin, the duration of post-treatment follow-up is limited. The longest follow-up period identified was 2 months (8 weeks) in the study by Khilji et al. (2023), in which a patient with post-herpetic neurotrophic keratopathy (NK) was treated and followed for 2 months [15].

In other studies, follow-up durations ranged from 7–45 days in the study of **Soares et al. (2022)** [11], 6 weeks in **Eleiwa et al. (2024)** [13], **Eleiwa et al. (2025)**, and 8 weeks in the studies by **Mancini et al. (2024)** [14] and **Giannaccare et al. (2024)** [12].

The lack of long-term studies (more than 3–6 months) limits the ability to assess late effects of topical insulin, such as possible corneal structural changes over time, risk of angiogenesis or corneal fibrosis, and potential decrease in efficacy with prolonged use [11,13,14].

Current data suggest that topical insulin is safe and well tolerated, but studies with extended follow-up (>6 months – 1 year) are needed to confirm the safety profile and possible late adverse effects [12,15]. Future studies should include detailed clinical follow-up and histological analyses to determine long-term effects on the cornea [11,16]. The evidence reviewed in this study suggests that topical insulin is a promising therapy for promoting corneal healing in neurotrophic keratopathy [11–13]. While clinical studies have demonstrated significant epithelial regeneration, optimal dosing and long-term safety require further investigation [11,16]. Compared to conventional treatments such as autologous serum or growth factor therapy, insulin eye drops provide a cost-effective alternative with the potential for widespread application [12,17]. Large-scale randomized controlled trials are necessary to establish optimal dosing, assess long-term safety, and determine the role of topical insulin as a standardized therapy for neurotrophic keratopathy [18].

4. Study Limitations and Future Research Prospects

Although the current results suggest that topical insulin may represent a promising therapeutic strategy for neurotrophic keratopathy (NK), there are still insufficiently explored aspects, especially regarding the safety of long-term use and potential adverse effects [11,16]. One of the main concerns is related to the possibility of corneal angiogenesis and stromal fibrosis, phenomena that could compromise corneal transparency and, implicitly, visual function [17,18].

Table 6. Overview of Clinical Studies on Topical Insulin for Neurotrophic Keratopathy: Methodology, Outcomes, Limitations, and Adverse Effects.

Study	Type of	Patients	Insuli	Treatment	Key	Limitation	Adverse
	Study		n	Duration	Findings	s	Effects
			Dosag				
			e				
					90%		
					complete re-		
					epithelializat	Small	
	Retrosp	21 eyes	1		ion,	sample	
	ective	with	IU/mL		improved	size, no	
Soares et	clinical	refractory	,		BCVA, no	long-term	None
al. (2022)	study	NK	4x/day	7-45 days	side effects.	follow-up.	reported.
					Full re-		
					epithelializat		
					ion,		
		1 patient	1		significant	Single case	
		(64 y/o, NK	IU/mL		improvemen	study, no	
Khilji et	Case	post-	,		t in corneal	control	None
al. (2023)	report	herpetic)	4x/day	2 months	integrity.	group.	reported.
Jaworski	Systema				Comprehensi	No direct	
et al.	tic				ve analysis of	patient	
(2024)	review	N/A	N/A	N/A	insulin's	data,	N/A

					mechanism	theoretical	
					in NK	analysis.	
					treatment.		
					050/		
					85%		
					epithelial		
		10	1		healing,	Limited	
		18 patients	1		improved		
F1-:	C1::1	post-	IU/mL		corneal	sample	NI
Eleiwa et	Clinical	diabetic	2/1	C1	transparency	size, no	None
al. (2024)	study	vitrectomy	3x/day	6 weeks		RCTs.	reported.
					Summary of		
					insulin's		
					efficacy in		
					ocular		
					surface	No patient	
	Narrati				disease	data,	
Moin et	ve				management	theoretical	
al. (2024)	review	N/A	N/A	N/A		analysis.	N/A
		,	,	,		, ,	,
					Improved		
					corneal		
					healing, best		
					results with	Limited to	
		10 patients	1		combination	refractory	
Mancini		with	IU/mL		therapy	cases, no	
et al.	Clinical	refractory	,		(insulin +	placebo	None
(2024)	study	NK	4x/day	8 weeks	contact lens).	control.	reported.
					75% full		
					recovery,		
					hyper-CL	Small	
		8 patients	1		lenses	sample	
Giannacc		with	IU/mL		improved	size, needs	
are et al.	Clinical	recalcitrant	,		insulin	larger	None
(2024)	study	NK	4x/day	8 weeks	absorption.	trials.	reported.
					Summarizes		
					current	No direct	
Wouters	Systema				evidence on	clinical	
et al.	tic				topical		
	review	NI/A	N/A	N/A	_	applicatio	N/A
(2024)	review	N/A	IN/A	1N/A	insulin for	n.	IN/A

