
Article Not peer-reviewed version

Prediction of Potential Habitat for

Luciola unmunsana Using Species

Distribution Models

Sangwook Kim * , Byeongjun Jung , Juyeong Youn

Posted Date: 19 June 2025

doi: 10.20944/preprints202506.1658.v1

Keywords: Luciola unmunsana; species distribution model; MAXENT; ensemble; ecoclimate indices;

topographic variables; EVI; potential habitat

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/1088884
https://sciprofiles.com/profile/3774735
https://sciprofiles.com/profile/3430654


 

 

 Article 

Prediction of Potential Habitat for Luciola 

Unmunsana Using Species Distribution Models 

ByeongJun Jung 1, JuYeong Youn 2 and SangWook Kim 2,* 

1 Department of Ecological Engineering Research Institute, NEXUS Environmental Design Center, Uiwang 

16006, Republic of Korea 

2 Department of Forest Sciences and Landscape Architecture, Wonkwang University, Iksan 54538, Republic of 

Korea 

* Correspondence: Department of Forest Sciences and Landscape Architecture, Wonkwang University, Iksan 

54538, Republic of Korea; laughi@wku.ac.kr; Tel.: +82-63-850-6827 

Abstract 

This study aimed to predict the potential habitats of Luciola unmunsana using a species distribution 

model. Luciola unmunsana is a species found only in South Korea, and its distribution and 

conservation are relatively poorly studied because females lack wings and are difficult to collect 

owing to their low mobility. Therefore, we predicted the potential habitats of Luciola unmunsana 

across South Korea using a single model, maximum entropy (MaxEnt), and a multi-model ensemble 

model. The points of emergence were based on public data and previous studies from the Jeonbuk 

Green Environment Support Center (JGESC), Global Biodiversity Information Facility (GBIF), and 

National Institute of Biological Resources (NIBR). Among the input variables, the ecoclimate index 

built through the Shared Socioeconomic Pathways (SSP) scenario-based detailed climate change data 

was utilized for climate variables, and non-climate variables were built to reflect the ecological 

characteristics of Luciola unmunsana, such as topography, land cover, and Enhanced Vegetation Index 

(EVI). The main findings of this study are summarized below. First, EVI, hydrological network 

analysis, land cover, and annual precipitation (Bio12) were found to be influential in predicting 

potential habitats for Luciola unmunsana in both models. Second, by overlaying the predicted potential 

habitats and highly significant variables, we found that areas with high vegetation vigor within the 

forest, proximity to water systems, and relatively high annual precipitation, which can maintain 

stable humidity, are potential habitats for Luciola unmunsana. Third, field visits and literature surveys 

to predicted potential habitat sites, including Geumsan-gun, Chungcheongnam-do, Yeongam-gun, 

Jeollabuk-do, Mudeungsan, Gwangju-si, Korea, and Gijang-gun, Busan-si, Korea, confirmed the 

occurrence of Luciola unmunsana. This study is significant because it is the first to construct a national-

level species distribution model for Luciola unmunsana, which is declining due to industrialization 

and urbanization, and to predict potential habitats by applying various environmental variables 

reflecting ecological characteristics, thus providing basic data for the conservation and utilization of 

this emotional insect and environmental indicator species. In this study, the spatial resolution of the 

model was 1 × 1 km for national-level studies. It is necessary to increase the accuracy of the model by 

including variables with higher spatial resolution when conducting regional-level studies in the 

future. 

Keywords: luciola unmunsana; species distribution model; MAXENT; ensemble; ecoclimate indices; 

topographic variables; EVI; potential habitat 

 

1. Introduction 

Fireflies have long been recognized as emotional insects that are familiar to humans because of 

their ability to produce light [1]. They are also widely recognized as environmental indicator insects 
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that can only survive in limited habitats and ecologically stable environments, indicating the extent 

of environmental pollution [1,2,3]. However, due to reckless development, environmental 

destruction, ecosystem disturbance, and landscape degradation caused by industrialization and 

urbanization in modern society, their habitats are being damaged, and their populations and habitat 

areas are decreasing rapidly [3,4,5]. In particular, the number and intensity of artificial light sources 

are increasing, which reduces mutual recognition opportunities between females and males, thereby 

decreasing the population [5,6,7]. Consequently, fireflies are increasingly valued as environmental 

indicators of the extent of environmental pollution and the need for restoration [4]. 

