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1. Introduction
In this paper, we consider the equation
—divya(x, Xu) =u inQ cC H", 1)
where () is a domain and y is a Radon measure with |p| < co and u(H" \ Q3) = 0; hence
the equation (1) can be considered as defined in all of H". Here Xu = (Xju, Xpu,. .., Xo,u)
is denoted as the horizontal gradient of a function u : 3 — R, see Section 2 for more
details, and the continuous function a : Q x R?" — R?" is assumed to be C! in the gradient
variable and satisfies the following structural conditions for every x,y € QQand z,¢{ € R2",
2, B2 a2 2 | 252 2.
(1217 +7) 27 [¢]" < (Dza(x,2)¢,¢) < L(|z[" +5%) = [¢]5 €
p=2
ja(x,2) = a(y,2)| < L'lz|(|z* +%) = |x = y*, ®)
where L, L' > 1,5 > 0,a € (0,1] and Da(x, z) is a symmetric matrix for every x € Q.
A functionu € H W}’p (Q) is called as a weak solution to (1) if
check for oc
updates
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non-homogeneous equations.

Preprints 2022, 1,0. hitps://doiorg/  yhoere H W}OZ (Q) is the first order p-th integrable horizontal local Sobolev space, namely, all

functions u € ero . (Q) with their distributional horizontal gradients Xu € ero - (Q). Given
the typical example a(x,z) = (|z|® + sz)pT_zz, the equation (1) becomes the sub-elliptic
non-degenerate p-Laplacian equation with measure data
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and the sub-elliptic p-Laplacian equation with measure data
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— divy|Xu|P~2Xu = 0. (5)

Particularly, we call weak solutions to the equation (5) as p-harmonic functions in (3 C H".
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For p-harmonic functions in Euclidean spaces R”, their C!*#-regualrity has been estab-
lished by [6,9,15-17]. For p-harmonic functions in the Heisenberg group H", their C*! and
Cl""—regularities have been established by [2,3,10,11,13,14,19]. It is therefore natural to con-
sider the case of regularity for the corresponding inhomogeneous equation. In Euclidean
spaces R", when 2 — 1/n < p < oo, Duzaar-Mingione[4,5] built up the C*!-regularity of
solutions to the equation (1) with measure y € L!(Q). In the Heisenberg group H", when
2 < p < oo, Mukherjee-Sire[12] built up the C*7-regularity of solutions to the equation (1)
with measure y = f € L1(Q) for some g > Q and some ¢ € (0,1). Butwhen1 < p < 2,
the C%! and C!"7-regularities for the equation (1) in the Heisenberg group H" are unknown.
This paper aims to establish the C%! and C!"7-regularities in the case 1 < p < 2.

Before stating our main results, let us recall that truncated linear Riesz potentials are
defined as

V ) dp
,2R) =, 0,Q].
xo / 0 B < (0,Q]

Theorem 1. Let u € HWP(Q) be a weak solution to the eugation (1) with p € L} _(Q). If
2-1/Q < p<2anda:Q x R¥ — R satisfies the structural conditions (2) and (3), then
there exist constants ¢ = c(n,p,L) > 0and R = R(n,p, L, L', a, dist(xp,0Q))) > 0, such that
the pointwise estimate

u|(Bag) || (Bag) "
2R) ¥ 2R -
Xu(w)| <ef, (1Xu]+5)dx + el 20T
|l : |ul 30-Qp-2
+C[Il (xOIZR)]p +C[Il (XO,ZR)] Q-p (6)

holds for any xy € H", whenever Bog(xo) C Qand 0 < R < R. Furthermore, if a(x,z) is
independent of x, then (6) holds for any 0 < R < 1dist(xo, 0Q).

Theorem 2. Let u € HWYP(Q) be a weak solution to the eugation (1). Assume that2 —1/Q <
p < 2anda: QX RZ* — R satisfies the structural conditions (2) and (3). If we have
p=fell loc (Q) for some q > Q, then Xu is Holder continuous and there exist constants
¢ =c(n,p,L) > 0and R = R(n,p,L, L', a,dist(xp,00)) > 0, such that for any xg € Q,
0 < R < Rand x,y € Br(xg) C Q, the estimate

3Q— Qr2

() = Xl <a ()" f, (X0l + )+ Uy + 1108

+ [ (xo, 2R)]7 + 1! (xo,2R)] R 2} @)

holds for some v = y(n,p,L,a,q) € (0,1). In particular, if a(x, z) is independent of x, then (7)
holds for R = R(n, p, L, L', dist(x,0Q)) > 0and v = y(n,p,L,q) € (0,1).

1.1. Ideas of the proofs

We sketch the ideas to prove Theorems 1 and 2. The basic geometries and properties
of the Heisenberg group used in this paper are stated in Section 2.

We will prove Theorem 1 in Section 4. The proof of Theorem 1 relies on novel tech-
niques established by Duzaar-Mingione[4] based on sharp comparison estimates of ho-
mogeneous equations with frozen coefficients. In Section 3, we establish two comparison
estimates, see Lemmas 1 and 2 for details. Basing on two comparison estimates, we estab-
lish the main estimate of the weak solution u to the equation (1), see Lemma 3 for details.
Compared with the Euclidean setting, there exists the extra term sup |Xv| in (34), which

Bs
comes from commutators of the horizontal vector fields, see Proposil’zion 1 for details. We
use Lemma 2 to estimate the extra term in Section 4. In Section 4, basing on Lemma 3, we
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use scientific induction to obtain Lemma 4. Finally, we use Lemma 4 to prove Theorem 1 in
Section 4.

