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Abstract: When the minimal length approach emerging from noncommutative Heisenberg algebra, generalized
uncertainty principle (GUP), and thereby integrating gravitational fields to this fundamental theory of quantum
mechanics (QM) is thoughtfully extended to Einstein field equations, the possible deformation of the metric
tensor could be suggested. This is a complementary term combining the effects of QM and general relativity
(GR) and comprising noncommutative algebra together with maximal spacelike four-acceleration. This
deformation compiles with GR as curvature in relativistic eight-dimensional spacetime tangent bundle,
generalization of Riemannian spacetime, is the recipe applied to derive the deformed metric tensor. This
dictates how the affine connection on Riemannian manifold is straightforwardly deformed. We have discussed
the symmetric property of deformed metric tensor and affine connection. Also, we have evaluated the

dependence of a parallel transported tangent vector on the spacelike four—-acceleration given in units of L,
|hG . . . . . .

where L = = is a universal constant, c is speed of light, and # is Planck constant, and G is Newton’s

gravitational constant.
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1. Introduction

Quantum mechanics and general relativity, two fundamental theoretical frameworks, can both be used to
explain nearly every physical occurrence in the universe. These conceptual frameworks include the theories and
models that explain matter and its basic interactions and can foretell a large number of experimentally observed
outcomes. In the physical framework of the standard model (SM), and the mathematical disguise of Quantum
Field Theory (QFT), Quantum Mechanics (QM) in partnership with the special theory of relativity (SR) describe
the interactions between atoms, molecules, elementary particles such as electrons, muons, photons, quarks and
their anti-particles at very small scales, of the order of 1071° to 1071 m.

QM within the framework of SM mainly describe interactions involving three of the four fundamental
forces, namely the electromagnetic, weak nuclear, and strong nuclear forces. The behavior of matter under the
influence of the fourth fundamental force of nature, namely the gravitational force, is described by the theory of
General Relativity (GR). The conceptual framework employed by QM differs drastically from that of classical
physics including GR and its implications. Heisenberg uncertainty principle (HUP) is one major aspect of the
conceptual difference between classical and quantum physics. In stark contrast to classical mechanics, HUP
states that it is impossible to have a particle for which a pair of canonically conjugate quantities, such as position
and momentum, are accurately defined to arbitrary limit even if all initial conditions are known. HUP obviously
arises from the wave-particle duality, which tells us that there is a fuzziness in nature at a fundamental level.

Despite its great achievements, QM and its extensions, such as the Standard Model of Particles (SM), cannot
be regarded as the whole theory of the observable universe. This is because of a few flaws, specifically the fact
that they are unable to explain how elementary particles behave when gravitational interactions, the final of
the four fundamental interactions, are present. This is a consequence of treating spacetime as a constant, flat
background, which General Relativity (GR) shows us is not the case, as demonstrated in what follows.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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On the other hand, the mainstream theory of gravity; The general theory of relativity (GR) assumes that
the apparent gravitational pull between masses is caused by the bending of spacetime caused by those masses.
Thus, the gravitational field has a geometrical nature. Mass and energy seem to curve flat spacetime into a
four-dimensional Riemannian manifold having a symmetric metric tensor and an affine (linear) connection. The
latter is torsion-free and metric compatible and thus can be determined in terms of the metric tensor, itself.

High-precision astronomical and cosmological observations, such as the perihelion precession of Mercury’s
orbit, gravitational lensing, gravitational red shift of light, the accelerated expansion of our Universe, and
gravitational waves, have been successfully used to test general relativity (GR).

In reality, gravitational interactions are the only ones that matter at astronomically large distances and/or
matter density, and when combined with the so called dark matter and dark energy, they offer an almost
complete account of the composition and development of the universe from its inception to its ultimate end.

Although the special theory of relativity seems to be fully concordant with quantum mechanics even in a
curved space-time background. It seems, however, that there are some persistent inconsistencies between QM
and classical GR that impedes their reconciliation. Apart from the famous problem of renormalizability, which
could have been sorted out in few Quantum Gravity approaches such as String Theory and Loop Quantum
Gravity, such incompatibilities include: First, QM becomes incompatible with classical GR near singularities;
Second, it’s not yet known how to determine the gravitational field of a quantum particle given the fuzziness
(uncertainty) of location and velocity in QM; Third, time has a different meaning in QM and classical GR.