The most commonly encountered fireflies in South Korea are Luciola lateralis, Lychnuris rufa, 

and Luciola unmunsana; conservation studies have mainly focused on Luciola lateralis and Lychnuris 

rufa [8]. Of these, Luciola unmunsana is endemic to South Korea [9] and is difficult to collect because 

of its lack of inner wings and low mobility in females [6,10]; therefore, there is a relative lack of 

research on its distribution and restoration compared to other firefly species in South Korea. 

Currently, species distribution models are used in various studies, including biodiversity 

assessment, protected area designation, habitat management and restoration, population or 

community ecosystem modeling, and climate change prediction [11]. In particular, it provides 

important information for conservation planning and management by identifying the geographical 

distribution and properties of populations to identify priority areas to be protected or potentially 

threatened areas to establish conservation plans and management measures [12,13] Maximum 

Entropy (MaxEnt), a single model, is effective in modeling the potential distribution of rare and 

endangered species by performing better in small sample sizes compared to other species distribution 

modeling methods and is widely used in Korea and abroad because it has the advantage of estimating 

the ecological status of species with only occurrence information [13,14]. However, when applying 

single models alone, the accuracy of the models has been questioned because different algorithms of 

single models lead to different predictions [15]. Therefore, ensemble models that integrate multiple 

single models have recently been used, and have the advantage of minimizing the shortcomings of 

single models and maximizing the advantages of reducing their uncertainties of single models 

[11,13].  Relatedly, a number of studies have been reported that utilize MaxEnt and ensemble 

models to predict potential habitat for specific species [11,16,17,18,19,20]. However, these prior 

studies were conducted primarily for endangered or tree-damaging pest species, and few studies 

have been conducted to predict potential habitats for species with emotional/cultural values and 

environmental indicator properties, such as fireflies.  

Regarding Luciola unmunsana habitat characteristics and restoration, the Daegu Gyeongbuk 

Research Institute (2012) [21], the Daegu Provincial Environment Agency (2015) [22], and Kim (2015) 

[8]. Some studies have been conducted by the Jeonbuk Green Environment Support Center (2021) 

[23], Jeonbuk Green Environment Support Center (2022) [10], and Lim et al. (2022) [24]. However, 

these studies analyzed specific occurrence points or limited administrative areas, and none were 

analyzed at a national spatial scale.  

Therefore, the aim of this study was to predict the potential habitats of Luciola unmunsana, a 

major environmental indicator species in South Korea, by creating a species distribution model for 

the entire country. It is believed that these results can be utilized as basic data for investigating the 

occurrence of Luciola unmunsana in South Korea. 

2. Materials and Methods 

The spatial scope of this study was set to South Korea to predict the potential habitats for Luciola 

unmunsana. The temporal range reflects a 30-year normal climate, which is known to be the optimal 

sample size for reliable estimates [25].  

In addition, we reviewed the environmental factors affecting Luciola unmunsana habitats from 

previous studies and constructed eco-climatic indices, topographic variables, and land cover maps to 

reflect them. The spatial resolution of all the variables was unified at 1 km × 1 km to ensure 

consistency in the analysis.  
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Potential habitat predictions were analyzed by creating MaxEnt models and ensemble models 

using MaxEnt 3.4.4 and Rstudio 4.2.1. We analyzed the contribution and significance of the predicted 

potential habitat and the variables affecting the habitat of Luciola unmunsana, and evaluated the 

prediction accuracy of both models. 

2.1. Building Input 

2.1.1. Appearance Point Data 

To build a species distribution model, we needed data on the target species' appearance points; 

in this study, we obtained Luciola unmunsana appearance points from JGESC, GBIF (survey period 

2000–2004), and NIBR [26]. In addition, we constructed GPS coordinates of the appearance points 

presented in previous studies on Luciola unmunsana [8,22], and constructed GPS coordinates of 39 

points in total (Figure 1). 

 

Figure 1. Luciola unmunsana Appearance point 

2.1.2. Ecological Climate Index 

In general, the data for the Ecological Climate Index utilize global-scale input data [27] provided 

by Worldcilm, Climatologies at high resolution for the Earth’s land surface areas (CHELSA), and 

global climatologies for bioclimatic modeling (CliMond). However, to improve the accuracy of the 

analysis, this study utilized ecoclimatic index data based on the shared socioeconomic pathway (SSP) 

scenario [28] at a 1 km resolution produced by the Korea Rural Development Administration. It was 

calculated by utilizing 20 indices (Bio01–Bio19) presented by O'Donnell and Ignizio (2012) [29] (Table 

A1); as the temporal range of this study was set to 1981–2010, the analysis was conducted using the 

ecological climate index data for that period. 

