Pre prints.org

Article Not peer-reviewed version

Learning Self-Supervised

Representations of Powder-Diffraction
Patterns

Shubhayu Das , Markus Vorholt , Andreas Houben , Richard Dronskowski i

Posted Date: 21 February 2025
doi: 10.20944/preprints202502.1759.v1

Keywords: diffraction; crystallography; machine learning; self-supervised learning; representation learning

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/3857128
https://sciprofiles.com/profile/202231

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 February 2025 d0i:10.20944/preprints202502.1759.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Learning Self-Supervised Representations
of Powder-Diffraction Patterns

Shubhayu Das, Markus Vorholt, Andreas Houben and Richard Dronskowski *

Institute of Inorganic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
* Correspondence: drons@hal9000.ac.rwth-aachen.de

Abstract: The potential of machine learning (ML) models for predicting crystallographic symmetry information
from single-phase powder X-ray diffraction (XRD) patterns is investigated. Given the scarcity of large, labeled
experimental datasets, we train our models using simulated XRD patterns generated from crystallographic
databases. A key challenge in developing reliable diffraction-based structure-solution tools lies in the limited
availability of training data and the presence of natural adversarial examples, which hinder model
generalization. To address these issues, we explore multiple training pipelines and testing strategies, including
evaluations on experimental XRD data. We introduce a contrastive representation learning approach that
significantly outperforms previous supervised learning models in terms of robustness and generalizability,
demonstrating improved invariance to experimental effects. These results highlight the potential of self-

supervised learning in advancing ML-driven crystallographic analysis.

Keywords: diffraction; crystallography; machine learning; self-supervised learning; representation
learning

1. Introduction

Determining an unknown crystal structure and, hence, identifying a new chemical compound
(usually called “crystallographic phase”) from X-ray or neutron powder diffraction data is an inverse
problem that requires experienced users to make several strategic choices across multiple steps in the
course of structure determination. The typical pipeline following the measurement of intensities from
an appropriate laboratory or high-resolution X-ray (or neutron) diffractometer and radiation source
starts with binning the diffraction pattern, describing the background, and then identifying the so-
called Bragg peak positions from elastic coherent scattering. This is followed by indexing the pattern
to identify the crystal system, the unit cell and then narrowing down the number of potential space
groups, based on which a structure-solving algorithm suggests candidate structures, eventually
improved or rejected by (Rietveld) structure refinement [1]. Depending on the chemical nature of the
sample, the candidate structures are usually determined using approaches going under the names
Direct Methods or Patterson Method [2], or other methods such as Simulated Annealing [3], Genetic
Algorithms [4], Charge Flipping [5], etc. By doing so, the generally complex structure factors are
found which reconstruct (upon Fourier transformation) the measured intensities, so the model may
be compared to the real world that has been measured.

The aforementioned “pipeline” carried out by human beings has allowed for a huge number of
structure determinations (by solving the “phase problem”, that is, determining the atomic positions
in real space) but the exact course is difficult to predict from a more general perspective since it
depends on the chemical nature, on the structural complexity, on human skills, and so forth. That
being said, specific choices must be taken which may be considered as iterative informed guesses,
most often also based on additional sources of information. This is particularly true if more than one
chemical species (multiple-phase diffraction patterns) are being looked at, so the indexing step faces
a tremendous challenge to begin with: which of the Bragg peaks belongs to which phase? It may
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therefore be a good idea to utilize data-driven machine learning models that can directly generate or
identify or at least estimate candidate crystallographic structures based on the measured data.

Typically, a supervised machine learning model needs large amounts of labelled data which, in
our specific case, relates to experimental diffraction patterns and the corresponding structure
information of the measured sample in order to make accurate predictions. Models trained on limited
data can be vulnerable to “natural adversarial examples”, i.e., naturally occurring instances that
unintentionally cause a model to make incorrect predictions. Likewise, such models may also make
predictions based on spurious correlations in the data rather than useful features. While limited data
availability is a persistent challenge in many experimental sciences, machine-learning models have
demonstrated remarkable flexibility in adapting to these constraints. Despite initial hurdles, models
like AlphaFold [6] have revolutionized their respective fields by leveraging innovative training
strategies and structural priors, ultimately surpassing traditional approaches. Inspired by such
advancements, we explore how data-driven models can be designed to tackle the complexities of
crystallographic structure prediction

From a statistical point of view, acquiring experimental data representative enough to model the
joint distribution of the diffraction patterns (including instrumental effects) and the corresponding
structure information is intractable because one cannot quickly synthesize and re-measure hundreds
of thousands of solid-state chemical compounds. We can, however, extract experimental crystal-
structure information already stored as Crystallographic Information Files (CIF) being part of large-
scale crystal-structure databases such as the Crystallography Open Database (COD) or the Inorganic
Crystal Structure Database (ICSD). Given that the data contained in those CIF files are accurate and
idealized (that is, almost free of any measuring inaccuracies), experimental diffraction patterns may
be straightforwardly simulated. It is important to note, however, that designing a machine-learning
model trained with simulated data of known structures which eventually processes experimental
diffraction patterns corresponds to a cyclic problem.

