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Abstract

This study aimed to predict the potential habitats of Luciola unmunsana using a species distribution
model. Luciola unmunsana is a species found only in South Korea, and its distribution and
conservation are relatively poorly studied because females lack wings and are difficult to collect
owing to their low mobility. Therefore, we predicted the potential habitats of Luciola unmunsana
across South Korea using a single model, maximum entropy (MaxEnt), and a multi-model ensemble
model. The points of emergence were based on public data and previous studies from the Jeonbuk
Green Environment Support Center (JGESC), Global Biodiversity Information Facility (GBIF), and
National Institute of Biological Resources (NIBR). Among the input variables, the ecoclimate index
built through the Shared Socioeconomic Pathways (55P) scenario-based detailed climate change data
was utilized for climate variables, and non-climate variables were built to reflect the ecological
characteristics of Luciola unmunsana, such as topography, land cover, and Enhanced Vegetation Index
(EVI). The main findings of this study are summarized below. First, EVI, hydrological network
analysis, land cover, and annual precipitation (Biol2) were found to be influential in predicting
potential habitats for Luciola unmunsana in both models. Second, by overlaying the predicted potential
habitats and highly significant variables, we found that areas with high vegetation vigor within the
forest, proximity to water systems, and relatively high annual precipitation, which can maintain
stable humidity, are potential habitats for Luciola unmunsana. Third, field visits and literature surveys
to predicted potential habitat sites, including Geumsan-gun, Chungcheongnam-do, Yeongam-gun,
Jeollabuk-do, Mudeungsan, Gwangju-si, Korea, and Gijang-gun, Busan-si, Korea, confirmed the
occurrence of Luciola unmunsana. This study is significant because it is the first to construct a national-
level species distribution model for Luciola unmunsana, which is declining due to industrialization
and urbanization, and to predict potential habitats by applying various environmental variables
reflecting ecological characteristics, thus providing basic data for the conservation and utilization of
this emotional insect and environmental indicator species. In this study, the spatial resolution of the
model was 1 x 1 km for national-level studies. It is necessary to increase the accuracy of the model by
including variables with higher spatial resolution when conducting regional-level studies in the
future.

Keywords: luciola unmunsana; species distribution model; MAXENT; ensemble; ecoclimate indices;
topographic variables; EVI; potential habitat

1. Introduction

Fireflies have long been recognized as emotional insects that are familiar to humans because of
their ability to produce light [1]. They are also widely recognized as environmental indicator insects
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that can only survive in limited habitats and ecologically stable environments, indicating the extent
of environmental pollution [1,2,3]. However, due to reckless development, environmental
destruction, ecosystem disturbance, and landscape degradation caused by industrialization and
urbanization in modern society, their habitats are being damaged, and their populations and habitat
areas are decreasing rapidly [3,4,5]. In particular, the number and intensity of artificial light sources
are increasing, which reduces mutual recognition opportunities between females and males, thereby
decreasing the population [5,6,7]. Consequently, fireflies are increasingly valued as environmental
indicators of the extent of environmental pollution and the need for restoration [4].

The most commonly encountered fireflies in South Korea are Luciola lateralis, Lychnuris rufa,
and Luciola unmunsana; conservation studies have mainly focused on Luciola lateralis and Lychnuris
rufa [8]. Of these, Luciola unmunsana is endemic to South Korea [9] and is difficult to collect because
of its lack of inner wings and low mobility in females [6,10]; therefore, there is a relative lack of
research on its distribution and restoration compared to other firefly species in South Korea.

Currently, species distribution models are used in various studies, including biodiversity
assessment, protected area designation, habitat management and restoration, population or
community ecosystem modeling, and climate change prediction [11]. In particular, it provides
important information for conservation planning and management by identifying the geographical
distribution and properties of populations to identify priority areas to be protected or potentially
threatened areas to establish conservation plans and management measures [12,13] Maximum
Entropy (MaxEnt), a single model, is effective in modeling the potential distribution of rare and
endangered species by performing better in small sample sizes compared to other species distribution
modeling methods and is widely used in Korea and abroad because it has the advantage of estimating
the ecological status of species with only occurrence information [13,14]. However, when applying
single models alone, the accuracy of the models has been questioned because different algorithms of
single models lead to different predictions [15]. Therefore, ensemble models that integrate multiple
single models have recently been used, and have the advantage of minimizing the shortcomings of
single models and maximizing the advantages of reducing their uncertainties of single models
[11,13]. Relatedly, a number of studies have been reported that utilize MaxEnt and ensemble
models to predict potential habitat for specific species [11,16,17,18,19,20]. However, these prior
studies were conducted primarily for endangered or tree-damaging pest species, and few studies
have been conducted to predict potential habitats for species with emotional/cultural values and
environmental indicator properties, such as fireflies.

Regarding Luciola unmunsana habitat characteristics and restoration, the Daegu Gyeongbuk
Research Institute (2012) [21], the Daegu Provincial Environment Agency (2015) [22], and Kim (2015)
[8]. Some studies have been conducted by the Jeonbuk Green Environment Support Center (2021)
[23], Jeonbuk Green Environment Support Center (2022) [10], and Lim et al. (2022) [24]. However,
these studies analyzed specific occurrence points or limited administrative areas, and none were
analyzed at a national spatial scale.