When modeling using the Ecological Climate Index, a high correlation between variables can 

reduce efficiency and adversely affect the interpretation of results [30, 31]. Therefore, to account for 

the correlation between variables, multicollinearity was removed through an analysis using Pearson's 

correlation coefficient. This is the most widely used statistic to measure the correlation between 

variables on an equivalence/ratio scale [32]. In this study, multicollinearity was removed by using 

Pearson's correlation coefficient in RStudio 4.3.3 to exclude variables with a high correlation of ±0.85 

or higher, resulting in the selection and analysis of Bio01, Bio02, Bio04, Bio12, Bio14, and Bio15. 

2.1.3. Terrain Variables 

In general, fireflies occur at high densities in low-slope sites [22]. These slopes are less prone to 

soil runoff, allowing the accumulation of organic matter and moisture, which can lead to diverse 
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vegetation [19]. In particular, fireflies prefer dark and shady environments and thrive in areas with 

diffused light or short periods of sunlight [21]. Luciola unmunsana is also generally found in terrains 

where stable humidity can be maintained, such as forest edges on gentle slopes, which tend to be 

located near water resources, such as streams and ponds, or around broadleaf forest stands with 

multi-layered vegetation that are often associated with agricultural ditches and streams [22,24,33]. 

Terrestrial snails, the main food source for Luciola unmunsana, are found in shady forests with little 

direct sunlight or stable humidity [23].  

Therefore, a Digital Elevation Model (DEM) with a resolution of 90m×90m was constructed in 

CGIAR-CSI [34] to construct non-climatic variables affecting the habitat of Luciola unmunsana, 

followed by slope and shade gradient analysis, and a water network analysis map was constructed 

using the Environmental Big Data Platform [35] to construct variables on distance to water systems. 

2.1.4. Land Cover Map 

To reflect the land cover and use in Korea, we used WorldCover V2 2021, a 10m x 10m spatial 

resolution land cover map provided by the European Space Agency (ESA) [36]. It is based on Sentinel-

1 and Sentinel-2, and has an overall accuracy of 76.7% [37]. 

The results of the Daegu Provincial Environment Agency (2015) [22] showed that Luciola 

unmunsana occurred mainly in coniferous forests with mixed broadleaf trees, and in areas dominated 

by coniferous forests. In addition, Luciola unmunsana is found in broadleaf forests, but its food source 

is also found in forests such as bamboo forests and coniferous forests [10]. Therefore, in this study, 

we utilized the map for tree cover among the classified items and included data for non-forested 

areas, because it is believed that the response of potential habitats in non-forested areas will also 

affect the prediction of potential habitats in forested areas. 

2.1.5. Enhanced Vegetation Index (EVI) 

As vegetation develops, dead leaves and octopuses accumulate on the surface, and 

microorganisms in the soil decompose them, increasing the organic matter content [22]. This 

increases water retention during rainfall, creating conditions for Luciola unmunsana larvae to live 

under fallen leaves, octopuses, organic matter layers, and stones [22]. Therefore, in this study, the 

Vegetation Index (VI) was additionally entered to reflect information on vegetation abundance and 

vegetation vigor in the species distribution model. 

The EVI is an index developed to correct for atmospheric conditions, water pipe effects, and 

areas with high vegetation density and provides an improved vegetation index using atmospheric 

correction factors, water pipe correction factors, and blue light values [38]. Compared to the 

Normalized Difference Vegetation Index (NDVI), it reduces errors due to atmospheric residuals and 

can be used more effectively in seasonal and process-based models of forest vegetation [39,40,41]. 

Therefore, in this study, EVI was used to construct a species distribution model. 

To construct the EVI, we used monthly averaged values for 2022 from Moderate Resolution 

Imaging Spectroradiometer (MODIS) [42, 43] satellite imagery. 

2.2. Creation of Species Distribution Models 

2.2.1. MaxEnt 

The MaxEnt model is a machine learning model based on the Maximum Entropy Approach, first 

introduced by Berger et al. (1996) [44], which can estimate values by maximizing incomplete data [19] 

and shows high accuracy compared to other species distribution models that use only species 

occurrence data [45,46,47]. It is also commonly used in species distribution modeling because it 

represents linear non-parametric relationships between variables [48,49]. 