This issue can, at least to a certain extent, be circumvented by using models that take manual or
“handcrafted” features of the experimental diffraction patterns as the input. We shall later show
that for specific tasks such as indexing and crystal-system determination such models can potentially
outperform well-known existing search-based, non-data-driven algorithms like NTREOR [7].
However, models trained on handcrafted features (typically chosen by a trained human being) are
time-consuming and difficult to evaluate since such models require some “pre-processing” steps
(e.g., peak detection), making it difficult to debug mistakes. In other words, this real-world
component makes the model vulnerable to adversarial effects inherently present in any experimental
measurement. More importantly, such models and the features used by them do not generalize over
different tasks, and therefore cannot be used to build an end-to-end structure prediction model.

To fulfill the ultimate vision of reliably using data-driven ML models for structure solutions
from powder diffraction patterns, we need to ensure that the underlying architecture is both scalable
and capable of generalizing across different tasks. Additionally, it is crucial to minimize
vulnerabilities introduced by pre-processing steps, enabling the model to function with minimal
human intervention. Therefore, our goal is to use the entire diffraction pattern as input and design a
model that inherently learns robust feature representations. To achieve this, the model must be
invariant to variations in the input caused by sample or instrumental effects and noise while remaining
sensitive to variations arising from structural differences. Simply put, changes in the input should only
influence the prediction if they correspond to a genuine structural difference in the measured
crystallographic structure. For this, we investigate neural network architectures with training pipelines
inspired by recent advancements in semi- and self-supervised representation learning. We believe this
approach will facilitate previously unseen robustness against “natural adversarial examples” arising from
noise to experimental variations of the diffraction pattern input, and one needs to ensure that both the
model architecture and the training methodology are suitable to reach this goal.

To focus and streamline our work, we limit our scope to prediction tasks, specifically classifying
the crystal system, extinction group, and space group from diffraction patterns of predominantly
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single-phase samples. We explore model architectures, testing standards, and training methodologies
to enhance model reliability and generalizability.

2. Previous Works

The idea of training machine-learning models for identifying crystallographic phase information
such as crystal system, lattice parameters, and space groups, as well as estimating non-
crystallographic properties like electronic band gap, formation energy, etc., is not entirely new. For
example, Suzuki et al. [8] studied the use of machine-learning models such as Support Vector
Machines, Random Forests, and Randomized Decision Trees trained with handcrafted features such
as the position of the first ten low-angle (20) peaks and the number of peaks in the 26 range of 0-90°.
The data for training and testing were generated from simulated powder-diffraction patterns
stemming from CIF files taken from ICSD, using the aforementioned handcrafted features. As typical
for data-driven models, the test set was a part of the entire dataset kept separate from the data used
for training the model. Suzuki et al. [8] reported a crystal-system classification accuracy of 90% and
a space-group classification accuracy of about 80.5%. The performance reported over experimental
data, however, was limited to two rather typical laboratory XRD measurements of Ca15BaosSisNeOs
and BaAlSi«OsNs:Eu? but space-group classification failed for both. We adopt this approach of using
handcrafted features in one of our baseline experiments.

Park et al. [9] proposed treating the entire powder diffraction pattern as a one-dimensional
picture using a Convolutional Neural Network (CNN) trained on single-phase simulated diffraction
patterns of crystal structures from the ICSD database. This was intended to predict the crystal system,
the extinction group (derived from systematic absences or extinctions), and the space group. The
authors proposed a data-generation pipeline using a set of fixed parameters such as the structure
factor, the multiplicity, the Lorentz polarization factor, and a set of randomly selected parameters
involved in the pseudo-Voigt peak profile function, the Caglioti parameters [10], and the coefficients
of the background polynomial. Owing to this, the proposed CNN internally learned a representation
of the diffraction pattern as opposed to the models presented by Suzuki et al. [8] and its handcrafted
features. When tested on generated data using the aforementioned data-generation pipeline on a sub-
set of ICSD crystal structures not used in training, the paper reported 94, 83.8, and 81.1% accuracy
for crystal-system, extinction-group, and space-group classification, respectively. For testing on
experimental data, Park et. al. [9] also reported their model’s prediction on CaisBa0s5isNeOs and
BaAlSisOsNs:Eu?. Similar to Suzuki et al. [8], the predictions also failed for both extinction and space
groups. Although the model by Park et al. [9] learned better representations due to random
parameters of the data-generation pipeline, the authors did not explicitly investigate the model’s
invariance as regards experimental effects. In addition, the rather limited experimental testing makes
it difficult to analyze the model’s robustness for practical use.

Lee et al. [11] expanded on some of the ideas by Park et al. [9], first by including training Fully
Convolutional Neural Networks (FCNNs) as well as a Vision Transformer-inspired neural network for
predicting extinction and space group for single-phase simulated diffraction patterns from the ICSD and
the Materials Project (MP) dataset and, second, neural network regression models trained on the non-
experimental MP data to estimate DFT-calculated band gap, formation energy, and the energy above the
convex hull. Although the authors reported close to state-of-the-art (SOTA) performances, they also did
not perform extensive tests for the model’s robustness over natural adversarial examples.

Oviedo et al. [12] proposed a more representative simulation pipeline that models the evolution
of a thin-film XRD experiment by modifying the XRD data in terms of pattern shifting, peak scaling,
and peak elimination, an approach usually dubbed as “augmentation” in this simulative context.
They measured 85 thin-film experimental XRD patterns of known structures belonging to seven
different space groups, including perovskite-like materials such as lead halides (Pm3m), tin halides
(I4/mcm), Cs-Ag-Bi bromide double perovskites (Fm3m), and Bi and Sb halides (P3m1, Pc, P2i/c,
P6s/mmc). The goal of Oviedo et al. [12] was to classify the XRD patterns into the seven
aforementioned space groups, and the data-augmentation strategy was designed such that the
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simulated data used for training accurately fitted the measured thin-film X-ray diffraction (XRD)
patterns. The paper reported an accuracy of about 99 and 80% on a simulated/experimental test set
for the seven space-group classification problem; admittedly, this corresponds to a much simpler task
compared to other works.