We will prove Theorem 2 in Section 5. The proof of Theorem 2 relies on a perturbation
lemma established by Mukherjee-Sire[12], see Lemma 6 for details. In Section 5, we use
Lemma 2 to establish the weaker integral decay estimate of the oscillation of the gradient
of the weak solution u to the equation (1), see Lemma 5 for details. Basing on Lemmas 6
and 5, we obtain Proposition 2 in Section 5. Finally, we use Lemma 7 and Proposition 2 to
prove Theorem 2 in Section 5. Lemma 7 follows from (13) and Lemma 2 in Section 5.

2. Preliminaries
2.1. Notations

In this paper, for s > 0, we denote
V(z) == (|z]? +52)pr22, z € R?, 8)
By [8, Lemma 2.1], the inequality

[V (z2) = V(z1)[?
|zo — Z1|2

_ P2 P2
Mz + |z +52) T < <c(lz P+ |z +57) 2 ©)

holds for any z1,z; € R2" and any s > 0, where ¢ = ¢(n, p) > 0 is independent of s, also
see [4, (2.2)]. Inequality (9) and the structure condition (2) imply

¢ V(z2) = V(z1) < (a(x,22) —a(x,21), 22 — 21).- (10)

2.2. The Heisenberg group
For an integer n > 1, we denote by H" the Heisenberg group, which is identified with
the Euclidean space R?**!. The group multiplication on H" is given by
n
Y (Xilnri = XuyiVi)

1
xXoy:= (xl +y1,...,x2n+y2n,t+s+§
i=1

for points x = (x1,..., %24, 1),y = (y1,---,Y2n,5) € H". The left invariant vector fields
corresponding to the canonical basis of the Lie algebra are

X; = dy, — x"2+iat, Xpii =9

Xn+i

Xi
|
+ 5 ot
and the only non-trivial commutator T = d; for 1 <i < n. Forany 1 <i < j < 2n, we have
(Xi, Xuyil =T, [Xi, Xj] =0Vj#n+i.

We call Xy, ..., Xy, as horizontal vector fields and T as the vertical vector field.

Let O C H" be any domain (open connected subset). For any scalar function f €
CY(Q), we denote Xf = (X1f, ..., Xa,f) as the horizontal gradient; for any scalar function
f € C?(Q), we denote XX f = (XiXjf)2ux2n as the second order horizontal derivative and

Apf = 2]221 X;jX;f as the sub-Laplacian operator. We write lengths of Xf and XXf as

2n 172 o 1/2
| Xu| = <Z|Xz‘“|2> ;1 XXu| = (Z |Xz'Xju|2> :

i=1 ij=1

For any vector valued function F = (fy,..., f,) : H* — R?", we denote divy(F) =
21221 X f as the horizontal divergence. The Haar measure in H" is the Lebesgue measure
of R?"*1. We denote |E| as the Lebesgue measure of a measurable set E C H" and
fr fdx = ﬁ i fdx as the average of an integrable function f over set E.
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We denote d as the Carnot-Caratheodory metric (CC-metric) and B.(x) = B(x,r) :=
{y € H" : d(x,y) < r} as the CC-metric balls with the center x € H" and the radius
r > 0. Here the CC-metric d is defined as the length of the shortest horizontal curves
connecting two points, see [1]. For any points x,y € H", the CC-metric d(x, y) is equivalent
to the homogeneous metric dgn (x,y) = ||y~ ! o x||g». Here the homogeneous norm for

1/2
x=(xq,...,%x0,t) € H" is defined as || x||g» := (Z?ﬁl X2 4 |t|> . Since these two metrics
are equivalent, all the CC-metric balls B,(x) throughout this paper can be restated to the
homogeneous metric balls K, (x) := {y € H" : dn (y, x) < p}.
The horizontal Sobolev space HW7(Q) with 1 < p < oo is the collection of all

functions u € LP(Q) with Xu € LP(Q,R?*"). HW'?(Q) is a Banach space equipped with
the norm

ull e ) = llullr ) + 1Xul Lo r2n)-

For any m > 2, the m-order horizontal Sobolev space HW™?(Q) is the collection of all
functions u with Xu € HW"~1P(Q), and its norm is defined in a similar way. For any
m > 1, we denote H WI’;C (Q) as the collection of all functions u : Q) — R such that
u € HW™P(U) for all U € Q, and HW,"¥ (Q2) as the completion of C®(Q)) equipped with
the || - || g ()-norm.

In the rest of this section, we recall some regularities and apriori estimates of the
homogeneous equation corresponding to the equation (1) with freezing of the coefficients.
For any xy € (), we consider the equation

divga(xg, Xu) =0 in Q. (11)

The following regularity theorem follows from [19, Theorem 1.1] and [13, Theorem 1.3],
also see[12, Theorem 2.3].

Theorem 3. Let u € HWYP(Q) be a weak solution to the equation (11). If a(xo,z) satisfies
the condition (2) and Da(xo,z) is a symmetric matrix, then Xu is locally Holder continuous.
Moreover, there exist constants ¢ = c¢(n,p,L) > 0and B = B(n,p,L) € (0,1) such that the

followings hold,
sup [Xul? < of (|xuf? +5)%dx; (12)
BR/Z BR
PP 2., 2\8
]ép |Xu—(Xu)Bp|de§c(E) ]gR(|Xu| + %) 2dx, (13)

for every concentric B, C Bg C Qand1 < p < 0.