As was noted earlier, GR views spacetime as a dynamic object that interacts with matter and energy,
as opposed to QM'’s view of it as a flat immobile background. The probabilistic aspect of the observables
represented by QM, on the other hand, is not taken into consideration by GR. Therefore, a new theory must be
developed that will give rise to QM and GR in their respective domains. Unfortunately, the minimalist approach
of implementing the techniques of Quantum Field Theory (QFT) to GR doesn’t work as anticipated based on
previous experience. this is because when perturbatively quantized gravity is subjected to renormalization
techniques sought to tame divergences, no finite measurable result is produced. Consequently, it can be inferred
that there is a need to approach QG differently. The term "theories of quantum gravity" (QG) refers to a variety
of models and/or theories that have been developed to address the challenge of quantizing gravity. String
Theory (ST), Loop Quantum Gravity (LQG), and Doubly Special Relativity (DSR), are a few examples. These
theories are only a few attempts at solving the issue, all of which have had varying degrees of success. There
are a number of issues with quantum gravity theories and approaches that have remained unresolved for a long
time (a survey can be found in Reference [1]).

Among the variety of attempts to approach a consistent theory of Quantum Gravity (QG), particularly
those class of (models) endeavoring to modify the classical GR using quantum arguments, is the so called
Generalized Uncertainty Principle (GUP)[2-14], which has been used extensively in attempts to incorporate the
effects of gravity in quantum physics.

GUP is a modified Heisenberg uncertainty relation that predicts a deformed canonical commutator.
Interestingly enough, GUP can lead to some phenomenological quantum gravitational models that can, in
principle, be probed at relatively low energies [15,16].

String Theory, Loop Quantum Gravity, Doubly Special Relativity as well as Black Hole thermodynamics
suggest the inevitability of the existance of a fundamnetal physical minimum length and/or a modification of
the Heisenberg’s Uncertainty Principle near the Planck scale to a so-called Generalized Uncertainty Principle
(GUP)[17]. There are three main approaches to a GUP, which are motivated here [16,18]. A generalised
uncertainty relation that characterizes the minimal length as a minimal uncertainty in position measurements
have been constructed using Quantum Gravity and String Theory arguments [8] and independently from
special other quantum mechanical and group theoretical arguments [19]. This approach is the one we are going
to adopt in the present work.

The present script introduces a minimal length approach, in which the inherent uncertainties emerging in
detecting a quantum state are constrained in noncommutative operators as governed by Heisenberg uncertainty
principle (HUP), which limits these to simultaneous measurements but obviously doesn’t incorporate the
impacts of the gravitational fields. The extended version of HUP known as generalized uncertainty principle
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(GUP) is also predicted in string theory, loop quantum gravity, doubly special relativity, and various gedanken
experiments [18,20].

GUP could be seen as an approach emerging from the gravitational impacts on the quantum measurements.
The latter are essential components of the underlying quantum theory. In other words, GUP helps explaining
the origin of the gravitational field and how a particle behaves in it [21,22]. Recently, the effects of the minimal
length approach on the line element, the metric tensor, and the geodesics have been evaluated [21,22]. While in
line element and metric tensor an additional term of the GUP parameter and squared spacelike four-acceleration
appears in each quantity, multiple terms with higher—order derivatives appear in the geodesics [21].

An affine connection is defined as a geometric object on a smooth manifold connecting nearby tangent
spaces. The tangent vector fields are covariant derivatives on that manifold. An affine connection dictates
how to perform parallel transport of tangent vectors on manifold. In general relativity, the connection plays
the role of the gravitational force field, where the metric tensor is the corresponding gravitational potential.
Spacetime geometry cannot be considered in isolation from other branches of physics; its concepts and laws are
inseparably mixed with those of mechanics, electrodynamics etc. Extrapolating this line of argument, there got
to be some imprint of geometry on quantum mechanics and, intuitively, vice-versa.