Salgado et al. [13] trained a neural network model for classifying the space group using a
combination of simulated and experimental data. The simulated XRD data consisting of 1.2 million
training patterns were generated from ICSD structures using a set of Caglioti parameters and noise
implementations, and the experimental XRD patterns (908 patterns) were collected from the RRUFF
Dataset. The authors evaluated space-group classification accuracy across models trained on various
sets of data. Particularly, they trained neural network models on simulated data as well as a
combination of simulated data and half of the experimental data, while using the rest for testing. The
best-case accuracy reported for their models trained entirely using simulated data was 66%, which
increased to 77% when half the experimental data were added for training. Hence, Salgado et al. [13]
addressed the challenges involved when training machine learning models on simulated data that
can be robust enough to work on experimental data.

Lolla et al. [14] introduced a semi-supervised deep learning model for classifying powder
neutron diffraction patterns into 14 Bravais lattices and 144 space groups. The model leveraged
simulated diffraction patterns as labeled data while exploring the use of partially labeled datasets
during training. Despite achieving state-of-the-art results on simulated test datasets, the study did
not incorporate real experimental data as labeled training examples, nor did it evaluate the model’s
performance on real experimental datasets. This limitation highlights a gap in generalizability to real-
world XRD patterns, which may include experimental noise and other complexities not captured in
simulations. However, this work introduced an interesting idea of using the Discriminator of a Generative
Adpversarial Network [15] to predict the Bravais lattice and space groups. This concept introduces the
possibility of incorporating experimental XRD patterns into the unsupervised training modes of the
Discriminator in future work, thereby potentially improving its applicability to real-world data.

In this paper, we adopt a self-supervised representation learning strategy, which relies entirely
on simulated data for training. We have been inspired by the aforementioned contributions, laying
the groundwork for identifying and addressing the challenges in learning representations from
simulated diffraction patterns that can be generalized well enough to be used in real life.

3. Crystallographic and Diffraction Data

The data-driven models discussed in this paper are trained and tested using data simulated from
known crystallographic structures. It is important to outline the details of the simulation process to
provide context for the subsequent analysis.

The general functional form of the calculated intensity y.; at the it position of the diffraction
pattern for a given crystal structure is given as:

Yei =Ypi + S Zke{hkl}LPk * M - |Fk|2 “P(20; —26,)-A-E

where Fy = ¥jcqatomsy N fj - exp[Zni(k . J_c’})] - exp[—B(sin 8 /1)?]

Here s is the scale factor, k is the reciprocal lattice vector as expressed by the hki triple, LPy
are the Lorentz and polarization factors, M, the multiplicity factor, Fj is the structure factor, @ is
the profile function, and A - E is the product of the absorption and extinction factors. The structure
factor contains all the crystallographic information about the atoms j and their relative positions in
the unit cell, while the set of all k dictates the symmetry of the unit cell. Here N; is the multiplicity
of the atomic position, f; is the atomic form factor, ¥; is the position vector, and B is the (isotropic)
thermal displacement factor, also going under the name Debye—Waller factor.

We use the Inorganic Crystal Structure Database (ICSD) which consists of over 200,000
experimentally determined and carefully curated Crystallographic Information Files (CIFs). Based on
the latter, we simulate their XRD patterns using a fully automated pipeline. We first pre-compute
only the structure factor contribution to the calculated integrated intensities for all ICSD CIFs, using
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the GSAS-II [16] source code. This simply gives us some discrete intensities at specific 26 positions
or d spacings. The diffraction data used in the models discussed in this paper all work with these
precomputed integrated intensities.

Models utilizing the full profile of the diffraction pattern as input individually compute the
diffraction patterns for both training and robust testing. Each component of the profile —such as the profile
function, peak widths, various sample effects, and noise—is treated independently either as signal-
processing operations or as “augmentations”, each governed by distinct parameters. The specific details
of these operations will be outlined as we describe each computational experiment in Section 4.

Generally, all data used for training and testing are kept separate to ensure unbiased evaluation.
The model’s performance and robustness are assessed across naturally occurring adversarial
examples. To conceptualize this, we imagine the data to exist in a two-dimensional plane as defined
by two orthogonal axes. Moving along one axis corresponds to traversing through the diffraction
patterns of all feasible crystal structures while moving along the other axis represents variations in the
diffraction patterns for a single crystal structure.

We refer to the former as the “equivariance” and the latter as the “invariance” axes. The model’s
goal is to extract feature representations that are equivariant to structural differences in the input (the
XRD pattern) but invariant to variations caused by noise, sample, or experimental effects.

In addition to the large number of simulated XRD patterns we also collected 82 experimentally
measured XRD diffraction patterns from semi-pure chemical samples found in our own laboratories,
using standard XRD powder diffractometers equipped with Cu and Mo radiation. The data cover all
seven crystal systems and patterns with varied levels of noise. Out of this entire set we consider 18
XRD patterns to be significantly noisy, real-life data sets in their original meaning. Unlike the
simulated data, where each aspect of the diffraction pattern follows a precise functional form, the
experimental measurements exhibit functional variability across different aspects of the full profile.
These 82 experimentally measured XRD patterns are reserved exclusively for evaluation and testing
purposes, not for training.

