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Abstract: The potential of machine learning (ML) models for predicting crystallographic symmetry information 

from single-phase powder X-ray diffraction (XRD) patterns is investigated. Given the scarcity of large, labeled 

experimental datasets, we train our models using simulated XRD patterns generated from crystallographic 

databases. A key challenge in developing reliable diffraction-based structure-solution tools lies in the limited 

availability of training data and the presence of natural adversarial examples, which hinder model 

generalization. To address these issues, we explore multiple training pipelines and testing strategies, including 

evaluations on experimental XRD data. We introduce a contrastive representation learning approach that 

significantly outperforms previous supervised learning models in terms of robustness and generalizability, 

demonstrating improved invariance to experimental effects. These results highlight the potential of self-

supervised learning in advancing ML-driven crystallographic analysis. 

Keywords: diffraction; crystallography; machine learning; self-supervised learning; representation 

learning 

 

1. Introduction 

Determining an unknown crystal structure and, hence, identifying a new chemical compound 

(usually called “crystallographic phase”) from X-ray or neutron powder diffraction data is an inverse 

problem that requires experienced users to make several strategic choices across multiple steps in the 

course of structure determination. The typical pipeline following the measurement of intensities from 

an appropriate laboratory or high-resolution X-ray (or neutron) diffractometer and radiation source 

starts with binning the diffraction pattern, describing the background, and then identifying the so-

called Bragg peak positions from elastic coherent scattering. This is followed by indexing the pattern 

to identify the crystal system, the unit cell and then narrowing down the number of potential space 

groups, based on which a structure-solving algorithm suggests candidate structures, eventually 

improved or rejected by (Rietveld) structure refinement [1]. Depending on the chemical nature of the 

sample, the candidate structures are usually determined using approaches going under the names 

Direct Methods or Patterson Method [2], or other methods such as Simulated Annealing [3], Genetic 

Algorithms [4], Charge Flipping [5], etc. By doing so, the generally complex structure factors are 

found which reconstruct (upon Fourier transformation) the measured intensities, so the model may 

be compared to the real world that has been measured. 

The aforementioned “pipeline” carried out by human beings has allowed for a huge number of 

structure determinations (by solving the “phase problem”, that is, determining the atomic positions 

in real space) but the exact course is difficult to predict from a more general perspective since it 

depends on the chemical nature, on the structural complexity, on human skills, and so forth. That 

being said, specific choices must be taken which may be considered as iterative informed guesses, 

most often also based on additional sources of information. This is particularly true if more than one 

chemical species (multiple-phase diffraction patterns) are being looked at, so the indexing step faces 

a tremendous challenge to begin with: which of the Bragg peaks belongs to which phase? It may 
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therefore be a good idea to utilize data-driven machine learning models that can directly generate or 

identify or at least estimate candidate crystallographic structures based on the measured data.   

Typically, a supervised machine learning model needs large amounts of labelled data which, in 

our specific case, relates to experimental diffraction patterns and the corresponding structure 

information of the measured sample in order to make accurate predictions. Models trained on limited 

data can be vulnerable to “natural adversarial examples”, i.e., naturally occurring instances that 

unintentionally cause a model to make incorrect predictions. Likewise, such models may also make 

predictions based on spurious correlations in the data rather than useful features. While limited data 

availability is a persistent challenge in many experimental sciences, machine-learning models have 

demonstrated remarkable flexibility in adapting to these constraints. Despite initial hurdles, models 

like AlphaFold [6] have revolutionized their respective fields by leveraging innovative training 

strategies and structural priors, ultimately surpassing traditional approaches. Inspired by such 

advancements, we explore how data-driven models can be designed to tackle the complexities of 

crystallographic structure prediction 

From a statistical point of view, acquiring experimental data representative enough to model the 

joint distribution of the diffraction patterns (including instrumental effects) and the corresponding 

structure information is intractable because one cannot quickly synthesize and re-measure hundreds 

of thousands of solid-state chemical compounds. We can, however, extract experimental crystal-

structure information already stored as Crystallographic Information Files (CIF) being part of large-

scale crystal-structure databases such as the Crystallography Open Database (COD) or the Inorganic 

Crystal Structure Database (ICSD). Given that the data contained in those CIF files are accurate and 

idealized (that is, almost free of any measuring inaccuracies), experimental diffraction patterns may 

be straightforwardly simulated. It is important to note, however, that designing a machine-learning 

model trained with simulated data of known structures which eventually processes experimental 

diffraction patterns corresponds to a cyclic problem.  

This issue can, at least to a certain extent, be circumvented by using models that take manual or 

“handcrafted” features of the experimental diffraction patterns as the input.  We shall later show 

that for specific tasks such as indexing and crystal-system determination such models can potentially 

outperform well-known existing search-based, non-data-driven algorithms like NTREOR [7]. 

However, models trained on handcrafted features (typically chosen by a trained human being) are 

time-consuming and difficult to evaluate since such models require some “pre-processing” steps 

(e.g., peak detection), making it difficult to debug mistakes. In other words, this real-world 

component makes the model vulnerable to adversarial effects inherently present in any experimental 

measurement. More importantly, such models and the features used by them do not generalize over 

different tasks, and therefore cannot be used to build an end-to-end structure prediction model. 