In section 2, a short review of the minimal measurable length is outlined. Extending the four-dimensional
manifold M to an eight-dimentional spacetime tangent bundle TM, the possible deformation of the metric
tensor is derived in section 3. The possible deformation of the affine connection on Riemannian manifold is
discussed in section 4. The parallel transport of a vector on Riemannian manifold is elaborated in section 5. The
symmetry properties of the deformed metric tensor and affine connection are discussed in section 6. Section 7 is
devoted to the summary and conclusion.

2. Minimal measurable length

The minimal length L emerged from the assumption that a minimal length uncertainty that was predicted
in various theories of quantum gravity, string theory, for instance, as a consequence of the gravitational fields
on the uncertainty principle suggests that [7],

zmAng[r+ﬁmm2+ﬁ@Vy @

where (p) is the momentum expectation value, Ax and Ap, respectively, represent the length and momentum
uncertainties. The GUP parameter, B = BoG/(c31), with B is a dimensionless parameter to be determined from
recent cosmological observations [23,24] introduces the consequences of gravity to the uncertainty principle,
the fundamental theory of quantum mechanics. The commutation relation between length and momentum
operators,

0] = in(1+pp?). @
The minimum uncertainty of position Ax,,;, for all values of expectation values of momentum (p) will be

Nxin((p)) = h/Bry/1+ B(p)? €))

then the absolute minimum uncertainty of position is at (p)? = 0,

Axo = /B 4)

One can consider the value of Axg as the possible minimal length according to the GUP, which represents the
effect of gravitational field on the QM, then the minimal length will be

L =h/p (5)
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The minimal length may be assumed as a fundamental physical quantity obtained from a combination
of fundamental physical quantities, gravitational constant (G) from gravity, reduced Planck constant (%) from
quantum mechanics, and speed of light (c) from spacial relativity [25]. The minimal length will be

L=1,
[RG
== (6)

The existence of maximal acceleration can be assumed by the existence of minimal length as a combination of
fundamental physical quantities [26],

where [, is called Planck length.

2
c
Amax = T
p
7
c
— ] 7
e @)
According to the GUP definition of minimal length stated in Eq. (5), the maximal acceleration will be
2
c
Amax = f
4
c
=\ ®)

3. The deformation of metric tensor

Caianiello suggested that the deformed GR can be described by the four dimensional spacetime embedded

as a hypersurface in the eight dimensions manifold Mg [27-29]. The eight dimensions x* is

x4 = (x#, (L/c)i") )

. . . . ) dxt . .
where x# is the four spacetime dimensions, ¥#¥ = —— is the four velocity, A = 0,...,7, » = 0,...,3, L is the

ds

minimal length. L may be defined according to GUP as a minimal uncertainty of position; L = /1,/p [7] or one
can consider the value of minimal length to be the Planck length L = +/(hG/c3).
The deformed line element in eight dimensions manifold Mg [30,31] is,

d5? = gpdxdx® (10)

where g 45 is a result of outer product as the following g5 = guv ® guv- In Eq.(10), substitute dx*, and dx® by
Eq.(9),

ds? = (1 +ng%% +ng%% + ZgW‘Z‘:‘Z/)dsz (11)
where c = 1, ds? = guvdx!dx" is the classical line element,
ds? = ds? + L2gy, &V i ds? (12)
where ¥# = % is the acceleration, y, v are dummy indices, and ¥X= —1, then X = 0,

ds? = (14 L?%%)ds? (13)

doi:10.20944/preprints202306.0427.v1
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where #2 = g,,&#%". The deformed line element in four dimensions spacetime, as a projection from eight
dimensions into four dimensions, will be

ds? = gudxtdx’ (14)
where ¢, is an assumed deformed metric tensor, which will be calculated by equating Eqs.(13), and (14),
G = 1+ L#)gp (15)

where ¥? = Sapi” %P, B, w are dummy indices, y, and v are free indices.
For flat spacetime,

v = (14 L2%) 1y (16)

The correction factor of deformed metric tensor can be redefined by the maximal acceleration Ay, where
Amax = (2/L) = \/(c7/hG) [26], the deformed metric tensor will be