Although the parameters are set by default within MaxEnt, this does not always result in an 

optimal model, and can result in a suboptimal model [50,51]. Therefore, it is necessary to analyze the 

complexity of the model with different combinations of parameters to select a combination with a 
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lower complexity for modeling and optimizing the model. Two main selectable parameters affect the 

model performance: Feature Class (FC) and Regularization Multiplier (RM) [52]. FC refers to a set of 

mathematical transformations of the independent variables used in the model to optimize the model, 

and there are five types: Linear (L), Quadratic (Q), Product (P), Hinge (H), and Threshold (T) [48,53]. 

RM is a numerical parameter that controls the strength of the FC used in the model and can reduce 

or increase the ease of modeling [54,55]. The Akaike information criterion (AIC) value is a statistic 

that quantifies the degree of discrepancy between the true and candidate models, reflecting the fit 

and complexity of the model; the model with the minimum AICc value, delta AICc, equal to zero, is 

considered the best model [56,57]. 

In this study, 60 models were generated using six FCs (L, LQ, H, LQH, LQHP, and LQHPT) and 

10 RMs (0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5). In addition, MaxEnt 3.4.4 and ENMeval packages were 

run together in Rstudio, K-fold was performed 10 times, and the model with a delta AICc value of '0' 

was finally selected. 

In the modeling settings, FC was selected as LQHP, RM was selected as 3, and 'Replicated run 

type' was set to 'Bootstrap' and repeated 10 times. 

The maximum number of background points was set to 10,000, which was typically set to 10,000 

if there were more than 10,000 background points [58]. In this study, 98,928 potential background 

points were identified as available within the spatial scope of the study; therefore, they were set to 

10,000, and the results were outputted using logistic output. 

2.2.2. Ensemble Model 

Ensemble models are a recently developed method for predicting species distributions that 

combine multiple algorithms and statistical models to reduce the uncertainty of a single model. It has 

been proposed to improve outcomes such as predicting the current distribution of species, patterns 

of species richness, and species diversity [11,59,60]. It has the advantage of providing a variety of 

validation methods for the model that can overcome the shortcomings of other commonly used 

models, and is currently widely used [60]. 

To create an ensemble model for predicting the potential habitats of Luciola unmunsana, Rstudio 

4.3.3 to conduct the analysis. The Biomod2 package was utilized within Rstudio 4.3.3, and in this 

study, 39 emergence sites were used as background data to generate pseudo-absence data containing 

1000 non-emergence sites. 

We used six individual models to build the ensemble model: GLM, GBM, CTA, FDA, MARS, 

and RF among the models provided by Biomod2. The selected models require the input of non-

abundance and abundance data and are known to be more accurate than models based on abundance 

data alone [13]. 

2.3. Model Accuracy Verification 

2.3.1. MaxEnt Model Accuracy Verification 

To verify the accuracy of the MaxEnt model, an AUC test was performed. The AUC is a measure 

of whether a true value is predicted by a true value or whether a false value is predicted by a true 

value, and the accuracy is measured using the AUC value of the ROC curve [17,61]. In general, AUC 

values are interpreted as 0.5-0.6 (failure), 0.6-0.7 (no value), 0.7-0.8 (poor), 0.8-0.9 (good), and <0.9 

(excellent) [62]. 

2.3.2. Ensemble Model Accuracy Verification 

Kappa, TSS, and AUC validations were performed to verify the accuracy of the ensemble 

models. Kappa is used to determine the overall accuracy of model predictions by correcting the 

possibility of classification matching by chance. It is mainly used to validate the accuracy of 

occurrence and non-occurrence data [11]. In particular, it is widely used as a means of validating 

models in ecology and validating the accuracy of land-cover classification using satellite imagery 
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[11,63]. The value of the coefficient ranges between -1 and 1, with values of 0.2 or less indicating poor 

agreement, values of 0.21 to 0.4 indicating moderate agreement, values of 0.41 to 0.6 indicating 

moderate agreement, values of 0.61 to 0.8 indicating high agreement, and values of 0.81 to 1 indicating 

perfect agreement [64].  

The TSS value includes an assessment of the accuracy of both the occurrence and non-occurrence 

data. Unlike the AUC, it is not dependent on the distribution area or shape of the target species and 

is therefore often used to validate species distribution models [63]. A TSS coefficient value of 0.4 to 

0.6 indicates 'moderate agreement', 0.6 to 0.7 indicates 'high agreement', and 0.7 or higher indicates 

'near agreement' [12]. 

