
Article

Not peer-reviewed version

(Neutrosophic) 1-Failed SuperHyperForcing in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs

[Mohammadesmail Nikfar](#) *

Posted Date: 6 January 2023

doi: [10.20944/preprints202301.0121.v1](https://doi.org/10.20944/preprints202301.0121.v1)

Keywords: SuperHyperGraph; (Neutrosophic) 1-failed SuperHyperForcing; Cancer's Recognitions

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

(Neutrosophic) 1-Failed SuperHyperForcing in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs

Mohammadesmail Nikfar

drhenrygarrett@gmail.com

Abstract: In this research, new setting is introduced for new SuperHyperNotions, namely, an 1-failed SuperHyperForcing and Neutrosophic 1-failed SuperHyperForcing. Assume a SuperHyperGraph. Then an “1-failed SuperHyperForcing” $\mathcal{Z}(NSHG)$ for a neutrosophic SuperHyperGraph $NSHG : (V, E)$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of “the color-change rule”: a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex. The additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex; a “neutrosophic 1-failed SuperHyperForcing” $\mathcal{Z}_n(NSHG)$ for a neutrosophic SuperHyperGraph $NSHG : (V, E)$ is the maximum neutrosophic cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of “the color-change rule”: a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex. The additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. Assume a SuperHyperGraph. Then an “ δ -1-failed SuperHyperForcing” is a maximal 1-failed SuperHyperForcing of SuperHyperVertices with maximum cardinality such that either of the following expressions hold for the (neutrosophic) cardinalities of SuperHyperNeighbors of $s \in S$: $|S \cap N(s)| > |S \cap (V \setminus N(s))| + \delta$, $|S \cap N(s)| < |S \cap (V \setminus N(s))| + \delta$. The first Expression, holds if S is an “ δ -SuperHyperOffensive”. And the second Expression, holds if S is an “ δ -SuperHyperDefensive”; a “neutrosophic δ -1-failed SuperHyperForcing” is a maximal neutrosophic 1-failed SuperHyperForcing of SuperHyperVertices with maximum neutrosophic cardinality such that either of the following expressions hold for the neutrosophic cardinalities of SuperHyperNeighbors of $s \in S$: $|S \cap N(s)|_{neutrosophic} > |S \cap (V \setminus N(s))|_{neutrosophic} + \delta$, $|S \cap N(s)|_{neutrosophic} < |S \cap (V \setminus N(s))|_{neutrosophic} + \delta$. The first Expression, holds if S is a “neutrosophic δ -SuperHyperOffensive”. And the second Expression, holds if S is a “neutrosophic δ -SuperHyperDefensive”. A basic familiarity with SuperHyperGraph theory and neutrosophic SuperHyperGraph theory are proposed.

Keywords: SuperHyperGraph; (Neutrosophic) 1-failed SuperHyperForcing; Cancer's Recognitions

AMS Subject Classification: 05C17, 05C22, 05E45

1. Background

Fuzzy set in Ref. [39] by Zadeh (1965), intuitionistic fuzzy sets in Ref. [22] by Atanassov (1986), a first step to a theory of the intuitionistic fuzzy graphs in Ref. [36] by Shannon and Atanassov (1994), a unifying field in logics neutrosophy: neutrosophic probability, set and logic, rehoboth in Ref. [37] by Smarandache (1998), single-valued neutrosophic sets in Ref. [38] by Wang et al. (2010), single-valued neutrosophic graphs in Ref. [26] by Broumi et al. (2016), operations on single-valued neutrosophic graphs in Ref. [18] by Akram and Shahzadi (2017), neutrosophic soft graphs in Ref. [35] by Shah and Hussain (2016), bounds on the average and minimum attendance

in preference-based activity scheduling in Ref. [20] by Aronshtam and Ilani (2022), investigating the recoverable robust single machine scheduling problem under interval uncertainty in Ref. [25] by Bold and Goerigk (2022), polyhedra associated with locating-dominating, open locating-dominating and locating total-dominating sets in graphs in Ref. [19] by G. Argiroffo et al. (2022), a Vizing-type result for semi-total domination in Ref. [21] by J. Asplund et al. (2020), total domination cover bubbling in Ref. [23] by R.A. Beeler et al. (2020), on the global total k-domination number of graphs in Ref. [24] by S. Bermudo et al. (2019), maker-breaker total domination game in Ref. [27] by V. Gledel et al. (2020), a new upper bound on the total domination number in graphs with minimum degree six in Ref. [28] by M.A. Henning, and A. Yeo (2021), effect of predomination and vertex removal on the game total domination number of a graph in Ref. [33] by V. Irsic (2019), hardness results of global total k-domination problem in graphs in Ref. [34] by B.S. Panda, and P. Goyal (2021), are studied.

Look at [1–3,13–17] for further researches on this topic.

2. Extreme Failed SuperHyperForcing

Definition 1. ((neutrosophic) δ – 1-failed SuperHyperForcing).

Assume a SuperHyperGraph. Then

- (i) an **1-failed SuperHyperForcing** $\mathcal{Z}(NSHG)$ for a neutrosophic SuperHyperGraph $NSHG$: (V, E) is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of “the color-change rule”: a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex;
- (ii) a **neutrosophic 1-failed SuperHyperForcing** $\mathcal{Z}_n(NSHG)$ for a neutrosophic SuperHyperGraph $NSHG$: (V, E) is the maximum neutrosophic cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ is turned black after finitely many applications of “the color-change rule”: a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex.

Definition 2. ((neutrosophic) δ – 1-failed SuperHyperForcing).

Assume a SuperHyperGraph. Then

- (i) an **δ –1-failed SuperHyperForcing** is a maximal 1-failed SuperHyperForcing of SuperHyperVertices with a maximum cardinality such that either of the following expressions hold for the (neutrosophic) cardinalities of SuperHyperNeighbors of $s \in S$:

$$|S \cap N(s)| > |S \cap (V \setminus N(s))| + \delta; \quad (2.1)$$

$$|S \cap N(s)| < |S \cap (V \setminus N(s))| + \delta. \quad (2.2)$$

The Expression (2.1), holds if S is an δ –**SuperHyperOffensive**. And the Expression (2.2), holds if S is an δ –**SuperHyperDefensive**;

- (ii) a **neutrosophic δ –1-failed SuperHyperForcing** is a maximal neutrosophic 1-failed SuperHyperForcing of SuperHyperVertices with maximum neutrosophic cardinality such that either of the following expressions hold for the neutrosophic cardinalities of SuperHyperNeighbors of $s \in S$:

$$|S \cap N(s)|_{neutrosophic} > |S \cap (V \setminus N(s))|_{neutrosophic} + \delta; \quad (2.3)$$

$$|S \cap N(s)|_{neutrosophic} < |S \cap (V \setminus N(s))|_{neutrosophic} + \delta. \quad (2.4)$$

The Expression (2.3), holds if S is a **neutrosophic δ -SuperHyperOffensive**. And the Expression (2.4), holds if S is a **neutrosophic δ -SuperHyperDefensive**.

Example 3. Assume the SuperHyperGraphs in the Figures (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14), (15), (16), (17), (18), (19), and (20).

- On the Figure (1), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. E_1 and E_3 are some empty SuperHyperEdges but E_2 is a loop SuperHyperEdge and E_4 is an SuperHyperEdge. Thus in the terms of SuperHyperNeighbor, there's only one SuperHyperEdge, namely, E_4 . The SuperHyperVertex, V_3 is isolated means that there's no SuperHyperEdge has it as an endpoint. Thus SuperHyperVertex, V_3 , is contained in every given 1-failed SuperHyperForcing. All the following SuperHyperSets of SuperHyperVertices are the simple type-SuperHyperSet of the 1-failed SuperHyperForcing.

$$\begin{aligned} & \{V_3, V_1\} \\ & \{V_3, V_2\} \\ & \{V_3, V_4\} \end{aligned}$$

The SuperHyperSets of SuperHyperVertices, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$, are the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSets of the SuperHyperVertices, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$, are **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There're only **two** SuperHyperVertices **outside** the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing **aren't** up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet **excludes** only **two** SuperHyperVertices are titled to **SuperHyperNeighbors** in a connected neutrosophic SuperHyperGraph $NSHG$: (V, E) . But the SuperHyperSets of SuperHyperVertices, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$, don't have more than two SuperHyperVertices **outside** the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing **aren't** up. To sum them up, the SuperHyperSets of SuperHyperVertices, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$, **aren't** the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSets of the SuperHyperVertices, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$, are the SuperHyperSet S s of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex **and** they are **1-failed SuperHyperForcing**. Since it's **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only more than two SuperHyperVertices **outside** the intended SuperHyperSets, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$. Thus the non-obvious

1-failed SuperHyperForcing, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$, aren't up. The obvious simple type-SuperHyperSets of the 1-failed SuperHyperForcing, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$, are a SuperHyperSets, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$, doesn't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. It's interesting to mention that the only obvious simple type-SuperHyperSets of the neutrosophic 1-failed SuperHyperForcing amid those obvious simple type-SuperHyperSets of the 1-failed SuperHyperForcing, is only $\{V_3, V_2\}$.

- On the Figure (2), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. E_1, E_2 and E_3 are some empty SuperHyperEdges but E_4 is an SuperHyperEdge. Thus in the terms of SuperHyperNeighbor, there's only one SuperHyperEdge, namely, E_4 . The SuperHyperVertex, V_3 is isolated means that there's no SuperHyperEdge has it as an endpoint. Thus SuperHyperVertex, V_3 , is contained in every given 1-failed SuperHyperForcing. All the following SuperHyperSets of SuperHyperVertices are the simple type-SuperHyperSet of the 1-failed SuperHyperForcing.

$$\{V_3, V_1\}$$

$$\{V_3, V_2\}$$

$$\{V_3, V_4\}$$

The SuperHyperSets of SuperHyperVertices, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$, are the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSets of the SuperHyperVertices, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$, are the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There're only two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing aren't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet excludes only two SuperHyperVertices are titled to SuperHyperNeighbors in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSets of SuperHyperVertices, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$, don't have more than two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing aren't up. To sum them up, the SuperHyperSets of SuperHyperVertices, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$, aren't the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSets of the SuperHyperVertices, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$, are the SuperHyperSet S s of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex and they are 1-failed SuperHyperForcing. Since it's the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only more than two SuperHyperVertices

outside the intended SuperHyperSets, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$. Thus the non-obvious 1-failed SuperHyperForcing, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$, aren't up. The obvious simple type-SuperHyperSets of the 1-failed SuperHyperForcing, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$, are a SuperHyperSets, $\{V_3, V_1\}, \{V_3, V_2\}, \{V_3, V_4\}$, doesn't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. It's interesting to mention that the only obvious simple type-SuperHyperSets of the neutrosophic 1-failed SuperHyperForcing amid those obvious simple type-SuperHyperSets of the 1-failed SuperHyperForcing, is only $\{V_3, V_2\}$.

- On the Figure (3), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. E_1, E_2 and E_3 are some empty SuperHyperEdges but E_4 is an SuperHyperEdge. Thus in the terms of SuperHyperNeighbor, there's only one SuperHyperEdge, namely, E_4 . The SuperHyperSets of SuperHyperVertices, $\{V_1\}, \{V_2\}, \{V_3\}$, are the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSets of the SuperHyperVertices, $\{V_1\}, \{V_2\}, \{V_3\}$, are **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There're only **two** SuperHyperVertices **outside** the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing **aren't** up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet **excludes** only **two** SuperHyperVertices are titled to **SuperHyperNeighbors** in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSets of SuperHyperVertices, $\{V_1\}, \{V_2\}, \{V_3\}$, don't have more than two SuperHyperVertices **outside** the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing **aren't** up. To sum them up, the SuperHyperSets of SuperHyperVertices, $\{V_1\}, \{V_2\}, \{V_3\}$, **aren't** the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSets of the SuperHyperVertices, $\{V_1\}, \{V_2\}, \{V_3\}$, are the SuperHyperSet S s of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex **and** they are **1-failed SuperHyperForcing**. Since they've **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only more than two SuperHyperVertices **outside** the intended SuperHyperSets, $\{V_1\}, \{V_2\}, \{V_3\}$. Thus the non-obvious 1-failed SuperHyperForcing, $\{V_1\}, \{V_2\}, \{V_3\}$, aren't up. The obvious simple type-SuperHyperSets of the 1-failed SuperHyperForcing, $\{V_1\}, \{V_2\}, \{V_3\}$, are the SuperHyperSets, $\{V_1\}, \{V_2\}, \{V_3\}$, don't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. It's interesting to mention that the only obvious simple type-SuperHyperSets of the neutrosophic 1-failed SuperHyperForcing amid those obvious simple type-SuperHyperSets of the 1-failed SuperHyperForcing, is only $\{V_1\}$.
- On the Figure (4), the SuperHyperNotion, namely, an 1-failed SuperHyperForcing, is up. There's no empty SuperHyperEdge but E_3 are a loop SuperHyperEdge on $\{F\}$, and there are some SuperHyperEdges, namely, E_1 on $\{H, V_1, V_3\}$, alongside E_2 on $\{O, H, V_4, V_3\}$ and

E_4, E_5 on $\{N, V_1, V_2, V_3, F\}$. The SuperHyperSet of SuperHyperVertices, $\{V_1, V_2, V_3, V_4, O, H\}$, is the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSet of the SuperHyperVertices, $\{V_1, V_2, V_3, V_4, O, H\}$, is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There're only two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet excludes only two SuperHyperVertices are titled to SuperHyperNeighbors in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSet of SuperHyperVertices, $\{V_1, V_2, V_3, V_4, O, H\}$, doesn't have more than two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing isn't up. To sum them up, the SuperHyperSet of SuperHyperVertices, $\{V_1, V_2, V_3, V_4, O, H\}$, isn't the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSet of the SuperHyperVertices, $\{V_1, V_2, V_3, V_4, O, H\}$, is the SuperHyperSet S s of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex and they are 1-failed SuperHyperForcing. Since it's the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only more than two SuperHyperVertices outside the intended SuperHyperSet, $\{V_1, V_2, V_3, V_4, O, H\}$. Thus the non-obvious 1-failed SuperHyperForcing, $\{V_1, V_2, V_3, V_4, O, H\}$, isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $\{V_1, V_2, V_3, V_4, O, H\}$, is a SuperHyperSet, $\{V_1, V_2, V_3, V_4, O, H\}$, doesn't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$.

