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Abstract: When the minimal length approach emerging from noncommutative Heisenberg algebra, generalized

uncertainty principle (GUP), and thereby integrating gravitational fields to this fundamental theory of quantum

mechanics (QM) is thoughtfully extended to Einstein field equations, the possible deformation of the metric

tensor could be suggested. This is a complementary term combining the effects of QM and general relativity

(GR) and comprising noncommutative algebra together with maximal spacelike four–acceleration. This

deformation compiles with GR as curvature in relativistic eight–dimensional spacetime tangent bundle,

generalization of Riemannian spacetime, is the recipe applied to derive the deformed metric tensor. This

dictates how the affine connection on Riemannian manifold is straightforwardly deformed. We have discussed

the symmetric property of deformed metric tensor and affine connection. Also, we have evaluated the

dependence of a parallel transported tangent vector on the spacelike four–acceleration given in units of L,

where L =

√

ℏG

c3
is a universal constant, c is speed of light, and h̄ is Planck constant, and G is Newton’s

gravitational constant.

Keywords: deformed theories of gravity; noncommutative geometry; curved spacetime; relativity and

gravitation

PACS: J04.50.Kd; 02.40.Gh; 03.65.Ca; 95.30.Sf

1. Introduction

Quantum mechanics and general relativity, two fundamental theoretical frameworks, can both be used to

explain nearly every physical occurrence in the universe. These conceptual frameworks include the theories and

models that explain matter and its basic interactions and can foretell a large number of experimentally observed

outcomes. In the physical framework of the standard model (SM), and the mathematical disguise of Quantum

Field Theory (QFT), Quantum Mechanics (QM) in partnership with the special theory of relativity (SR) describe

the interactions between atoms, molecules, elementary particles such as electrons, muons, photons, quarks and

their anti-particles at very small scales, of the order of 10−10 to 10−19 m.

QM within the framework of SM mainly describe interactions involving three of the four fundamental

forces, namely the electromagnetic, weak nuclear, and strong nuclear forces. The behavior of matter under the

influence of the fourth fundamental force of nature, namely the gravitational force, is described by the theory of

General Relativity (GR). The conceptual framework employed by QM differs drastically from that of classical

physics including GR and its implications. Heisenberg uncertainty principle (HUP) is one major aspect of the

conceptual difference between classical and quantum physics. In stark contrast to classical mechanics, HUP

states that it is impossible to have a particle for which a pair of canonically conjugate quantities, such as position

and momentum, are accurately defined to arbitrary limit even if all initial conditions are known. HUP obviously

arises from the wave-particle duality, which tells us that there is a fuzziness in nature at a fundamental level.

Despite its great achievements, QM and its extensions, such as the Standard Model of Particles (SM), cannot

be regarded as the whole theory of the observable universe. This is because of a few flaws, specifically the fact

that they are unable to explain how elementary particles behave when gravitational interactions, the final of

the four fundamental interactions, are present. This is a consequence of treating spacetime as a constant, flat

background, which General Relativity (GR) shows us is not the case, as demonstrated in what follows.
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On the other hand, the mainstream theory of gravity; The general theory of relativity (GR) assumes that

the apparent gravitational pull between masses is caused by the bending of spacetime caused by those masses.

Thus, the gravitational field has a geometrical nature. Mass and energy seem to curve flat spacetime into a

four-dimensional Riemannian manifold having a symmetric metric tensor and an affine (linear) connection. The

latter is torsion-free and metric compatible and thus can be determined in terms of the metric tensor, itself.

High-precision astronomical and cosmological observations, such as the perihelion precession of Mercury’s

orbit, gravitational lensing, gravitational red shift of light, the accelerated expansion of our Universe, and

gravitational waves, have been successfully used to test general relativity (GR).

In reality, gravitational interactions are the only ones that matter at astronomically large distances and/or

matter density, and when combined with the so called dark matter and dark energy, they offer an almost

complete account of the composition and development of the universe from its inception to its ultimate end.