To fulfill the ultimate vision of reliably using data-driven ML models for structure solutions 

from powder diffraction patterns, we need to ensure that the underlying architecture is both scalable 

and capable of generalizing across different tasks. Additionally, it is crucial to minimize 

vulnerabilities introduced by pre-processing steps, enabling the model to function with minimal 

human intervention. Therefore, our goal is to use the entire diffraction pattern as input and design a 

model that inherently learns robust feature representations. To achieve this, the model must be 

invariant to variations in the input caused by sample or instrumental effects and noise while remaining 

sensitive to variations arising from structural differences. Simply put, changes in the input should only 

influence the prediction if they correspond to a genuine structural difference in the measured 

crystallographic structure. For this, we investigate neural network architectures with training pipelines 

inspired by recent advancements in semi- and self-supervised representation learning. We believe this 

approach will facilitate previously unseen robustness against “natural adversarial examples” arising from 

noise to experimental variations of the diffraction pattern input, and one needs to ensure that both the 

model architecture and the training methodology are suitable to reach this goal.  

To focus and streamline our work, we limit our scope to prediction tasks, specifically classifying 

the crystal system, extinction group, and space group from diffraction patterns of predominantly 
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single-phase samples. We explore model architectures, testing standards, and training methodologies 

to enhance model reliability and generalizability. 

2. Previous Works 

The idea of training machine-learning models for identifying crystallographic phase information 

such as crystal system, lattice parameters, and space groups, as well as estimating non-

crystallographic properties like electronic band gap, formation energy, etc., is not entirely new. For 

example, Suzuki et al. [8] studied the use of machine-learning models such as Support Vector 

Machines, Random Forests, and Randomized Decision Trees trained with handcrafted features such 

as the position of the first ten low-angle (2θ) peaks and the number of peaks in the 2θ range of 0‒90°. 

The data for training and testing were generated from simulated powder-diffraction patterns 

stemming from CIF files taken from ICSD, using the aforementioned handcrafted features. As typical 

for data-driven models, the test set was a part of the entire dataset kept separate from the data used 

for training the model. Suzuki et al. [8] reported a crystal-system classification accuracy of 90% and 

a space-group classification accuracy of about 80.5%. The performance reported over experimental 

data, however, was limited to two rather typical laboratory XRD measurements of Ca1.5Ba0.5Si5N6O3 

and BaAlSi4O3N5:Eu2+ but space-group classification failed for both. We adopt this approach of using 

handcrafted features in one of our baseline experiments. 

Park et al. [9] proposed treating the entire powder diffraction pattern as a one-dimensional 

picture using a Convolutional Neural Network (CNN) trained on single-phase simulated diffraction 

patterns of crystal structures from the ICSD database. This was intended to predict the crystal system, 

the extinction group (derived from systematic absences or extinctions), and the space group. The 

authors proposed a data-generation pipeline using a set of fixed parameters such as the structure 

factor, the multiplicity, the Lorentz polarization factor, and a set of randomly selected parameters 

involved in the pseudo-Voigt peak profile function, the Caglioti parameters [10], and the coefficients 

of the background polynomial. Owing to this, the proposed CNN internally learned a representation 

of the diffraction pattern as opposed to the models presented by Suzuki et al. [8] and its handcrafted 

features. When tested on generated data using the aforementioned data-generation pipeline on a sub-

set of ICSD crystal structures not used in training, the paper reported 94, 83.8, and 81.1% accuracy 

for crystal-system, extinction-group, and space-group classification, respectively. For testing on 

experimental data, Park et. al. [9] also reported their model’s prediction on Ca1.5Ba0.5Si5N6O3 and 

BaAlSi4O3N5:Eu2+. Similar to Suzuki et al. [8], the predictions also failed for both extinction and space 

groups. Although the model by Park et al. [9] learned better representations due to random 

parameters of the data-generation pipeline, the authors did not explicitly investigate the model’s 

invariance as regards experimental effects. In addition, the rather limited experimental testing makes 

it difficult to analyze the model’s robustness for practical use.  

Lee et al. [11] expanded on some of the ideas by Park et al. [9], first by including training Fully 

Convolutional Neural Networks (FCNNs) as well as a Vision Transformer-inspired neural network for 

predicting extinction and space group for single-phase simulated diffraction patterns from the ICSD and 

the Materials Project (MP) dataset and, second, neural network regression models trained on the non-

experimental MP data to estimate DFT-calculated band gap, formation energy, and the energy above the 

convex hull. Although the authors reported close to state-of-the-art (SOTA) performances, they also did 

not perform extensive tests for the model’s robustness over natural adversarial examples.  

Oviedo et al. [12] proposed a more representative simulation pipeline that models the evolution 

of a thin-film XRD experiment by modifying the XRD data in terms of pattern shifting, peak scaling, 

and peak elimination, an approach usually dubbed as “augmentation” in this simulative context. 

They measured 85 thin-film experimental XRD patterns of known structures belonging to seven 

different space groups, including perovskite-like materials such as lead halides (Pm3̅m), tin halides 

(I4/mcm), Cs-Ag-Bi bromide double perovskites (Fm3̅m), and Bi and Sb halides (P3̅m1, Pc, P21/c, 

P63/mmc). The goal of Oviedo et al. [12] was to classify the XRD patterns into the seven 

aforementioned space groups, and the data-augmentation strategy was designed such that the 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 February 2025 doi:10.20944/preprints202502.1759.v1

https://doi.org/10.20944/preprints202502.1759.v1


 4 of 15 

 

simulated data used for training accurately fitted the measured thin-film X-ray diffraction (XRD) 

patterns. The paper reported an accuracy of about 99 and 80% on a simulated/experimental test set 

for the seven space-group classification problem; admittedly, this corresponds to a much simpler task 

compared to other works. 

Salgado et al. [13] trained a neural network model for classifying the space group using a 

combination of simulated and experimental data. The simulated XRD data consisting of 1.2 million 

training patterns were generated from ICSD structures using a set of Caglioti parameters and noise 

implementations, and the experimental XRD patterns (908 patterns) were collected from the RRUFF 

Dataset. The authors evaluated space-group classification accuracy across models trained on various 

sets of data. Particularly, they trained neural network models on simulated data as well as a 

combination of simulated data and half of the experimental data, while using the rest for testing. The 

best-case accuracy reported for their models trained entirely using simulated data was 66%, which 

increased to 77% when half the experimental data were added for training. Hence, Salgado et al. [13] 

addressed the challenges involved when training machine learning models on simulated data that 

can be robust enough to work on experimental data.  