Using Sobolev’s inequality and Moser’s iteration on the Caccioppoli type inequalities
in [19], we have the following local estimate, for any ¢ € (0,1) and g > 0,

1
sup |Xu| < c(1— o)1 (ﬁ (|Xu|2+sz)gdx)q (14)
R

Bsr

for some ¢ = ¢(n,p,L,q) > 0, also see [12, (2.14)], where u € CLP(Q) is a solution to the
equation (11) for some B € (0,1). Using (14) withoc =1/2and g =1, forall0 < r < R/2,
we have

/Br|Xu|dx§c(;)Q/BR(|Xu|+s)dx, (15)

for some ¢ = c(n,p,L) > 0, also see [12, (2.16)], where u € C(Q) is a solution to the
equation (11) for some g € (0,1).

The next result has been proved for the case p > 2 in [12, Proposition 3.1]; the proof
for the case 1 < p < 2 can be obtained with minor modifications. We omit the proof.
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Proposition 1. Let B,, C Q and u € CYP(Q) be a solution to the equation (11), with B =
B(n,p,L) € (0,1). Then there exists c = c(n, p, L) > 0 such that the inequality

]{3 |Xu — (Xu)p, [dx < c(")’3 [7[3 IXu — (Xu)B,|dx+)(rﬂ} (16)

, r
holds for all 0 < p < r < rq, where

1
X= ﬁ<s+ max sup|Xiu|>.
0

rh 1<i<2n p,

3. Comparison estimates

In this section, we fix xg € Q) and denote B, = B(xo, p) for every p > 0. For simplisity,
we denote
_ |#(By)

M, =
eES

for every p > 0. Fix R > 0 such that Bogr C (). We consider the Dirichlet problem

(17)

divya(x, Xw) =0 in Byg;
w—uec HWg'p(BzR).

Now we give the first comparison lemma.

Lemma 1. Let u € HW'P(Q) be a weak solution to the equation (1) and 2 —1/Q < p < 2.
Then the weak solution w € HWVP(Bog) to the equation (17) satisfies the inequality

27
30-Qp-2 =E

2
][ |Xu — Xw|dx <cMJ, +cM,p0 " +cMar <][ (| Xu| + s)dx>
Bor Bar

(Q-1)(2=p)
30-Qp-2

+ cMr (]é (| Xu| +s)dx> , (18)

where ¢ = c¢(n,p,L) > 0.

Proof of Lemma 1. For any integer k > 0, R > 0 and ¢ > 0, we define the truncation
operators

Ti(t) := max{—lg,min{lg,t}}, Dy (t) :=Ti(t — Ty(t)), teR.

Denote

k u(x) —w(x k+1
Ck::{xeBzR:R'Y<| ()m ()|§ Ry },

where m > 0, we will choose constants y > 0 and m > 0 in the following. Since w — u €
HW&’p(BZR), we use ¢ = Py (4% to test equations (1) and (17), then we have

/BzR (a(x, Xu) —a(x, Xw), X¢)dx = /BzR pdy. (19)

Note that \
/0 inByp Cr;
Xi¢ { L(Xju — X;w) in Cy.
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This, together with (10) and (19), yields
|V (Xu) — V(Xw)[*dx gc/ (a(x, Xu) —a(x, Xw), Xu — Xw)d
Ck
(a(x, Xu) —a(x, Xw), X¢)dx

=cm
Bor

u—w
= [45) d
em f k( - )dp

_R7|#|(32R)

From this, by Holder’s inequality, we have

-1
Xw)|Pdx <c|Cy|' 7 (/C IV (Xu) — V(Xw)|2dx>
k

V(Xu) —
Jo v
1/ m % 1
<clcl 7 (g5 ) Inl(Bar))?
rp=1
m 1 P
= Bor)]? /1d
=2l (Ban)] (Ck v)
r=1
P
3 1
<e( ) Ml B2] | g [ fu—wl @ (20)
Similarly, when k = 0, we have
2 lom 1
o, V) =V (Xa)lPdx <elCol 7 () Il (Bar)]?
p-1 5 1
<clBarl 7 (7 )" Il (Bar)])7. @)

Combining (20) and (21), we have

/B V(xw) - V(Xw)|7dx
V(Xu) — V(Xw) P dx + ¥ /C V(Xu) — V(Xw) P dx
k=1""*k

p1 g 1
< clBar| 7 (&7 ) (11l (Br))7
r-1
4
e 3 (Y P Ba ) | g [ el
i1 R (mik>m Ck
v
Note that
r=1
[=S) 4
Z[ - |u—w|Q1dx]
k=1[kQ-T "~k
© /1 Q(pill) % . ijl
<(E(0) ) (B p-wdn)
k k=17


https://doi.org/10.20944/preprints202210.0181.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 October 2022

d0i:10.20944/preprints202210.0181.v1

7 of 21

Since2 —1/Q < p <2imlies Q(p —1)/(Q —1) > 1, we have

Thus

2
/ IV (Xu) — V(Xw)|?dx
Bor
=1/ m
< c|Bar| 7 <ﬁ>
1_ Q-1
Q7

+c(%)? ( 1)”[|]/t|(BZR)]’1”(/BZR|“w|QQldx)

By Sobolev inequality, we have

==

(1] (Bar)]?