- On the Figure (5), the SuperHyperNotion, namely, SuperHyperForcing, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}\},$$

is the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSet of the SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}\},$$

is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There're

only **two** SuperHyperVertices **outside** the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing **isn't** up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet **excludes** only **two** SuperHyperVertices are titled to SuperHyperNeighbors in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}\},$$

doesn't have more than two SuperHyperVertices **outside** the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing **isn't** up. To sum them up, the SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}\},$$

isn't the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSet of the SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}\},$$

is the SuperHyperSet S s of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex **and** they are **1-failed SuperHyperForcing**. Since it's **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only more than two SuperHyperVertices **outside** the intended SuperHyperSet,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}\}.$$

Thus the non-obvious 1-failed SuperHyperForcing,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}\},$$

isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}\},$$

is a SuperHyperSet,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}\},$$

doesn't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$ is mentioned as the SuperHyperModel $NSHG : (V, E)$ in the Figure (5).

- On the Figure (6), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\},$$

is the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSet of the SuperHyperVertices,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\},$$

is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There're only two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet excludes only two SuperHyperVertices are titled to SuperHyperNeighbors in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\},$$

doesn't have more than two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing isn't up. To sum them up, the SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\},$$

isn't the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSet of the SuperHyperVertices,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\},$$

is the SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex and they are 1-failed SuperHyperForcing. Since it's the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only more than two SuperHyperVertices outside the intended SuperHyperSet,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\}.$$

Thus the non-obvious 1-failed SuperHyperForcing,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\},$$

isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\},$$

is a SuperHyperSet,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\},$$

doesn't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$ with a illustrated SuperHyperModeling of the Figure (6).

- On the Figure (7), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

is the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSet of the SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

is **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1—" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There're only **two** SuperHyperVertices **outside** the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing **isn't** up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet **excludes** only **two** SuperHyperVertices are titled to SuperHyperNeighbors in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

doesn't have more than two SuperHyperVertices **outside** the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing **isn't** up. To sum them up, the SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

isn't the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSet of the SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

is the SuperHyperSet S s of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is

the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex and they are 1-failed SuperHyperForcing. Since it’s the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn’t turned black after finitely many applications of “the color-change rule”: a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren’t only more than two SuperHyperVertices outside the intended SuperHyperSet,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\}.$$

Thus the non-obvious 1-failed SuperHyperForcing,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

isn’t up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

is a SuperHyperSet,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

doesn’t exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$ of depicted SuperHyperModel as the Figure (7).

- On the Figure (8), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. There’s neither empty SuperHyperEdge nor loop SuperHyperEdge. The SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

is the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSet of the SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn’t turned black after finitely many applications of “the color-change rule”: a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There’re only two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing isn’t up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet excludes only two SuperHyperVertices are titled to SuperHyperNeighbors in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

doesn't have more than two SuperHyperVertices **outside** the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing **isn't** up. To sum them up, the SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

isn't the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSet of the SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

is the SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex **and** they are **1-failed SuperHyperForcing**. Since it's **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only more than two SuperHyperVertices **outside** the intended SuperHyperSet,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\}.$$

Thus the non-obvious 1-failed SuperHyperForcing,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

is a SuperHyperSet,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

doesn't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$ of dense SuperHyperModel as the Figure (8).

- On the Figure (9), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\},$$

is the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSet of the SuperHyperVertices,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\},$$

is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There're only two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet excludes only two SuperHyperVertices are titled to SuperHyperNeighbors in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\},$$

doesn't have more than two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing isn't up. To sum them up, the SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\},$$

isn't the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSet of the SuperHyperVertices,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\},$$

is the SuperHyperSet S s of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex and they are 1-failed SuperHyperForcing. Since it's the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only more than two SuperHyperVertices outside the intended SuperHyperSet,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\}.$$

Thus the non-obvious 1-failed SuperHyperForcing,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\},$$

isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\},$$

is a SuperHyperSet,

$$\{V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{22}\},$$

doesn't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$ with a messy SuperHyperModeling of the Figure (9).

- On the Figure (10), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

is the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSet of the SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There're only two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet excludes only two SuperHyperVertices are titled to SuperHyperNeighbors in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

doesn't have more than two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing isn't up. To sum them up, the SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

isn't the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSet of the SuperHyperVertices,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

is the SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex and they are 1-failed SuperHyperForcing. Since it's the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only

once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only more than two SuperHyperVertices outside the intended SuperHyperSet,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\}.$$

Thus the non-obvious 1-failed SuperHyperForcing,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

is a SuperHyperSet,

$$\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}\},$$

doesn't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$ of highly-embedding-connected SuperHyperModel as the Figure (10).

- On the Figure (11), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The SuperHyperSet of SuperHyperVertices, $\{V_2, V_4, V_5, V_6\}$, is the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSet of the SuperHyperVertices, $\{V_2, V_4, V_5, V_6\}$, is **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There're only **two** SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet excludes only **two** SuperHyperVertices are titled to SuperHyperNeighbors in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSet of SuperHyperVertices, $\{V_2, V_4, V_5, V_6\}$, doesn't have more than two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing isn't up. To sum them up, the SuperHyperSet of SuperHyperVertices, $\{V_2, V_4, V_5, V_6\}$, isn't the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSet of the SuperHyperVertices, $\{V_2, V_4, V_5, V_6\}$, is the SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex and they are **1-failed SuperHyperForcing**. Since it's **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only

more than two SuperHyperVertices outside the intended SuperHyperSet, $\{V_2, V_4, V_5, V_6\}$. Thus the non-obvious 1-failed SuperHyperForcing, $\{V_2, V_4, V_5, V_6\}$, isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $\{V_2, V_4, V_5, V_6\}$, is a SuperHyperSet, $\{V_2, V_4, V_5, V_6\}$, doesn't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$.

- On the Figure (12), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The SuperHyperSet of SuperHyperVertices, $\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}\}$, is the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSet of the SuperHyperVertices, $\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}\}$, is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There're only two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet excludes only two SuperHyperVertices are titled to SuperHyperNeighbors in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSet of SuperHyperVertices, $\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}\}$, doesn't have more than two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing isn't up. To sum them up, the SuperHyperSet of SuperHyperVertices, $\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}\}$, isn't the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSet of the SuperHyperVertices, $\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}\}$, is the SuperHyperSet S s of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex and they are 1-failed SuperHyperForcing. Since it's the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only more than two SuperHyperVertices outside the intended SuperHyperSet, $\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}\}$. Thus the non-obvious 1-failed SuperHyperForcing, $\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}\}$, isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}\}$, is a SuperHyperSet, $\{V_2, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}\}$, doesn't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$ in highly-multiple-connected-style SuperHyperModel On the Figure (12).
- On the Figure (13), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The SuperHyperSet of SuperHyperVertices, $\{V_2, V_4, V_5, V_6\}$, is the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSet of the SuperHyperVertices, $\{V_2, V_4, V_5, V_6\}$, is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black

after finitely many applications of “the color-change rule”: a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There’re only two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing isn’t up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet excludes only two SuperHyperVertices are titled to SuperHyperNeighbors in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSet of SuperHyperVertices, $\{V_2, V_4, V_5, V_6\}$, doesn’t have more than two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing isn’t up. To sum them up, the SuperHyperSet of SuperHyperVertices, $\{V_2, V_4, V_5, V_6\}$, isn’t the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSet of the SuperHyperVertices, $\{V_2, V_4, V_5, V_6\}$, is the SuperHyperSet Ss of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn’t turned black after finitely many applications of “the color-change rule”: a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex and they are 1-failed SuperHyperForcing. Since it’s the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn’t turned black after finitely many applications of “the color-change rule”: a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren’t only more than two SuperHyperVertices outside the intended SuperHyperSet, $\{V_2, V_4, V_5, V_6\}$. Thus the non-obvious 1-failed SuperHyperForcing, $\{V_2, V_4, V_5, V_6\}$, isn’t up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $\{V_2, V_4, V_5, V_6\}$, is a SuperHyperSet, $\{V_2, V_4, V_5, V_6\}$, doesn’t exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$.

- On the Figure (14), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. There’s neither empty SuperHyperEdge nor loop SuperHyperEdge. The SuperHyperSet of SuperHyperVertices, $\{V_2\}$, is the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSet of the SuperHyperVertices, $\{V_2\}$, is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn’t turned black after finitely many applications of “the color-change rule”: a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There’re only two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing isn’t up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet excludes only two SuperHyperVertices are titled to SuperHyperNeighbors in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSet of SuperHyperVertices, $\{V_2\}$, doesn’t have more than two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing isn’t up. To sum them up, the SuperHyperSet of SuperHyperVertices, $\{V_2\}$, isn’t the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSet of the SuperHyperVertices, $\{V_2\}$, is the SuperHyperSet Ss of black SuperHyperVertices (whereas

SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex **and** they are **1-failed SuperHyperForcing**. Since it's the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only more than two SuperHyperVertices outside the intended SuperHyperSet, $\{V_2\}$. Thus the non-obvious 1-failed SuperHyperForcing, $\{V_2\}$, isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $\{V_2\}$, is a SuperHyperSet, $\{V_2\}$, doesn't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$.

- On the Figure (15), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The SuperHyperSet of SuperHyperVertices, $\{V_1, V_4, V_5, V_6\}$, is the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSet of the SuperHyperVertices, $\{V_1, V_4, V_5, V_6\}$, is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There're only two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet excludes only two SuperHyperVertices are titled to SuperHyperNeighbors in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSet of SuperHyperVertices, $\{V_1, V_4, V_5, V_6\}$, doesn't have more than two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing isn't up. To sum them up, the SuperHyperSet of SuperHyperVertices, $\{V_1, V_4, V_5, V_6\}$, isn't the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSet of the SuperHyperVertices, $\{V_1, V_4, V_5, V_6\}$, is the SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex **and** they are **1-failed SuperHyperForcing**. Since it's the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only more than two SuperHyperVertices outside the intended SuperHyperSet, $\{V_1, V_4, V_5, V_6\}$. Thus the non-obvious 1-failed SuperHyperForcing, $\{V_1, V_4, V_5, V_6\}$, isn't up. The obvious simple

type-SuperHyperSet of the 1-failed SuperHyperForcing, $\{V_1, V_4, V_5, V_6\}$, is a SuperHyperSet, $\{V_1, V_4, V_5, V_6\}$, doesn't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. as Linearly-Connected SuperHyperModel On the Figure (15).

- On the Figure (16), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The SuperHyperSet of SuperHyperVertices,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}\},$$

is the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSet of the SuperHyperVertices,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}\},$$

is **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There're only **two** SuperHyperVertices **outside** the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing **isn't** up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet **excludes** only **two** SuperHyperVertices are titled to **SuperHyperNeighbors** in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSet of SuperHyperVertices,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}\},$$

doesn't have more than two SuperHyperVertices **outside** the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing **isn't** up. To sum them up, the SuperHyperSet of SuperHyperVertices,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}\},$$

isn't the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSet of the SuperHyperVertices,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}\},$$

is the SuperHyperSet S s of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex **and** they are **1-failed SuperHyperForcing**.

Since it's **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only more than two SuperHyperVertices **outside** the intended SuperHyperSet,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}\}.$$

Thus the non-obvious 1-failed SuperHyperForcing,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}\},$$

isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}\},$$

is a SuperHyperSet,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}\},$$

doesn't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$.

- On the Figure (17), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The SuperHyperSet of SuperHyperVertices,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}, V_{23}, V_{24}, V_{25}, V_{26}, V_{27}, V_{28}, V_{29}\},$$

is the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSet of the SuperHyperVertices,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}, V_{23}, V_{24}, V_{25}, V_{26}, V_{27}, V_{28}, V_{29}\},$$

is **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There're only **two** SuperHyperVertices **outside** the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing **isn't** up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet **excludes** only **two** SuperHyperVertices are titled to

SuperHyperNeighbors in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSet of SuperHyperVertices,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}, V_{23}, V_{24}, V_{25}, V_{26}, V_{27}, V_{28}, V_{29}\},$$

doesn't have more than two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing isn't up. To sum them up, the SuperHyperSet of SuperHyperVertices,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}, V_{23}, V_{24}, V_{25}, V_{26}, V_{27}, V_{28}, V_{29}\},$$

isn't the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSet of the SuperHyperVertices,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}, V_{23}, V_{24}, V_{25}, V_{26}, V_{27}, V_{28}, V_{29}\},$$

is the SuperHyperSet S s of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex and they are 1-failed SuperHyperForcing. Since it's the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only more than two SuperHyperVertices outside the intended SuperHyperSet,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}, V_{23}, V_{24}, V_{25}, V_{26}, V_{27}, V_{28}, V_{29}\}.$$

Thus the non-obvious 1-failed SuperHyperForcing,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}, V_{23}, V_{24}, V_{25}, V_{26}, V_{27}, V_{28}, V_{29}\},$$

isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}, V_{23}, V_{24}, V_{25}, V_{26}, V_{27}, V_{28}, V_{29}\},$$

is a SuperHyperSet,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}, V_{23}, V_{24}, V_{25}, V_{26}, V_{27}, V_{28}, V_{29}\},$$

doesn't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$ as Lnearly-over-packed SuperHyperModel is featured On the Figure (17).