Although the special theory of relativity seems to be fully concordant with quantum mechanics even in a

curved space-time background. It seems, however, that there are some persistent inconsistencies between QM

and classical GR that impedes their reconciliation. Apart from the famous problem of renormalizability, which

could have been sorted out in few Quantum Gravity approaches such as String Theory and Loop Quantum

Gravity, such incompatibilities include: First, QM becomes incompatible with classical GR near singularities;

Second, it’s not yet known how to determine the gravitational field of a quantum particle given the fuzziness

(uncertainty) of location and velocity in QM; Third, time has a different meaning in QM and classical GR.

As was noted earlier, GR views spacetime as a dynamic object that interacts with matter and energy,

as opposed to QM’s view of it as a flat immobile background. The probabilistic aspect of the observables

represented by QM, on the other hand, is not taken into consideration by GR. Therefore, a new theory must be

developed that will give rise to QM and GR in their respective domains. Unfortunately, the minimalist approach

of implementing the techniques of Quantum Field Theory (QFT) to GR doesn’t work as anticipated based on

previous experience. this is because when perturbatively quantized gravity is subjected to renormalization

techniques sought to tame divergences, no finite measurable result is produced. Consequently, it can be inferred

that there is a need to approach QG differently. The term "theories of quantum gravity" (QG) refers to a variety

of models and/or theories that have been developed to address the challenge of quantizing gravity. String

Theory (ST), Loop Quantum Gravity (LQG), and Doubly Special Relativity (DSR), are a few examples. These

theories are only a few attempts at solving the issue, all of which have had varying degrees of success. There

are a number of issues with quantum gravity theories and approaches that have remained unresolved for a long

time (a survey can be found in Reference [1]).

Among the variety of attempts to approach a consistent theory of Quantum Gravity (QG), particularly

those class of (models) endeavoring to modify the classical GR using quantum arguments, is the so called

Generalized Uncertainty Principle (GUP)[2–14], which has been used extensively in attempts to incorporate the

effects of gravity in quantum physics.

GUP is a modified Heisenberg uncertainty relation that predicts a deformed canonical commutator.

Interestingly enough, GUP can lead to some phenomenological quantum gravitational models that can, in

principle, be probed at relatively low energies [15,16].

String Theory, Loop Quantum Gravity, Doubly Special Relativity as well as Black Hole thermodynamics

suggest the inevitability of the existance of a fundamnetal physical minimum length and/or a modification of

the Heisenberg’s Uncertainty Principle near the Planck scale to a so-called Generalized Uncertainty Principle

(GUP)[17]. There are three main approaches to a GUP, which are motivated here [16,18]. A generalised

uncertainty relation that characterizes the minimal length as a minimal uncertainty in position measurements

have been constructed using Quantum Gravity and String Theory arguments [8] and independently from

special other quantum mechanical and group theoretical arguments [19]. This approach is the one we are going

to adopt in the present work.

The present script introduces a minimal length approach, in which the inherent uncertainties emerging in

detecting a quantum state are constrained in noncommutative operators as governed by Heisenberg uncertainty

principle (HUP), which limits these to simultaneous measurements but obviously doesn’t incorporate the

impacts of the gravitational fields. The extended version of HUP known as generalized uncertainty principle
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(GUP) is also predicted in string theory, loop quantum gravity, doubly special relativity, and various gedanken

experiments [18,20].

GUP could be seen as an approach emerging from the gravitational impacts on the quantum measurements.

The latter are essential components of the underlying quantum theory. In other words, GUP helps explaining

the origin of the gravitational field and how a particle behaves in it [21,22]. Recently, the effects of the minimal

length approach on the line element, the metric tensor, and the geodesics have been evaluated [21,22]. While in

line element and metric tensor an additional term of the GUP parameter and squared spacelike four–acceleration

appears in each quantity, multiple terms with higher–order derivatives appear in the geodesics [21].

An affine connection is defined as a geometric object on a smooth manifold connecting nearby tangent

spaces. The tangent vector fields are covariant derivatives on that manifold. An affine connection dictates

how to perform parallel transport of tangent vectors on manifold. In general relativity, the connection plays

the role of the gravitational force field, where the metric tensor is the corresponding gravitational potential.