=
—_

= ‘

/BZR V(Xu) — V(Xw)| P dx

< C|BzR|pT?1<%)

(p—1)

<=

(1) (Bag) 17

Q(p-1)

MmN+ oo 1 (Q-Dp
()" TGl ([ 1x0- xoja) <

Noting that (9) implies

) 1 2
| Xu — Xw| = [(|Xu|2 + | Xw|* + sz)pT | Xu — Xwﬂ ’ (| Xu> 4 | Xw|* + SZ)TP

B 2 2, 2\ 52
<c|V(Xu) — V(Xw)|(|Xu|* + | Xw|” +57) =

2— 2— 2—
<c|V(Xu) — V(Xw)|[|Xu — Xw| 2" +|Xu| 2" +s 7]

By Young’s inequality, we have

2 _
Xu — Xw| < ¢|V(Xu) — V(Xw)|? + %|Xu — Xw| + c|V(Xu) — V(Xew)| (| Xu] +5) 2"

By Holder’s inequality, we have

/ | Xu — Xw|dx §c/ |V (Xu) — V(Xw)|%dx
Bor Byr

2R

(22)

(23)

+c(/32R IV (Xu) — V(Xw)|%2’dx> : (/B (1Xul +s)dx) Z_Tp. (24)

Let m = |u|(Byr) and v = Q — 2. Then (22) becomes

3Q0—Qp—2

; ; (Q@-1p ©=r
]é |V(Xu) — V(Xw)|rdx < cMJp +cMyg ]{; | Xu — Xwl|dx ,
2R 2R
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which, together with (24), yields

][ | Xu — Xw|dx
Bar

30-Qp—2 Qlp—1)

; @y (@-Dp
< cMjp +cMyg ][ | Xu — Xw|dx
Bor

3Q-Qp-2 2

Qlp—1)
Q-2 e
+c|Mag + My 2" <][ | Xu — Xw|dx) (7[ (| Xu| + s)dx> : (25)
Bar Bar

Finally, using Young’s inequality to estimate the second and last terms in the right hand
side of (25), we conclude (18).
O

For the second comparison estimate, we require the Dirichlet problem with freezing of
the coefficients. Let w € HW'?(B,g) be a weak solution to the equation (17). We consider

the Dirichlet problem
{ divya(xg, Xv) =0 in Bg; 26)

v—w e HW,"(Bg).

Now we give the second comparison lemma.

Lemma 2. Let u € HW'P(Q) be a weak solution to the equation (1) and let w € HWP(Byg)
be a weak solution to the equation (17). Assume that2 —1/Q < p < 2. Then the weak solution
v € HWUP(BR) to the equation (26) satisfies

2-p
2 3Q-Qp-2 2r
]{3 | Xu — Xo|dx <cMJ, +cM,p0 7 +cMag <]€3 (| Xu| + s)dx>
R 2R

(Q-1)(2—p)
3Q-Qp-2

+ cMpr <]€2R(|Xu| + s)dx)

+CR"‘][ (| Xu| + s)dx, (27)
Byr

where ¢ = c(n,p,L, L") > 0.

Proof of Lemma 2. By [7, Theorem 6.1] and the condition (2), we have
/ |Xo|Pdx < cl/ (| Xw)| + s)Pdx, (28)
Bg Br

where ¢; = c1(n, p,L) > 1. Here in the proof of [7, Theorem 6.1], only the condition (2)
and Sobolev inequality are used, and therefore [7, Theorem 6.1] can also be used in the
Heisenberg group.

Using sub-elliptic reverse Holder’s inequality and Gehring’s lemma, see [18, Section
3], we have

<]{3 (| Xw| +s)de>’1’ < C]{; (| Xw| + s)dx. (29)

d0i:10.20944/preprints202210.0181.v1
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Using (9) and (10), the fact that both v and w are weak solutions and v —w € H Wé’p (Br),
we have

/B (1X02 + |Xw]? + 52) "2 | Xw — Xo[2dx
R
<ec / IV (Xw) — V(X0)|2dx
Br
< C/B (a(xp, Xw) — a(xo, Xv), Xw — Xv)dx
R
= c/B (a(xp, Xw) — a(x, Xw), Xw — Xv)dx,
R
which, together with condition (3), yields
/B (|1X0|? + | Xw|? + sz)pT_2 |Xw — Xv|?dx
R
< cR* /B (| Xw|* + 52)’%1 | Xw — Xv|dx
R
< cR* /B (| Xo|* + | Xw|* + 52)’%1 | Xw — Xov|dx.
R
By Young’s inequality, we have
/B (X0 + | Xw|? + 82) "2 | Xew — Xo|2dx
R
< cR** /B (| X0l + | Xw|? + 52)% |Xw — Xv|?dx.
R
This and (9) imply
/BR V(Xw) — V(X0)[2dx < cR® /BR(|XU|2 + [ Xw]? +52) b dax.
Combining this and (28), we have
/B |V (Xw) =V (X0)dx < R /B (X +5)Pdx (30)

Similarly to (23), we have

(2=p)
|Xu — Xw|P < c|V(Xw) — V(X0)|P(|X0|* + | Xw|? —|—sz)p i

From this, by Holder’s inequality, (28) and (30), we have

][ | Xu — Xw|Pdx
Br

2—p
2

< c<][BR IV (Xw) — V(Xv)|2dx)g (ﬁR(|XU|2 + [ Xwl|? +s2)§dx>

< cR”"‘][ (|Xw| + 5)Pdx. (31)
Bgr

d0i:10.20944/preprints202210.0181.v1
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By Holder’s inequality, (31) and (29), we have
1
][ | Xu — Xwldx < c<][ | Xu — Xw|pdx> ’
Br Br
1
P
< cR* (][ (| Xw| +s)”dx)
Br
< cR*f  (|Xw|+ s)dx. (32)
Byr

Using (18) in Lemma 1 and (32), we have

][ \Xu—Xv|dx:][ |Xu—Xw|dx—|—][ | Xw — Xv|dx
Br Bk Bk

2-p
2 3Q—Qp—2 e

<eMJp + My + cMag (ﬁ (| Xu| + s)dx)
2R

(Q-1)(2-p)
3Q-Qp-2
+cMyr <][ (| Xu| + s)dx)
Bor

+ch"][ (|Xw| +s)dx.  (33)
Bar
Noting that

][ (|Xw| + s)dx = ][ X — Xu|dx +][ (1Xu| + s)dx,
Bor Byr Byr
then using (18) in Lemma 1 to estimate the last integral in the hand side of (33), we conclude

(27). Here we can choose R small enough such that R* < 1.
O

Now we give the main lemma.