- On the Figure (18), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The SuperHyperSet of SuperHyperVertices, $\{V_2, R, M_6, L_6, F, P, J, M\}$, is the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSet of the SuperHyperVertices, $\{V_2, R, M_6, L_6, F, P, J, M\}$, is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There're only two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet excludes only two SuperHyperVertices are titled to SuperHyperNeighbors in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSet of SuperHyperVertices, $\{V_2, R, M_6, L_6, F, P, J, M\}$, doesn't have more than two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing isn't up. To sum them up, the SuperHyperSet of SuperHyperVertices, $\{V_2, R, M_6, L_6, F, P, J, M\}$, isn't the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSet of the SuperHyperVertices, $\{V_2, R, M_6, L_6, F, P, J, M\}$, is the SuperHyperSet S s of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex and they are 1-failed SuperHyperForcing. Since it's the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only more than two SuperHyperVertices outside the intended SuperHyperSet, $\{V_2, R, M_6, L_6, F, P, J, M\}$. Thus the non-obvious 1-failed SuperHyperForcing, $\{V_2, R, M_6, L_6, F, P, J, M\}$, isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $\{V_2, R, M_6, L_6, F, P, J, M\}$, is a SuperHyperSet, $\{V_2, R, M_6, L_6, F, P, J, M\}$, doesn't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$.
- On the Figure (19), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The SuperHyperSet of SuperHyperVertices,

$$\{T_3, S_3, U_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, R_6, S_6, Z_5, W_5, T_6 \\ H_6, O_6, E_6, C_6, V_2, R, M_6, L_6, F, P, J, M\},$$

is the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSet of the SuperHyperVertices,

$$\{T_3, S_3, U_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, R_6, S_6, Z_5, W_5, T_6 \\ H_6, O_6, E_6, C_6, V_2, R, M_6, L_6, F, P, J, M\},$$

is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There're only two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet excludes only two SuperHyperVertices are titled to SuperHyperNeighbors in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSet of SuperHyperVertices,

$$\{T_3, S_3, U_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, R_6, S_6, Z_5, W_5, T_6 \\ H_6, O_6, E_6, C_6, V_2, R, M_6, L_6, F, P, J, M\},$$

doesn't have more than two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing isn't up. To sum them up, the SuperHyperSet of SuperHyperVertices,

$$\{T_3, S_3, U_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, R_6, S_6, Z_5, W_5, T_6 \\ H_6, O_6, E_6, C_6, V_2, R, M_6, L_6, F, P, J, M\},$$

isn't the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSet of the SuperHyperVertices,

$$\{T_3, S_3, U_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, R_6, S_6, Z_5, W_5, T_6 \\ H_6, O_6, E_6, C_6, V_2, R, M_6, L_6, F, P, J, M\},$$

is the SuperHyperSet S s of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex and they are 1-failed SuperHyperForcing. Since it's the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only more than two SuperHyperVertices outside the intended SuperHyperSet,

$$\{T_3, S_3, U_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, R_6, S_6, Z_5, W_5, T_6 \\ H_6, O_6, E_6, C_6, V_2, R, M_6, L_6, F, P, J, M\}.$$

Thus the non-obvious 1-failed SuperHyperForcing,

$$\{T_3, S_3, U_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, R_6, S_6, Z_5, W_5, T_6 \\ H_6, O_6, E_6, C_6, V_2, R, M_6, L_6, F, P, J, M\},$$

isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing,

$$\{T_3, S_3, U_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, R_6, S_6, Z_5, W_5, T_6 \\ H_6, O_6, E_6, C_6, V_2, R, M_6, L_6, F, P, J, M\},$$

is a SuperHyperSet,

$$\{T_3, S_3, U_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}, R_6, S_6, Z_5, W_5, T_6 \\ H_6, O_6, E_6, C_6, V_2, R, M_6, L_6, F, P, J, M\},$$

doesn't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$.

- On the Figure (20), the SuperHyperNotion, namely, 1-failed SuperHyperForcing, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_3, V_4, T_6, U_6, H_7, V_5, R_9, \\ V_6, V_7, V_8, V_9, v_8, W_8, U_8, S_8, T_8, C_9, Z_8, S_9 \\ K_9, O_9, L_9, O_4, V_{10}, P_4, R_4, T_4, S_4\},$$

is the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. The SuperHyperSet of the SuperHyperVertices,

$$\{V_2, V_3, V_4, T_6, U_6, H_7, V_5, R_9, \\ V_6, V_7, V_8, V_9, v_8, W_8, U_8, S_8, T_8, C_9, Z_8, S_9 \\ K_9, O_9, L_9, O_4, V_{10}, P_4, R_4, T_4, S_4\},$$

is **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $\overline{V(G) \setminus S}$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There're only **two** SuperHyperVertices **outside** the intended SuperHyperSet. Thus the non-obvious 1-failed SuperHyperForcing **isn't** up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing is a SuperHyperSet **excludes** only **two** SuperHyperVertices are titled to **SuperHyperNeighbors** in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. But the SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_3, V_4, T_6, U_6, H_7, V_5, R_9, \\ V_6, V_7, V_8, V_9, v_8, W_8, U_8, S_8, T_8, C_9, Z_8, S_9 \\ K_9, O_9, L_9, O_4, V_{10}, P_4, R_4, T_4, S_4\},$$

doesn't have more than two SuperHyperVertices outside the intended SuperHyperSet. Thus the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing isn't up. To sum them up, the SuperHyperSet of SuperHyperVertices,

$$\{V_2, V_3, V_4, T_6, U_6, H_7, V_5, R_9, \\ V_6, V_7, V_8, V_9, v_8, W_8, U_8, S_8, T_8, C_9, Z_8, S_9 \\ K_9, O_9, L_9, O_4, V_{10}, P_4, R_4, T_4, S_4\},$$

isn't the non-obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing. Since the SuperHyperSet of the SuperHyperVertices,

$$\{V_2, V_3, V_4, T_6, U_6, H_7, V_5, R_9, \\ V_6, V_7, V_8, V_9, v_8, W_8, U_8, S_8, T_8, C_9, Z_8, S_9 \\ K_9, O_9, L_9, O_4, V_{10}, P_4, R_4, T_4, S_4\},$$

is the SuperHyperSet S_s of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex and they are 1-failed SuperHyperForcing. Since it's the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. There aren't only more than two SuperHyperVertices outside the intended SuperHyperSet,

$$\{V_2, V_3, V_4, T_6, U_6, H_7, V_5, R_9, \\ V_6, V_7, V_8, V_9, v_8, W_8, U_8, S_8, T_8, C_9, Z_8, S_9 \\ K_9, O_9, L_9, O_4, V_{10}, P_4, R_4, T_4, S_4\},$$

Thus the non-obvious 1-failed SuperHyperForcing,

$$\{V_2, V_3, V_4, T_6, U_6, H_7, V_5, R_9, \\ V_6, V_7, V_8, V_9, v_8, W_8, U_8, S_8, T_8, C_9, Z_8, S_9 \\ K_9, O_9, L_9, O_4, V_{10}, P_4, R_4, T_4, S_4\},$$

isn't up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing,

$$\{V_2, V_3, V_4, T_6, U_6, H_7, V_5, R_9, \\ V_6, V_7, V_8, V_9, v_8, W_8, U_8, S_8, T_8, C_9, Z_8, S_9 \\ K_9, O_9, L_9, O_4, V_{10}, P_4, R_4, T_4, S_4\},$$

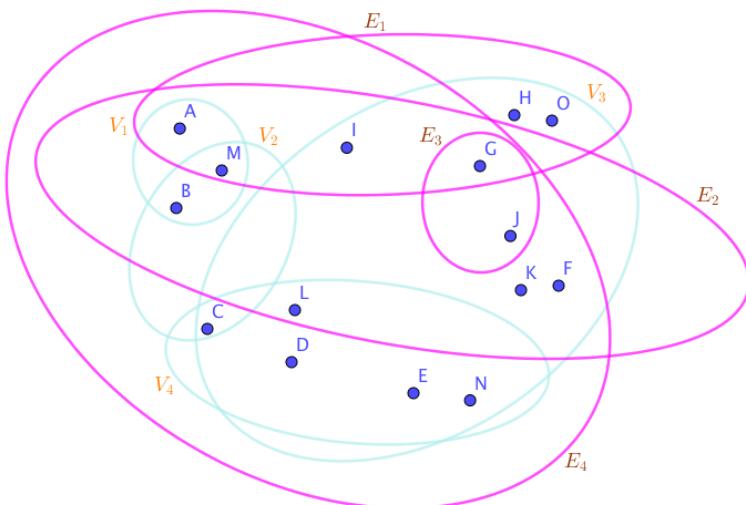


Figure 1. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

is a SuperHyperSet,

$$\{V_2, V_3, V_4, T_6, U_6, H_7, V_5, R_9, V_6, V_7, V_8, V_9, v_8, W_8, U_8, S_8, T_8, C_9, Z_8, S_9, K_9, O_9, L_9, O_4, V_{10}, P_4, R_4, T_4, S_4\},$$

doesn't exclude only more than two SuperHyperVertices in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$.

Proposition 4. Assume a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. Then in the worst case, literally, $V \setminus \{x, z\}$ is an 1-failed SuperHyperForcing. In other words, the most cardinality, the upper sharp bound for cardinality, of 1-failed SuperHyperForcing is the cardinality of $V \setminus \{x, z\}$.

Proof. Assume a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x, y, z\}$ is a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex but it isn't an 1-failed SuperHyperForcing. Since it doesn't have the **maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) but it isn't an 1-failed SuperHyperForcing. Since it **doesn't do** the procedure such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once