4. Computational Experiments

This section presents a series of computational experiments aimed at predicting symmetry
information and lattice parameters from diffraction patterns. The objective is to explore the inherent
complexity of the problem and evaluate different approaches to identify the most robust and principled
method. Figure 1 provides an overview of the entire setups and their respective methodologies.

Input Preprocessing Method Predictions
'd ™
o Manual Methods (EXPO2014)

[ : : =)
o baCkgr.ound. r.emF)VE'l N-TREOR (exploration based)
= peak identification
O =
E v 1+ 1o Decision Trees with handcrafted features Symmetry

I N * Crystal System
ol low 28 peaks ystal 5y

v isi * Extinction Grou
f C(Ej # of peaks under 90° HAND (decision trees) - Srace Grous P
F Lattice
@ | T8 Neural Nets *a,bca By
E | ot CNNstatic precomputed tri
=
¢ . background removal self-supervised
o CNNau .
u>j =] fixed 26 / d range 9 augmentations

S :
3 g S DIFCON co.ntrastwe Iear.
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Figure 1. Overview of the computational methodologies showing the input, preprocessing, principal method,

and predictions.
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4.1. NTREOR

We begin by using the NTREOR indexing algorithm [7] as used in the EXPO2014 software
package, an updated version of EXPO2013 [17]. NTREOR is a heuristic, well-known, highly tested
and trustworthy optimization method employing a trial-and-error approach to search for solutions
in the index space by varying the Miller indices. It requires the user to accurately identify the peak
positions in the diffraction pattern, which are then used to predict the crystal class, the extinction symbol,
and its lattice parameters. NTREOR can propose multiple candidate solutions, each accompanied by the
cell volume and a figure of merit to help identify the most likely solution. In particular, we use M, the
de Wolff figure of merit, to evaluate the quality of each candidate in the following.

We apply this method to index the 82 experimental diffraction patterns detailed in Section 3. For
each pattern, the radiation wavelength is specified, and peak positions are manually identified. The
algorithm is then executed, and the best candidate solution is selected based on the highest figure of
merit. In some cases where multiple solutions have the same figure of merit, we pick the solution
with the smallest cell volume. This approach serves as a baseline for comparison with the data-driven
methods that will be introduced in the subsequent sections.

As regards the statistical interpretation of the results of the NTREOR algorithm applied on those
manually identified reflections, NTREOR achieves an accuracy of 49% in predicting the crystal
system, correctly classifying 40 out of 82 XRD patterns. Only for these 40 correctly classified patterns,
we calculate the root-mean-squared error (RMSE) of the lattice parameters. The mean RMSE for the
cell vectors is 1.38 A, with a standard deviation (o) of 2.46 A, while the mean RMSE for the cell angles
is 0.81°, with o = 1.507°; 22 of the 40 correctly classified patterns exhibit an RMSE of the cell vectors
below 0.1 A, and 24 of the 40 patterns have an RMSE of the cell angles below 0.1°. Notably, this rather
simple strategy does not cover those cases where the NTREOR solution corresponds to one out of
many supercells of the correct unit cell. Likewise, it will not count an almost correct sub-cell of the
correct unit cell as a successful case.

4.2. HAND

The first data-driven model we train, HAND, is inspired by the methods proposed by Suzuki et
al. [8]. This model uses handcrafted selected features of the diffraction patterns as inputs, specifically
the first ten peak positions in the low 20 range and the total number of peaks within the 20 = 0-90°
range for constant copper radiation at Ay, =1.5418 A, in compliance with the copper wavelength used
by ICSD. Compared to models that process the entire diffraction pattern, HAND is less complex,
employing a simpler architecture based on Randomized Decision Trees. The model is designed to
predict the crystal system (CS), the extinction group (EG), and the space group (SG) separately. The
crystallographic data from the ICSD is randomly split, with 90% used for training and the remaining
10% reserved for testing. By testing on a distinct set of crystal structures, we aim to evaluate the
model’s equivariance to variations caused by changes in crystal structure. Our most-developed, i.e.,
best-fitted model achieves an accuracy of 94% for classifying the crystal system, 91% for classifying
the extinction group, and 87% for classifying the space group. We notice that in 3.5% of the test
instances, the predicted space group did not belong to the correctly predicted crystal system. This
highlights the contribution of spurious correlations in the data (the handcrafted features) toward the
model’s prediction. Notably, the model performance does not drop significantly with perturbations
to the peak position, suggesting a better degree of robustness compared to NTREOR. When testing
the model on the experimental test set and using the manually identified peaks as in the previous
experiment with NTREOR, we observe an accuracy of 55.5%, 32%, and 39.5% for the crystal system,
extinction group, and space group prediction tasks respectively. The crystal system classification
accuracy shows an improvement over that of the NTREOR on the same experimental test set. It is
worth noting, however, that the space-group classification accuracy is larger than that of the
extinction-group classification. Further investigation shows that in 26% of the experimental test
instances, the predicted space group did not belong to the correctly predicted crystal system. This
further validates our claim that the model relies on spurious correlations.
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4.3. CNN Static — Supervised

As motivated in the introduction, our main goal is to design models that require minimum
manual/human involvement and can be scaled in the future for more complicated structure solution
tasks. To that end in this computational experiment, we aim to address the issues when utilizing the
full profile of the diffraction pattern. The data is generated using simulated Bragg reflections (as described
in section 3) while incorporating practical experimental and sample effects as signal processing
operations. These operations are carefully designed to capture the typical characteristics of “noise” and
the measurement specifics of a standard laboratory constant-wavelength X-ray diffractometer. We
emphasize that this approach is a crucial aspect of our work and will be applied in subsequent
experiments, as we explore the feasibility of training our models entirely on simulated XRD data.