Spacetime geometry cannot be considered in isolation from other branches of physics; its concepts and laws are

inseparably mixed with those of mechanics, electrodynamics etc. Extrapolating this line of argument, there got

to be some imprint of geometry on quantum mechanics and, intuitively, vice-versa.

In section 2, a short review of the minimal measurable length is outlined. Extending the four–dimensional

manifold M to an eight-dimentional spacetime tangent bundle TM, the possible deformation of the metric

tensor is derived in section 3. The possible deformation of the affine connection on Riemannian manifold is

discussed in section 4. The parallel transport of a vector on Riemannian manifold is elaborated in section 5. The

symmetry properties of the deformed metric tensor and affine connection are discussed in section 6. Section 7 is

devoted to the summary and conclusion.

2. Minimal measurable length

The minimal length L emerged from the assumption that a minimal length uncertainty that was predicted

in various theories of quantum gravity, string theory, for instance, as a consequence of the gravitational fields

on the uncertainty principle suggests that [7],

∆x ∆p ≥
h̄

2

[

1 + β (∆p)2 + β⟨p⟩2
]

, (1)

where ⟨p⟩ is the momentum expectation value, ∆x and ∆p, respectively, represent the length and momentum

uncertainties. The GUP parameter, β = β0G/(c3h̄), with β0 is a dimensionless parameter to be determined from

recent cosmological observations [23,24] introduces the consequences of gravity to the uncertainty principle,

the fundamental theory of quantum mechanics. The commutation relation between length and momentum

operators,

[x̂, p̂] = ih̄
(

1 + β p̂2
)

. (2)

The minimum uncertainty of position ∆xmin for all values of expectation values of momentum ⟨p⟩ will be

∆xmin(⟨p⟩) = ℏ
√

β
√

1 + β⟨p⟩2 (3)

then the absolute minimum uncertainty of position is at ⟨p⟩2 = 0,

∆x0 = ℏ
√

β (4)

One can consider the value of ∆x0 as the possible minimal length according to the GUP, which represents the

effect of gravitational field on the QM, then the minimal length will be

L = ℏ
√

β (5)
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The minimal length may be assumed as a fundamental physical quantity obtained from a combination

of fundamental physical quantities, gravitational constant (G) from gravity, reduced Planck constant (ℏ) from

quantum mechanics, and speed of light (c) from spacial relativity [25]. The minimal length will be

L = lp

=

√

ℏG

c3
(6)

where lp is called Planck length.

The existence of maximal acceleration can be assumed by the existence of minimal length as a combination of

fundamental physical quantities [26],

Amax =
c2

lp

=

√

c7

ℏG
(7)

According to the GUP definition of minimal length stated in Eq. (5), the maximal acceleration will be

Amax =
c2

L

=

√

c4

ℏ2β
(8)

3. The deformation of metric tensor

Caianiello suggested that the deformed GR can be described by the four dimensional spacetime embedded

as a hypersurface in the eight dimensions manifold M8 [27–29]. The eight dimensions xA is

xA = (xµ, (L/c)ẋµ) (9)

where xµ is the four spacetime dimensions, ẋµ =
dxµ

ds
is the four velocity, A = 0, ..., 7, µ = 0, ..., 3, L is the

minimal length. L may be defined according to GUP as a minimal uncertainty of position; L = ℏ
√

β [7] or one

can consider the value of minimal length to be the Planck length L =
√

(ℏG/c3).

The deformed line element in eight dimensions manifold M8 [30,31] is,

ds̃2 = gABdxAdxB (10)

where gAB is a result of outer product as the following gAB = gµν ⊗ gµν. In Eq.(10), substitute dxA, and dxB by