1
G = (1 + 552> 8w (17)
max
where c = 1.
4. The deformation of affine connection in Riemannian manifold
The minimal length approach, suggests deformation of the metric tensor as follows
¢ For curved space,
G = gw+ L G = G + G- (18)
With Eq. (5), the g,y can be suggested as GUP contributed part, which reads
uv = prii? 8pv (19)
¢ For flat space,
v = N+ ,thxz Ny = Huv + h;w; (20
where Iy, = P32 17,

Both ¢,y and g,y share common properties. They turn the covariant tensor into contravariant tensor and vice
versa. The symmetry property of deformed metric tensor is

- 1, -
Sy = Q(glﬂf + &v), (21)
the L.H.S of Eq. (21) will be
S = Suv + L2 ¥, (22)
and the R.H.S of Eq. (21) is
1, - 1 2.2 2.2
E(gzw + &) = E(gw + L7y + Qup + L7%°gup) (23)

we know that g, in classical GR is symmetric in its indices, then we will replace g, in third and fourth terms
oY g 1 1
E(gpw + &) = 5 (v + L2352 guy + guv + L222guy) (24)

doi:10.20944/preprints202306.0427.v1
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(Zgw + Zszc'ng) (25)

NI~

1, .
E(gyv +&up) =

1, - i
E(gw + &) = guv + szzg;w (26)

we find that Eq. (22) and Eq. (26) are equal, then R.H.S = L.H.S of Eq. (21). The deformed metric tensor is
symmetric under interchange of its indices y and v.

For the deformed affine connection, we replace g, in Eq. (A3) with the deformed metric tensor g, Eq. (18),
where the partial derivatives are obviously commutative, as well. The deformed metric tensor is compatible,
see appendix B. Thus, the deformation of the affine connection, Eq. (A3), can be expressed as

T 1 ~XY ([~ ~ -
rgﬂ - Eg 7(3“1344 + 8app — 8/3%06)' (27)

For curved space, by substituting Egs. (18), and (B.9) into Eq. (27), we get

i 1420242 1 14202
" B o Y
Tsw = Triz 28 Qepu+8aup —8pua) = T3z Lw )
ay g™
where & = 3 1wy

It is obvious that vanishing L2#? straightforwardly retrieves the undeformed affine connection ng. This is also

the case, at vanishing L?, no minimal length uncertainty, and/or at vanishing #2, cancellation of the GUP effect
on GR. We have shown in Eq. (18) that both deformation ingredients are interdependent. The parameterization
of the four—coordinates on M in eight-coordinates on TM emerges spacelike four-acceleration ¥? and creates
additional geometric structure. Eq. (28) reveals that the deformation of the affine connection is exclusively
localized in its coefficient: while undeformed ng possesses unity as a coefficient, its deformed version gets
the coefficient (1 +2L%%2) /(1 + L?#2). This means that the affine (linear) connection preserves, on one hand,
its geometric nature as in GR, for instance. On the other hand, the deformation via additional curvature on
higher-dimensional manifold, especially at the energy scale, in which L2¥? becomes significant.

5. Parallel transport on Riemannian manifold

In flat space, the covariant derivatives, where the vector components and the basis vectors are also
differentiated, are just the ordinary derivatives. In curved space, the differentiation of the basis vectors can be
expressed by the Christoffel symbols. In both flat and curved spaces, the covariant derivatives can be defined as
the rates of change of the tangent vector fields (ordinary derivatives, for instance) with the normal component
subtracted, i.e., parallel transport. Vanishing covariant derivatives of a vector 7 = v"¢, means that 7 is parallel
transported, i.e., keeping 7 as constant as possible,

d o ax’

—0* 4T

T P —
A O P (29)

where the dependence of the parallel transport on the connection I'y, is obvious. With the deformation, I'G, is to
be replaced by fﬁp, Eq. (28),i.e., Eq. (29) can then be rewritten as

252 o
d ot 4 (1+2L%% )rg dx

4 2L ) e 9X
e a0 (30)

o

d o« _ 1 o dX7_, 2028 dx”