To begin with, we employ a convolutional neural network (CNN) to process the input diffraction
pattern, treating it as a one-dimensional image. The architecture is based on ResNet [18] by He et al.,
a popular deep-learning framework designed to mitigate the vanishing gradient problem in deep
neural networks. The model incorporates multiple residual blocks, which feature skip connections to
facilitate the flow of gradients during backpropagation. These skip connections allow the network to
learn residual mappings instead of direct mappings, improving convergence and enabling the
training of deeper architectures.

Furthermore, we design the model to simultaneously predict the crystal system (CS), extinction
group (EG), and space group (SG). The model employs a multi-prediction head architecture: the CS
head predicts the crystal system (7 classes), the EG head predicts the extinction group (101 classes),
and the SG head predicts the space group (230 classes in total), utilizing the output from the CS head’s
prediction. The mapping from CS to SG is injective and follows the crystallographic structure, that is,
triclinic: SG € [1-2], monoclinic: SG € [3-15], orthorhombic: SG € [16-74], tetragonal: SG €

[75-142], rhombohedral/trigonal: SG € [143-167], hexagonal: SG € [168-194], and cubic: SG €
[195-230].

In total, the model features 8 prediction heads, of which 7 are for the CS and SG, and 1 for the
EG. This design introduces an “inductive bias,” aligning the model’s architecture and its inherent
structure of the task, as commonly discussed in machine learning literature. Each classification head
outputs a set of probabilities pcs, pec, psc over the respective number of classes N, by utilizing a
softmax function.

softmax (x) = e*/ YN, e*.

The loss function at each classification head uses a cross-entropy (CE) loss which compares the
predicted probabilities p to the true labels p.

IV
CE=-y P Inp;

The final loss function is a weighted average of (CE.s, CEg;, CEs;). The weights are treated as
hyperparameters and tuned independently of each other during training.

The XRD data used for training and testing are generated through a simulation pipeline
beginning with pre-computed ideal Bragg peak positions and calculated intensities {26;,y.;} for a
copper radiation wavelength of A, =1.5418 A, similar to the previous experiment. These values are
then utilized to construct the full profile XRD pattern through a series of parameterized signal
processing operations, which we will now outline. Most of these operations are inspired by
instrument effects, while some are intended to facilitate and validate a more thorough
generalizability.

e  We begin with a simple zero shift, shifting the entire pattern along the 26 axis by a small
(maximally #0.02°) amount, simulating errors commonly introduced by improper calibration
of the instrument.

e Next, we add a very small amount of random-like x-axis white noise to each peak position (26;).
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e Peak cropping and padding: The peaks at the tails (high and the low 20) are randomly cropped,
i.e., the y.; are replaced with zeros.

e Noise to the integrated intensities is also introduced, simulating all sorts of effects, e.g., of non-ideal
detectors. Operations that simultaneously vary the position and integrated intensity effectively
model variations due to different experimental effects. For example, changes in integrated
intensities can at least partly represent the impact of micro-strain anisotropies, preferred orientations
in the powder sample, wavelength fluctuations, as well as Lorentz and polarization factors.

e  Binning is performed over the 26 =0-120° range using a fixed bin width and a copper radiation
wavelength of A, = 1.5418 A. While this might seem trivial, it requires careful consideration.
The peak positions depend on the radiation wavelength via Bragg’s law, and the choice of
binning affects intensity values. To enable the model to generalize across different radiation
wavelengths, one could use the d-spacing for peak positions. Due to the non-linear relationship
between d-spacing and 26, however, variations in the binned intensities become highly
pronounced and cannot be sufficiently accounted for by adding noise to the integrated
intensities before binning. Our investigation shows that the variation over the binned intensities
is more reasonable when binning over 26 for a specific 1 being equivalent to the wavelength
used for training. For inputs with a different radiation wavelength A’, the measured 26’ value
can be easily converted to the corresponding 26 as of the training wavelength A via the d-

spacing, namely 26 = 2 arcsin [% sin (%)] Please note that this might truncate high 26’ values

for the case 1" < A.

e Small impurity peaks: small amounts of random like impurity peaks whose intensities are smaller
or comparable to the smallest Bragg reflection, but higher than the noise level in a diffraction
pattern, are added. This acts as a type of compositional noise in the XRD profile.

e Convolving a peak profile (§): a pseudo-Voigt profile with peak asymmetry is convolved across the
binned diffraction pattern. This is inspired by the profile used by the CW-XRD refinement
program in GSAS-II [16], although here we are simply interested in a function form that offers
reasonable variations of the profile and not its precise fitting capabilities. The full-width-at-half-
maximum (FWHM) is inspired by the Caglioti [10] functional form and is presented in Table 1;
here, the parameters U,V,W,p are sampled using Latin-Hypercube sampling [19]; the pseudo-
Voigt profile is a linear combination of a Gaussian and a Lorentzian using the same (FWHM)
weighted by the mixing parameter 1; asymmetry is introduced by an error function applied over
the pseudo-Voigt profile.

e Overall noise: a background noise is added to the XRD profile. This contains a combination of
white noise and intensity-dependent noise.

e  Cropping and Padding: Finally, the edges of the XRD profile are cropped randomly and padded
with zeros. This is to facilitate generalizability over cases where the edges of the XRD pattern
need to be cropped due to extreme background radiation.