Eq.(9),

ds̃2 =

(

1 + Lgµν
dxµ

ds

dẋν

ds
+ Lgµν

dẋµ

ds

dxν

ds
+ L2gµν

dẋµ

ds

dẋν

ds

)

ds2 (11)

where c = 1, ds2 = gµνdxµdxν is the classical line element,

ds̃2 = ds2 + L2gµν ẍµ ẍνds2 (12)

where ẍµ =
dẋµ

ds
is the acceleration, µ, ν are dummy indices, and ⃗̇x.⃗ẋ = −1, then ⃗̇x.⃗ẍ = 0,

ds̃2 = (1 + L2 ẍ2)ds2 (13)
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where ẍ2 = gµν ẍµ ẍν. The deformed line element in four dimensions spacetime, as a projection from eight

dimensions into four dimensions, will be

ds̃2 = g̃µνdxµdxν (14)

where g̃µν is an assumed deformed metric tensor, which will be calculated by equating Eqs.(13), and (14),

g̃µν = (1 + L2 ẍ2)gµν (15)

where ẍ2 = gαβ ẍα ẍβ, β, α are dummy indices, µ, and ν are free indices.

For flat spacetime,

η̃µν = (1 + L2 ẍ2)ηµν (16)

The correction factor of deformed metric tensor can be redefined by the maximal acceleration Amax, where

Amax = (c2/L) =
√

(c7/ℏG) [26], the deformed metric tensor will be

g̃µν =

(

1 +
1

A2
max

ẍ2

)

gµν (17)

where c = 1.

4. The deformation of affine connection in Riemannian manifold

The minimal length approach, suggests deformation of the metric tensor as follows

• For curved space,

g̃µν = gµν + L2 ẍ2 gµν = gµν + qµν. (18)

With Eq. (5), the qµν can be suggested as GUP contributed part, which reads

qµν = βℏ2 ẍ2 gµν (19)

• For flat space,

η̃µν = ηµν + βℏ2 ẍ2 ηµν = ηµν + hµν, (20)

where hµν = βℏ2 ẍ2 ηµν.

Both gµν and g̃µν share common properties. They turn the covariant tensor into contravariant tensor and vice

versa. The symmetry property of deformed metric tensor is

g̃µν =
1

2
(g̃µν + g̃νµ), (21)

the L.H.S of Eq. (21) will be

g̃µν = gµν + L2 ẍ2gµν, (22)

and the R.H.S of Eq. (21) is

1

2
(g̃µν + g̃νµ) =

1

2
(gµν + L2 ẍ2gµν + gνµ + L2 ẍ2gνµ) (23)

we know that gµν in classical GR is symmetric in its indices, then we will replace gνµ in third and fourth terms

by gµν,
1

2
(g̃µν + g̃νµ) =

1

2
(gµν + L2 ẍ2gµν + gµν + L2 ẍ2gµν) (24)
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1

2
(g̃µν + g̃νµ) =

1

2
(2gµν + 2L2 ẍ2gµν) (25)

1

2
(g̃µν + g̃νµ) = gµν + L2 ẍ2gµν (26)

we find that Eq. (22) and Eq. (26) are equal, then R.H.S = L.H.S of Eq. (21). The deformed metric tensor is

symmetric under interchange of its indices µ and ν.

For the deformed affine connection, we replace gµν in Eq. (A3) with the deformed metric tensor g̃µν Eq. (18),

where the partial derivatives are obviously commutative, as well. The deformed metric tensor is compatible,

see appendix B. Thus, the deformation of the affine connection, Eq. (A3), can be expressed as

Γ̃
γ
βµ =

1

2
g̃αγ(g̃αβ,µ + g̃αµ,β − g̃βµ,α). (27)

For curved space, by substituting Eqs. (18), and (B.9) into Eq. (27), we get

Γ̃
γ
βµ =

1 + 2L2 ẍ2

1 + L2 ẍ2

1

2
gαγ

(

gαβ,µ + gαµ,β − gβµ,α

)

=
1 + 2L2 ẍ2

1 + L2 ẍ2
Γ

γ
βµ. (28)

where g̃αγ =
gαγ

(1 + L2 ẍ2)
.