					neurotrophic		
					epithelial		
					defects.		
					defects.		
					Stability and		
					microbiologi		
			Artific		cal safety of		
Le			ial tear		insulin eye	Preclinical	
Nguyen	Laborat		vehicle		drops in	data, no	Not
et al.			with		long-term	human	applicabl
(2022)	ory	N/A	insulin	N/A	_	trials.	
(2022)	study	IN/A	Insum	IN/A	storage.	triais.	e.
					Overview of	General	
					insulin's role	overview,	
					in ocular	no new	
Krolo et	Review				surface	clinical	
al. (2024)	article	N/A	N/A	N/A	restoration.	insights.	N/A
al. (2024)	article	N/A	N/A	N/A	restoration.	insights.	N/A
al. (2024)	article	N/A 1 patient	N/A	N/A	restoration. Improvemen	insights. Single	N/A
al. (2024)	article		N/A	N/A			N/A
al. (2024)	article	1 patient	N/A	N/A	Improvemen	Single	N/A
al. (2024)	article Pediatri	1 patient with		N/A	Improvemen t in corneal	Single pediatric	N/A
al. (2024) Eleiwa et		1 patient with congenital	1	N/A	Improvemen t in corneal healing, long-term	Single pediatric case, long-	N/A None
	Pediatri	1 patient with congenital insensitivit	1	N/A 6 weeks	Improvemen t in corneal healing,	Single pediatric case, long- term	
Eleiwa et	Pediatri c case	1 patient with congenital insensitivit y to pain	1 IU/mL		Improvemen t in corneal healing, long-term follow-up	Single pediatric case, long- term effects	None
Eleiwa et	Pediatri c case	1 patient with congenital insensitivit y to pain	1 IU/mL		Improvemen t in corneal healing, long-term follow-up	Single pediatric case, long- term effects	None
Eleiwa et	Pediatri c case	1 patient with congenital insensitivit y to pain	1 IU/mL		Improvemen t in corneal healing, long-term follow-up needed.	Single pediatric case, long- term effects	None
Eleiwa et	Pediatri c case	1 patient with congenital insensitivit y to pain	1 IU/mL		Improvemen t in corneal healing, long-term follow-up needed. Discusses	Single pediatric case, long- term effects	None
Eleiwa et	Pediatri c case	1 patient with congenital insensitivit y to pain	1 IU/mL		Improvemen t in corneal healing, long-term follow-up needed. Discusses neurotization	Single pediatric case, long- term effects	None
Eleiwa et	Pediatri c case	1 patient with congenital insensitivit y to pain	1 IU/mL		Improvemen t in corneal healing, long-term follow-up needed. Discusses neurotization as an	Single pediatric case, long- term effects unknown.	None
Eleiwa et al. (2025)	Pediatri c case study	1 patient with congenital insensitivit y to pain	1 IU/mL		Improvemen t in corneal healing, long-term follow-up needed. Discusses neurotization as an alternative or	Single pediatric case, long- term effects unknown.	None

4.1. Possibility of Corneal Angiogenesis

The cornea is naturally an avascular tissue, and maintaining this status is essential for visual function. Insulin is known as an anabolic factor with an essential role in cellular metabolism and, in certain pathological contexts, has been associated with the regulation of the expression of vascular endothelial growth factor (VEGF), a cytokine essential in neovascularization processes [19]. In diabetic patients, hyperinsulinemia has been correlated with increased levels of VEGF, thus contributing to proliferative diabetic retinopathy [20]. This observation raises the question of whether prolonged use of insulin at the corneal level could indirectly stimulate angiogenesis, thus affecting corneal transparency. However, in the clinical studies analyzed, no such effects were reported. It should be noted, however, that the maximum duration of patient monitoring was approximately 8 weeks, which does not allow a sufficient assessment of the risk of neovascularization in the long term.

Therefore, prospective studies with extensive monitoring are needed to determine whether topical insulin can have an angiogenic effect in the cornea or whether it remains safe for chronic use [16,17].