3. Results 

3 1. Model Potential Habitat Prediction Results 

3.1.1. MaxEnt Model Potential Habitat Prediction Results 

To create a binomial map showing suitable and unsuitable habitats, the model was thresholded 

through the 'Maximum training sensitivity plus specificity logistic threshold' value, and the threshold 

value was 0.5872. After setting this threshold value using QGIS S/W 3.30.3, a binomial map was 

created and masked with a map of tree cover from the land cover map to predict potential habitats 

in the forest area (Table 1). The total area of potential habitat for Luciola unmunsana predicted using 

the MaxEnt model was 8,785 ㎢  (Table 2). The potential habitats are in the following order: 

Jeollanam-do, Gyeongsangbuk-do, and Gyeongsangnam-do. 

Table 1. MaxEnt and Ensemble Model Bidirectional Maps. 

  

MaxEnt model Ensemble model 

3.1.2. Ensemble Model Potential Habitat Prediction Results 

To create a binomial map of the ensemble model, a probability map with values ranging from 0 

to 1000 was thresholded. The threshold value that maximized the TSS value was used, and the 

threshold value was derived as '659. ’ A bimodal map was created using QGIS S/W 3.30.3 as MaxEnt 

and masked with the map of tree cover from the land cover map to predict the potential habitat in 

the forest area (Table 1). The total area of potential habitat for Luciola unmunsana predicted using the 

ensemble model was 6,971㎢ (Table 2). Compared with the MaxEnt model, a relatively small area of 

potential habitat was predicted, and the main areas of potential habitat were Jeollanam-do, Jeollabuk-

do, and Gyeongsangbuk-do, with Jeollanam-do as the new top distribution area. 
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Table 2. MaxEnt and Ensemble Model Potential Habitat Key Predicted Regions. 

Models Metropolitan City- State City - County - District 

MaxEnt 

Gyeonggi-do 637 

Gangwon-do 879 

Chungcheongbuk-do 408 

Chungcheongnam-do 402 

Jeollabuk-do 988 

Jeollanam-do 2,389 

Gyeongsangbuk-do 1,436 

Gyeongsangnam-do 1,646 

Ensemble 

Gyeonggi-do 205 

Gangwon-do 441 

Chungcheongbuk-do 348 

Chungcheongnam-do 622 

Jeollabuk-do 1,099 

Jeollanam-do 1,885 

Gyeongsangbuk-do 1,037 

Gyeongsangnam-do 1,334 

3.2. Contribution and Significance Analysis Results by Model Variable 

3.2.1. Results of Contribution and Significance Analysis by MaxEnt Model Variables 

When analyzing the contribution of each variable in the model, the land cover map contributed 

the most (26%), followed by the EVI (25.1%), water network analysis (21.9%), and Bio12 (11.6% (Table 

C1). In terms of importance, EVI had the highest contribution at 34%, followed by land cover (23.7 

%), water network analysis (19.9 %), and Bio12 (6.6 %).  

Among the response curves of each variable, the EVI, land cover, water network analysis, and 

Bio12 were the most important (Table 3). The EVI response curve showed that the response gradually 

increased as vegetation vigor increased, and the response curve of the water network analysis 

showed that the response gradually decreased as the distance from the water system increased. In 

addition, the response curve of the land-cover map showed that the response was relatively higher 

in forested areas than in non-forested areas, and the response curve of Bio12 showed that the response 

increased as annual precipitation increased. 

Table 3. Variable-specific response curves. 

 

 
 

 

 
 

EVI Response Curves Land Cover Response Curve 
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Hydrography Response curve Bio 12 Response Curves 

3.2.2. Importance Analysis Results by Ensemble Model Variable 

The importance of each variable in the built model was the highest for EVI (39.3%), followed by 

water network analysis (25.6%), Bio12 (10.1%), and land cover (8.3% (Table C2). 

3.3. Model Accuracy Validation Results 

3.3.1. MaxEnt Model Accuracy Validation Results 

To determine the accuracy of the MaxEnt model implemented in this study, we used the AUC 

test to determine potential habitat prediction performance (Figure 2). The accuracy of the AUC test 

was 0.810, which is’ good, indicating that the MaxEnt model implemented in this study had a 

relatively good prediction performance. 

 

Figure 2. MaxEnt Model AUC Validation Results. 

3.3.2. Ensemble Model Accuracy Validation Results 

To evaluate the potential habitat prediction performance of the ensemble model implemented 

in this study, Kappa, TSS, and AUC values were used to determine the accuracy (Table 4). The Kappa 

value was 0.741, which indicates a high degree of agreement; the TSS value was 0.808, which indicates 

near agreement; and the AUC value was 0.961, which indicates excellent prediction performance, 

indicating that the ensemble model has a high level of prediction performance. 