Lo = = et o 2t pa B 1
dA 1+ L2g2 7 ar’ 1+ L2g2 ar S

The Fig. 1 draws the affine connection between the vector 7 parameterized in A; 7(A) and its parallel transported
counterpart, at A + dA; F(A +dA).
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The parallel transport can define the curvature of a manifold by take the parallel transport of a vector over

a closed loop then it will give the definition of curvature tensor [32,33]. The equation of parallel transport of the
vector v* around a loop with the deformed connection will be

60" = 5ﬂ5b[~§'ﬁa,A - f?j/\,(f + fﬁ/\f‘;(f - f'f/‘g~;/\]vy (32)

where 00" is the changing of v* by the transport around the loop and daéb is the area of the loop. According to
Eq. (32), the deformed curvature tensor is

~i‘t/\(7' = f;‘io,A B TZA,U + fﬁ)qu]ia - f‘ﬁ(TN;L\' (33)

More investigation and discussion of deformed curvature tensor Eq. (33) will be conducted in future research.

Figure 1. In vector form, the affine connection and parallel transport are depicted.
6. Symmetry properties of deformed affine connection

The symmetry property of the affine connection depends on a) the symmetry property of the metric tensor,
and b) the commutation of the partial derivatives. The deformed affine connection, Eq. (28), fulfills both
conditions:

1. In any coordinates, the deformed affine connection can be expressed in the deformed metric tensor and its
derivatives,

3 1. i )
T = 387 @apu + Gap = Sppa), (34)

where the deformed metric tensor is symmetric, then the deformed affine connection is symmetric, as
well.
2. The affine connection can be expressed as [34]

pr X7 PXe

Br " 9X« gxPoxH’ (35)

where x* and X* represent different coordinates in curved space, the commutation of the partial
derivatives is still satisfied in the deformed affine connection, Eq. (28). This is also valid even when X* is
deformed to encounter the existence of a minimal length uncertainty.
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Therefore, we conclude that the deformed affine connection is symmetric in its lower indices fzﬁy)’ so that

=Y Y _ T
Ligwy =T = Typ- (36)

Also, because the deformed affine connection on Riemannian manifold is torsion—free, then

T, =177 17, =217

B — " Bu =0, (37)

=Y
where F[ﬁy] =0.

7. Summary and Conclusion

The minimal length approach emerging from noncommutative Heisenberg algebra, generalized uncertainty
principle (GUP), is conjectured to integrate gravity in quantum mechanics through generalizing Heisenberg
uncertainty principle to encounter impacts of gravitational fields [18,20]. When applying this recipe to general
relativity, the metric tensor becomes deformed, by gaining an additional term, which is related to the GUP
parameter, undeformed metric tensor, and squared four-acceleration 2.

To achieve the deformation on spacetime monifold M, we have followed the same recipe for the curvature in
relativistic eight-dimentional spacetime tangent bundle TM in the Riemannian manifold. The local coordinates
x# on M are combined with the tangent vectors x# = dx*/ds on TM.

The present script focuses on the possible deformation of the affine connection, which can exclusively be
expressed in the metric tensor and its derivatives. We have also discussed its symmetry property and evaluated
the dependence of a normalized parallel transported vector on the spacelike four-acceleration. This observation
manifests that the minimal length uncertainty and the deformation recipe are significant, especially at the
energy scale in which L?#2 becomes finite.

We conclude that the correction of the affine connection is exclusively factorized in the coefficient
(1 +2L2%2) /(1 + L?#2), which combines minimal length uncertainty (GUP effect), geometric structural,
noncommutative algebraic, and gravitational ingredients. On one hand, this means that the affine connection
preserves all properties of its undeformed counterpart, such as torsion-freedom and metric compatibility. On
the other hand, its geometric nature as connecting nearby tangent spaces on a smooth manifold is also preserved
on discrete spaces. The deformation via additional curvature on higher-dimensional manifold likely reveals fine
geometric structure, similar to radiation beam in classical and quantum mechanics.