Lemma 3. Let u € HWYP(Q) be a weak solution to the equation (1) and 2 —1/Q < p < 2
and let v € HWVP (Bg) be a weak solution to the equation (26) with By C Q. Then there exist
B=pB(np L)€ (0,1)andc=c(n,p, L L") > 0such that, for every 0 < p < R < R, we have

]{Bp |Xu — (Xu)g, |dx
g
<e(R) X (Xu)nlax

R\QT 2 30-Qp-2 e
—l—c<p> [M;R+M2RQP +MZR<]{3 (|Xu|+s)dx>
2R

+ Myr <]€2R(|Xu| +s)dx> ’
+ R"‘]éZR(|Xu| —i—S)dx} +C<R

(34)

|
~_—
=
)
& o
Wl;.c
>
=

d0i:10.20944/preprints202210.0181.v1
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Proof of Lemma 3. By Proposition 1 with r = R and rg = R, we have

| Xv — (X0)p, |dx

By
gc(£>ﬁ ][ |Xv — (Xv)p,|dx + sup | X0
R * Bsgr/a
<C(p>ﬁ[][ | Xu — (Xu) |dx—|—2][ |Xu—Xv|dx}+c<p)ﬁsu | Xo|
Noting that
Q
][ |Xu—Xv|dx§c<R) ][ | Xu — Xv|dx,
Bp P Br
we have

Xu — (Xu)p, |d <f Xo — (X0, |d zf Xu — Xo|d
., X = (g ax < f, [Xo = (Xos, ldx +2, |Xu = Xoldx

Q
P\P R
<c(£) ]éR|Xu—(Xu)BR|dx+c<p> ]éR|Xu—Xv|dx
0\*
—I—c<~) sup | Xv|.

R) 5!

R
Finally, using the inequality

][ | Xu — (Xu)py |dx < 2Q+1][ | Xu — (Xu) g, [dx
Br B

2R
and Lemma 2, we conclude (34).
O
4. Proof of Theorem 1

In this section, we prove Theorem 1. Fix xg € H" and denote Bg := B(xo R). Assume
that) < R < R < R = (n p,L L, a, dlst(xO,BQ)). For any H>H>1landi €
= Bg,

{0,1,2,...}, we denote R; = R/(2H)!, R; = 5R/[4(2H)], B, , ki = |(Xu)g,],
A= JCBi |Xu — (Xu)p,|dx and M; := Mg,. Then

m

k1 =Y (ki1 — ki) + ko
i=0
m
< Z][ |Xu — (Xu)p,|dx + ko
h B:
m
QY A +ko. (35)

i=0

Lemma 4. Let u € HWP(Q) be a weak solution to the equation (1) and 2 —1/Q < p < 2, and
let v € HWYP(BR) be a weak solution to the equation (26). Assume that there exists an integer
it € NU {co} such that /it > 1 and

]é |Xu|dx < |Xu(xo)] (36)

holds whenever 0 < i < 7t — 1. Then for every € € (0,1), there exists a constant ¢ = é(e) > 1
such that

km < 204 M + 2c3¢| Xu(xp)| (37)
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holds whenever m < 1 + 1, where c3,c4 > 1 and

M Z:]gR(|XM| + S)dx + (1 + C3E(€)) { [I|lm (xo’ ZR)]% + [1‘1}4\ (x(), ZR)]SQEE;}TZ }

+ sup | Xv|. (38)

Bsrys

Proof of Lemma 4. By Lemma 3 with 0 < R/2H < R/2 < R/2, we have

][ |Xu — (Xu)pg |
Br/on

1
< Z]{; | Xu — (Xu)p,|dx

R
2
30—Qp-—2 ] k

) 2-p
+cMp +cMg ©F7 4+ cMp (][ (| Xu| +s)dx>
Br

(Q-1)(2-p)
+ cMpg (][ (| Xu| + s)dx)
Br

3Q-Qp-2
1/R\?
—I—CR’J‘]é3 (|Xu|+s)dx+4(R> sup | Xv|. (39)
R

BR/z

Here we choose H = H(n, p, L) > 1 large enough such that ¢/ HP < 1/4. Noting that
][ | Xu|dx :][ |Xu| — (Xu) ppdx + (Xu)p,
Br Br

and choosing R small enough such that cR < 1/4, we write (39) as

][ |Xu — (Xu)p ., |
Br/oy

1
<= Xu — (X d
< 3, 1Xu— (Xu)pJdx

2 30-Qp-2 e
+cMp +cMg ©7 +cMg <][ (| Xul —|—s)dx>
Br

+ Mg <]£;R(|Xu| +s)dx>

1/R\P
+cR*((Xu)p, +5) + 1 (R) zup | Xo|. (40)
R/2

(Q-1)(2-p)
30-Qp-2

By (40) with R = R; 1 and R = R; 1, we have

1 2 30-Qp-2 e
A; SEAi_l +cM] |+ cMFf”’ +cM; 4 <]{3 (| Xu| + s)dx>
i—1

(Q-1)(2=p)
30-Qp—2

Q-Q
b oM (ﬁ (1Xu| —l—s)dx) " R (ki +5)
i—1

pi—1)
1/H
+4<H> sup |Xv|.

Br;_y/2
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Summing up overi € {1,..