It is obvious that vanishing L2 ẍ2 straightforwardly retrieves the undeformed affine connection Γ
γ
βµ. This is also

the case, at vanishing L2, no minimal length uncertainty, and/or at vanishing ẍ2, cancellation of the GUP effect

on GR. We have shown in Eq. (18) that both deformation ingredients are interdependent. The parameterization

of the four–coordinates on M in eight–coordinates on TM emerges spacelike four-acceleration ẍ2 and creates

additional geometric structure. Eq. (28) reveals that the deformation of the affine connection is exclusively

localized in its coefficient: while undeformed Γ
γ
βµ possesses unity as a coefficient, its deformed version gets

the coefficient (1 + 2L2 ẍ2)/(1 + L2 ẍ2). This means that the affine (linear) connection preserves, on one hand,

its geometric nature as in GR, for instance. On the other hand, the deformation via additional curvature on

higher–dimensional manifold, especially at the energy scale, in which L2 ẍ2 becomes significant.

5. Parallel transport on Riemannian manifold

In flat space, the covariant derivatives, where the vector components and the basis vectors are also

differentiated, are just the ordinary derivatives. In curved space, the differentiation of the basis vectors can be

expressed by the Christoffel symbols. In both flat and curved spaces, the covariant derivatives can be defined as

the rates of change of the tangent vector fields (ordinary derivatives, for instance) with the normal component

subtracted, i.e., parallel transport. Vanishing covariant derivatives of a vector v⃗ = vαeα means that v⃗ is parallel

transported, i.e., keeping v⃗ as constant as possible,

d

dλ
vα + Γ

α
σρ

dxσ

dλ
vρ = 0, (29)

where the dependence of the parallel transport on the connection Γ
α
σρ is obvious. With the deformation, Γ

α
σρ is to

be replaced by Γ̃
α
σρ, Eq. (28), i.e., Eq. (29) can then be rewritten as

d

dλ
vα +

(1 + 2L2 ẍ2)

(1 + L2 ẍ2)
Γ

α
σρ

dxσ

dλ
vρ = 0 (30)

d

dλ
vα = −

1

1 + L2 ẍ2
Γ

α
σρ

dxσ

dλ
vρ −

2L2 ẍ2

1 + L2 ẍ2
Γ

α
σρ

dxσ

dλ
vρ. (31)

The Fig. 1 draws the affine connection between the vector v⃗ parameterized in λ; v⃗(λ) and its parallel transported

counterpart, at λ + dλ; v⃗(λ + dλ).
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The parallel transport can define the curvature of a manifold by take the parallel transport of a vector over

a closed loop then it will give the definition of curvature tensor [32,33]. The equation of parallel transport of the

vector vα around a loop with the deformed connection will be

δvα = δaδb[Γ̃α
µσ,λ − Γ̃

α
µλ,σ + Γ̃

α
νλΓ̃

ν
µσ − Γ̃

α
νσΓ̃

ν
µλ]v

µ (32)

where δvα is the changing of vα by the transport around the loop and δaδb is the area of the loop. According to

Eq. (32), the deformed curvature tensor is

R̃α
µλσ = Γ̃

α
µσ,λ − Γ̃

α
µλ,σ + Γ̃

α
νλΓ̃

ν
µσ − Γ̃

α
νσΓ̃

ν
µλ. (33)

More investigation and discussion of deformed curvature tensor Eq. (33) will be conducted in future research.

Figure 1. In vector form, the affine connection and parallel transport are depicted.

6. Symmetry properties of deformed affine connection

The symmetry property of the affine connection depends on a) the symmetry property of the metric tensor,

and b) the commutation of the partial derivatives. The deformed affine connection, Eq. (28), fulfills both

conditions:

1. In any coordinates, the deformed affine connection can be expressed in the deformed metric tensor and its

derivatives,

Γ̃
γ
βµ =

1

2
g̃αγ(g̃αβ,µ + g̃αµ,β − g̃βµ,α), (34)

where the deformed metric tensor is symmetric, then the deformed affine connection is symmetric, as

well.
2. The affine connection can be expressed as [34]

Γ̃
γ
βµ =

∂xγ

∂Xα

∂2Xα

∂xβ∂xµ
, (35)

where xλ and Xα represent different coordinates in curved space, the commutation of the partial

derivatives is still satisfied in the deformed affine connection, Eq. (28). This is also valid even when Xα is

deformed to encounter the existence of a minimal length uncertainty.
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Therefore, we conclude that the deformed affine connection is symmetric in its lower indices Γ̃
γ
(βµ)

, so that

Γ̃
γ
(βµ)

= Γ̃
γ
βµ = Γ̃

γ
µβ. (36)

Also, because the deformed affine connection on Riemannian manifold is torsion–free, then

T
γ
βµ = Γ̃

γ
βµ − Γ̃

γ
µβ = 2Γ̃

γ
[βµ]

= 0, (37)

where Γ̃
γ
[βµ]

= 0.

