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Abstract 

Gliomas are highly aggressive brain tumors, and their precise segmentation in MRI scans is important 
for treatment planning. In this study, we employ a 2D U-Net model for automatic segmentation of 
brain tumors using the BraTS dataset. Our technique segments sub-regions such as the enhancing 
tumor, tumor core, and entire tumor from four MRI sequences (T1, T1CE, T2, FLAIR). The best-
performing model achieved a mean Intersection over Union (IoU) of 81% and a Dice score of 65.5%, 
showing the viability of 2D U-Net for real-world neuroimaging applications. 
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1. Introduction 

Brain tumors, particularly gliomas, are among the most aggressive and life-threatening cancers 
affecting the central nervous system [1]. Accurate and early delineation of tumor volumes from 
magnetic resonance imaging (MRI) scans is essential for effective treatment planning, including 
radiotherapy, surgical intervention, and prognosis assessment [2–5]. Manual annotation by 
radiologists, however, is time-consuming, subject to inter-observer variability, and not scalable for 
large datasets [6]. 

Segmentation methods in medical imaging are typically categorized into several classes, such as 
threshold-based techniques such as Otsu’s method [7], region-based approaches such as region 
growing [8], edge-based methods such as the Canny edge detector [9], clustering-based techniques 
such as K-means, Fuzzy C-Means [10], model-based methods such as active contours, level sets 
[11,12], and machine or deep learning-based approaches such as U-Net, Mask R-CNN, TransUNet 
[13–15]. Each category offers specific advantages depending on the imaging modality, anatomical 
target, and desired segmentation accuracy. 

Although traditional segmentation techniques play a key role in outlining tumor boundaries, 
their accuracy can be significantly improved by incorporating advanced imaging methods. One such 
method, Diffusion Tensor Imaging (DTI), offers detailed insights into the brain’s white matter 
structure, helping to refine segmentation results and support more accurate tumor modeling [16,17]. 

Diffusion Tensor Imaging (DTI), a specialized MRI technique, is extensively used in 
neuroimaging to analyze the diffusion of water molecules, particularly for mapping white matter 
pathways. However, raw DTI images often suffer from low contrast and indistinct tissue boundaries. 
To enhance image quality, several methods have been employed, including the extraction of scalar 
indices such as fractional anisotropy (FA) and mean diffusivity (MD), bias field correction, and image 
fusion techniques. One notable method is the Uni-Stable enhancement technique, which combines 
clustering maps from various algorithms to produce stable, high-contrast images. Its three-
dimensional extension, Uni-Stable-3D, interpolates between anisotropic slices to generate volumetric 
probability maps that are well-suited for robust tissue segmentation [18,19]. 
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Beyond segmentation, tumor analysis also encompasses detection and prediction. Detection 
methods range from traditional techniques such as clustering and morphological operations to deep 
learning-based models, including U-Net, V-Net, and Mask R-CNN, which enable accurate tumor 
localization and delineation [20–24]. Prediction models aim to simulate tumor growth over time and 
include reaction-diffusion models, spatio-temporal simulations, and machine learning frameworks 
such as long short-term memory (LSTM) networks and survival analysis models. For example, an 
anisotropic reaction-diffusion model based on DTI data was proposed to simulate glioma progression 
across white and gray matter, demonstrating its effectiveness for treatment planning and prognosis 
[25].  

This study addresses these limitations by proposing a deep learning-based approach for glioma 
segmentation using a 2D U-Net framework. The model is trained and tested on BraTS 3D multimodal 
MRI scans with expert-labeled tumor masks. Each scan includes four modalities: FLAIR, T1, T1CE, 
and T2. Though the data is 3D, our approach processes it as 2D slices to reduce computational 
demands while preserving relevant features. This allows efficient yet accurate tumor segmentation. 
Such models hold the potential to enhance diagnostic accuracy, reduce variability in interpretation, 
and accelerate clinical decision-making. Our solution is reproducible and based on widely available 
tools and datasets. 