Figure 2 shows the effects of some of these operations on the diffraction pattern. Notably, we
consider the aforementioned operations to be parameterized by random variables. For most cases,
these random variables are sampled from a uniform distribution with reasonable ranges and are
detailed in Table 1. The simulated training set samples these parameters from a distribution that does
not overlap with those used in the test set. This allows us to test the model’s invariance over the effects
of the aforementioned operations. We call this the invariance test set. We carry out this pipeline with
90% of the ICSD crystal structures (= 180,000 structures), along with our parameter sampling strategy
to simulate over 1 million XRD patterns for the training set and about 360,000 XRD patterns for the
invariance test set. We also have the usual equivariance test set that simply uses XRD patterns simulated
from 10% of the ICSD structures (= 20,000 structures) that are kept separate from those used in
training. We then simulate = 40,000 XRD patterns by sampling using the training set simulation
parameters.
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Figure 2. Exemplary comparison of the experimental pattern of KBFa (blue) with two randomly selected

ablations (red, orange) according to the given parameters.

Table 1. Overview of the signal processing operations used for simulating XRD patterns. Here U() signifies
uniform distribution within a specific range and R defines real numbers of a specific dimension. The units of

the variables refer to the physical parameters and have been dropped for reasons of simplicity.

Operation Functional form / random variable(s)
zero shift 6,0~U(—0.02,0.02)
2enew = 2eold + 629:
x-axis white noise 8,0 € R Ofpeaks 5. 0~ U(—a,a),
a~U(—0.005,0.005)
peak cropping & Yi =0, for 20y, < § < 26,4y,
padding 2014,,~U(0.0,0.2), 2644, ~U(100,120)
. : . Ynew = Yold + 8y * Yold,
intensity noise 6, € RIS 5. 1/(— 4, 6, ~TU(—0.005,0.005)
no. of bins: N = 12000, idx. of bin: j € R¥[0,120],
Binning 26; = 0.005 x j

B { 0, ifnoBragg peaksin j*bin
Xbinned; = mean(y;), y; = Bragg peaks in the j¢" bin
. . no. of impurity peaks: M € R[0,6],
impurity peaks Ximpurity; € RY, Ximpuriey,~U(0.01,0.05)

FWHM(U,V,W,p) =~ /U - tan26 + V - tanf + W + p/cos26
FWHM € R![0.005,0.05],
pV = (1 —n) - Gaussian + 1 - Lorentzian
n~Uu(0,1),
asymmetry coefficient: p ~ U(—1,1),
Q~p - sigmoid - pV
dilation: d~1(0,10),
Xwhite.noise € Rd' Xwhite nojsg~u(_n: ’l’L),’I’L € U(0,00S)
cropping & x; = 0, for 20y, < 26; < 26,4y,
padding 2010, ~U(0,24), 26}5,~U(100,120)

(no random variables)

profile

background noise

Together this follows our robust testing strategy discussed earlier in section 3. The equivariance
test set is also considered a validation set, which is used to track the training progress and stop
training when this accuracy starts to decrease to prevent the model from overfitting.

For the equivariance test set, the classification accuracy of the CNNstatic model for the crystal
system (CS), extinction group (EG), and space group (SG) is 89%, 82%, and 79%, respectively.
However, for the invariance test set, the classification accuracy drops significantly to 40% for CS, 33%
for EG, and 24% for SG. These results indicate that the model struggles to generalize effectively when
faced with variations introduced by the aforementioned experimental effects.

Additionally, we also test the model in our experimental test set, containing 82 diffraction patterns
whose wide variety of background radiation is described manually for each pattern. It is prudent to
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mention here that even after the background subtraction, there is often a significant amount of
background noise. The testing done here can therefore validate the effectiveness of our simulation
pipeline in modelling effects due to significant background noise. However, the classification
accuracy for CS, EG, and SG on the experimental test set is only 22%, 15%, and 13%, respectively.

These results demonstrate that despite extensive efforts to model the signal processing details
in the simulation pipeline and to train a CNN model accurately, the performance remains
unsatisfactory. Any further attempts to tune the model would likely lead to an overfitting to the
specific training data distribution.

4.4. CNN with Augmentations

This computational experiment approaches the challenge of designing a data-driven powder
XRD indexing algorithm from a novel perspective. To begin, we draw on established ontology in the
field of machine learning (ML), particularly concerning the relationship between inputs and outputs
in such models.

In traditional ML domains such as computer vision and natural language processing, models
are categorized based on the nature of the dataset:

e  Supervised Learning: Both inputs and outputs are fully labeled for all instances in the dataset.

e  Unsupervised Learning: Outputs are entirely unlabeled, and the model discovers patterns or
structures in the data without explicit guidance.