Table 4. Ensemble model sensitivity, specificity, and accuracy validation results. 

Separation Sensitivity Specificity Accuracy 

Kappa 76.316 96.196 0.741 

TSS 89.474 91.304 0.808 
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AUC 89.474 91.304 0.961 

3.4. Key Variables and Potential Habitat Nesting Results 

The variables with the highest importance in both models were the EVI, hydrographic network 

analysis, land-cover maps, and Bio12. Therefore, the potential habitat area predicted by the model 

was analyzed by overlaying the key variables with the predicted potential habitat area using the 

model with the key variables with the highest importance in both models. 

3.4.1. EVI and Predictive Potential Habitat Overlap Area Analysis 

We overlaid the EVI with the predicted potential habitats from the MaxEnt and ensemble models 

(Table 5) and found that both models predicted relatively large areas of potential habitats within the 

0.4-0.5 range of vegetation vigor (Table 6). Values of EVI range from -1 to +1, and values in the 0.4-

0.5 range are generally considered to be areas of intermediate vigor and density of vegetation, which 

can be categorized as low light forests with an understory vegetation [65]. These results are consistent 

with the ecological characteristics of Luciola unmunsana, which prefers forest edges or low-light 

forests where understory vegetation is developed and humidity remains stable [22,24,33]. 

Table 5. MaxEnt and Ensemble Model Predicted Potential Habitat Key Overlap Ranges within EVI Ranges. 

 

 
 

 

 
 

MaxEnt model Ensemble model 

Table 6. MaxEnt and the ensemble model predicted the potential habitat area by EVI range. 

Separation Range Predicted area of potential habitat (㎢) 

MaxEnt 

≤ 0.1 0 

0.1 ~ 0.2 0 

0.2 ~ 0.3 38 

0.3 ~ 0.4 2,468 

0.4 ~ 0.5 6,225 

0.5 ~ 0.6 51 

0.6 < 3 

Ensemble ≤ 0.1 0 
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0.1 ~ 0.2 7 

0.2 ~ 0.3 84 

0.3 ~ 0.4 3,048 

0.4 ~ 0.5 3,819 

0.5 ~ 0.6 13 

0.6 < 0 

3.4.2. Hydrographic Maps and Predictive Potential Habitat Overlap Analysis 

Based on the results of the water network analysis, we overlaid the predicted potential habitat 

from the MaxEnt and ensemble models (Table 7) and found that both models predicted relatively 

large areas of potential habitat within a range of 0-100 m distance to water (Table 8). These results 

suggest that proximity to water resources is an important environmental factor for Luciola unmunsana. 

Areas in close proximity to water systems have stable soil and air humidity, which is consistent with 

Luciola unmunsana's preference for moist environments [22,24,33]. These areas may also provide 

suitable conditions for the colonization of land snails, the main food source for Luciola unmunsana, 

which may contribute to the maintenance of stable populations of Luciola unmunsana. 

Table 7. MaxEnt and ensemble model predictions of potential habitat within the scope of the hydrographic map 

Key overlap areas. 

 

 
 

 

 
 

MaxEnt model Ensemble model 

Table 8. MaxEnt and the ensemble model predicted the potential habitat area by the hydrologic network analysis 

map extent. 

Separation Range Predicted area of potential habitat (㎢) 

MaxEnt 

≤ 100 5,592 

101 - 200 2,183 

201 - 300 684 

301 - 400 285 

401 - 500 34 

501 - 600 4 
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600 < 3 

Ensemble 

≤ 100 5,404 

101 - 200 1,057 

201 - 300 327 

301 - 400 163 

401 - 500 20 

501 - 600 0 

600 < 0 

3.4.3. Bio12 and Predictive Potential Habitat Overlap Area Analysis 

We overlaid the predicted potential habitats from Bio12 with the MaxEnt and ensemble models 

(Table 9) and found that both models predicted relatively large areas of potential habitats within the 

1,500 mm–2,000 mm annual precipitation range (Table 10). 

Table 9. MaxEnt and Ensemble Model Predicted Potential Habitat Key Overlap Ranges within Bio12 Ranges. 

 

 
 

 

 
 

MaxEnt model Ensemble model 

Table 10. MaxEnt and the ensemble model predicted the potential habitat area by the Bio12 range. 