Finally, we have studied how the deformed affine connection performs parallel transport of a tangent
vector on Riemannian manifold.
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Appendix I Differential geometry and affine connection

An affine (linear) connection is defined as a geometric object connecting nearby tangent (curved) spaces, i.e.,
permitting differentiability of the tangent vector fields or assuring them a restrict dependence on the manifold
in a fixed vector space [34]. This is a function assigning to each tangent vector and each vector field a covariant
derivative or a new tangent vector. In differential geometry, the generic form of the affine connection was
suggested as [35]

1
o (K I I 1 I
r)u/ - /\v} + K?\v + E(Q)\v. + Qv)\. - Q.V/\) (A1)
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where dot in lower indices refers to the position of upper index, {KV} is the Christoffel symbol, and Q) =

—Dy(T)gyy is the covariant derivative of the metric tensor. Kj = E(TP)‘L ,— T —T') is contortion, and

T%V = FKV — 1“5 = ZIT‘ vl is the torsion. The latter represents the anti-symmetric part of the connection.

The theory of general relativity assumes metric compatibility of the connection, which implies linear
independence of the partial derivative tangent vectors and accordingly leads to vanishing D, (I")g, . Also, the
metric compatibility of the connection naturally arises, if the covariant derivative is tensor applying the Leibniz
rule [36].

The metric compatibility means that a flat space can be found locally in a suitable frame (Minkowski space).
In free falling frame, for example, g, = 7,1, then D, (I')g, ) vanishes for g, = #,, [34]. In such a frame, the
covariant derivative of a tensor is the same for all observers and frames, i.e., Dy, (T)gur = 0[32,35-37].

The theory of general relativity also assumes!, that the affine geodesics matches with the metrical geodesics.
The latter is obviously given by extremizing ds?, the spacetime interval [21,22]. For the torsion—free assumption,
KKV vanishes, entirely, the metric plays the role of the gravitational field potential, and the Riemann geometry is
symmetric (also the energy—momentum tensor is symmetric). Then, the affine connection reduces to

I = () (A2)
The assumption of symmetric connection coefficients leads to commutative partial derivatives, Eq. (35).

Under the conditions of the metric compatibility, the symmetry of the metric tensor indices, and the partial
derivative commutation, there is one particular version of the connection coefficients (Levi—Civita connection).
Then, the Christoffel symbols can be expressed as [32]

1
Tou = 58" (8up + Sunp — 8pua); (A3)
where Fzﬁ = r”a,

Appendix ] The metric tensor compatibility

The covariant derivative of deformed metric tensor can be defined as a partial derivative in free falling
frame (Minkowski space),

Vrfgyv = aagyv/ (B.l)
oG = (1 n LZxZ) o gy + gl 2(32) (B.2)

where g, = (1+ L?%?)g,y, and L is a constant. Use the following definition ¥? = g, ¥ %", then Eq. (B.2) will
be

oGy = (1 n L25c'2) g

+ L2 (g, o 57 + Guu¥le®” + gkt ¥%) gy (B.3)

The derivative of ¥# with respect to the space-time coordinates,

i o 92xH
¥y = — =
’ 0x7 9s2

(B4)

1 Other assumptions, ie. nonsymmetric energy-momentum tensor or finite torque density, are also possible, e.g.,

Einstein—Cartan-Sciama—-Kibble theory [38]
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by using the commutation property of partial derivatives,
9 oxH
oMU
I > H
5C',U - 875250 =0 (B6)
here & — %X [32]. Also, th hing for &
where 0, = Fyrd [32]. Also, the same thing for &',
i =0 (B.7)
Substitute xlff and ', in Eq. (B.3) by Egs. (B.6) and (B.7) respectively,
avgyv = (1 + széz) Suv,o + (gpn/,trjéyjév) ngyv/ (B-S)
take Suv,r @S a common factor,
aggl/l]/ = <1 ‘|— ZLZjéZ) gl,{y,(f (B.g)
The metric tensor g, in free falling frame is Minkowski metric tensor 7, then Eq. (B.9) will be

where 17,y = 0. According to Eq. (B.10), the covariant derivative of deformed metric tensor is vanishing in free
falling frame, then the covariant derivative will vanish for all frames,

Ve =0 (B.11)
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