¢  Semi-Supervised Learning: A portion of the data is labeled, while the rest remains unlabeled.

e  Self-Supervised Learning: Partial relationships between inputs and outputs are leveraged
during different stages of the training pipeline. Self-supervised models generate pseudo-labels
or pretext tasks to aid in learning meaningful representations.

In the context of indexing XRD measurements —or structure determination more broadly —we
encounter a unique challenge, namely, the lack of sufficient real experimental data for training a
reliable ML model, as alluded to already. This necessitates the use of simulated data derived from
known crystal structures. Unlike conventional ML applications, this problem involves a peculiar
inversion where the “output” (crystal structure information) is known, but the “input” (the XRD
pattern) must be generated or simulated from the output.

Furthermore, certain aspects of the input—such as noise, background variation, and
experimental inconsistencies in XRD patterns —cannot be reliably simulated from the crystallographic
information file alone. This can be pictured using an analogy: training an ML model on synthetically
simulated diffraction patterns and expecting it to perform robustly on real experimental data is akin
to training a model to distinguish between trees with and without leaves using only simplistic,
childlike drawings of trees.

This analogy underscores the inherent challenges and complexity of the task at hand, driving
the exploration of self-supervised learning techniques to bridge the gap between synthetic training
data and real-world experimental data. In this section, we start to address this gap by designing a
training pipeline that incorporates self-supervised learning principles to enhance the model’s
robustness and generalizability.

We build upon the model presented in the previous experiment section (CNNstatic) by making
targeted modifications while retaining the core model architecture, which features multiple
classification heads and employs the same loss function. The primary change lies in how the data-
generation pipeline is integrated into the training process.

While the Bragg peaks (both positions and integrated intensities) are still preprocessed before
training, the signal-processing operations generating the full-profile diffraction patterns are now
incorporated directly into the training loop as data augmentations. These operations, previously
treated as fixed preprocessing steps, are dynamically applied during training. By embedding these
augmentations into the training process, we simulate the variability and imperfections present in
real-world diffraction patterns, allowing the model to better generalize across diverse experimental
conditions. This approach emphasizes the importance of maintaining flexibility in the simulated data
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pipeline while aligning with the principles of self-supervised learning to enhance the model’s
robustness against natural perturbations in the input data. We call this model CNNaug.

Nonetheless, we use the same testing strategies as in the previous model (CNNstatic). For the
CNNaug model, the classification accuracy of the crystal system (CS), extinction group (EG), and
space group (SG) on the equivariance test set is 90%, 83%, and 81%, respectively. The accuracy on the
invariance test set is significantly lower, however, with 45% for CS, 35% for EG, and 28% for SG.
Similarly, the results on the experimental test set remain low, with classification accuracies of 23%
for CS, 16% for EG, and 13% for SG.

The results of these experiments show similar trends compared to the supervised learning
model, CNNstatic, with only slight improvements in mitigating overfitting. However, this
experiment establishes the groundwork for the final self-supervised learning model proposed in this
paper, paving the way for a more robust approach to addressing the challenges highlighted so far.

4.5. Self-Supervised Contrastive Representation Learning

In this section, we introduce a methodology that incorporates the principles of representation
learning within the previously described framework of self-supervised learning and finally present
our model DIFCON. To achieve this, we modify the model architecture to include a representation-
learning head (RH) positioned before the CS, EG, and SG classification heads. The RH is designed to
optimize a contrastive learning objective, enabling the model to learn more robust and generalizable
representations of the diffraction patterns. The fundamental idea behind using a contrastive learning
[20,21] approach is to learn meaningful representations that model the previously discussed
invariances and equivariances, by distinguishing between similar (positive) and dissimilar (negative)
data samples. The central idea is to map similar inputs closer together in the learned feature space
while pushing dissimilar inputs farther apart. For this application, as illustrated in Figure 3, a positive
pair consists of two simulated diffraction patterns originating from the same crystal structure but
different augmentation parameters, whereas a negative pair consists of diffraction patterns
corresponding to different crystal structures.

Contrastive Learning

_
(@] 10 20 30 40 50 B0 70 B0 90 100 110

s

Figure 3. Visualizing the contrastive learning framework, with positive (KBFs vs. KBF4) and negative (KBr vs.
KBFs) pairs.

The contrastive objective function encourages the model to focus on structural features being
invariant to noise, sample variations, and experimental perturbations, while simultaneously
maximizing the separability of different crystal structures. This design aligns with the overarching
goal of achieving both equivariance to structural differences and invariance to experimental effects,
as discussed in Section 3.
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By leveraging contrastive representation learning, the RH generates embeddings that capture
essential features of the input diffraction patterns, which are subsequently passed to the downstream
classification heads for CS, EG, and SG predictions. This approach not only strengthens the model’s
ability to generalize across simulated and real-world data but also facilitates more accurate indexing
by learning a feature space that mirrors the underlying crystallographic distinctions.