Separation Range Predicted area of potential habitat (㎢) 

MaxEnt 

≤ 500 0 

500 – 1,000 0 

1,000 – 1,500 668 

1,500 – 2,000 5,768 

2,000 – 2,500 2,266 

2,500 – 3,000 62 

3,000 – 3,500 15 

3,500 < 6 

Ensemble 
≤ 500 0 

500 – 1,000 0 
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1,000 – 1,500 1,234 

1,500 – 2,000 4,394 

2,000 – 2,500 1,313 

2,500 – 3,000 25 

3,000 – 3,500 5 

3,500 < 0 

4. Discussion 

This study utilized a single model, MaxEnt, and a multiple model, an ensemble model, to predict 

the potential habitats of Luciola unmunsana. Importance analysis of the variables in both models 

showed that the EVI, land cover, hydrological network analysis, and annual precipitation (Bio12) 

were highly important. The response curve analysis of each variable showed that the response value 

of the EVI increased with increasing vegetation vigor, and the water network analysis showed that 

the response increased with increasing distance from the water system. In the case of land-cover 

maps, the response was higher in forested areas than in non-forested areas, and the response 

increased as annual precipitation increased. 

Overlaying the highly significant variables with the predicted potential habitat, the EVI was 0.4 

to 0,5, the distance from the water bodies was 0–100 m, and the annual precipitation was 1,500 mm–

2,000 mm. Taken together, these results suggest that the most suitable areas for Luciola unmunsana 

are those with forested vegetation and relatively close proximity to water systems, where humidity 

is stable.  

The predicted area of the potential habitat was found to be lower in the ensemble model (6,971

㎢ compared to 8,785㎢ in the MaxEnt model. This result was likely due to the tendency of the 

MaxEnt model to overestimate potential habitats, as in previous studies [66,67], and the fact that the 

ensemble model only identified potential habitats where the predictions of all six models were used 

to build the model overlap. 

5. Conclusions 

The aim of this study was to predict the potential habitats of Luciola unmunsana, a major 

environmental indicator species in South Korea. To this end, we constructed the occurrence points of 

Luciola unmunsana and predicted potential habitats using MaxEnt and ensemble models for South 

Korea. To predict potential habitats, we reviewed the main environmental factors that affected the 

habitat of Luciola unmunsana in previous studies and constructed them as variables for analysis. 

Subsequently, the contribution and significance of the variables were evaluated, and the prediction 

accuracy of the two models was verified. 

The main findings of this study are as follows. First, both models showed that EVI, hydrological 

network analysis, land cover, and annual precipitation (Bio12) were relatively influential in 

predicting Luciola unmunsana potential habitats. The response curve analysis of MaxEnt showed that 

the response value increased as the EVI increased, and the response tended to increase with 

increasing distance from the water system. In the case of the land cover map, the response was higher 

in forested areas and the response value increased with higher annual precipitation. 

Second, we overlaid the predicted potential habitats with variables that showed high importance 

in determining their distribution and found that areas with high vegetation vigor within the forest, 

close proximity to water systems, and relatively high annual precipitation, which allows humidity to 

remain stable, were analyzed as potential habitats for Luciola unmunsana. These results are consistent 

with the ecological characteristics of Luciola unmunsana, which prefers forest edges or low-light 

forests with developed understory vegetation and stable humidity [22,24,33], as well as the habitat 

characteristics of its main food source, terrestrial snails [23]. 
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Third, field visits and literature surveys of sites predicted as potential habitats, but not existing 

sites, such as Geumsan-gun, Chungcheongnam-do, Yeongam-gun, Jeollanam-do, Mudongsan 

Mountain, Gwangju-si, Gwangju, and Gijang-gun, Busan, confirmed the occurrence of Luciola 

unmunsana. As a result of the model accuracy verification, the MaxEnt model was evaluated as 'good, 

’ with an AUC value of 0.810. In addition, the ensemble model was evaluated as 'good' with a Kappa 

value of 0.741, a TSS value of 0.808, and a near agreement level, and the AUC value of 0.961 was 

evaluated as 'excellent. ’ Therefore, the potential habitat prediction results of this study were reliable 

based on the relatively high model accuracy, and we believe that key habitats were predicted even in 

areas where no emergence points were entered. 