2. Dataset Description 

In this study, we used the BraTS dataset, available on Synapse repository [26]. This dataset is 
widely recognized for benchmarking brain tumor segmentation algorithms and is composed of 
multimodal 3D MRI scans collected from patients diagnosed with glioblastoma multiforme (GBM) 
and low-grade gliomas (LGG). The dataset reflects clinical heterogeneity and variability in tumor 
appearance, making it suitable for training and evaluating deep learning models. 

Each case in the dataset includes four different MRI scans, with each modality capturing distinct 
anatomical and pathological features. Together, they provide a comprehensive view of the brain, 
which helps improve the accuracy of tumor segmentation. An overview of these modalities is 
provided in Table 1. 

Table 1. Description of the four MRI modalities used in the dataset [26]. 

Modality Description 

T1 T1-weighted structural MRI 

T1CE T1-weighted with contrast enhancement (gadolinium) 

T2 T2-weighted imaging, useful for fluid detection 

FLAIR Fluid-Attenuated Inversion Recovery, suppresses CSF to highlight lesions 

 

Figure 1. Visual comparison of the four MRI modalities. 
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Each imaging modality offers distinct structural and pathological information, and combining 
them allows for a more precise mapping of tumor subregions. The dataset includes voxel-level 
annotations with four different classification labels. 

Segmentation Labels: 

The segmentation labels used in the dataset correspond to distinct tumor structures and are 
defined as follows 

Table 2. Segmentation labels used in the dataset [26]. 

Label Description 

0 Background 

1 Necrotic/Non-enhancing Tumor Core 

(NCR/NET) 

2 Edema (ED) 

4→3 Enhancing 

Sub-region combinations:  

Additionally, these labels can be combined to form clinically meaningful tumor sub-regions 

Table 3. Label combinations representing tumor sub-regions [26]. 

Label Sub-region 

1 Tumor Core (TC) 

1, 2, 3 Whole Tumor (WT) 

3 Enhancing Tumor (ET) 

All images were manually segmented by four expert radiologists and validated by a board-
certified neuroradiologist. The preprocessing steps included skull stripping, resampling to a 1 mm³ 
resolution, and co-registration [27]. 

3. Data and Image Preprocessing 

In the field of medical imaging, especially when dealing with MRI scans, it's common to 
encounter differences in image intensity, spatial resolution, and anatomical alignment. These 
inconsistencies can pose significant challenges when training deep learning models, as they introduce 
noise and reduce data reliability. To address these issues, we implemented a thorough preprocessing 
pipeline aimed at normalizing the data, enhancing key features, and preparing both images and 
corresponding labels for segmentation. The process is organized into two main components: image 
preprocessing and label preprocessing. 

3.1. Image Preprocessing 

Intensity Normalization 

MRI images often vary in brightness and contrast depending on the scanner type, imaging 
protocol, or even the patient being scanned. To reduce this variability and create a more consistent 
dataset, we applied normalization to each image. This technique standardizes the pixel intensity 
values so they center around a mean of zero with a standard deviation of one, helping the model 
better detect relevant structural patterns rather than being distracted by intensity differences [28]. 

Slice Selection 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 June 2025 doi:10.20944/preprints202506.2183.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2183.v1
http://creativecommons.org/licenses/by/4.0/


 4 of 10 

 

Rather than using the entire 3D volume, we focused on axial slices that are most relevant for 
tumor analysis. Specifically, slices from index 22 to 122 were extracted from each scan. This approach 
avoids slices that contain little to no brain tissue and ensures that the model concentrates on regions 
where tumors are typically found [3]. 
Cropping and Resizing 

To ensure uniform input dimensions suitable for convolutional neural networks, each selected 
slice was cropped and resized to 128 × 128 pixels. This step helps maintain consistency across samples 
while also optimizing memory usage and training speed [29]. 
Data Augmentation 

To make our model more robust and prevent overfitting, we incorporated several data 
augmentation techniques during training. These included random horizontal and vertical flips, 
small-angle rotations, and changes in image intensity. By simulating different imaging conditions, 
these augmentations help the model generalize better to new, unseen data [30]. 
Input Modalities 

Each input sample was composed of two MRI sequences: FLAIR and T1CE. FLAIR images are 
particularly sensitive to areas of swelling or edema, while T1CE images are effective at showing 
regions of contrast uptake, often associated with active tumor tissue. Using both modalities together 
provided the model with richer and more complementary information for accurate tumor 
segmentation [25]. 