Lolla et al. [14] introduced a semi-supervised deep learning model for classifying powder 

neutron diffraction patterns into 14 Bravais lattices and 144 space groups. The model leveraged 

simulated diffraction patterns as labeled data while exploring the use of partially labeled datasets 

during training. Despite achieving state-of-the-art results on simulated test datasets, the study did 

not incorporate real experimental data as labeled training examples, nor did it evaluate the model’s 

performance on real experimental datasets. This limitation highlights a gap in generalizability to real-

world XRD patterns, which may include experimental noise and other complexities not captured in 

simulations. However, this work introduced an interesting idea of using the Discriminator of a Generative 

Adversarial Network [15] to predict the Bravais lattice and space groups. This concept introduces the 

possibility of incorporating experimental XRD patterns into the unsupervised training modes of the 

Discriminator in future work, thereby potentially improving its applicability to real-world data.  

In this paper, we adopt a self-supervised representation learning strategy, which relies entirely 

on simulated data for training. We have been inspired by the aforementioned contributions, laying 

the groundwork for identifying and addressing the challenges in learning representations from 

simulated diffraction patterns that can be generalized well enough to be used in real life.   

3. Crystallographic and Diffraction Data 

The data-driven models discussed in this paper are trained and tested using data simulated from 

known crystallographic structures. It is important to outline the details of the simulation process to 

provide context for the subsequent analysis. 

The general functional form of the calculated intensity 𝑦𝑐𝑖 at the 𝑖th position of the diffraction 

pattern for a given crystal structure is given as: 

𝑦𝑐𝑖 = 𝑦𝑏𝑖 +  𝑠 ∑ 𝐿𝑃𝑘 ∙ 𝑀𝑘 ∙ |𝐹𝑘|2 ∙ 𝛷(2𝜃𝑖 − 2𝜃𝑘) ∙ 𝐴 ∙ 𝐸𝑘 𝜖 {ℎ𝑘𝑙}     

where  𝐹𝑘 =  ∑ 𝑁𝑗 ∙ 𝑓𝑗 ∙ exp[2𝜋𝑖(𝑘 ∙ 𝑥⃗𝑗)] ∙ exp[−𝐵(sin 𝜃 /𝜆)2]𝑗 𝜖 {atoms}   

Here 𝑠 is the scale factor, 𝑘 is the reciprocal lattice vector as expressed by the hkl triple, 𝐿𝑃𝑘 

are the Lorentz and polarization factors, 𝑀𝑘 the multiplicity factor, 𝐹𝑘 is the structure factor, 𝛷 is 

the profile function, and 𝐴 ∙ 𝐸 is the product of the absorption and extinction factors. The structure 

factor contains all the crystallographic information about the atoms j and their relative positions in 

the unit cell, while the set of all 𝑘 dictates the symmetry of the unit cell. Here 𝑁𝑗 is the multiplicity 

of the atomic position, 𝑓𝑗 is the atomic form factor, 𝑥⃗𝑗 is the position vector, and B is the (isotropic) 

thermal displacement factor, also going under the name Debye–Waller factor.  

We use the Inorganic Crystal Structure Database (ICSD) which consists of over 200,000 

experimentally determined and carefully curated Crystallographic Information Files (CIFs). Based on 

the latter, we simulate their XRD patterns using a fully automated pipeline. We first pre-compute 

only the structure factor contribution to the calculated integrated intensities for all ICSD CIFs, using 
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the GSAS-II [16] source code. This simply gives us some discrete intensities at specific 2𝜃 positions 

or 𝑑 spacings. The diffraction data used in the models discussed in this paper all work with these 

precomputed integrated intensities.  

Models utilizing the full profile of the diffraction pattern as input individually compute the 

diffraction patterns for both training and robust testing. Each component of the profile—such as the profile 

function, peak widths, various sample effects, and noise—is treated independently either as signal-

processing operations or as “augmentations”, each governed by distinct parameters. The specific details 

of these operations will be outlined as we describe each computational experiment in Section 4. 

Generally, all data used for training and testing are kept separate to ensure unbiased evaluation. 

The model’s performance and robustness are assessed across naturally occurring adversarial 

examples. To conceptualize this, we imagine the data to exist in a two-dimensional plane as defined 

by two orthogonal axes. Moving along one axis corresponds to traversing through the diffraction 

patterns of all feasible crystal structures while moving along the other axis represents variations in the 

diffraction patterns for a single crystal structure. 

We refer to the former as the “equivariance” and the latter as the “invariance” axes. The model’s 

goal is to extract feature representations that are equivariant to structural differences in the input (the 

XRD pattern) but invariant to variations caused by noise, sample, or experimental effects. 

In addition to the large number of simulated XRD patterns we also collected 82 experimentally 

measured XRD diffraction patterns from semi-pure chemical samples found in our own laboratories, 

using standard XRD powder diffractometers equipped with Cu and Mo radiation. The data cover all 

seven crystal systems and patterns with varied levels of noise. Out of this entire set we consider 18 

XRD patterns to be significantly noisy, real-life data sets in their original meaning. Unlike the 

simulated data, where each aspect of the diffraction pattern follows a precise functional form, the 

experimental measurements exhibit functional variability across different aspects of the full profile. 

These 82 experimentally measured XRD patterns are reserved exclusively for evaluation and testing 

purposes, not for training. 