7. Summary and Conclusion

The minimal length approach emerging from noncommutative Heisenberg algebra, generalized uncertainty

principle (GUP), is conjectured to integrate gravity in quantum mechanics through generalizing Heisenberg

uncertainty principle to encounter impacts of gravitational fields [18,20]. When applying this recipe to general

relativity, the metric tensor becomes deformed, by gaining an additional term, which is related to the GUP

parameter, undeformed metric tensor, and squared four–acceleration ẍ2.

To achieve the deformation on spacetime monifold M, we have followed the same recipe for the curvature in

relativistic eight–dimentional spacetime tangent bundle TM in the Riemannian manifold. The local coordinates

xµ on M are combined with the tangent vectors ẋµ = dxµ/ds on TM.

The present script focuses on the possible deformation of the affine connection, which can exclusively be

expressed in the metric tensor and its derivatives. We have also discussed its symmetry property and evaluated

the dependence of a normalized parallel transported vector on the spacelike four–acceleration. This observation

manifests that the minimal length uncertainty and the deformation recipe are significant, especially at the

energy scale in which L2 ẍ2 becomes finite.

We conclude that the correction of the affine connection is exclusively factorized in the coefficient

(1 + 2L2 ẍ2)/(1 + L2 ẍ2), which combines minimal length uncertainty (GUP effect), geometric structural,

noncommutative algebraic, and gravitational ingredients. On one hand, this means that the affine connection

preserves all properties of its undeformed counterpart, such as torsion-freedom and metric compatibility. On

the other hand, its geometric nature as connecting nearby tangent spaces on a smooth manifold is also preserved

on discrete spaces. The deformation via additional curvature on higher–dimensional manifold likely reveals fine

geometric structure, similar to radiation beam in classical and quantum mechanics.

Finally, we have studied how the deformed affine connection performs parallel transport of a tangent

vector on Riemannian manifold.

8. Author Contributions

Conceptualization, Abdel Nasser Tawfik; Formal analysis, Fady Farouk, Abdel Nasser Tawfik and

Muhammad Abdulghaffar; Methodology, Abdel Nasser Tawfik; Project administration, Muhammad

Abdulghaffar; Resources, Fady Farouk; Software, Fady Farouk; Supervision, Fawzy Tarabia and Muhammad

Abdulghaffar; Visualization, Fady Farouk; Writing – original draft, Fady Farouk and Abdel Nasser Tawfik;

Writing – review & editing, Fawzy Tarabia and Muhammad Abdulghaffar.

Appendix I Differential geometry and affine connection

An affine (linear) connection is defined as a geometric object connecting nearby tangent (curved) spaces, i.e.,

permitting differentiability of the tangent vector fields or assuring them a restrict dependence on the manifold

in a fixed vector space [34]. This is a function assigning to each tangent vector and each vector field a covariant

derivative or a new tangent vector. In differential geometry, the generic form of the affine connection was

suggested as [35]

Γ
µ
λν =

{µ

λν

}

+ K
µ
λν +

1

2
(Q

µ
λν. + Q

µ
νλ. − Q

µ
.νλ) (A1)
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where dot in lower indices refers to the position of upper index,
{µ

λν

}

is the Christoffel symbol, and Qµνλ =

−Dµ(Γ)gνλ is the covariant derivative of the metric tensor. K
µ
λν =

1

2
(T

µ
.λ ν − T

µ
λ.ν − T

µ
ν.λ) is contortion, and

T
µ
λν = Γ

µ
λν − Γ

µ
νλ = 2Γ

µ

[λν]
is the torsion. The latter represents the anti–symmetric part of the connection.