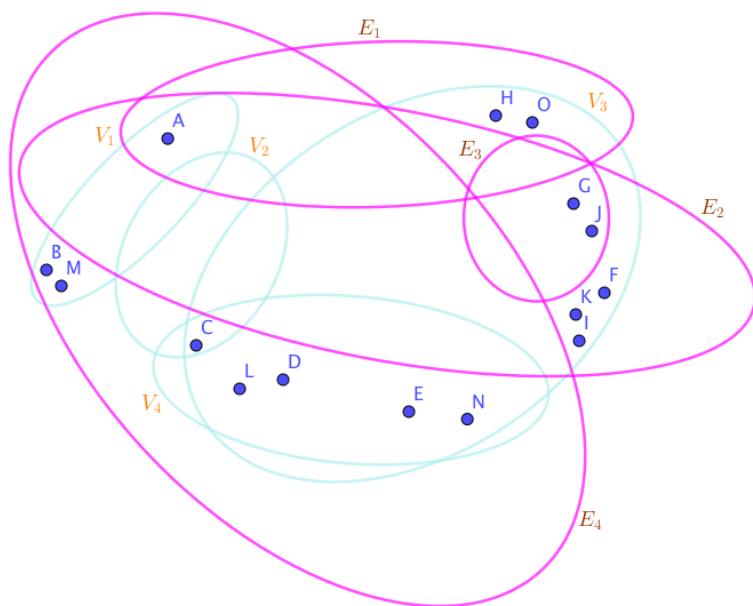


Figure 2. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

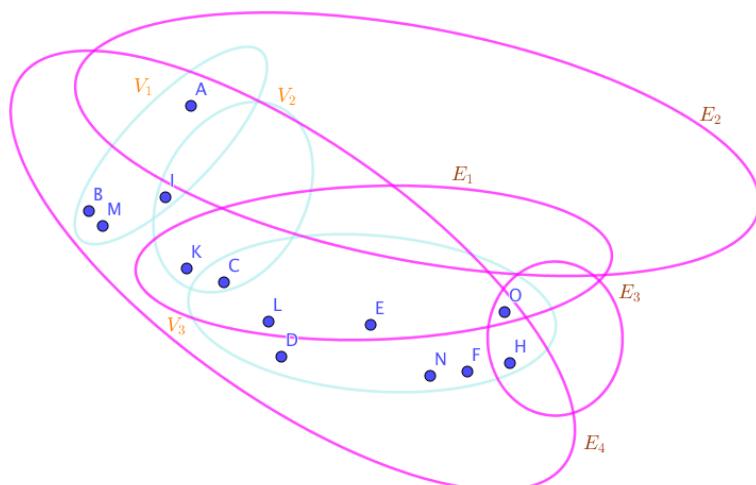


Figure 3. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

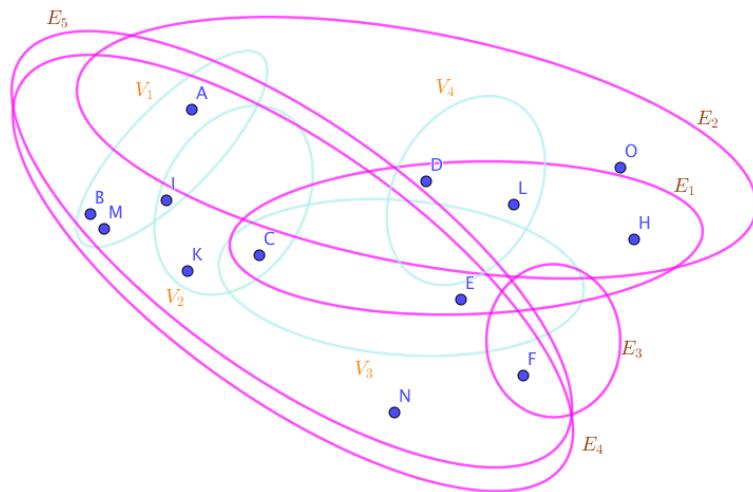


Figure 4. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

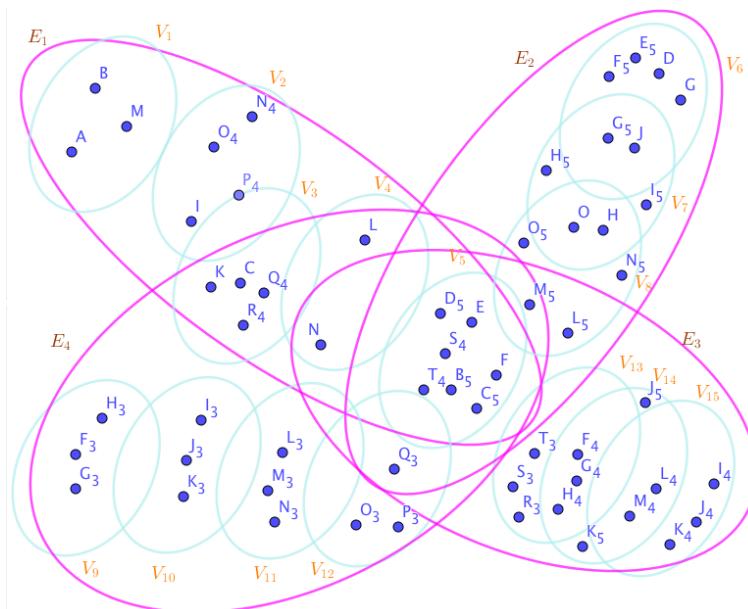


Figure 5. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

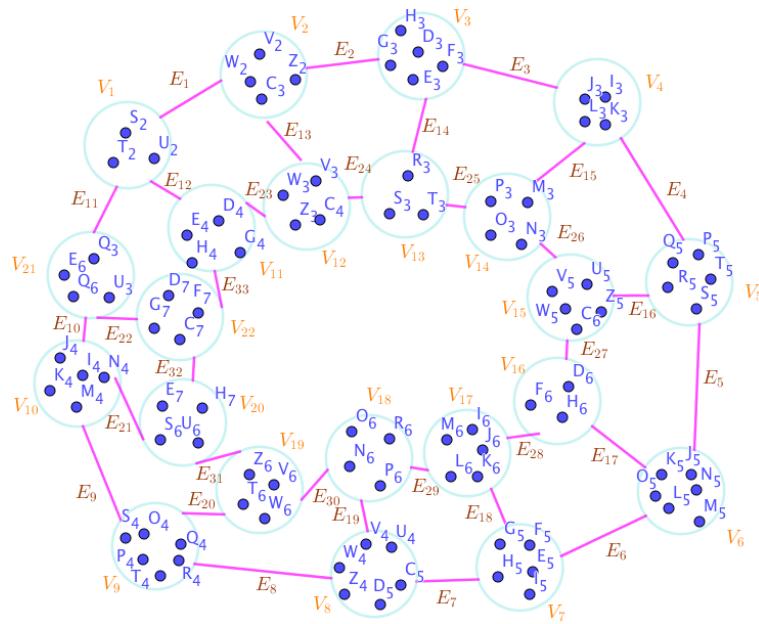


Figure 6. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

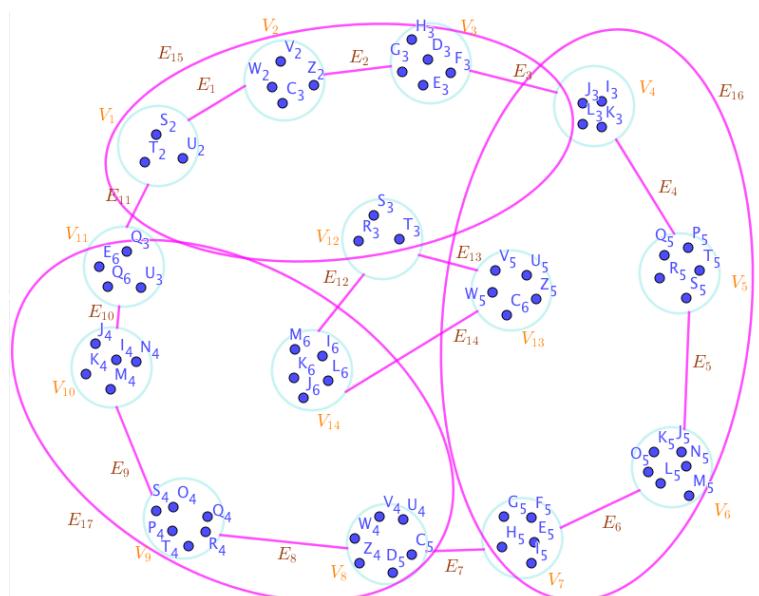


Figure 7. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

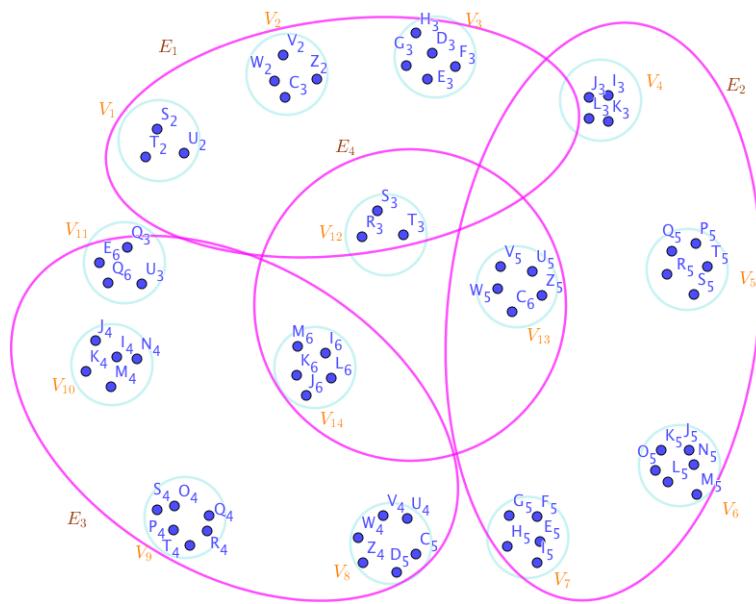


Figure 8. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

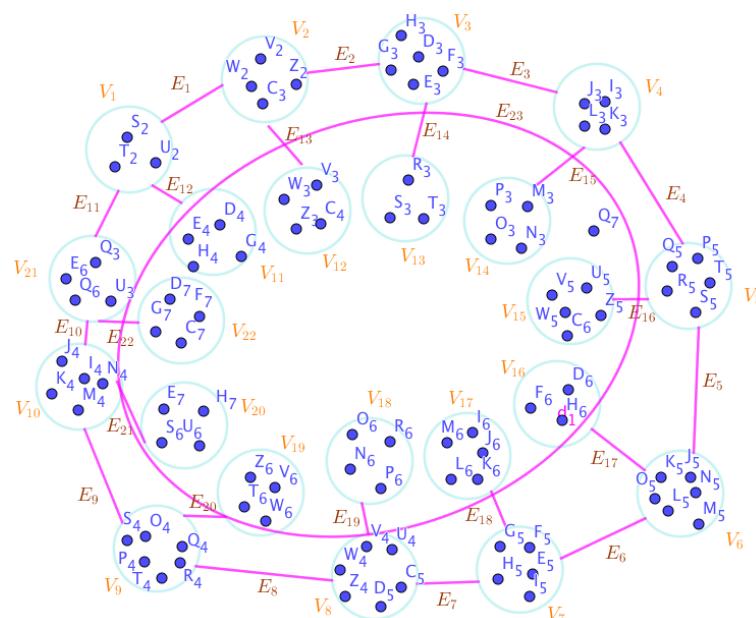


Figure 9. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

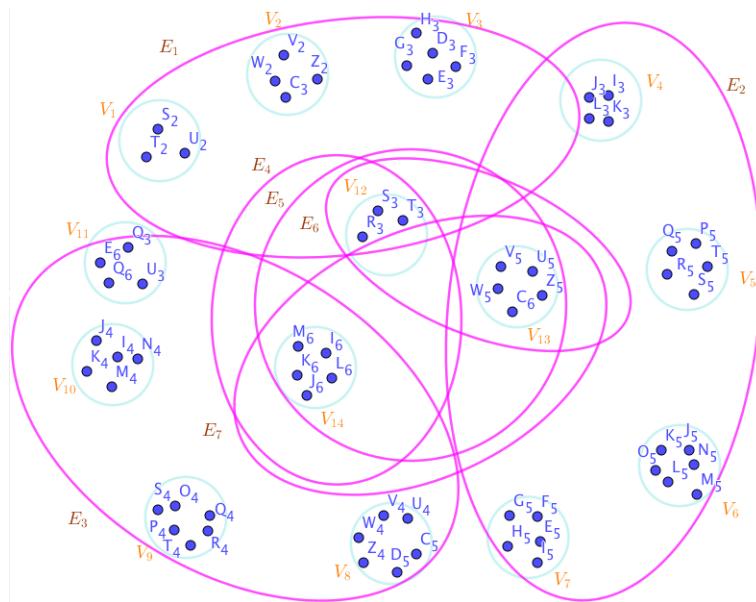


Figure 10. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

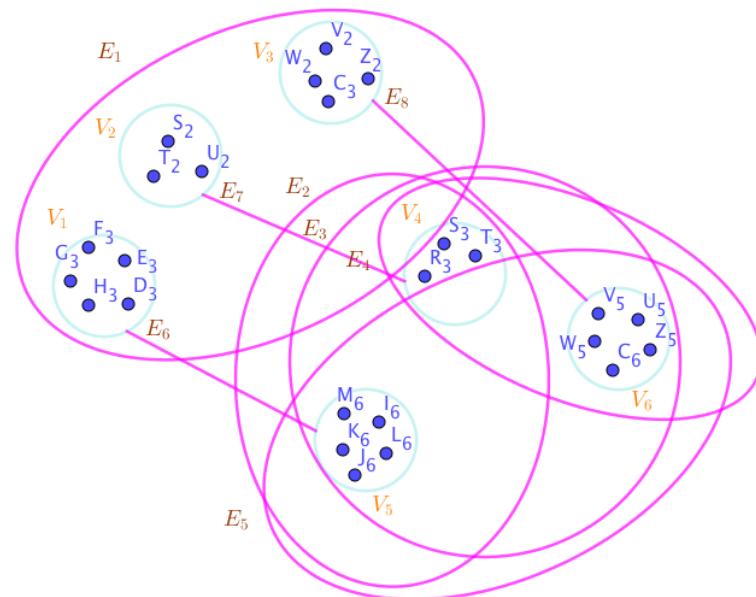


Figure 11. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

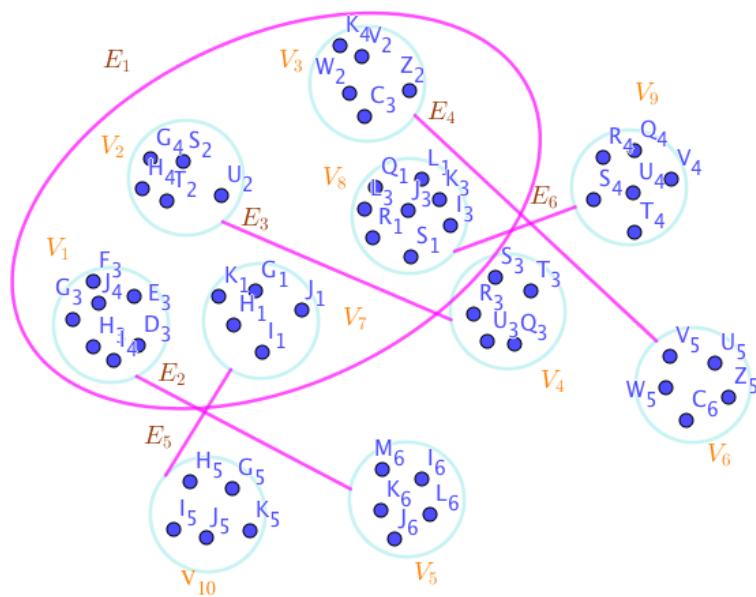


Figure 12. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

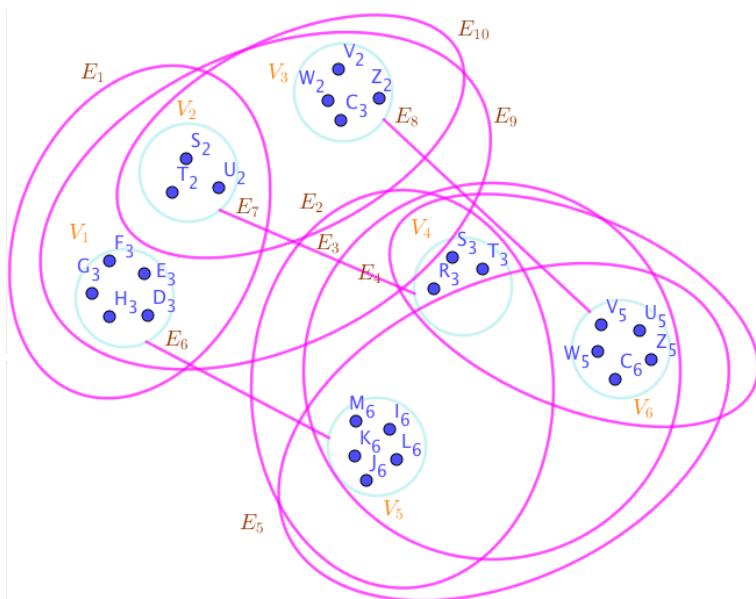


Figure 13. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

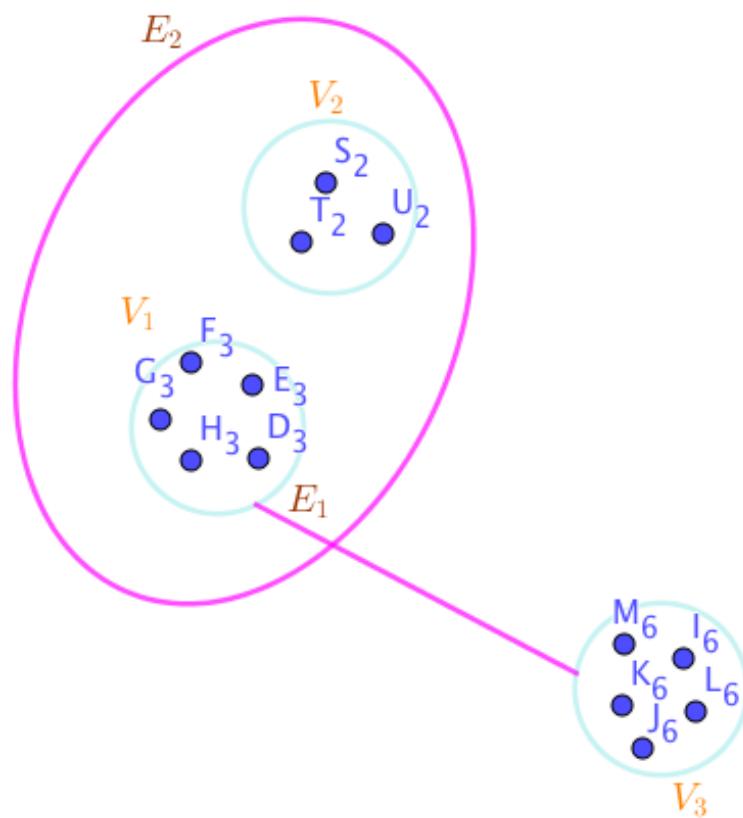


Figure 14. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

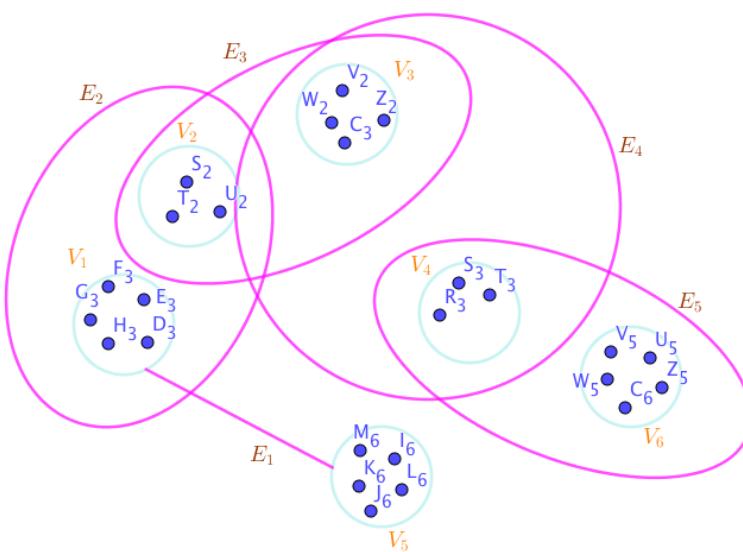


Figure 15. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

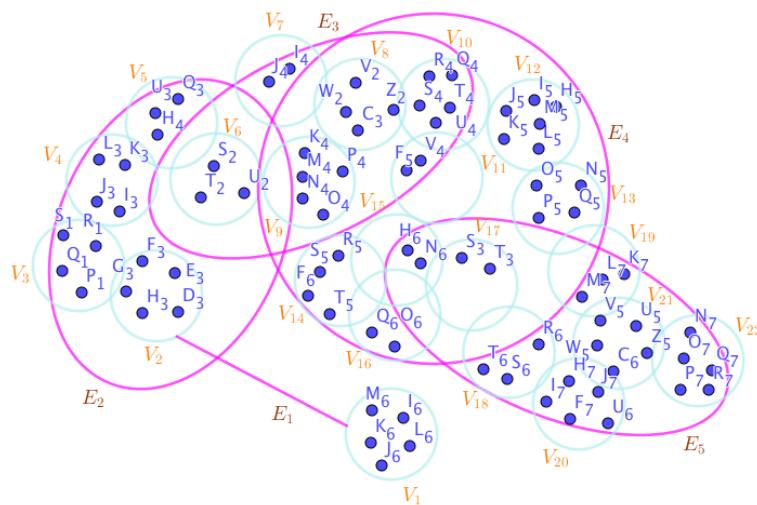


Figure 16. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

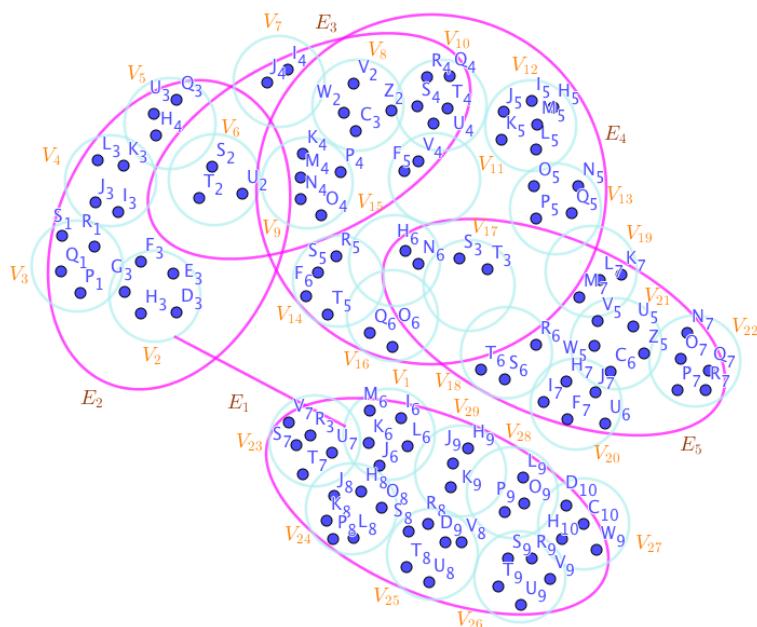


Figure 17. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

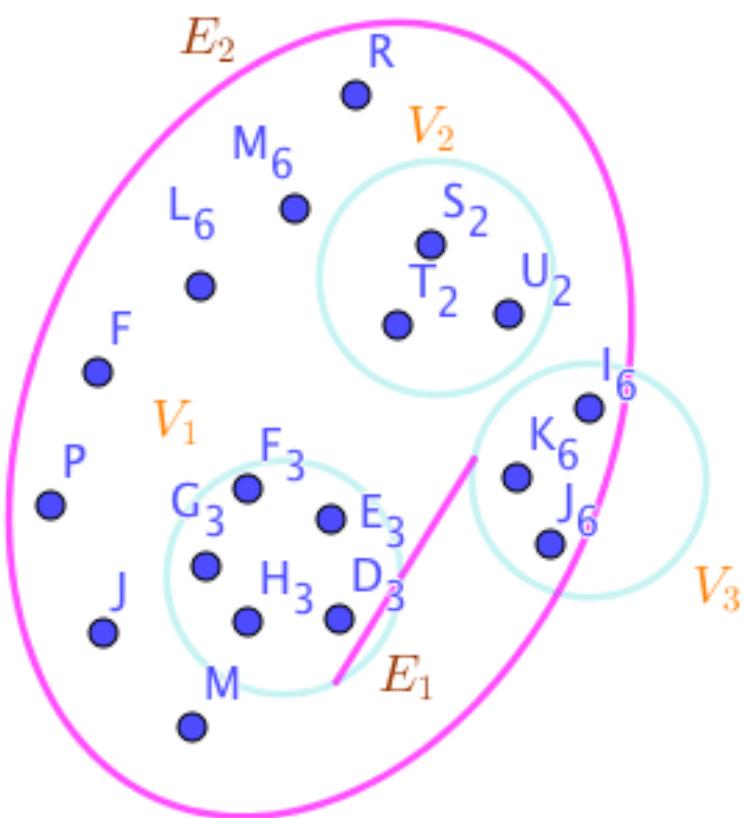


Figure 18. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

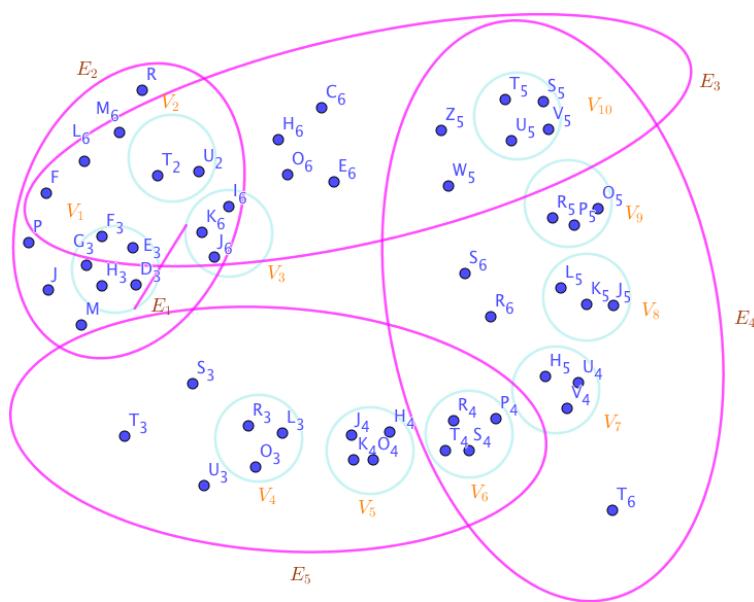


Figure 19. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

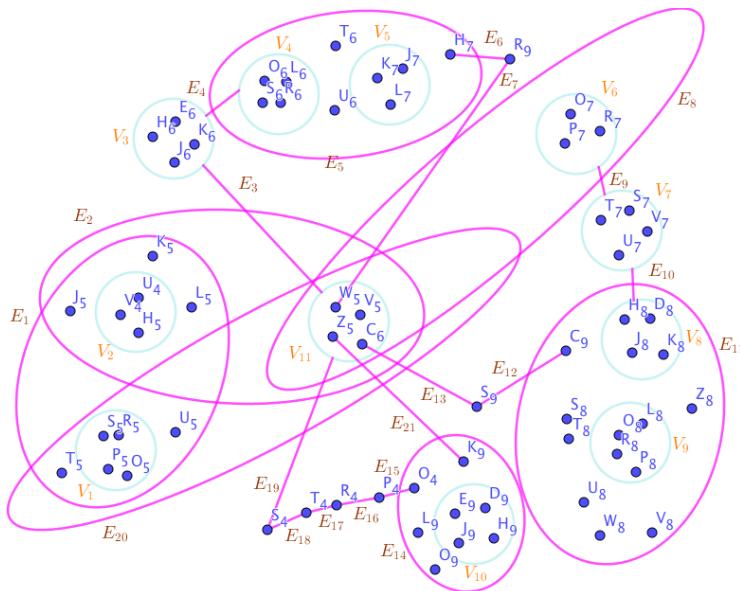


Figure 20. The SuperHyperGraphs Associated to the Notions of 1-failed SuperHyperForcing in the Example (3).

to act on white SuperHyperVertex to be black SuperHyperVertex [there's at least one white without any white SuperHyperNeighbor outside implying there's, by the connectedness of the connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, a SuperHyperVertex, titled its SuperHyperNeighbor, to the SuperHyperSet S does the "the color-change rule"]. There're only **two** SuperHyperVertices **outside** the intended SuperHyperSet, $V \setminus \{x, z\}$. Thus the obvious 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, **is a** SuperHyperSet, $V \setminus \{x, z\}$, **excludes** only **two** SuperHyperVertices are titled in a connected neutrosophic SuperHyperNeighbors SuperHyperGraph $NSHG : (V, E)$. Since the SuperHyperSet of the SuperHyperVertices $V \setminus \{x, z\}$ is the **maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) **such that** $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. \square

Proposition 5. *Assume a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. Then the extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is the extreme cardinality of $V \setminus \{x, z\}$ if there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality.*

Proof. Assume a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. Consider there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x, y, z\}$ is a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex but it isn't an 1-failed SuperHyperForcing. Since it doesn't have **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change

rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) but it isn't an 1-failed SuperHyperForcing. Since it doesn't do the procedure such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex [there's at least one white without any white SuperHyperNeighbor outside implying there's, by the connectedness of the connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, a SuperHyperVertex, titled its SuperHyperNeighbor, to the SuperHyperSet S does the "the color-change rule"]. There're only two SuperHyperVertices outside the intended SuperHyperSet, $V \setminus \{x, z\}$. Thus the obvious 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is a SuperHyperSet, $V \setminus \{x, z\}$, excludes only two SuperHyperVertices are titled in a connected neutrosophic SuperHyperNeighbors SuperHyperGraph $NSHG : (V, E)$. Since the SuperHyperSet of the SuperHyperVertices $V \setminus \{x, z\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. It implies that extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is $|V| - 2$. Thus it induces that the extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is the extreme cardinality of $V \setminus \{x, z\}$ if there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. \square

Proposition 6. *Assume a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. If a SuperHyperEdge has z SuperHyperVertices, then $z - 2$ number of those SuperHyperVertices from that SuperHyperEdge belong to any 1-failed SuperHyperForcing.*