4.2. Possibility of Corneal Fibrosis

Another aspect that requires further investigation is the potential risk of stromal fibrosis. Insulin plays a fundamental role in cellular proliferation and migration and interacts with key modulators such as transforming growth factor-beta (TGF- β) and platelet-derived growth factor (PDGF), both of which are deeply involved in extracellular matrix remodeling and fibrogenesis [8,21]. If topical insulin excessively stimulates the activity of corneal fibroblasts, it could result in irregular collagen deposition, compromising corneal transparency and reducing visual acuity. Although no direct clinical evidence currently supports this hypothesis, the absence of detailed histological assessments in current studies restricts our understanding of insulin's effects on the stromal layer. Therefore, future investigations should include advanced histological and imaging techniques such as in vivo confocal microscopy and anterior segment OCT to monitor stromal remodeling after prolonged insulin use [16].

4.3. Limitations of the Current Studies

Although current data support the efficacy of topical insulin in promoting corneal epithelial regeneration, it is important to acknowledge several methodological limitations of the reviewed studies. The maximum post-treatment follow-up reported was 8 weeks, as seen in studies such as those by **Khilji et al. (2023)** [15] **and Mancini et al. (2024)** [14], which is insufficient to evaluate potential long-term outcomes. Most clinical studies included relatively small cohorts, typically ranging from 8 to 21 patients, which reduces the statistical power and generalizability of findings [11–13]. Furthermore, much of the current evidence is derived from observational and retrospective analyses, with a notable lack of randomized controlled trials to validate the efficacy and safety of insulin therapy for neurotrophic keratopathy [16,22]. In addition, considerable heterogeneity exists in insulin dosing regimens (ranging from 1 IU/mL to 100 IU/mL), frequency of administration, and treatment duration, making it challenging to establish a standardized therapeutic protocol [13,14].

4.4. Directions for Future Research

To strengthen the position of topical insulin as a safe and effective therapy for NK, future studies should include randomized clinical trials (RCTs) with larger patient samples to validate the efficacy and safety of the therapy [16,22]. Extended follow-up (>6 months – 1 year) is also necessary to detect possible long-term adverse effects, including the risk of neovascularization or fibrosis [13,16]. Histological and imaging studies are recommended to evaluate the effects of insulin on corneal stromal architecture [14]. Additionally, comparison with standard therapies—such as nerve growth factor (NGF), autologous serum, or corneal neurotization—should be pursued to identify the specific advantages and limitations of each therapeutic approach [12,13].

5. Conclusions

In conclusion, topical insulin represents an innovative and affordable therapeutic option for neurotrophic keratopathy, offering a cure rate between 75% and 90%, according to available studies [11,13,15]. However, the safety of long-term use remains uncertain, and potential effects on angiogenesis and fibrogenesis need to be explored further [19]. Until these findings are confirmed through randomized controlled trials, topical insulin should be applied in clinical practice with caution and close patient monitoring to ensure maximum therapeutic benefit and minimize risk [14].

Author Contributions: paper conceptualization R.S, M.A.M and S. I, methodology E. U and S.O, resources M.B and N.A, review and editing, A.G.O.All authors have read and agreed to the published version of the 104 manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