4. Computational Experiments 

This section presents a series of computational experiments aimed at predicting symmetry 

information and lattice parameters from diffraction patterns. The objective is to explore the inherent 

complexity of the problem and evaluate different approaches to identify the most robust and principled 

method. Figure 1 provides an overview of the entire setups and their respective methodologies. 

 

Figure 1. Overview of the computational methodologies showing the input, preprocessing, principal method, 

and predictions. 
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4.1. NTREOR 

We begin by using the NTREOR indexing algorithm [7] as used in the EXPO2014 software 

package, an updated version of EXPO2013 [17]. NTREOR is a heuristic, well-known, highly tested 

and trustworthy optimization method employing a trial-and-error approach to search for solutions 

in the index space by varying the Miller indices. It requires the user to accurately identify the peak 

positions in the diffraction pattern, which are then used to predict the crystal class, the extinction symbol, 

and its lattice parameters. NTREOR can propose multiple candidate solutions, each accompanied by the 

cell volume and a figure of merit to help identify the most likely solution. In particular, we use 𝑀20, the 

de Wolff figure of merit, to evaluate the quality of each candidate in the following. 

We apply this method to index the 82 experimental diffraction patterns detailed in Section 3. For 

each pattern, the radiation wavelength is specified, and peak positions are manually identified. The 

algorithm is then executed, and the best candidate solution is selected based on the highest figure of 

merit. In some cases where multiple solutions have the same figure of merit, we pick the solution 

with the smallest cell volume. This approach serves as a baseline for comparison with the data-driven 

methods that will be introduced in the subsequent sections.  

As regards the statistical interpretation of the results of the NTREOR algorithm applied on those 

manually identified reflections, NTREOR achieves an accuracy of 49% in predicting the crystal 

system, correctly classifying 40 out of 82 XRD patterns. Only for these 40 correctly classified patterns, 

we calculate the root-mean-squared error (RMSE) of the lattice parameters. The mean RMSE for the 

cell vectors is 1.38 Å, with a standard deviation (σ) of 2.46 Å, while the mean RMSE for the cell angles 

is 0.81°, with σ = 1.507°; 22 of the 40 correctly classified patterns exhibit an RMSE of the cell vectors 

below 0.1 Å, and 24 of the 40 patterns have an RMSE of the cell angles below 0.1°. Notably, this rather 

simple strategy does not cover those cases where the NTREOR solution corresponds to one out of 

many supercells of the correct unit cell. Likewise, it will not count an almost correct sub-cell of the 

correct unit cell as a successful case.    

4.2. HAND 

The first data-driven model we train, HAND, is inspired by the methods proposed by Suzuki et 

al. [8]. This model uses handcrafted selected features of the diffraction patterns as inputs, specifically 

the first ten peak positions in the low 2θ range and the total number of peaks within the 2θ = 0–90° 

range for constant copper radiation at 𝜆𝐾𝛼 = 1.5418 Å, in compliance with the copper wavelength used 

by ICSD. Compared to models that process the entire diffraction pattern, HAND is less complex, 

employing a simpler architecture based on Randomized Decision Trees. The model is designed to 

predict the crystal system (CS), the extinction group (EG), and the space group (SG) separately. The 

crystallographic data from the ICSD is randomly split, with 90% used for training and the remaining 

10% reserved for testing. By testing on a distinct set of crystal structures, we aim to evaluate the 

model’s equivariance to variations caused by changes in crystal structure. Our most-developed, i.e., 

best-fitted model achieves an accuracy of 94% for classifying the crystal system, 91% for classifying 

the extinction group, and 87% for classifying the space group. We notice that in 3.5% of the test 

instances, the predicted space group did not belong to the correctly predicted crystal system. This 

highlights the contribution of spurious correlations in the data (the handcrafted features) toward the 

model’s prediction. Notably, the model performance does not drop significantly with perturbations 

to the peak position, suggesting a better degree of robustness compared to NTREOR. When testing 

the model on the experimental test set and using the manually identified peaks as in the previous 

experiment with NTREOR, we observe an accuracy of 55.5%, 32%, and 39.5% for the crystal system, 

extinction group, and space group prediction tasks respectively. The crystal system classification 

accuracy shows an improvement over that of the NTREOR on the same experimental test set. It is 

worth noting, however, that the space-group classification accuracy is larger than that of the 

extinction-group classification. Further investigation shows that in 26% of the experimental test 

instances, the predicted space group did not belong to the correctly predicted crystal system. This 

further validates our claim that the model relies on spurious correlations. 
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4.3. CNN Static – Supervised 

As motivated in the introduction, our main goal is to design models that require minimum 

manual/human involvement and can be scaled in the future for more complicated structure solution 

tasks. To that end in this computational experiment, we aim to address the issues when utilizing the 

full profile of the diffraction pattern. The data is generated using simulated Bragg reflections (as described 

in section 3) while incorporating practical experimental and sample effects as signal processing 

operations. These operations are carefully designed to capture the typical characteristics of “noise” and 

the measurement specifics of a standard laboratory constant-wavelength X-ray diffractometer. We 

emphasize that this approach is a crucial aspect of our work and will be applied in subsequent 

experiments, as we explore the feasibility of training our models entirely on simulated XRD data. 

To begin with, we employ a convolutional neural network (CNN) to process the input diffraction 

pattern, treating it as a one-dimensional image. The architecture is based on ResNet [18] by He et al., 

a popular deep-learning framework designed to mitigate the vanishing gradient problem in deep 

neural networks. The model incorporates multiple residual blocks, which feature skip connections to 

facilitate the flow of gradients during backpropagation. These skip connections allow the network to 

learn residual mappings instead of direct mappings, improving convergence and enabling the 

training of deeper architectures. 