.,m} the above inequality and letting H = H/2!/#, and the

fact
sup |Xv| < sup |Xv|,
Bg, 112 Bsrys
we have
m 1 — m—1 2 3QQQP 2 2%’7
= itc M + M, =7 +M-(][ Xu|+s dx)
R ; | (f 0xul+9)
G
+Mi<]i(|Xu|+s)dx> } +c ) RE(ki+s)
i i=0
+ ¢ sup | Xv|,
Bsgrys
and therefore
m m—1 2 3Q—Qp—2 PTP
Y Aj<Ag+2c ) [Mf +M, 7+ M <][ (| Xu| —i—s)dx)
i=1 i=0 B;
Q-1(2-p)
3Q-Qp—2
+ M; <][ (| Xu| +s)dx> ] +2c Z R¥(k; +s)
B;
+ 2¢ sup |Xv|. (41)
Bsr/s
Combining (35) and (41), we have
m-1p 2 30-Qp-2 e
ki1 <cAg+ko+c Z [Mi” + M, 7 4 M <]{3 (| Xul —|—s)dx)
i=0 i
GHEHy ma
+Mi<]€(|Xu|+s)dx) ] +c Y R¥(ki+5)
i i=0
+ ¢ sup |Xv|. (42)
Bsgrys
By (36) and (42), whenever 1 < m < i1, we have
m=1r1 2 30-Qp—2
K1 <c (Ao +ko+ Y [M;’ +M, ©7 D
i=0
2p 2p Q-D@2-p) (@@ M=
+c(|Xu(x0)|2 +57 4+ |Xu(xg)| 302 4530 R > Z
+cZR (ki +s) +c sup |Xo|. (43)

= Bsrys
Note that
o v |H(Bi)
;OM = Z RO
<2Q—1 2R |p|(B(xo,p)) dp
log2 JRr pR-1 0 log2H

c(H)1¥(xo,2R),

(2H)% ! °°/ |1l (B(x0,p)) dp

Rt p

i—=0 7 Rita
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the fact that 1 < p < 2implies2/p > 1and (3Q —Qp—2)/(Q—p) > 1,and

ad RE _ R® ad 1 R* R*
EO i ;0 QH)Y = 1—1/(2H)* ~ 1-1/2¢

=:d(R).

For 1 < m < 11, we write (43) as

Il 2l 30_0p-2
kmi1 <c( Ao +ko+ [ (x0,2R)]? + [1}" (x,2R)] @7

2—p 2—p (Q-1D(2=p) (Q-1)2—p) M
+oeal [Xu(xo)| 2 +5 7 +|Xu(xg)| 32 +53%2 I (x0,2R)

m—1
+c¢ Y R¥(ki+s)+csup |Xo|. (44)
i=0

i= Bsgrys

By Young’s inequality, we have
1" (x,2R)| X 2 < &x +&(e) 1M (x, 2R ’
1 (x0,2R)[Xu(x)| 7 < 2| u(xo)| +¢(e)[1y" (x0,2R)]

and
30—-Qp-2

¥ < € 1Xuxo)] + e(e) 1 (xo0,2R)) T F

I Q-1(2—
1 (e, 2R) [Xau(0)| S5 F <

5
2
which, together with (44), yield
m—1
k1 < caM+c5 ) Rk + cze| Xu(xo)] (45)
i=0

1=|

where M is as in (38). Here we choose R small enough such that d(R) < 1.
Now we prove that the inequality

ki < 2c4 M + 2c3€| Xu(xg)| (46)

holds for every 0 <i <+ 1. Wheni = 0and i = 1, we have
Ao +ko+d(R)s <3+ (|Xu|+s)dx
Br

and
ki <29HCL | Xul|dx.
Br

When 1 < i <1+ 1, we assume that (46) holds for every i < m with 1 < m < 71, and
prove it for m + 1. By using (45) and the assumption (46) for i < m — 1, we have
m—1
km1 ScaM +cs ) RY (2c4M + 2c3e] Xu(x0)]) + cz€| Xu(xo)|
i=0
=lca + 2c4¢5d (R)JM + [2¢505d(R) + e3e| Xu(xo)|
<2¢4 M + 2c3€| Xu(xp)|-

Here we choose R small enough such that
d(R) < min{1/(100c3),1/(100c4),1/(100cs)}.

We complete the proof.
O

Now we prove Theorem 1.
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Proof of Theorem 1. Define the set
S = {i e N: |Xu(xo)| > ]é |Xu|dx},
and consider two cases: S = Nand S # N.
Case 1. When S = N, for every i € N, we have
]{;, | Xuldx < |Xu(xo)].

Using Lemma 4 with 7it = oo, then letting m — co, we have

| Xu(xo)| = %i_r}rgokm < 204 M + 2c3€| Xu(xp)]|. (47)

Choosing € = 1/(4c3), we have
Xu(xp)] < 4esM.