Proof. Assume a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. Let a SuperHyperEdge has z SuperHyperVertices. Consider $z - 3$ number of those SuperHyperVertices from that SuperHyperEdge belong to any given SuperHyperSet of the SuperHyperVertices. Consider there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x, y, z\}$ is a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex but it isn't an 1-failed SuperHyperForcing. Since it doesn't have the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x\}$ is the maximum

cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) but it isn't an 1-failed SuperHyperForcing. Since it doesn't do the procedure such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex [there's at least one white without any white SuperHyperNeighbor outside implying there's, by the connectedness of the connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, a SuperHyperVertex, titled its SuperHyperNeighbor, to the SuperHyperSet S does the "the color-change rule"]. There're only two SuperHyperVertices outside the intended SuperHyperSet, $V \setminus \{x, z\}$. Thus the obvious 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is a SuperHyperSet, $V \setminus \{x, z\}$, excludes only two SuperHyperVertices are titled in a connected neutrosophic SuperHyperNeighbors SuperHyperGraph $NSHG : (V, E)$. Since the SuperHyperSet of the SuperHyperVertices $V \setminus \{x, z\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. It implies that extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is $|V| - 2$. Thus it induces that the extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is the extreme cardinality of $V \setminus \{x, z\}$ if there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. Thus all the following SuperHyperSets of SuperHyperVertices are the simple type-SuperHyperSet of the 1-failed SuperHyperForcing. It's the contradiction to the SuperHyperSet either $S = V \setminus \{x, y, z\}$ or $S = V \setminus \{x\}$ is an 1-failed SuperHyperForcing. Thus any given SuperHyperSet of the SuperHyperVertices contains the number of those SuperHyperVertices from that SuperHyperEdge with z SuperHyperVertices less than $z - 2$ isn't an 1-failed SuperHyperForcing. Thus if a SuperHyperEdge has z SuperHyperVertices, then $z - 2$ number of those SuperHyperVertices from that SuperHyperEdge belong to any 1-failed SuperHyperForcing. \square

Proposition 7. *Assume a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. There's a SuperHyperEdge has only two distinct SuperHyperVertices outside of an 1-failed SuperHyperForcing. In other words, there's an unique SuperHyperEdge has only two distinct white SuperHyperVertices.*

Proof. Assume a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. Let a SuperHyperEdge has some SuperHyperVertices. Consider some numbers of those SuperHyperVertices from that SuperHyperEdge excluding three distinct SuperHyperVertices, belong to any given SuperHyperSet of the SuperHyperVertices. Consider there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x, y, z\}$ is a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex but it isn't an 1-failed SuperHyperForcing. Since it doesn't have the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black

SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) but it isn’t an 1-failed SuperHyperForcing. Since it doesn’t do the procedure such that $V(G)$ isn’t turned black after finitely many applications of “the color-change rule”: a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex [there’s at least one white without any white SuperHyperNeighbor outside implying there’s, by the connectedness of the connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, a SuperHyperVertex, titled its SuperHyperNeighbor, to the SuperHyperSet S does the “the color-change rule”]. There’re only two SuperHyperVertices outside the intended SuperHyperSet, $V \setminus \{x, z\}$. Thus the obvious 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is a SuperHyperSet, $V \setminus \{x, z\}$, excludes only two SuperHyperVertices are titled in a connected neutrosophic SuperHyperNeighbors SuperHyperGraph $NSHG : (V, E)$. Since the SuperHyperSet of the SuperHyperVertices $V \setminus \{x, z\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn’t turned black after finitely many applications of “the color-change rule”: a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. It implies that extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is $|V| - 2$. Thus it induces that the extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is the extreme cardinality of $V \setminus \{x, z\}$ if there’s an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. Thus if a SuperHyperEdge has some SuperHyperVertices, then, with excluding two distinct SuperHyperVertices, the all number of those SuperHyperVertices from that SuperHyperEdge belong to any 1-failed SuperHyperForcing. Thus, in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, there’s a SuperHyperEdge has only two distinct SuperHyperVertices outside of 1-failed SuperHyperForcing. In other words, there’s a SuperHyperEdge has only two distinct white SuperHyperVertices which are SuperHyperNeighbors. \square