Furthermore, we design the model to simultaneously predict the crystal system (CS), extinction 

group (EG), and space group (SG). The model employs a multi-prediction head architecture: the CS 

head predicts the crystal system (7 classes), the EG head predicts the extinction group (101 classes), 

and the SG head predicts the space group (230 classes in total), utilizing the output from the CS head’s 

prediction. The mapping from CS to SG is injective and follows the crystallographic structure, that is, 

triclinic: SG  ∈  [1– 2] ,  monoclinic: SG  ∈  [3– 15] , orthorhombic: SG  ∈  [16– 74] , tetragonal: SG  ∈

 [75– 142] , rhombohedral/trigonal: SG  ∈  [143– 167] , hexagonal: SG  ∈  [168– 194] , and cubic: SG  ∈

 [195– 230]. 

In total, the model features 8 prediction heads, of which 7 are for the CS and SG, and 1 for the 

EG. This design introduces an “inductive bias,” aligning the model’s architecture and its inherent 

structure of the task, as commonly discussed in machine learning literature. Each classification head 

outputs a set of probabilities pCS, pEG, pSG over the respective number of classes 𝑁, by utilizing a 

softmax function.  

softmax (𝑥) = 𝑒𝑥/ ∑ 𝑒𝑥𝑁
𝑖=1 .  

The loss function at each classification head uses a cross-entropy (CE) loss which compares the 

predicted probabilities 𝑝 to the true labels 𝑝̂.  

CE = −
1

𝑁
∑ 𝑝𝑖̂

𝑁

𝑖=1
∙  𝑙𝑛 𝑝𝑖   

The final loss function is a weighted average of (CE𝐶𝑆, CE𝐸𝐺 , CE𝑆𝐺). The weights are treated as 

hyperparameters and tuned independently of each other during training.  

The XRD data used for training and testing are generated through a simulation pipeline 

beginning with pre-computed ideal Bragg peak positions and calculated intensities {2𝜃𝑖 , 𝑦𝑐𝑖} for a 

copper radiation wavelength of 𝜆𝐾𝛼 = 1.5418 Å, similar to the previous experiment. These values are 

then utilized to construct the full profile XRD pattern through a series of parameterized signal 

processing operations, which we will now outline. Most of these operations are inspired by 

instrument effects, while some are intended to facilitate and validate a more thorough 

generalizability. 

• We begin with a simple zero shift, shifting the entire pattern along the 2𝜃  axis by a small 

(maximally ±0.02°) amount, simulating errors commonly introduced by improper calibration 

of the instrument.  

• Next, we add a very small amount of random-like x-axis white noise to each peak position (2𝜃𝑖). 
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• Peak cropping and padding: The peaks at the tails (high and the low 2𝜃) are randomly cropped, 

i.e., the 𝑦𝑐𝑖 are replaced with zeros.  

• Noise to the integrated intensities is also introduced, simulating all sorts of effects, e.g., of non-ideal 

detectors. Operations that simultaneously vary the position and integrated intensity effectively 

model variations due to different experimental effects. For example, changes in integrated 

intensities can at least partly represent the impact of micro-strain anisotropies, preferred orientations 

in the powder sample, wavelength fluctuations, as well as Lorentz and polarization factors. 

• Binning is performed over the 2𝜃 = 0–120° range using a fixed bin width and a copper radiation 

wavelength of  𝜆𝐾𝛼 =  1.5418 Å. While this might seem trivial, it requires careful consideration. 

The peak positions depend on the radiation wavelength via Bragg’s law, and the choice of 

binning affects intensity values. To enable the model to generalize across different radiation 

wavelengths, one could use the 𝑑-spacing for peak positions. Due to the non-linear relationship 

between 𝑑 -spacing and 2𝜃 , however, variations in the binned intensities become highly 

pronounced and cannot be sufficiently accounted for by adding noise to the integrated 

intensities before binning. Our investigation shows that the variation over the binned intensities 

is more reasonable when binning over 2𝜃 for a specific 𝜆 being equivalent to the wavelength 

used for training. For inputs with a different radiation wavelength 𝜆′, the measured 2𝜃′ value 

can be easily converted to the corresponding 2𝜃 as of the training wavelength 𝜆 via the d-

spacing, namely 2𝜃 = 2 arcsin [
𝜆

𝜆′ sin (
2𝜃′

2
)]. Please note that this might truncate high 2𝜃′ values 

for the case 𝜆′ < 𝜆. 

• Small impurity peaks: small amounts of random like impurity peaks whose intensities are smaller 

or comparable to the smallest Bragg reflection, but higher than the noise level in a diffraction 

pattern, are added. This acts as a type of compositional noise in the XRD profile.  

• Convolving a peak profile (Ω): a pseudo-Voigt profile with peak asymmetry is convolved across the 

binned diffraction pattern. This is inspired by the profile used by the CW-XRD refinement 

program in GSAS-II [16], although here we are simply interested in a function form that offers 

reasonable variations of the profile and not its precise fitting capabilities. The full-width-at-half-

maximum (FWHM) is inspired by the Caglioti [10] functional form and is presented in Table 1; 

here, the parameters 𝑈, 𝑉, 𝑊, 𝑝 are sampled using Latin-Hypercube sampling [19]; the pseudo-

Voigt profile is a linear combination of a Gaussian and a Lorentzian using the same (FWHM) 

weighted by the mixing parameter η; asymmetry is introduced by an error function applied over 

the pseudo-Voigt profile.   

• Overall noise: a background noise is added to the XRD profile. This contains a combination of 

white noise and intensity-dependent noise.   

• Cropping and Padding: Finally, the edges of the XRD profile are cropped randomly and padded 

with zeros. This is to facilitate generalizability over cases where the edges of the XRD pattern 

need to be cropped due to extreme background radiation. 