This study is significant in that it is the first to establish a national-level species distribution 

model for Luciola unmunsana, which is declining owing to industrialization and urbanization, and to 

predict potential habitats by applying various environmental variables reflecting ecological 

characteristics, thereby providing basic data for the conservation and utilization of Korea's major 

emotional insect and environmental indicator species. In particular, it can be utilized as basic data for 

academic and practical use because it derives more reliable prediction results by combining a single 

model, MaxEnt, and a multiple-model, ensemble model. However, to improve the ease and accuracy 

of future species distribution models, it will be necessary to build additional emergence point data 

and utilize them for model construction. In addition, the spatial resolution was re-projected to 1 km 

× 1 km to analyze South Korea. Consequently, a single pixel may contain various environmental and 

topographical characteristics, and some details may have been lost. Therefore, future studies with 

regional spatial coverage may need to input variables with higher spatial resolutions to improve the 

precision and predictive power of the model. 
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Appendix A 

Table A1. Ecological Climate Index List (O'Donnell and Ignizio, 2012)[23]. 

Separation Description Unit 

Bio01 Average annual temperature ℃ 

Bio02 Average daily temperature range ℃ 

Bio03 Isothermality % 

Bio04 Temperature seasonality (standard deviation) ℃ 

Bio04a Temperature seasonality (CV) % 

Bio05 Highest temperature in warmest month ℃ 

Bio06 Lowest temperature in the coldest month ℃ 

Bio07 Annual temperature range ℃ 

Bio08 Average temperature in the wettest quarter ℃ 

Bio09 Average temperature of the driest quarter ℃ 

Bio10 Average temperature in warmest quarter ℃ 
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Bio11 Average temperature of the coldest quarter ℃ 

Bio12 Annual precipitation ㎜ 

Bio13 Precipitation in the wettest month ㎜ 

Bio14 Precipitation in the driest month ㎜ 

Bio15 Precipitation seasonality % 

Bio16 Precipitation in wettest quarter ㎜ 

Bio17 Dryest quarter precipitation ㎜ 

Bio18 Precipitation in warmest quarter ㎜ 

Bio19 Coldest quarter precipitation ㎜ 

Appendix B 

Table A2. MaxEnt and Ensemble Model Potential Habitat Key Predicted Regions. 

Models Metropolitan City- State City - County - District 

MaxEnt 

Gangwon-do Yangyang-gun 

Gyeonggi-do Gapyeong-gun, Yangpyeong-gun 

Chungcheongbuk-do Yeongdong-gun 

Chungcheongnam-do Geumsan-gun 

Jeollabuk-do Muju-gun, Wanju-gun, Jinan-gun 

Jeollanam-do 

Gangjin-gun, Gwangyang-si, Damyang-

gun, Boseong-gun, Suncheon-si,Yeongam-

gun, Jangseong-gun, Jangheung-gun 

Gyeongsangbuk-do 
Mungyeong City, Cheongdo County, 

Cheongsong County, Pohang City 

Gyeongsangnam-do Yangsan-si, Hadong-gun 

Ulsan Metropolitan City Ulju-gun 

Busan Metropolitan City Gijang-gun 

Ensemble 

Gangwon-do Hwacheon-gun 

Chungcheongbuk-do Yeongdong-gun, Okcheon-gun 

Chungcheongnam-do Geumsan-gun, Nonsan-gun 

Jeollabuk-do 
Muju-gun, Sunchang-gun, 

Wanju-gun, Jinan-gun 

Jeollanam-do 

Gwangyang-si, Gurye-gun, Naju-si, 

Damyang-gun, Yeongam-gun, 

Jangseong-gun, Jangheung-gun 

Gwangju Metropolitan City Dong-gu 

Gyeongsangbuk-do Cheongdo-gun 

Gyeongsangnam-do Goseong-gun, Yangsan-si, Hadong-gun 

Ulsan Metropolitan City Ulju-gun 

Busan Metropolitan City Gijang-gun 

Appendix C 

Table A3. Contribution and Importance of MaxEnt Variables. 

Input variables Percentage contribution (%) Permutation Importance (%) 

Bio01 0.9 1.4 

Bio02 0.3 0.2 

Bio04 4.5 6.5 

Bio12 11.6 6.6 
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Bio14 4.2 4.0 

Bio15 1.8 1.0 

Slope 2.2 0.7 

Shaded Corridor 1.4 2.1 

Hydrologic Network 

Analysis Map 
21.9 19.9 

Land cover map 26.0 23.7 

EVI 25.1 34.0 

Table A4. Importance by the ensemble model variable. 

Input variables Permutation Importance (%) 

Bio01 5.4 

Bio02 0.8 

Bio04 1.6 

Bio12 10.1 

Bio14 1.0 

Bio15 1.8 

Slope 5.3 

Shaded Corridor 0.8 

Hydrologic Network 

Analysis Map 
25.6 

Land cover map 8.3 

EVI 39.3 
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