3.2. Label Preprocessing 

Label Remapping 
The original segmentation masks used four labels: 0, 1, 2, and 4. Since label 4 was not sequential 

(it represented the enhancing tumor), we remapped it to 3 to produce a clean, continuous label set. 
The final label scheme used in our study was: 

Table 4. Label Remapping. 

Label Description 

0 Background 

1 Necrotic/Non-enhancing Tumor Core 

(NCR/NET) 

2 Edema (ED) 

3 Enhancing Tumor (ET) 

This adjustment simplified data handling and ensured compatibility with standard categorical 
loss functions used in deep learning frameworks [32]. 

3.3. Model Architecture 

To perform brain tumor segmentation, we implemented a 2D U-Net architecture using 
TensorFlow 2.12 and Keras. U-Net is particularly effective for biomedical image segmentation, as it 
captures both local and global context while preserving spatial detail. Its encoder–decoder structure, 
enhanced with skip connections, allows for precise reconstruction of tumor boundaries by combining 
low-level spatial features with high-level semantic information [33]. 

U-Net Structure 

• Encoder Path: 
The encoder comprises four blocks. Each block includes two 2D convolutional layers (3×3 
kernels, ReLU activation, 'same' padding), followed by a 2×2 max-pooling operation for 
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downsampling. The number of filters doubles at each level: 32, 64, 128, and 256. This progressive 
structure enables the network to extract increasingly abstract features [33]. 

• Bottleneck: 
At the network’s deepest layer, two convolutional layers with 512 filters each are followed by a 
dropout layer (rate = 0.2) to mitigate overfitting. 

• Decoder Path: 
The decoder mirrors the encoder with upsampling layers (via transposed convolutions), 
followed by convolutional blocks. Skip connections from corresponding encoder levels are 
concatenated to preserve spatial resolution. Filter sizes decrease symmetrically: 256, 128, 64, and 
32. 

• Output Layer: 
The final layer is a 1×1 convolution with SoftMax activation, yielding a four-channel output that 
corresponds to the segmentation classes: background, necrotic core, edema, and enhancing 
tumor. 

Input and Output Specifications 

• Input Shape: Each input consists of two channels—FLAIR and T1CE—resulting in a shape of 
(128, 128, 2). 

• Output Shape: The model produces a segmentation map of shape (128, 128, 4), with class-wise 
probabilities for each tumor sub-region. 

 

Figure 2. U-NET Structure [34]. 

Training Configuration 

• Frameworks: TensorFlow 2.12 and Keras 
• Loss Function: Categorical Crossentropy (suitable for multi-class segmentation) 
• Optimizer: Adam optimizer with a learning rate of 0.001 
• Regularization: Dropout (rate = 0.2) in the bottleneck layer 

Evaluation Metrics 
To comprehensively assess model performance, we used several evaluation metrics, each 

providing insights into different aspects of segmentation quality [35,36]: 

• Mean Intersection over Union (Mean IoU): 
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Also known as the Jaccard Index, this metric evaluates the overlap between predicted and 
ground truth regions by computing the ratio of their intersection to their union: 𝐼𝑜𝑈 ൌ |஺ ∩ ஻||஺ ∪ ஻| ………… (1) 

It offers a strict measure of segmentation accuracy and is computed per class before averaging. 

• Dice Similarity Coefficient (DSC): 
The Dice coefficient measures how closely the predicted segmentation matches the ground truth. 
It is especially useful for imbalanced data such as tumor regions: 

o Overall Dice: Aggregates segmentation performance across all classes. 

o Class-specific Dice: Computed separately for necrotic core, edema, and enhancing tumor 
regions. 𝐷𝑆𝐶 ൌ  ଶ |஺ ∩ ஻|ሺ|஺|ା |஻|ሻ ………………. (2) 

 

• Precision: 
Indicates the proportion of predicted positive pixels that are actually positive. 