Figure 2 shows the effects of some of these operations on the diffraction pattern. Notably, we 

consider the aforementioned operations to be parameterized by random variables. For most cases, 

these random variables are sampled from a uniform distribution with reasonable ranges and are 

detailed in Table 1. The simulated training set samples these parameters from a distribution that does 

not overlap with those used in the test set. This allows us to test the model’s invariance over the effects 

of the aforementioned operations. We call this the invariance test set. We carry out this pipeline with 

90% of the ICSD crystal structures (≈ 180,000 structures), along with our parameter sampling strategy 

to simulate over 1 million XRD patterns for the training set and about 360,000 XRD patterns for the 

invariance test set. We also have the usual equivariance test set that simply uses XRD patterns simulated 

from 10% of the ICSD structures (≈ 20,000 structures) that are kept separate from those used in 

training. We then simulate ≈ 40,000 XRD patterns by sampling using the training set simulation 

parameters. 
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Figure 2. Exemplary comparison of the experimental pattern of KBF4 (blue) with two randomly selected 

ablations (red, orange) according to the given parameters. 

Table 1. Overview of the signal processing operations used for simulating XRD patterns. Here 𝒰( ) signifies 

uniform distribution within a specific range and ℝ defines real numbers of a specific dimension. The units of 

the variables refer to the physical parameters and have been dropped for reasons of simplicity. 

Operation Functional form / random variable(s) 

zero shift 𝛿2𝜃~𝒰(−0.02,0.02)  

x-axis white noise 
2𝜃new = 2𝜃old + 𝛿2𝜃 , 

𝛿2𝜃 ∈ ℝno.  of peaks, 𝛿2𝜃 ∼ 𝒰(−𝒶, 𝒶),  
 𝒶~𝒰(−0.005,0.005) 

peak cropping &  

padding 

𝑦𝑖 = 0,  for 2𝜃high <  𝑖 < 2𝜃low, 

2𝜃low~𝒰(0.0,0.2), 2𝜃high~𝒰(100,120) 

intensity noise 
𝑦new = 𝑦old + 𝛿𝑦 ⋅ 𝑦old, 

𝛿𝑦 ∈ ℝno. of peaks , 𝛿𝑦 ~ 𝒰(−𝒷, 𝒷), 𝒷~𝒰(−0.005,0.005) 

Binning 

(no random variables) 

no. of bins: 𝑁 =  12000, idx. of bin: 𝑗 ∈ ℝ𝑁[0,120],  
2𝜃𝑗 = 0.005 × 𝑗 

𝑥binned𝑗
= {

0, if no Bragg  peaks in  𝑗𝑡ℎbin

mean(𝑦𝑖), 𝑦𝑖 =  Bragg peaks in the 𝑗𝑡ℎ bin
 

impurity peaks 
no. of impurity peaks: 𝑀 ∈ ℝ1[0,6],  

  𝑥impurity𝑗
∈ ℝ𝑀, 𝑥impurity𝑗

~𝒰(0.01,0.05) 

profile 

FWHM(𝑈, 𝑉, 𝑊, 𝑝) ≈ √𝑈 ⋅ tan2𝜃 + 𝑉 ⋅ tan𝜃 + 𝑊 +  𝑝 cos2𝜃⁄    
FWHM ∈  ℝ1[0.005,0.05],  

pV = (1 − 𝜂) ⋅ Gaussian +  𝜂 ⋅ Lorentzian 

  𝜂~𝒰(0,1), 
asymmetry coefficient: 𝜌 ~ 𝒰(−1,1), 

Ω~𝜌 ⋅ sigmoid ⋅ pV 

background noise 
dilation: 𝑑~𝒰(0,10),   

𝑥white noise ∈ ℝ𝑑 , 𝑥white noise~𝒰(−𝓃, 𝓃), 𝓃 ∈  𝒰(0,0.05)  

cropping &  

padding 

𝑥𝑗 = 0,  for 2𝜃high <  2𝜃𝑗 < 2𝜃low, 

2𝜃low~𝒰(0,24), 2𝜃high~𝒰(100,120) 

Together this follows our robust testing strategy discussed earlier in section 3. The equivariance 

test set is also considered a validation set, which is used to track the training progress and stop 

training when this accuracy starts to decrease to prevent the model from overfitting.   

For the equivariance test set, the classification accuracy of the CNNstatic model for the crystal 

system (CS), extinction group (EG), and space group (SG) is 89%, 82%, and 79%, respectively. 

However, for the invariance test set, the classification accuracy drops significantly to 40% for CS, 33% 

for EG, and 24% for SG. These results indicate that the model struggles to generalize effectively when 

faced with variations introduced by the aforementioned experimental effects. 

Additionally, we also test the model in our experimental test set, containing 82 diffraction patterns 

whose wide variety of background radiation is described manually for each pattern. It is prudent to 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 February 2025 doi:10.20944/preprints202502.1759.v1

https://doi.org/10.20944/preprints202502.1759.v1


 10 of 15 

 

mention here that even after the background subtraction, there is often a significant amount of 

background noise. The testing done here can therefore validate the effectiveness of our simulation 

pipeline in modelling effects due to significant background noise. However, the classification 

accuracy for CS, EG, and SG on the experimental test set is only 22%, 15%, and 13%, respectively. 

These results demonstrate that despite extensive efforts to model the signal processing details 

in the simulation pipeline and to train a CNN model accurately, the performance remains 

unsatisfactory. Any further attempts to tune the model would likely lead to an overfitting to the 

specific training data distribution. 

4.4. CNN with Augmentations 

This computational experiment approaches the challenge of designing a data-driven powder 

XRD indexing algorithm from a novel perspective. To begin, we draw on established ontology in the 

field of machine learning (ML), particularly concerning the relationship between inputs and outputs 

in such models. 