On the other hand, to estimate the last integral in M, using (14) with ¢ = 5/8 and
g =1, we have

sup |Xv| gc]é (|Xv| +s)dx
R

Bsgrys

gc][ (| Xu| 4 s)dx + c][ | Xu — Xvldx,
Bg Br

from which, using Lemma 2 and Young’s inequality, we have

2 30—-Qp—2
sup |Xo| < cMjp +cMp% " + c][ (|Xu| +s)dx. (48)
Byr

Bsr/s

Combining (47) and (48), we conclude (6) in the case.
Case 2. When S # N, we let #1 := min(N \ S) > 0 and obtain

Xu(xo)| < ]{3 |Xuldx, (49)

and
]é | Xuldx < | Xu(xo)| (50)

for every 0 < i <7t — 1. When 111 = 0, we have [Xu(xq)| < (|Xul|)y,, and therefore (6)
holds true. When 1 > 1, the inequality (49) implies

|Xu(x)] <][B |Xu|dx g]é |Xu — (Xu)p, |dx + |(Xu)p, | = An + ks (51)

Using (50) and Lemma 4, we have

ki < 2c4M + 2c3€| Xu(xg)|- (52)
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Since (50) satisfies the assumption (36), then combining (41) and (37), we have
m-lp 2 30-Qp-2 ze
Ap <Ag+2c ) {le’ +M; U7+ M <][ (| Xu| —i—s)dx)
i=0 Bi
(Q-1)(-p) _—
3Q-Qp-2 m
M (ﬁ (1Xu| + s)dx) ] +2¢ Y R (204 M + 2c3¢ Xu(x0)| +5)
i i=0
+ 2¢ sup |Xv|,
Bsr/s
from which, using (50) again, we have
1l 5 R
A Sc][ (1Xu| + s)dx + c| 1} (x0,2R)]7 + 1" (x0,2R)] 2
Br
1l 2p 2y ©@De-p  ©@-1Ep)
1o, 2R) | [Xu(r0) 7+ -+ [Xu) E 4sSE
+ cd(R)(2c4 M + 2c3€| Xu(xp)| +5) + ¢ sup |Xv|. (53)

Bsrys
Estimating (53) as in (43)-(46) in the proof of Lemma 4, we have
Am < eM + ce| Xu(xp)|,
which, together with (51), yields
| Xu(xp)| < e M + ce|Xu(xp)].
Choosing € = 1/(2c), we have
[ Xu(xg)| < 2cM.

Combining this and (48), we conclude (6) in the case.

Finally, we note that if a(x, z) is independent of x then we can assume L' = 0 and
therefore all items containing R* disappear. Thus the proof holds for any R > 0 whenever
Byr C Q). We complete the proof.

a

5. Proof of Threorem 2

In this section, we prove Theorem 2. Fix xo € H" and denote Bg := B(xg,R). As-
sume that0 < R < R = R(n,p, L, L', a,dist(xp,9Q2)). To prove Threorem 2, we need the
following lemmas.

Lemma 5. Let u € HWP(Q) be a weak solution to the equation (1),2 —1/Q < p < 2 and
Bg C Q. Then there exist ¢ = c¢(n, p, L, L") > 0 such that, for every 0 < p < R < R /2, we have

]é(|Xu\+s)dx gc]g (|Xu| + s)dx

0 R
R\Qr 2 30-Qp-2 r
"’C(p) {M;R"‘MZRQP +M2R<]€3 (|X”|+S)dx>
2R

g

S

+M2R(][ (|X”|+S)dx) +R“][ (|Xu|+s)dx]. (54)
Bar Byr

Proof of Lemma 5. Letting v € HW'?(Bg) be a weak solution to the equation (26), we
have

/(|Xu|+s)dx§/ (|Xv|+s)dx+/ |Xu — Xo|dx. (55)
Bp By By

d0i:10.20944/preprints202210.0181.v1
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From (15), we have

[ ol + s <e(§) [ (x0]+5)dx

0

Sc(g)Q/BR(|Xu|+s)dx+c(£)Q/BR|XvXu|dx. (56)

Combining (55) and (56), then using Lemma 2 and the inequality

R\ ¥
][ |Xu—Xv|dx§c<) ][ | Xu — Xvl|dx,
By 4 Br

we conclude (54).
O

The following lemma is [12, Lemma 4.2].

Lemma 6. Let ¢ : (0,00) — [0,00) be a non-decreasing functions, A > 1 and € > 0 be fixed
constants. Let 1, ® : (0,00) — [0,00) be functions such that }5°p(t'r) < D(r) for any
0 <t <ty <1 Givenanya > 0, suppose that

#(0) < A[(£) +e]op(r) +rp(r) 57)

7
holds for any 0 < p < r < Ry, then there exists constants €y = €y(A,a) > 0and c = c(A,a) >0
such that if e < e, then forall 0 < p < r < Ry, we have

¢(p) <c [(p)aqu(r) + p”erecb(r)} (58)

r
forany 0 < € < a.
Based on Lemmas 5 and 6, we obtain the following proposition.
Proposition 2. Let u € HWP(Q) be a weak solution to the equation (1),2 —1/Q < p < 2

and By C Q. Then there exist ¢ = c(n,p,L,L") > 0 such that, for any 0 < € < Q and
0 < r < R < R, we have

/Br(\Xu| +5)dx gc(%)Q*€ {/BR“XL!\ +5s)dx

+ RQ{ 1 (xo,2R)] 7 + 17 (x0,2R)] @7 H : (59)

Proof of Proposition 2. We fix 0 < r < R < R and denote

o(r) = /B (|1 Xu| + s)dx.
By Lemma 5 with p = r and R — R/2, we have

o) 2 3Q—Qp—2 PTP
(1) §c(%) ¢(R)+cRQ[M;;+MR - +MR(]gR(|Xu|+s>dX>

+ Mg <]€R(|Xu| —i—s)dx)

(Q-1)(2=p)
3Q-Qp-2

|+ ertg()
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which, together with Young's inequality, yields

r\Q « 1 Q % 3Q59};_2
p(r) <c (—R> + R+ €1|¢(R) +¢ 1+—€1 R% | M} + Mg
Note that

o0
Y M, < 1 (x0,2R)
j=0

holds for any t € (0,1) and R > 0. Using Lemma 6 with 2 = Q, choosing R small enough
such that R* < €y(n,p,L)/2 and letting 1 = €y(n, p, L) /2, we have

o) < | () o)+ e { i xo 2 + 1o 200},

thatis, (59). O
To obtain C%OZ -regularity of 1, we need the following lemma.
Lemma 7. Let u € HWVP(Q) be a weak solution to the equation (1),2 —1/Q < p < 2 and