• Sensitivity (Recall): 
Also called the true positive rate, this metric measures the model’s ability to detect all actual 
tumor pixels: 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ  ்௉ሺ்௉ ା ிேሻ …………….. (3) 

• Specificity: 
Measures the proportion of correctly identified negative (background) pixels, helping assess 
false positive rates: 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൌ  ்ேሺ்ே ା ி௉ሻ ………………… (4) 

These metrics provide a balanced evaluation across detection accuracy, overlap, and class-
specific segmentation—key for ensuring clinical reliability in automated tumor delineation systems. 

3.4. Training Strategy 

• Train/Val/Test split: 70% / 15% / 15% 
• Epochs: 30 
• Optimizer: Adam (learning rate = 0.001) 
• Callbacks: ReduceLROnPlateau, EarlyStopping, CSVLogger 
• Batch size: 1 (due to memory constraints) 
• Custom DataGenerator for real-time augmentation and loading 

4. Results 

The U-Net model was trained for 30 epochs using TensorFlow and Keras. The best validation 
performance was observed at epoch 19, with the following results: 
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Table 5. Overall Validation Metrics and Additional Performance Measures. 

Metric Value 

Validation loss 0.0284 

Validation accuracy 98.84% 

Global Dice Coefficient 0.5139 

Precision 99.08% 

Specificity 99.69% 

Table 6. Validation per-class Dice (epoch 19). 

Tumor Sub-Region Validation Dice Score 

Necrotic Core (NCR/NET) 0.4292 

Edema (ED) 0.4644 

Enhancing Tumor (ET) 0.5895 

Training per-class Dice: 
• NCR/NET: 0.4920 
• ED: 0.6751 
• ET: 0.6251 

Table 7. Per-Class Dice Coefficients on the Training Set. 

Tumor Sub-Region Training Dice Score 

Necrotic Core (NCR/NET) 0.4920 

Edema (ED) 0.6751 

Enhancing Tumor (ET) 0.6251 

Minor overfitting was observed after epoch 19. 

 
Figure 3. Segmentation: Input MRI, Ground Truth, and Prediction. 

5. Discussion 

The results of this work show that employing a 2D U-Net for brain tumor segmentation—by 
processing 3D MRI scans slice by slice—is a practical and effective strategy. Although this method 
doesn't leverage the complete 3D spatial context, it still performed well in identifying critical tumor 
regions like the Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET). This aligns with 
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earlier findings from BraTS evaluations that showed 2D models can still provide reliable results when 
properly trained [37]. 

Performance Observations 

The model showed stronger accuracy on larger and more consistent tumor components, such as 
the whole tumor and tumor core. However, segmenting the enhancing tumor region proved more 
difficult. This subregion often presents with irregular shapes and smaller volume, which tends to 
challenge even the best segmentation models—a limitation highlighted in various segmentation 
studies [38]. 

Model Advantages 

The U-Net’s encoder–decoder framework, along with its skip connections, proved highly 
beneficial for preserving fine spatial details while also capturing contextual information at multiple 
levels. This structure, originally designed for biomedical tasks, supports precise boundary 
delineation even with limited training data [33]. 

Furthermore, regularization techniques like dropout, combined with data augmentation 
strategies such as flipping and intensity shifts, helped improve the model’s generalization by 
reducing overfitting risk [39]. 

6. Conclusion 

This thesis supports the effectiveness of a 2D U-Net model for segmenting brain tumors from 
multimodal MRI data. Even without utilizing full volumetric information, the model successfully 
distinguished between key tumor components and achieved encouraging segmentation 
performance. 

The main benefit of this approach lies in its simplicity and efficiency. It doesn’t require extensive 
computational resources, making it accessible for both clinical research settings and practical 
deployment. The findings reinforce the potential of 2D convolutional models in medical image 
segmentation, especially when paired with thoughtful preprocessing and training strategies [40]. 
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