In traditional ML domains such as computer vision and natural language processing, models 

are categorized based on the nature of the dataset: 

• Supervised Learning: Both inputs and outputs are fully labeled for all instances in the dataset. 

• Unsupervised Learning: Outputs are entirely unlabeled, and the model discovers patterns or 

structures in the data without explicit guidance. 

• Semi-Supervised Learning: A portion of the data is labeled, while the rest remains unlabeled. 

• Self-Supervised Learning: Partial relationships between inputs and outputs are leveraged 

during different stages of the training pipeline. Self-supervised models generate pseudo-labels 

or pretext tasks to aid in learning meaningful representations. 

In the context of indexing XRD measurements—or structure determination more broadly—we 

encounter a unique challenge, namely, the lack of sufficient real experimental data for training a 

reliable ML model, as alluded to already. This necessitates the use of simulated data derived from 

known crystal structures. Unlike conventional ML applications, this problem involves a peculiar 

inversion where the “output” (crystal structure information) is known, but the “input” (the XRD 

pattern) must be generated or simulated from the output. 

Furthermore, certain aspects of the input—such as noise, background variation, and 

experimental inconsistencies in XRD patterns—cannot be reliably simulated from the crystallographic 

information file alone. This can be pictured using an analogy: training an ML model on synthetically 

simulated diffraction patterns and expecting it to perform robustly on real experimental data is akin 

to training a model to distinguish between trees with and without leaves using only simplistic, 

childlike drawings of trees. 

This analogy underscores the inherent challenges and complexity of the task at hand, driving 

the exploration of self-supervised learning techniques to bridge the gap between synthetic training 

data and real-world experimental data. In this section, we start to address this gap by designing a 

training pipeline that incorporates self-supervised learning principles to enhance the model’s 

robustness and generalizability.  

We build upon the model presented in the previous experiment section (CNNstatic) by making 

targeted modifications while retaining the core model architecture, which features multiple 

classification heads and employs the same loss function. The primary change lies in how the data-

generation pipeline is integrated into the training process. 

While the Bragg peaks (both positions and integrated intensities) are still preprocessed before 

training, the signal-processing operations generating the full-profile diffraction patterns are now 

incorporated directly into the training loop as data augmentations. These operations, previously 

treated as fixed preprocessing steps, are dynamically applied during training. By embedding these 

augmentations into the training process, we simulate the variability and imperfections present in 

real-world diffraction patterns, allowing the model to better generalize across diverse experimental 

conditions. This approach emphasizes the importance of maintaining flexibility in the simulated data 
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pipeline while aligning with the principles of self-supervised learning to enhance the model’s 

robustness against natural perturbations in the input data. We call this model CNNaug. 

Nonetheless, we use the same testing strategies as in the previous model (CNNstatic). For the 

CNNaug model, the classification accuracy of the crystal system (CS), extinction group (EG), and 

space group (SG) on the equivariance test set is 90%, 83%, and 81%, respectively. The accuracy on the 

invariance test set is significantly lower, however, with 45% for CS, 35% for EG, and 28% for SG. 

Similarly, the results on the experimental test set remain low, with classification accuracies of 23% 

for CS, 16% for EG, and 13% for SG. 

The results of these experiments show similar trends compared to the supervised learning 

model, CNNstatic, with only slight improvements in mitigating overfitting. However, this 

experiment establishes the groundwork for the final self-supervised learning model proposed in this 

paper, paving the way for a more robust approach to addressing the challenges highlighted so far. 

4.5. Self-Supervised Contrastive Representation Learning 

In this section, we introduce a methodology that incorporates the principles of representation 

learning within the previously described framework of self-supervised learning and finally present 

our model DIFCON. To achieve this, we modify the model architecture to include a representation-

learning head (RH) positioned before the CS, EG, and SG classification heads. The RH is designed to 

optimize a contrastive learning objective, enabling the model to learn more robust and generalizable 

representations of the diffraction patterns. The fundamental idea behind using a contrastive learning 

[20,21] approach is to learn meaningful representations that model the previously discussed 

invariances and equivariances, by distinguishing between similar (positive) and dissimilar (negative) 

data samples. The central idea is to map similar inputs closer together in the learned feature space 

while pushing dissimilar inputs farther apart. For this application, as illustrated in Figure 3, a positive 

pair consists of two simulated diffraction patterns originating from the same crystal structure but 

different augmentation parameters, whereas a negative pair consists of diffraction patterns 

corresponding to different crystal structures. 

 

Figure 3. Visualizing the contrastive learning framework, with positive (KBF4 vs. KBF4) and negative (KBr vs. 

KBF4) pairs. 

The contrastive objective function encourages the model to focus on structural features being 

invariant to noise, sample variations, and experimental perturbations, while simultaneously 

maximizing the separability of different crystal structures. This design aligns with the overarching 

goal of achieving both equivariance to structural differences and invariance to experimental effects, 

as discussed in Section 3. 
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By leveraging contrastive representation learning, the RH generates embeddings that capture 

essential features of the input diffraction patterns, which are subsequently passed to the downstream 

classification heads for CS, EG, and SG predictions. This approach not only strengthens the model’s 

ability to generalize across simulated and real-world data but also facilitates more accurate indexing 

by learning a feature space that mirrors the underlying crystallographic distinctions. 

We consider two distinct contrastive learning approaches for DIFCON: SimCLR [20] and Barlow 

Twins [21]. Both approaches aim to learn robust representations but differ significantly in their 

objectives and optimization strategies.  