Proposition 8. *Assume a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. The all exterior SuperHyperVertices belong to any 1-failed SuperHyperForcing if there’s one of them such that there are only two interior SuperHyperVertices are mutually SuperHyperNeighbors.*

Proof. Assume a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. Let a SuperHyperEdge has some SuperHyperVertices. Consider some numbers of those SuperHyperVertices from that SuperHyperEdge excluding three distinct SuperHyperVertices, belong to any given SuperHyperSet of the SuperHyperVertices. Consider there’s an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x, y, z\}$ is a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn’t turned black after finitely many applications of “the color-change rule”: a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex but it isn’t an 1-failed SuperHyperForcing. Since it doesn’t have the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas

SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) but it isn't an 1-failed SuperHyperForcing. Since it doesn't do the procedure such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex [there's at least one white without any white SuperHyperNeighbor outside implying there's, by the connectedness of the connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, a SuperHyperVertex, titled its SuperHyperNeighbor, to the SuperHyperSet S does the "the color-change rule"]. There're only two SuperHyperVertices outside the intended SuperHyperSet, $V \setminus \{x, z\}$. Thus the obvious 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is a SuperHyperSet, $V \setminus \{x, z\}$, excludes only two SuperHyperVertices are titled in a connected neutrosophic SuperHyperNeighbors SuperHyperGraph $NSHG : (V, E)$. Since the SuperHyperSet of the SuperHyperVertices $V \setminus \{x, z\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. It implies that extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is $|V| - 2$. Thus it induces that the extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is the extreme cardinality of $V \setminus \{x, z\}$ if there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. Thus if a SuperHyperEdge has some SuperHyperVertices, then, with excluding two distinct SuperHyperVertices, the all number of those SuperHyperVertices from that SuperHyperEdge belong to any 1-failed SuperHyperForcing. Thus, in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, there's a SuperHyperEdge has only two distinct SuperHyperVertices outside of 1-failed SuperHyperForcing. In other words, here's a SuperHyperEdge has only two distinct white SuperHyperVertices. In a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, the all exterior SuperHyperVertices belong to any 1-failed SuperHyperForcing if there's one of them such that there are only two interior SuperHyperVertices are mutually SuperHyperNeighbors. \square

Proposition 9. Assume a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. The any 1-failed SuperHyperForcing only contains all interior SuperHyperVertices and all exterior SuperHyperVertices where there's any of them has two SuperHyperNeighbors out.

Proof. Assume a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. Let a SuperHyperEdge has some SuperHyperVertices. Consider some numbers of those SuperHyperVertices from that SuperHyperEdge excluding three distinct SuperHyperVertices, belong to any given SuperHyperSet of the SuperHyperVertices. Consider there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x, y, z\}$ is a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the

color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex but it isn't an 1-failed SuperHyperForcing. Since it doesn't have **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) but it isn't an 1-failed SuperHyperForcing. Since it doesn't do the procedure such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex [there's at least one white without any white SuperHyperNeighbor outside implying there's, by the connectedness of the connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, a SuperHyperVertex, titled its SuperHyperNeighbor, to the SuperHyperSet S does the "the color-change rule"]. There're only **two** SuperHyperVertices outside the intended SuperHyperSet, $V \setminus \{x, z\}$. Thus the obvious 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is a SuperHyperSet, $V \setminus \{x, z\}$, excludes only **two** SuperHyperVertices are titled in a connected neutrosophic SuperHyperNeighbors SuperHyperGraph $NSHG : (V, E)$. Since the SuperHyperSet of the SuperHyperVertices $V \setminus \{x, z\}$ is the **maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. It implies that extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is $|V| - 2$. Thus it induces that the extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is the extreme cardinality of $V \setminus \{x, z\}$ if there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. Thus if a SuperHyperEdge has some SuperHyperVertices, then, with excluding two distinct SuperHyperVertices, the all number of those SuperHyperVertices from that SuperHyperEdge belong to any 1-failed SuperHyperForcing. Thus, in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, there's a SuperHyperEdge has only two distinct SuperHyperVertices outside of 1-failed SuperHyperForcing. In other words, here's a SuperHyperEdge has only two distinct white SuperHyperVertices. In a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, the all exterior SuperHyperVertices belong to any 1-failed SuperHyperForcing if there's one of them such that there are only two interior SuperHyperVertices are mutually SuperHyperNeighbors. Thus in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, any 1-failed SuperHyperForcing only contains all interior SuperHyperVertices and all exterior SuperHyperVertices where there's any of them has two SuperHyperNeighbors out. \square

Remark 10. The words "1-failed SuperHyperForcing" and "SuperHyperDominating" refer to the maximum type-style and the minimum type-style. In other words, they refer to both the maximum[minimum] number and the SuperHyperSet with the maximum[minimum] cardinality.

Proposition 11. Assume a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. An 1-failed SuperHyperForcing contains the SuperHyperDominating.

Proof. Assume a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$. By applying the Proposition (9), the results are up. Thus in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, an 1-failed SuperHyperForcing contains the SuperHyperDominating. \square

3. Results on SuperHyperClasses

Proposition 12. Assume a connected SuperHyperPath $NSHP : (V, E)$. Then an 1-failed SuperHyperForcing-style with the maximum SuperHyperCardinality is a SuperHyperSet of the exterior SuperHyperVertices.

Proposition 13. Assume a connected SuperHyperPath $NSHP : (V, E)$. Then an 1-failed SuperHyperForcing is a SuperHyperSet of the exterior SuperHyperVertices and the interior SuperHyperVertices with only two exceptions in the form of interior SuperHyperVertices from the same SuperHyperEdge. An 1-failed SuperHyperForcing has the number of all the SuperHyperVertices minus two.

Proof. Assume a connected SuperHyperPath $NSHP : (V, E)$. Let a SuperHyperEdge has some SuperHyperVertices. Consider some numbers of those SuperHyperVertices from that SuperHyperEdge excluding three distinct SuperHyperVertices, belong to any given SuperHyperSet of the SuperHyperVertices. Consider there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x, y, z\}$ is a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex but it isn't an 1-failed SuperHyperForcing. Since it doesn't have the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) but it isn't an 1-failed SuperHyperForcing. Since it doesn't do the procedure such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex [there's at least one white without any white SuperHyperNeighbor outside implying there's, by the connectedness of the connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, a SuperHyperVertex, titled its SuperHyperNeighbor, to the SuperHyperSet S does the "the color-change rule"]. There're only two SuperHyperVertices outside the intended SuperHyperSet, $V \setminus \{x, z\}$. Thus the obvious 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is a SuperHyperSet, $V \setminus \{x, z\}$, excludes only two SuperHyperVertices are titled in a connected neutrosophic SuperHyperNeighbors SuperHyperGraph $NSHG : (V, E)$. Since the SuperHyperSet of the SuperHyperVertices $V \setminus \{x, z\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored

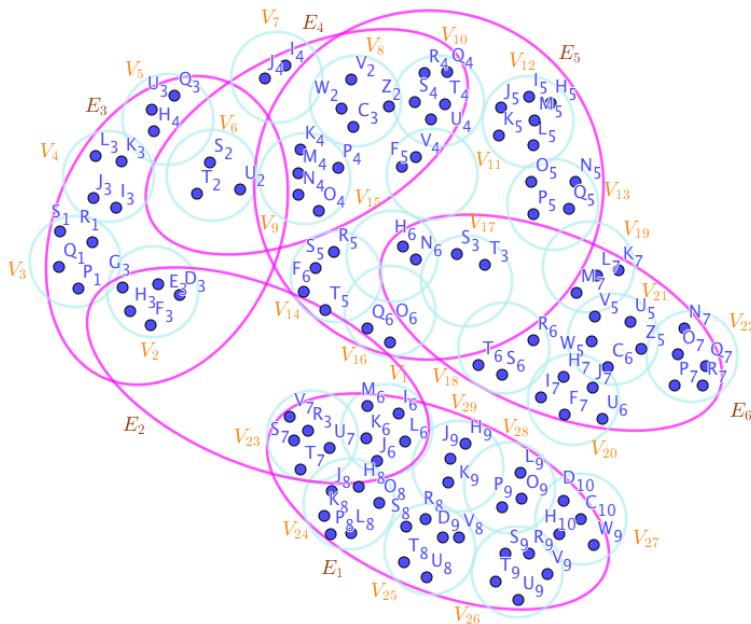


Figure 21. A SuperHyperPath Associated to the Notions of 1-failed SuperHyperForcing in the Example (14).

white) **such that** $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. It implies that extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is $|V| - 2$. Thus it induces that the extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is the extreme cardinality of $V \setminus \{x, z\}$ if there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. Thus if a SuperHyperEdge has some SuperHyperVertices, then, with excluding two distinct SuperHyperVertices, the all number of those SuperHyperVertices from that SuperHyperEdge belong to any 1-failed SuperHyperForcing. Thus, in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, there's a SuperHyperEdge has only two distinct SuperHyperVertices outside of 1-failed SuperHyperForcing. In other words, here's a SuperHyperEdge has only two distinct white SuperHyperVertices. In a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, the all exterior SuperHyperVertices belong to any 1-failed SuperHyperForcing if there's one of them such that there are only two interior SuperHyperVertices are mutually SuperHyperNeighbors. Then an 1-failed SuperHyperForcing is a SuperHyperSet of the exterior SuperHyperVertices and the interior SuperHyperVertices with only two exceptions in the form of interior SuperHyperVertices from the same SuperHyperEdge. An 1-failed SuperHyperForcing has the number of all the SuperHyperVertices minus two. \square

Example 14. In the Figure (21), the connected SuperHyperPath $NSHP : (V, E)$, is highlighted and featured. The SuperHyperSet,

$$\{V_1, V_2, V_5, V_6, V_7, V_8, V_9, V_{10}, V_{11}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}, V_{17}, V_{18}, V_{19}, V_{20}, V_{21}, V_{22}, V_{23}, V_{24}, V_{25}, V_{26}, V_{27}, V_{28}, V_{29}\},$$

of the SuperHyperVertices of the connected SuperHyperPath $NSHP : (V, E)$, in the SuperHyperModel (21), is the 1-failed SuperHyperForcing.

Proposition 15. Assume a connected SuperHyperCycle NSHC : (V, E) . Then an 1-failed SuperHyperForcing is a SuperHyperSet of the exterior SuperHyperVertices and the interior SuperHyperVertices with only two exceptions in the form of interior SuperHyperVertices from the same SuperHyperEdge. An 1-failed SuperHyperForcing has the number of all the SuperHyperVertices minus on the 2 numbers excerpt the same exterior SuperHyperPart.

Proof. Assume a connected SuperHyperCycle NSHC : (V, E) . Let a SuperHyperEdge has some SuperHyperVertices. Consider some numbers of those SuperHyperVertices from that SuperHyperEdge excluding three distinct SuperHyperVertices, belong to any given SuperHyperSet of the SuperHyperVertices. Consider there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x, y, z\}$ is a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex but it isn't an 1-failed SuperHyperForcing. Since it doesn't have **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) but it isn't an 1-failed SuperHyperForcing. Since it **doesn't do** the procedure such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex [there's at least one white without any white SuperHyperNeighbor outside implying there's, by the connectedness of the connected neutrosophic SuperHyperGraph NSHG : (V, E) , a SuperHyperVertex, titled its SuperHyperNeighbor, to the SuperHyperSet S does the "the color-change rule"]. There're only **two** SuperHyperVertices **outside** the intended SuperHyperSet, $V \setminus \{x, z\}$. Thus the obvious 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, **is** a SuperHyperSet, $V \setminus \{x, z\}$, **excludes** only **two** SuperHyperVertices are titled in a connected neutrosophic SuperHyperNeighbors SuperHyperGraph NSHG : (V, E) . Since the SuperHyperSet of the SuperHyperVertices $V \setminus \{x, z\}$ is the **maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) **such that** $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. It implies that extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is $|V| - 2$. Thus it induces that the extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is the extreme cardinality of $V \setminus \{x, z\}$ if there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. Thus if a SuperHyperEdge has some SuperHyperVertices, then, with excluding two distinct SuperHyperVertices, the all number of those SuperHyperVertices from that SuperHyperEdge belong to any 1-failed SuperHyperForcing. Thus,

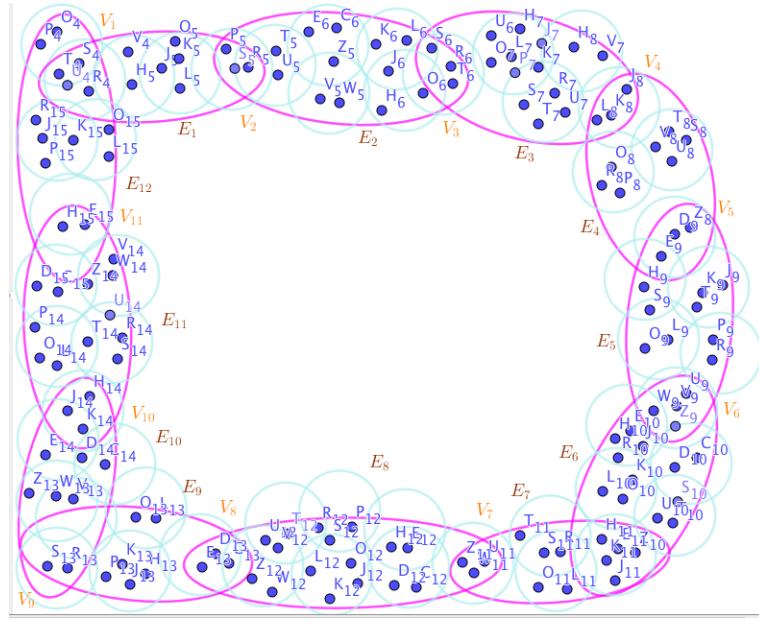


Figure 22. A SuperHyperCycle Associated to the Notions of 1-failed SuperHyperForcing in the Example (16).

in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, there's a SuperHyperEdge has only two distinct SuperHyperVertices outside of 1-failed SuperHyperForcing. In other words, here's a SuperHyperEdge has only two distinct white SuperHyperVertices. In a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, the all exterior SuperHyperVertices belong to any 1-failed SuperHyperForcing if there's one of them such that there are only two interior SuperHyperVertices are mutually SuperHyperNeighbors. Then an 1-failed SuperHyperForcing is a SuperHyperSet of the exterior SuperHyperVertices and the interior SuperHyperVertices with only two exceptions in the form of interior SuperHyperVertices from the same SuperHyperEdge. An 1-failed SuperHyperForcing has the number of all the SuperHyperVertices minus on the 2 numbers excerpt the same exterior SuperHyperPart. \square

Example 16. In the Figure (22), the connected SuperHyperCycle $NSHC : (V, E)$, is highlighted and featured. The obtained SuperHyperSet, by the Algorithm in previous result, of the SuperHyperVertices of the connected SuperHyperCycle $NSHC : (V, E)$, in the SuperHyperModel (22), is the 1-failed SuperHyperForcing.