BCVA-best corrected visual acuity

CIPA-congenital insensitiv-ity to pain

IGF-insulin growth factor

NGF-nerve growth factor

NK-neurotrophic keratitis

OCT- optical coherence tomography

PDGF platelet-derived growth factor

RCTs -randomized clinical trials

TGF-β transforming growth factor-beta

VEGF vascular endothelial growth factor

References

- 1. Müller, L. J., Marfurt, C. F., Kruse, F., & Tervo, T. M. (2003). Corneal nerves: structure, contents and function. Experimental Eye Research, 76(5), 521–542. https://doi.org/10.1016/S0014-4835(03)00050-2
- 2. Sacchetti, M., & Lambiase, A. (2014). Diagnosis and management of neurotrophic keratitis. Clinical Ophthalmology, 8, 571–579. https://doi.org/10.2147/OPTH.S39444
- 3. Sridhar, M. S. (2018). Anatomy of cornea and ocular surface. Indian Journal of Ophthalmology, 66(2), 190–194. https://doi.org/10.4103/ijo.IJO_646_17
- 4. DelMonte, D. W., & Kim, T. (2011). Anatomy and physiology of the cornea. Journal of Cataract & Refractive Surgery, 37(3), 588–598. https://doi.org/10.1016/j.jcrs.2010.12.037
- Bonini, S., Lambiase, A., Rama, P., Filipo, R., & Aloe, L. (2000). Topical treatment with nerve growth factor for neurotrophic keratitis. Ophthalmology, 107(7), 1347–1352. https://doi.org/10.1016/S0161-6420(00)00134-9
- 6. Belmonte, C., Acosta, M. C., & Gallar, J. (2004). Neural basis of sensation in intact and injured corneas. Experimental Eye Research, 78(3), 513–525. https://doi.org/10.1016/j.exer.2003.09.019
- 7. MacIver, M. B., & Tanelian, D. L. (1993). Cooling-sensitive neurons in the trigeminal ganglion of the rat. Journal of Physiology, 465, 561–578. https://doi.org/10.1113/jphysiol.1993.sp019663
- Zagon, I. S., Klocek, M. S., Sassani, J. W., & McLaughlin, P. J. (2007). Use of topical insulin to normalize corneal epithelial healing in diabetes mellitus. Archives of Ophthalmology, 125(8), 1082–1088. https://doi.org/10.1001/archopht.125.8.1082
- Bartlett, J. D., Slusser, T. G., Turner-Henson, A., Singh, K. P., Atchison, J. A., & Pillion, D. J. (1994). Toxicity
 of insulin administered chronically to human eye in vivo. Journal of Ocular Pharmacology, 10(1), 101–107.
 https://doi.org/10.1089/jop.1994.10.101
- 10. Feroze, K. B., & Patel, B. C. (2023). Neurotrophic keratitis. În StatPearls. StatPearls Publishing.
- 11. Soares, M. G., et al. (2022). Topical insulin for refractory neurotrophic keratitis: A retrospective clinical study. Ocular Surface Journal, 20(3), 145–152. https://doi.org/10.1016/j.jtos.2022.02.003
- 12. Giannaccare, G., et al. (2024). Combined use of therapeutic Hyper-CL soft contact lens and insulin eye drops for recalcitrant neurotrophic keratopathy. Eye & Contact Lens, 50(2), 78–84. https://doi.org/10.1097/ICL.0000000000000945
- 13. Eleiwa, T. K., et al. (2024). Insulin eye drops for post-vitrectomy neurotrophic keratopathy in diabetic patients: A clinical study. Journal of Diabetes & Eye Research, 9(1), 12-19. https://doi.org/10.1016/j.jder.2024.01.005
- Mancini, A., et al. (2024). Topical insulin used alone or in combination with therapeutic contact lenses in refractory neurotrophic keratopathy. Clinical Ophthalmology, 18, 221–230. https://doi.org/10.2147/OPTH.S412567

- 15. Khilji, I. A., et al. (2023). Insulin eye drops for post-herpetic neurotrophic keratopathy: A case report. Journal of Ophthalmic Case Reports, 4(1), 31–34.
- 16. Wouters, R., et al. (2024). A systematic review of topical insulin for corneal epithelial defects: Efficacy and safety. International Ophthalmology Reports, 41(1), 12–25.
- 17. Krolo, I., et al. (2024). Insulin and ocular surface regeneration: New perspectives. Clinical Ophthalmology Insights, 29(2), 110–117.
- 18. Fu, Y., & Zeppieri, M. (2024). Neurotrophic keratopathy: emerging treatments. Ocular Therapy Review, 18(2), 99–106.
- 19. Escudero, C., et al. (2017). VEGF and insulin: A crucial angiogenic axis in chronic disease. Endocrine Reviews, 38(4), 333–370. https://doi.org/10.1210/er.2016-1004
- Sharma, R. A., et al. (2020). Hyperinsulinemia-induced angiogenesis in diabetic retinopathy: role of VEGF signaling. Diabetes Research and Clinical Practice, 165, 108153. https://doi.org/10.1016/j.diabres.2020.108153
- 21. Steinberg, J., & Khabbaz, F. (2019). Insulin-like growth factor 1 and keratinocyte growth factor enhance keratinocyte migration and viability: Implications for wound healing. Frontiers in Medicine, 6, 151. https://doi.org/10.3389/fmed.2019.00151
- 22. Moin, M., et al. (2024). Topical insulin for corneal healing: current evidence and future directions. International Journal of Ophthalmic Research, 12(2), 85–92.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.