• SimCLR relies on a contrastive loss function called NT-Xent (Normalized Temperature-scaled 

Cross Entropy Loss). It uses positive pairs (augmented views of the same sample) and negative 

pairs (views of different samples) to define the loss. In the context of XRD, we adapt the SimCLR 

approach by using diffraction-specific augmentations, such as noise injection, random peak 

shifting, and impurity peak addition, to create positive pairs. Negative pairs are generated using 

diffraction patterns from different crystal structures. 

• The Barlow Twins method, in contrast, eliminates the need for explicit negative pairs. It 

introduces a redundancy-reduction loss that aligns positive pairs while discouraging 

redundancy in the feature space. Specifically, the method aims to make the cross-correlation 

matrix of embeddings from positive pairs as close to the identity matrix as possible. By reducing 

redundancy, Barlow Twins ensures that each dimension of the learned representation captures 

unique information. A notable advantage of this method is its computational efficiency, as it 

does not rely on large batch sizes or negative samples. It does, however, require a much higher 

dimensional feature vector. 

Using the SimCLR approach to train the RH we observe a nice pattern when looking at the cosine 

similarities of the learned feature representation for positive and negative pairs. Figure 4 shows the 

cross-correlation matrix between the feature representations of 100 randomly selected crystal 

structures from the ICSD test phases, each of which was simulated using sampling strategies of the 

invariance test set, to produce eight different experimental effects—such as zero-shift, x & y axis noise, 

impurity peaks, and peak profile variation— and arranged consecutively. Ideally, this should follow 

a block diagonal structure. The figure compares this matrix to the corresponding matrix for CNNaug 

using cosine similarities of the internal features learned in its penultimate layer.   

 

Figure 4. The cosine similarities (color bar) of the feature representations learnt by our supervised learning 

model CNNstatic (left) and the SimCLR based contrastive learning model (right) for 100 randomly selected 

phases from a test set of phases. Each was simulated with 8 different experimental effects (like zero-shift, x & y 

axis noise, impurity peaks, and peak profile variation) and arranged consecutively. 
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This motivates our approach of using a contrastive learning objective to train the Representation 

Head (RH). In practice, however, training with the SimCLR approach requires an extremely large 

batch size to generate a sufficiently diverse set of negative pairs. This results in significantly longer 

training times for the RH to converge to an acceptable level of performance, particularly when trained 

jointly with the classification heads for the crystal system (CS), extinction group (EG), and space 

group (SG).  

In contrast, we observed that the Barlow Twins approach, which does not rely on a large batch 

size of negative pairs, enables faster convergence of the RH and classification heads when trained 

end-to-end. Moreover, the Barlow Twins method demonstrates better classification performance on 

the invariance test set, likely because it can leverage more positive pairs within each training batch. 

Based on these observations, we adopted the Barlow Twins approach to train the final model 

presented in this paper, DIFCON. 

For the equivariance test set, DIFCON achieves classification accuracies of 88%, 80%, and 78% 

for the CS, EG, and SG tasks, respectively. On the invariance test set, DIFCON shows a marked 

improvement, achieving classification accuracies of 79%, 71%, and 66% for CS, EG, and SG, 

respectively. These results highlight a significant improvement in the model’s robustness and 

invariance to experimental effects simulated by our augmentation pipeline. 

When tested on the experimental test set, DIFCON also shows notable advancements. The model 

correctly classifies the crystal system in 61 out of 82 instances (74%), which represents a significant 

improvement over both the earlier data-driven models and the results reported with NTREOR, too. 

Additionally, DIFCON achieves classification accuracies of 48% (39 out of 82) and 41% (34 out of 82) 

for the EG and SG tasks, respectively. 

5. Conclusions 

This work attempts to describe the underlying bottlenecks for reliably using Machine Learning 

models needed for making accurate structural predictions from powder XRD patterns. We show that 

training ML models using handcrafted features to predict specific structural properties like crystal 

systems, extinction groups, and space groups can achieve competitive performance when compared 

with well-known search-based algorithms like NTREOR. We observe that such models are quite 

robust to perturbations in the input. Such an approach, however, relies on manual human 

intervention and is inherently specific to a particular task. For this reason, we explore using neural 

network models with entire diffraction patterns as inputs.  

The lack of labeled experimentally measured XRD data is identified as the main bottleneck for 

training such ML models. Based on the sizeable but still numerically limited amount of data in terms 

of reported crystallographic information, that very information is used to generate a much larger 

(infinite in principle) amount of simulated data. These simulated data, upon incorporating so-called 

augmentations, eventually allow for self-supervised learning, namely by reflecting whatever 

measurement conditions to result in deviations from the expected, ideal diffraction pattern as caused 

by experimental, e.g., instrumental or sample effects. The relationship between experimental and 

simulated data includes a two-axis approach, one that varies due to experimental effects and one that 

is due to crystallographic (structural) differences. 

The nature of diffraction patterns can present several natural adversarial examples for ML 

models, and the key to designing better ML models is achieved by learning better representations. 

The relatively poor performance over real experimental data can be attributed to the problem of 

correctly modeling natural noise present in the data. This explains why models trained only with a 

supervised learning objective perform better when using handcrafted features as inputs rather than 

the entire diffraction pattern, as the burden of robustness lies on the user rather than the model. We 

managed to address this issue using our representation learning strategy. Using a contrastive 

learning objective, it is shown that the model can learn more useful representations performing better 

than classically supervised learning objectives, for testing across both the invariance and the 

equivariance axis. 
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While here we restrict ourselves to prediction models for classifying symmetry groups, future 

work is likely to concentrate on generative or exploratory AI models, which can be designed to 

generate multiple candidate solutions (unlike prediction models that are trained to make one 

confident prediction) for solving more complicated tasks in the structure determination pipeline. The 

representation learning method proposed here can be scaled to fit such tasks. For instance, the learned 

feature representations can be used as feature embeddings, or as conditionals in probabilistic 

generative neural network models. 
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