Proposition 17. Assume a connected SuperHyperStar $NSHS : (V, E)$. Then an 1-failed SuperHyperForcing is a SuperHyperSet of the exterior SuperHyperVertices and the interior SuperHyperVertices, excluding the SuperHyperCenter, with only one exception in the form of interior SuperHyperVertices from any given SuperHyperEdge. An 1-failed SuperHyperForcing has the number of the cardinality of the second SuperHyperPart minus one.

Proof. Assume a connected SuperHyperStar $NSHS : (V, E)$. Let a SuperHyperEdge has some SuperHyperVertices. Consider some numbers of those SuperHyperVertices from that SuperHyperEdge excluding three distinct SuperHyperVertices, belong to any given SuperHyperSet of the SuperHyperVertices. Consider there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x, y, z\}$ is a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition

is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex but it isn’t an 1-failed SuperHyperForcing. Since it doesn’t have **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn’t turned black after finitely many applications of “the color-change rule”: a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) but it isn’t an 1-failed SuperHyperForcing. Since it **doesn’t do** the procedure such that $V(G)$ isn’t turned black after finitely many applications of “the color-change rule”: a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex [there’s at least one white without any white SuperHyperNeighbor outside implying there’s, by the connectedness of the connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, a SuperHyperVertex, titled its SuperHyperNeighbor, to the SuperHyperSet S does the “the color-change rule”]. There’re only **two** SuperHyperVertices **outside** the intended SuperHyperSet, $V \setminus \{x, z\}$. Thus the obvious 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, **is** a SuperHyperSet, $V \setminus \{x, z\}$, **excludes** only **two** SuperHyperVertices are titled in a connected neutrosophic SuperHyperNeighbors SuperHyperGraph $NSHG : (V, E)$. Since the SuperHyperSet of the SuperHyperVertices $V \setminus \{x, z\}$ is the **maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) **such that** $V(G)$ isn’t turned black after finitely many applications of “the color-change rule”: a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by “1-” about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. It implies that extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is $|V| - 2$. Thus it induces that the extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is the extreme cardinality of $V \setminus \{x, z\}$ if there’s an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. Thus if a SuperHyperEdge has some SuperHyperVertices, then, with excluding two distinct SuperHyperVertices, the all number of those SuperHyperVertices from that SuperHyperEdge belong to any 1-failed SuperHyperForcing. Thus, in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, there’s a SuperHyperEdge has only two distinct SuperHyperVertices outside of 1-failed SuperHyperForcing. In other words, here’s a SuperHyperEdge has only two distinct white SuperHyperVertices. In a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, the all exterior SuperHyperVertices belong to any 1-failed SuperHyperForcing if there’s one of them such that there are only two interior SuperHyperVertices are mutually SuperHyperNeighbors. Then an 1-failed SuperHyperForcing is a SuperHyperSet of the exterior SuperHyperVertices and the interior SuperHyperVertices, excluding the SuperHyperCenter, with only one exception in the form of interior SuperHyperVertices from any given SuperHyperEdge. An 1-failed SuperHyperForcing has the number of the cardinality of the second SuperHyperPart minus one. \square

Example 18. In the Figure (23), the connected SuperHyperStar $NSHS : (V, E)$, is highlighted and featured. The obtained SuperHyperSet, by the Algorithm in previous result, of the SuperHyperVertices of the connected SuperHyperStar $NSHS : (V, E)$, in the SuperHyperModel (23), is the 1-failed SuperHyperForcing.

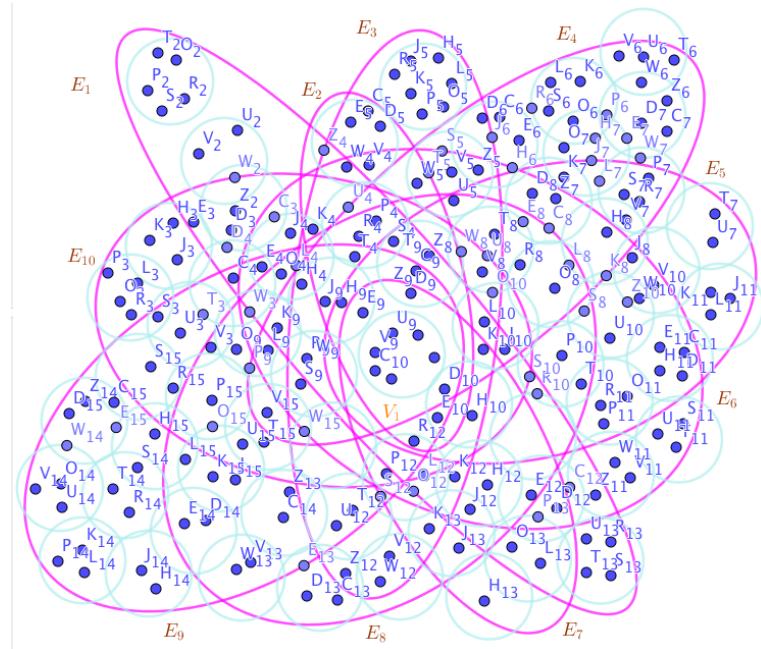


Figure 23. A SuperHyperStar Associated to the Notions of 1-failed SuperHyperForcing in the Example (18).

Proposition 19. Assume a connected SuperHyperBipartite NSHB : (V, E) . Then an 1-failed SuperHyperForcing is a SuperHyperSet of the exterior SuperHyperVertices and the interior SuperHyperVertices with only two exceptions in the form of interior SuperHyperVertices from same SuperHyperEdge. An 1-failed SuperHyperForcing has the number of the cardinality of the first SuperHyperPart minus one plus the second SuperHyperPart minus one.

Proof. Assume a connected SuperHyperBipartite NSHB : (V, E) . Let a SuperHyperEdge has some SuperHyperVertices. Consider some numbers of those SuperHyperVertices from that SuperHyperEdge excluding three distinct SuperHyperVertices, belong to any given SuperHyperSet of the SuperHyperVertices. Consider there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x, y, z\}$ is a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex but it isn't an 1-failed SuperHyperForcing. Since it doesn't have **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) but it isn't an 1-failed SuperHyperForcing. Since it **doesn't do** the procedure such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex

only once to act on white SuperHyperVertex to be black SuperHyperVertex [there's at least one white without any white SuperHyperNeighbor outside implying there's, by the connectedness of the connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, a SuperHyperVertex, titled its SuperHyperNeighbor, to the SuperHyperSet S does the "the color-change rule".]. There're only **two** SuperHyperVertices outside the intended SuperHyperSet, $V \setminus \{x, z\}$. Thus the obvious 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is a SuperHyperSet, $V \setminus \{x, z\}$, excludes only **two** SuperHyperVertices are titled in a connected neutrosophic SuperHyperNeighbors SuperHyperGraph $NSHG : (V, E)$. Since the SuperHyperSet of the SuperHyperVertices $V \setminus \{x, z\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. It implies that extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is $|V| - 2$. Thus it induces that the extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is the extreme cardinality of $V \setminus \{x, z\}$ if there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. Thus if a SuperHyperEdge has some SuperHyperVertices, then, with excluding two distinct SuperHyperVertices, the all number of those SuperHyperVertices from that SuperHyperEdge belong to any 1-failed SuperHyperForcing. Thus, in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, there's a SuperHyperEdge has only two distinct SuperHyperVertices outside of 1-failed SuperHyperForcing. In other words, here's a SuperHyperEdge has only two distinct white SuperHyperVertices. In a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, the all exterior SuperHyperVertices belong to any 1-failed SuperHyperForcing if there's one of them such that there are only two interior SuperHyperVertices are mutually SuperHyperNeighbors. Then an 1-failed SuperHyperForcing is a SuperHyperSet of the exterior SuperHyperVertices and the interior SuperHyperVertices with only two exceptions in the form of interior SuperHyperVertices from same SuperHyperEdge. An 1-failed SuperHyperForcing has the number of the cardinality of the first SuperHyperPart minus one plus the second SuperHyperPart minus one. \square

Example 20. In the Figure (24), the connected SuperHyperBipartite $NSHB : (V, E)$, is highlighted and featured. The obtained SuperHyperSet, by the Algorithm in previous result, of the SuperHyperVertices of the connected SuperHyperBipartite $NSHB : (V, E)$, in the SuperHyperModel (24), is the 1-failed SuperHyperForcing.

Proposition 21. *Assume a connected SuperHyperMultipartite $NSHM : (V, E)$. Then an 1-failed SuperHyperForcing is a SuperHyperSet of the exterior SuperHyperVertices and the interior SuperHyperVertices with only one exception in the form of interior SuperHyperVertices from a SuperHyperPart and only one exception in the form of interior SuperHyperVertices from another SuperHyperPart. An 1-failed SuperHyperForcing has the number of all the summation on the cardinality of the all SuperHyperParts minus two excerpt distinct SuperHyperParts.*

Proof. Assume a connected SuperHyperMultipartite $NSHM : (V, E)$. Let a SuperHyperEdge has some SuperHyperVertices. Consider some numbers of those SuperHyperVertices from that SuperHyperEdge excluding three distinct SuperHyperVertices, belong to any given SuperHyperSet of the SuperHyperVertices. Consider there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x, y, z\}$ is a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the

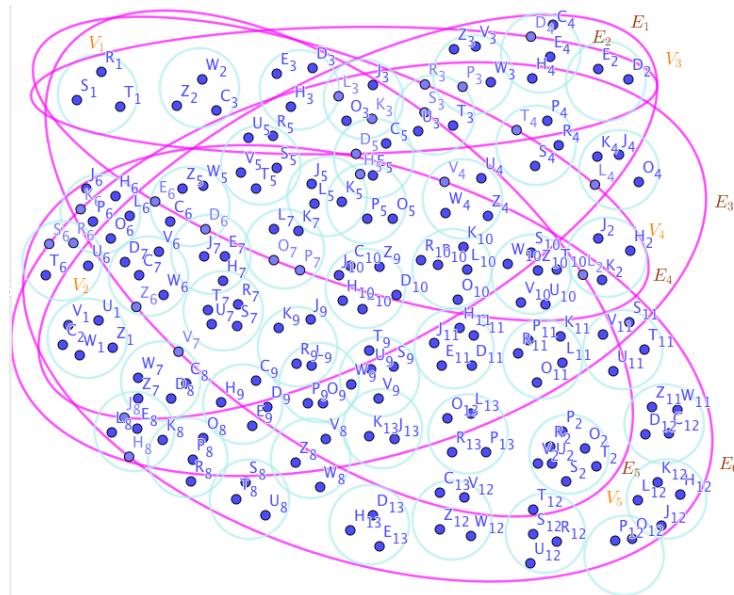


Figure 24. A SuperHyperBipartite Associated to the Notions of 1-failed SuperHyperForcing in the Example (20).

color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex but it isn't an 1-failed SuperHyperForcing. Since it doesn't have **the maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) but it isn't an 1-failed SuperHyperForcing. Since it **doesn't do** the procedure such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex [there's at least one white without any white SuperHyperNeighbor outside implying there's, by the connectedness of the connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, a SuperHyperVertex, titled its SuperHyperNeighbor, to the SuperHyperSet S does the "the color-change rule"]. There're only **two** SuperHyperVertices **outside** the intended SuperHyperSet, $V \setminus \{x, z\}$. Thus the obvious 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, **is** a SuperHyperSet, $V \setminus \{x, z\}$, **excludes** only **two** SuperHyperVertices are titled in a connected neutrosophic SuperHyperNeighbors SuperHyperGraph $NSHG : (V, E)$. Since the SuperHyperSet of the SuperHyperVertices $V \setminus \{x, z\}$ is the **maximum cardinality** of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) **such that** $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to

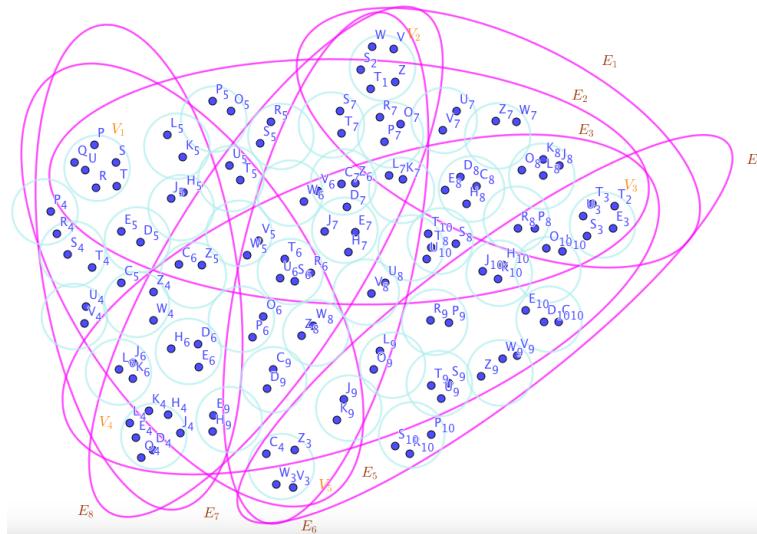


Figure 25. A SuperHyperMultipartite Associated to the Notions of 1-failed SuperHyperForcing in the Example (22).

be black SuperHyperVertex. It implies that extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is $|V| - 2$. Thus it induces that the extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is the extreme cardinality of $V \setminus \{x, z\}$ if there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. Thus if a SuperHyperEdge has some SuperHyperVertices, then, with excluding two distinct SuperHyperVertices, the all number of those SuperHyperVertices from that SuperHyperEdge belong to any 1-failed SuperHyperForcing. Thus, in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, there's a SuperHyperEdge has only two distinct SuperHyperVertices outside of 1-failed SuperHyperForcing. In other words, here's a SuperHyperEdge has only two distinct white SuperHyperVertices. In a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, the all exterior SuperHyperVertices belong to any 1-failed SuperHyperForcing if there's one of them such that there are only two interior SuperHyperVertices are mutually SuperHyperNeighbors. Then an 1-failed SuperHyperForcing is a SuperHyperSet of the exterior SuperHyperVertices and the interior SuperHyperVertices with only one exception in the form of interior SuperHyperVertices from a SuperHyperPart and only one exception in the form of interior SuperHyperVertices from another SuperHyperPart. An 1-failed SuperHyperForcing has the number of all the summation on the cardinality of the all SuperHyperParts minus two excerpt distinct SuperHyperParts. \square

Example 22. In the Figure (25), the connected SuperHyperMultipartite $NSHM : (V, E)$, is highlighted and featured. The obtained SuperHyperSet, by the Algorithm in previous result, of the SuperHyperVertices of the connected SuperHyperMultipartite $NSHM : (V, E)$, in the SuperHyperModel (25), is the 1-failed SuperHyperForcing.