We consider two distinct contrastive learning approaches for DIFCON: SimCLR [20] and Barlow
Twins [21]. Both approaches aim to learn robust representations but differ significantly in their
objectives and optimization strategies.

e  SimCLR relies on a contrastive loss function called NT-Xent (Normalized Temperature-scaled
Cross Entropy Loss). It uses positive pairs (augmented views of the same sample) and negative
pairs (views of different samples) to define the loss. In the context of XRD, we adapt the SimCLR
approach by using diffraction-specific augmentations, such as noise injection, random peak
shifting, and impurity peak addition, to create positive pairs. Negative pairs are generated using
diffraction patterns from different crystal structures.

e  The Barlow Twins method, in contrast, eliminates the need for explicit negative pairs. It
introduces a redundancy-reduction loss that aligns positive pairs while discouraging
redundancy in the feature space. Specifically, the method aims to make the cross-correlation
matrix of embeddings from positive pairs as close to the identity matrix as possible. By reducing
redundancy, Barlow Twins ensures that each dimension of the learned representation captures
unique information. A notable advantage of this method is its computational efficiency, as it
does not rely on large batch sizes or negative samples. It does, however, require a much higher
dimensional feature vector.

Using the SimCLR approach to train the RH we observe a nice pattern when looking at the cosine
similarities of the learned feature representation for positive and negative pairs. Figure 4 shows the
cross-correlation matrix between the feature representations of 100 randomly selected crystal
structures from the ICSD test phases, each of which was simulated using sampling strategies of the
invariance test set, to produce eight different experimental effects —such as zero-shift, x & y axis noise,
impurity peaks, and peak profile variation— and arranged consecutively. Ideally, this should follow
a block diagonal structure. The figure compares this matrix to the corresponding matrix for CNNaug
using cosine similarities of the internal features learned in its penultimate layer.

Supervised Contrastive
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Figure 4. The cosine similarities (color bar) of the feature representations learnt by our supervised learning
model CNNstatic (left) and the SimCLR based contrastive learning model (right) for 100 randomly selected
phases from a test set of phases. Each was simulated with 8 different experimental effects (like zero-shift, x & y

axis noise, impurity peaks, and peak profile variation) and arranged consecutively.
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This motivates our approach of using a contrastive learning objective to train the Representation
Head (RH). In practice, however, training with the SimCLR approach requires an extremely large
batch size to generate a sufficiently diverse set of negative pairs. This results in significantly longer
training times for the RH to converge to an acceptable level of performance, particularly when trained
jointly with the classification heads for the crystal system (CS), extinction group (EG), and space
group (SG).

In contrast, we observed that the Barlow Twins approach, which does not rely on a large batch
size of negative pairs, enables faster convergence of the RH and classification heads when trained
end-to-end. Moreover, the Barlow Twins method demonstrates better classification performance on
the invariance test set, likely because it can leverage more positive pairs within each training batch.
Based on these observations, we adopted the Barlow Twins approach to train the final model
presented in this paper, DIFCON.

For the equivariance test set, DIFCON achieves classification accuracies of 88%, 80%, and 78%
for the CS, EG, and SG tasks, respectively. On the invariance test set, DIFCON shows a marked
improvement, achieving classification accuracies of 79%, 71%, and 66% for CS, EG, and SG,
respectively. These results highlight a significant improvement in the model’s robustness and
invariance to experimental effects simulated by our augmentation pipeline.

When tested on the experimental test set, DIFCON also shows notable advancements. The model
correctly classifies the crystal system in 61 out of 82 instances (74%), which represents a significant
improvement over both the earlier data-driven models and the results reported with NTREOR, too.
Additionally, DIFCON achieves classification accuracies of 48% (39 out of 82) and 41% (34 out of 82)
for the EG and SG tasks, respectively.

5. Conclusions

This work attempts to describe the underlying bottlenecks for reliably using Machine Learning
models needed for making accurate structural predictions from powder XRD patterns. We show that
training ML models using handcrafted features to predict specific structural properties like crystal
systems, extinction groups, and space groups can achieve competitive performance when compared
with well-known search-based algorithms like NTREOR. We observe that such models are quite
robust to perturbations in the input. Such an approach, however, relies on manual human
intervention and is inherently specific to a particular task. For this reason, we explore using neural
network models with entire diffraction patterns as inputs.

The lack of labeled experimentally measured XRD data is identified as the main bottleneck for
training such ML models. Based on the sizeable but still numerically limited amount of data in terms
of reported crystallographic information, that very information is used to generate a much larger
(infinite in principle) amount of simulated data. These simulated data, upon incorporating so-called
augmentations, eventually allow for self-supervised learning, namely by reflecting whatever
measurement conditions to result in deviations from the expected, ideal diffraction pattern as caused
by experimental, e.g., instrumental or sample effects. The relationship between experimental and
simulated data includes a two-axis approach, one that varies due to experimental effects and one that
is due to crystallographic (structural) differences.

The nature of diffraction patterns can present several natural adversarial examples for ML
models, and the key to designing better ML models is achieved by learning better representations.
The relatively poor performance over real experimental data can be attributed to the problem of
correctly modeling natural noise present in the data. This explains why models trained only with a
supervised learning objective perform better when using handcrafted features as inputs rather than
the entire diffraction pattern, as the burden of robustness lies on the user rather than the model. We
managed to address this issue using our representation learning strategy. Using a contrastive
learning objective, it is shown that the model can learn more useful representations performing better
than classically supervised learning objectives, for testing across both the invariance and the
equivariance axis.
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While here we restrict ourselves to prediction models for classifying symmetry groups, future
work is likely to concentrate on generative or exploratory Al models, which can be designed to
generate multiple candidate solutions (unlike prediction models that are trained to make one
confident prediction) for solving more complicated tasks in the structure determination pipeline. The
representation learning method proposed here can be scaled to fit such tasks. For instance, the learned
feature representations can be used as feature embeddings, or as conditionals in probabilistic
generative neural network models.
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