Bg C Q. Then there exist = B(n,p,L) € (0,1) and ¢ = ¢(n, p,L, L") > 0 such that, for every
0 < p < R < R/2, we have

]é | Xu — (Xu)p, |dx

0

<c(R)'f, (xul+5)ax
2—p

R Q 2 3Q0-Qp-2 -
—|—c<p> {Mz”RJrMZRQ‘” + Mor (ﬁ (| Xul +s)dx>
2R

(Q-1)(2=p)
3Q-Qp-2
+ Mog (][ (1Xul + s)dx> PR (1l + s)dx} | (60)
Byr Byr
Proof of Lemma 7. Letting v € HW'P(Bg) be a weak solution to the equation (26), we
have
Xu — (Xu dx<2][ Xu — (Xv)p, |dx
f,, 1= (Xulg ldx < 2f, X = (Xo)s,
< 2][ | Xv — (Xv)p,|dx + 2][ | Xu — Xvldx.
B, By
By (13), we have

][BP X0 — (Xo)g,|dx < C(I’;)%qu +o)dx

< c(ﬁ)ﬁ]gR(|Xu| +s)dx + c(g)ﬁ]éR | Xv — Xuldx.

Combining the above two inequalities, then using the inequality

R\ ¥
][ |XuXv|dx§c<) ][ | Xv — Xu|dx,
Bp P Bgr

and Lemma 2, we conclude (60).
O

Now we prove Theorem 2.
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Proof of Theorem 2. Using Lemma 7 with R = r/2, we have

Xu — (Xu dx
B,,' (Xu)p, |

Y Q+/3/
<c(?) , (IXul +s)dx
2—p

2 3Q0-Qp—2 =
+cr® {Mf +M, ©7 + M, (ﬁ (|Xul —i—s)dx)

(Q-1)(2=p

3Q7Qp72)
~|—M,<][ (| Xul +s)dx> } +r“/ (| Xu| +s)dx.
B, B,

Using Young's inequality to estimate the second term in the hand side of the above inequal-
ity, then using Proposition 2, we have

Xu — (Xu)g |dx
1= (Xu,

< Cf
— " pBtTeERQ

1 2 30-Qp-2
o (10 1) (M]3, T ) @+ f, (30l 4 90t )
2 By

[/BR(|Xu| +s)dx + RQ{[1|1V|(x012R)]§ n [I‘lm(xo,ZR)]Bgégﬁ_z }]

forevery0 < p <r<R<R.Givenpu = f € L?OC (Q)) for some g > Q, then by Holder’s
inequality, we have

ul(B) _ 1 B[~V Ry
0-1 T 01 B, |fldx < o1 B, f17 <cr q||f||M(B,)

and therefore,

P ()R
||f||Lq(Br)r Mr S cr q Q—p ||f||L[l(Br)

=N

Mr% < cr(l_%)

Thus, by Proposition 2 and (61), we have
Xu — (Xu)p, |dx
J,, 1= (Xu|

Q+BRE -
<c [p R +(r" + ez)rQeRE]

rB+eé
Il 2l M-0p-2
y []é (1Xu| + s)dx + 11 (x0,2R)]F + [V (0, 2R)) }
R

1\ o+(1-92)2 2 1\ Q+(1-9)3- 2= 3Q-Qp-2
e L AR e

forevery 0 < p < r < R < R. We choose 6, € small enough such that

S+é<ua, 25+é§+< —3);, Qe < po

and therefore,

K+Q—¢>Q+9, Q—é—5+<1—§>;2Q+5, B5 — Q& > 0.
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Here 1 < p < 2 implies % > % Thus, letting e; = r9+¢, we have

/Bp | X1 — (Xu)p, |dx

3Q—Qp-2

petP 5 [l 5 il
< C[W + QT } {]{3 (IXu| +s)dx + [I{" (x0,2R)] 7 + [I"' (x0,2R)] @7
R

2 3Q(59P*2
1 ay + 11008 |

forevery 0 < p < r < R < R. Choosing r = p* with some « € (0,1), we rewrite the above
inequality as

Xu — (Xu dx
Bp| (Xu)p,|

<o [pQHl—K)ﬁ—Ké n pK(Q+5)}

Il 2 oelul 0-Qe-2
x ][B(|Xu\+s)dx+[ll (x0,2R)] 7 + [1¥! (x0,2R)] 07
R

2 3Q59V—2
1y + ]|

2 3Q—Qp—2
< ¢t H; (IXu| + s)dx + 1 (x,2R)]? + [1¥! (x0,2R)] "0
R

2 3Qégp*2
1y + 10

where the second inequality follows when Q + v < min{Q + (1 — x)B — x&,x(Q + ) }.
Here we can make sure that this is true with the choice of ¥ = «(vy) such that

Q+r . B—7
Q+d =~ ~ Bteé

forany 0 < v < (Bd — Q€)/(Q + B+ 0 + &). Also, note that if 7, € are small enough,
k¥ = () can be chosen close enough to 1 and we can make sure p* < R, whenever
0 < p < R. Thus, we obtain

]ép |Xu — (Xu)g, |dx

y ul 2 e =
<cp ]é (1Xu| + s)dx + (1" (x0,2R)]7 + 11" (x0,2R)] @7
R

2 3Q59P*2
A ae,) T 1Al as,)

for every 0 < p < R < R. We complete the proof.
O
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