Proposition 23. Assume a connected SuperHyperWheel $NSHW : (V, E)$. Then an 1-failed SuperHyperForcing is a SuperHyperSet of the exterior SuperHyperVertices and the interior SuperHyperVertices, excluding the SuperHyperCenter, with only one exception in the form of interior SuperHyperVertices from any given SuperHyperEdge. An 1-failed SuperHyperForcing has the number of all the number of all the SuperHyperEdges minus two numbers excerpt two SuperHyperNeighbors.

Proof. Assume a connected SuperHyperWheel $NSHW : (V, E)$. Let a SuperHyperEdge has some SuperHyperVertices. Consider some numbers of those SuperHyperVertices from that SuperHyperEdge excluding three distinct SuperHyperVertices, belong to any given SuperHyperSet of

the SuperHyperVertices. Consider there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x, y, z\}$ is a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex but it isn't an 1-failed SuperHyperForcing. Since it doesn't have the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. The SuperHyperSet of the SuperHyperVertices $V \setminus \{x\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) but it isn't an 1-failed SuperHyperForcing. Since it doesn't do the procedure such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex [there's at least one white without any white SuperHyperNeighbor outside implying there's, by the connectedness of the connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, a SuperHyperVertex, titled its SuperHyperNeighbor, to the SuperHyperSet S does the "the color-change rule"]. There're only two SuperHyperVertices outside the intended SuperHyperSet, $V \setminus \{x, z\}$. Thus the obvious 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is up. The obvious simple type-SuperHyperSet of the 1-failed SuperHyperForcing, $V \setminus \{x, z\}$, is a SuperHyperSet, $V \setminus \{x, z\}$, excludes only two SuperHyperVertices are titled in a connected neutrosophic SuperHyperNeighbors SuperHyperGraph $NSHG : (V, E)$. Since the SuperHyperSet of the SuperHyperVertices $V \setminus \{x, z\}$ is the maximum cardinality of a SuperHyperSet S of black SuperHyperVertices (whereas SuperHyperVertices in $V(G) \setminus S$ are colored white) such that $V(G)$ isn't turned black after finitely many applications of "the color-change rule": a white SuperHyperVertex is converted to a black SuperHyperVertex if it is the only white SuperHyperNeighbor of a black SuperHyperVertex with the additional condition is referred by "1-" about the usage of any black SuperHyperVertex only once to act on white SuperHyperVertex to be black SuperHyperVertex. It implies that extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is $|V| - 2$. Thus it induces that the extreme number of 1-failed SuperHyperForcing has, the most cardinality, the upper sharp bound for cardinality, is the extreme cardinality of $V \setminus \{x, z\}$ if there's an 1-failed SuperHyperForcing with the most cardinality, the upper sharp bound for cardinality. Thus if a SuperHyperEdge has some SuperHyperVertices, then, with excluding two distinct SuperHyperVertices, the all number of those SuperHyperVertices from that SuperHyperEdge belong to any 1-failed SuperHyperForcing. Thus, in a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, there's a SuperHyperEdge has only two distinct SuperHyperVertices outside of 1-failed SuperHyperForcing. In other words, here's a SuperHyperEdge has only two distinct white SuperHyperVertices. In a connected neutrosophic SuperHyperGraph $NSHG : (V, E)$, the all exterior SuperHyperVertices belong to any 1-failed SuperHyperForcing if there's one of them such that there are only two interior SuperHyperVertices are mutually SuperHyperNeighbors. Then an 1-failed SuperHyperForcing is a SuperHyperSet of the exterior SuperHyperVertices and the interior SuperHyperVertices, excluding the SuperHyperCenter, with only one exception in the form of interior SuperHyperVertices from any given SuperHyperEdge.

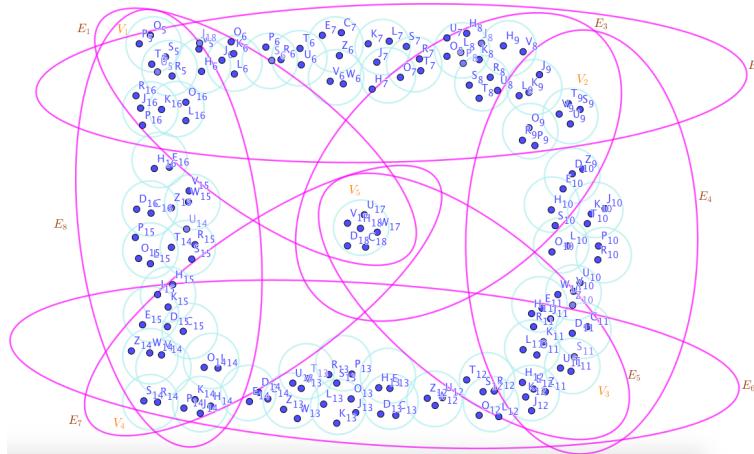


Figure 26. A SuperHyperWheel Associated to the Notions of 1-failed SuperHyperForcing in the Example (24).

An 1-failed SuperHyperForcing has the number of all the number of all the SuperHyperEdges minus two numbers except two SuperHyperNeighbors. \square

Example 24. In the Figure (26), the connected SuperHyperWheel $NSHW : (V, E)$, is highlighted and featured. The obtained SuperHyperSet, by the Algorithm in previous result, of the SuperHyperVertices of the connected SuperHyperWheel $NSHW : (V, E)$, in the SuperHyperModel (26), is the 1-failed SuperHyperForcing.

References

1. Henry Garrett, "Properties of SuperHyperGraph and Neutrosophic SuperHyperGraph", Neutrosophic Sets and Systems 49 (2022) 531-561 (doi: 10.5281/zenodo.6456413). (<http://fs.unm.edu/NSS/NeutrosophicSuperHyperGraph34.pdf>). (https://digitalrepository.unm.edu/nss_journal/vol49/iss1/34).
2. Henry Garrett, "Neutrosophic Co-degree and Neutrosophic Degree alongside Chromatic Numbers in the Setting of Some Classes Related to Neutrosophic Hypergraphs", J Curr Trends Comp Sci Res 1(1) (2022) 06-14.
3. Henry Garrett, "(Neutrosophic) SuperHyperModeling of Cancer's Recognitions Featuring (Neutrosophic) SuperHyperDefensive SuperHyperAlliances", Preprints 2022, 2022120549 (doi: 10.20944/preprints202212.0549.v1).
4. Henry Garrett, "(Neutrosophic) SuperHyperAlliances With SuperHyperDefensive and SuperHyperOffensive Type-SuperHyperSet On (Neutrosophic) SuperHyperGraph With (Neutrosophic) SuperHyperModeling of Cancer's Recognitions And Related (Neutrosophic) SuperHyperClasses", Preprints 2022, 2022120540 (doi: 10.20944/preprints202212.0540.v1).
5. Henry Garrett, "SuperHyperGirth on SuperHyperGraph and Neutrosophic SuperHyperGraph With SuperHyperModeling of Cancer's Recognitions", Preprints 2022, 2022120500 (doi: 10.20944/preprints202212.0500.v1).
6. Henry Garrett, "Some SuperHyperDegrees and Co-SuperHyperDegrees on Neutrosophic SuperHyperGraphs and SuperHyperGraphs Alongside Applications in Cancer's Treatments", Preprints 2022, 2022120324 (doi: 10.20944/preprints202212.0324.v1).
7. Henry Garrett, "SuperHyperDominating and SuperHyperResolving on Neutrosophic SuperHyperGraphs And Their Directions in Game Theory and Neutrosophic SuperHyperClasses", Preprints 2022, 2022110576 (doi: 10.20944/preprints202211.0576.v1).
8. Henry Garrett, "Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs", ResearchGate 2022, (doi: 10.13140/RG.2.2.11369.16487).
9. Henry Garrett, "Basic Neutrosophic Notions Concerning SuperHyperDominating and Neutrosophic SuperHyperResolving in SuperHyperGraph", ResearchGate 2022 (doi: 10.13140/RG.2.2.29173.86244).

10. Henry Garrett, "Initial Material of Neutrosophic Preliminaries to Study Some Neutrosophic Notions Based on Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic SuperHyperGraph (NSHG)", ResearchGate 2022 (doi: 10.13140/RG.2.2.25385.88160).
11. Henry Garrett, (2022). "Beyond Neutrosophic Graphs", Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United States. ISBN: 979-1-59973-725-6 (<http://fs.unm.edu/BeyondNeutrosophicGraphs.pdf>).
12. Henry Garrett, (2022). "Neutrosophic Duality", Florida: GLOBAL KNOWLEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. ISBN: 978-1-59973-743-0 (<http://fs.unm.edu/NeutrosophicDuality.pdf>).
13. F. Smarandache, "Extension of HyperGraph to n -SuperHyperGraph and to Plithogenic n -SuperHyperGraph, and Extension of HyperAlgebra to n -ary (Classical-/Neutro-/Anti-) HyperAlgebra", Neutrosophic Sets and Systems 33 (2020) 290-296. (doi: 10.5281/zenodo.3783103).
14. M. Akram et al., "Single-valued neutrosophic Hypergraphs", TWMS J. App. Eng. Math. 8 (1) (2018) 122-135.
15. S. Broumi et al., "Single-valued neutrosophic graphs", Journal of New Theory 10 (2016) 86-101.
16. H. Wang et al., "Single-valued neutrosophic sets", Multispace and Multistructure 4 (2010) 410-413.
17. H.T. Nguyen and E.A. Walker, "A First course in fuzzy logic", CRC Press, 2006.
18. M. Akram, and G. Shahzadi, "Operations on Single-Valued Neutrosophic Graphs", Journal of uncertain systems 11 (1) (2017) 1-26.
19. G. Argiroffo et al., "Polyhedra associated with locating-dominating, open locating-dominating and locating total-dominating sets in graphs", Discrete Applied Mathematics (2022). (<https://doi.org/10.1016/j.dam.2022.06.025>.)
20. L. Aronshtam, and H. Ilani, "Bounds on the average and minimum attendance in preference-based activity scheduling", Discrete Applied Mathematics 306 (2022) 114-119. (<https://doi.org/10.1016/j.dam.2021.09.024>.)
21. J. Asplund et al., "A Vizing-type result for semi-total domination", Discrete Applied Mathematics 258 (2019) 8-12. (<https://doi.org/10.1016/j.dam.2018.11.023>.)
22. K. Atanassov, "Intuitionistic fuzzy sets", Fuzzy Sets Syst. 20 (1986) 87-96.
23. R.A. Beeler et al., "Total domination cover bubbling", Discrete Applied Mathematics 283 (2020) 133-141. (<https://doi.org/10.1016/j.dam.2019.12.020>.)
24. S. Bermudo et al., "On the global total k -domination number of graphs", Discrete Applied Mathematics 263 (2019) 42-50. (<https://doi.org/10.1016/j.dam.2018.05.025>.)
25. M. Bold, and M. Goerigk, "Investigating the recoverable robust single machine scheduling problem under interval uncertainty", Discrete Applied Mathematics 313 (2022) 99-114. (<https://doi.org/10.1016/j.dam.2022.02.005>.)
26. S. Broumi et al., "Single-valued neutrosophic graphs", Journal of New Theory 10 (2016) 86-101.
27. V. Gledel et al., "Maker-Breaker total domination game", Discrete Applied Mathematics 282 (2020) 96-107. (<https://doi.org/10.1016/j.dam.2019.11.004>.)
28. M.A. Henning, and A. Yeo, "A new upper bound on the total domination number in graphs with minimum degree six", Discrete Applied Mathematics 302 (2021) 1-7. (<https://doi.org/10.1016/j.dam.2021.05.033>.)
29. Henry Garrett, (2022). "Beyond Neutrosophic Graphs", Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United States. ISBN: 979-1-59973-725-6 (<http://fs.unm.edu/BeyondNeutrosophicGraphs.pdf>).
30. Henry Garrett, "Dimension and Coloring alongside Domination in Neutrosophic Hypergraphs", Preprints 2021, 2021120448 (doi: 10.20944/preprints202112.0448.v1).
31. Henry Garrett, "Properties of SuperHyperGraph and Neutrosophic SuperHyperGraph", Neutrosophic Sets and Systems 49 (2022) 531-561 (doi: 10.5281/zenodo.6456413). (<http://fs.unm.edu/NSS/NeutrosophicSuperHyperGraph34.pdf>). (https://digitalrepository.unm.edu/nss_journal/vol49/iss1/34).
32. Henry Garrett, "Three Types of Neutrosophic Alliances based on Connectedness and (Strong) Edges", Preprints 2022, 2022010239 (doi: 10.20944/preprints202201.0239.v1).
33. V. Irsic, "Effect of predomination and vertex removal on the game total domination number of a graph", Discrete Applied Mathematics 257 (2019) 216-225. (<https://doi.org/10.1016/j.dam.2018.09.011>.)
34. B.S. Panda, and P. Goyal, "Hardness results of global total k -domination problem in graphs", Discrete Applied Mathematics (2021). (<https://doi.org/10.1016/j.dam.2021.02.018>.)
35. N. Shah, and A. Hussain, "Neutrosophic soft graphs", Neutrosophic Set and Systems 11 (2016) 31-44.

36. A. Shannon and K.T. Atanassov, "A first step to a theory of the intuitionistic fuzzy graphs", Proceeding of FUBEST (Lakov, D., Ed.) Sofia (1994) 59-61.
37. F. Smarandache, "A Unifying field in logics neutrosophy: Neutrosophic probability, set and logic, Rehoboth: " American Research Press (1998).
38. H. Wang et al., "Single-valued neutrosophic sets", Multispace and Multistructure 4 (2010) 410-413.
39. L. A. Zadeh, "Fuzzy sets", Information and Control 8 (1965) 338-354.