The theory of general relativity assumes metric compatibility of the connection, which implies linear

independence of the partial derivative tangent vectors and accordingly leads to vanishing Dµ(Γ)gνλ. Also, the

metric compatibility of the connection naturally arises, if the covariant derivative is tensor applying the Leibniz

rule [36].

The metric compatibility means that a flat space can be found locally in a suitable frame (Minkowski space).

In free falling frame, for example, gνλ = ηνλ, then Dµ(Γ)gνλ vanishes for gνλ = ηνλ [34]. In such a frame, the

covariant derivative of a tensor is the same for all observers and frames, i.e., Dµ(Γ)gνλ = 0 [32,35–37].

The theory of general relativity also assumes1, that the affine geodesics matches with the metrical geodesics.

The latter is obviously given by extremizing ds2, the spacetime interval [21,22]. For the torsion–free assumption,

K
µ
λν vanishes, entirely, the metric plays the role of the gravitational field potential, and the Riemann geometry is

symmetric (also the energy–momentum tensor is symmetric). Then, the affine connection reduces to

Γ
µ
λν =

{µ

λν

}

. (A2)

The assumption of symmetric connection coefficients leads to commutative partial derivatives, Eq. (35).

Under the conditions of the metric compatibility, the symmetry of the metric tensor indices, and the partial

derivative commutation, there is one particular version of the connection coefficients (Levi–Civita connection).

Then, the Christoffel symbols can be expressed as [32]

Γ
γ
βµ =

1

2
gαγ(gαβ,µ + gαµ,β − gβµ,α), (A3)

where Γ
µ
αβ = Γ

µ
βα.

Appendix J The metric tensor compatibility

The covariant derivative of deformed metric tensor can be defined as a partial derivative in free falling

frame (Minkowski space),

∇σ g̃µν = ∂σ g̃µν, (B.1)

∂σ g̃µν =
(

1 + L2 ẍ2
)

∂σgµν + gµνL2(ẍ2),σ (B.2)

where g̃µν = (1 + L2 ẍ2)gµν, and L is a constant. Use the following definition ẍ2 = gµν ẍµ ẍν, then Eq. (B.2) will

be

∂σ g̃µν =
(

1 + L2 ẍ2
)

∂σgµν

+ L2(gµν,σ ẍµ ẍν + gµν ẍ
µ
,σ ẍν + gµν ẍµ ẍν

,σ)gµν (B.3)

The derivative of ẍµ with respect to the space-time coordinates,

ẍ
µ
,σ =

∂

∂xσ

∂2xµ

∂s2
(B.4)

1 Other assumptions, i.e., nonsymmetric energy–momentum tensor or finite torque density, are also possible, e.g.,
Einstein–Cartan–Sciama–Kibble theory [38]
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by using the commutation property of partial derivatives,

ẍ
µ
,σ =

∂2

∂s2

∂xµ

∂xσ
(B.5)

ẍ
µ
,σ =

∂2

∂s2
δ

µ
σ = 0 (B.6)

where δ
µ
σ =

∂xµ

∂xσ
[32]. Also, the same thing for ẍν

,σ,

ẍν
,σ = 0 (B.7)

Substitute ẍ
µ
,σ and ẍν

,σ in Eq. (B.3) by Eqs. (B.6) and (B.7) respectively,

∂σ g̃µν =
(

1 + L2 ẍ2
)

gµν,σ +
(

gµν,σ ẍµ ẍν
)

L2gµν, (B.8)

take gµν,σ as a common factor,

∂σ g̃µν =
(

1 + 2L2 ẍ2
)

gµν,σ (B.9)

The metric tensor gµν in free falling frame is Minkowski metric tensor ηµν, then Eq. (B.9) will be

∂ση̃µν =
(

1 + 2L2 ẍ2
)

ηµν,σ = 0 (B.10)

where ηµν,σ = 0. According to Eq. (B.10), the covariant derivative of deformed metric tensor is vanishing in free

falling frame, then the covariant derivative will vanish for all frames,

∇σ g̃µν = 0 (B.11)
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