Therefore, the aim of this study was to predict the potential habitats of Luciola unmunsana, a
major environmental indicator species in South Korea, by creating a species distribution model for
the entire country. It is believed that these results can be utilized as basic data for investigating the
occurrence of Luciola unmunsana in South Korea.

2. Materials and Methods

The spatial scope of this study was set to South Korea to predict the potential habitats for Luciola
unmunsana. The temporal range reflects a 30-year normal climate, which is known to be the optimal
sample size for reliable estimates [25].

In addition, we reviewed the environmental factors affecting Luciola unmunsana habitats from
previous studies and constructed eco-climatic indices, topographic variables, and land cover maps to
reflect them. The spatial resolution of all the variables was unified at 1 km x 1 km to ensure
consistency in the analysis.
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Potential habitat predictions were analyzed by creating MaxEnt models and ensemble models
using MaxEnt 3.4.4 and Rstudio 4.2.1. We analyzed the contribution and significance of the predicted
potential habitat and the variables affecting the habitat of Luciola unmunsana, and evaluated the
prediction accuracy of both models.

2.1. Building Input

2.1.1. Appearance Point Data

To build a species distribution model, we needed data on the target species' appearance points;
in this study, we obtained Luciola unmunsana appearance points from JGESC, GBIF (survey period
2000-2004), and NIBR [26]. In addition, we constructed GPS coordinates of the appearance points
presented in previous studies on Luciola unmunsana [8,22], and constructed GPS coordinates of 39
points in total (Figure 1).

Figure 1. Luciola unmunsana Appearance point

2.1.2. Ecological Climate Index

In general, the data for the Ecological Climate Index utilize global-scale input data [27] provided
by Worldcilm, Climatologies at high resolution for the Earth’s land surface areas (CHELSA), and
global climatologies for bioclimatic modeling (CliMond). However, to improve the accuracy of the
analysis, this study utilized ecoclimatic index data based on the shared socioeconomic pathway (SSP)
scenario [28] at a 1 km resolution produced by the Korea Rural Development Administration. It was
calculated by utilizing 20 indices (Bio01-Bio19) presented by O'Donnell and Ignizio (2012) [29] (Table
Al); as the temporal range of this study was set to 1981-2010, the analysis was conducted using the
ecological climate index data for that period.

When modeling using the Ecological Climate Index, a high correlation between variables can
reduce efficiency and adversely affect the interpretation of results [30, 31]. Therefore, to account for
the correlation between variables, multicollinearity was removed through an analysis using Pearson's
correlation coefficient. This is the most widely used statistic to measure the correlation between
variables on an equivalence/ratio scale [32]. In this study, multicollinearity was removed by using
Pearson's correlation coefficient in RStudio 4.3.3 to exclude variables with a high correlation of +0.85
or higher, resulting in the selection and analysis of Bio01, Bio02, Bio04, Bio12, Bio1l4, and Bio15.

2.1.3. Terrain Variables

In general, fireflies occur at high densities in low-slope sites [22]. These slopes are less prone to
soil runoff, allowing the accumulation of organic matter and moisture, which can lead to diverse
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vegetation [19]. In particular, fireflies prefer dark and shady environments and thrive in areas with
diffused light or short periods of sunlight [21]. Luciola unmunsana is also generally found in terrains
where stable humidity can be maintained, such as forest edges on gentle slopes, which tend to be
located near water resources, such as streams and ponds, or around broadleaf forest stands with
multi-layered vegetation that are often associated with agricultural ditches and streams [22,24,33].
Terrestrial snails, the main food source for Luciola unmunsana, are found in shady forests with little
direct sunlight or stable humidity [23].

Therefore, a Digital Elevation Model (DEM) with a resolution of 90mx90m was constructed in
CGIAR-CSI [34] to construct non-climatic variables affecting the habitat of Luciola unmunsana,
followed by slope and shade gradient analysis, and a water network analysis map was constructed
using the Environmental Big Data Platform [35] to construct variables on distance to water systems.

2.1.4. Land Cover Map

To reflect the land cover and use in Korea, we used WorldCover V2 2021, a 10m x 10m spatial
resolution land cover map provided by the European Space Agency (ESA) [36]. It is based on Sentinel-
1 and Sentinel-2, and has an overall accuracy of 76.7% [37].

The results of the Daegu Provincial Environment Agency (2015) [22] showed that Luciola
unmunsana occurred mainly in coniferous forests with mixed broadleaf trees, and in areas dominated
by coniferous forests. In addition, Luciola unmunsana is found in broadleaf forests, but its food source
is also found in forests such as bamboo forests and coniferous forests [10]. Therefore, in this study,
we utilized the map for tree cover among the classified items and included data for non-forested
areas, because it is believed that the response of potential habitats in non-forested areas will also
affect the prediction of potential habitats in forested areas.

2.1.5. Enhanced Vegetation Index (EVI)

As vegetation develops, dead leaves and octopuses accumulate on the surface, and
microorganisms in the soil decompose them, increasing the organic matter content [22]. This
increases water retention during rainfall, creating conditions for Luciola unmunsana larvae to live
under fallen leaves, octopuses, organic matter layers, and stones [22]. Therefore, in this study, the
Vegetation Index (VI) was additionally entered to reflect information on vegetation abundance and
vegetation vigor in the species distribution model.

The EVI is an index developed to correct for atmospheric conditions, water pipe effects, and
areas with high vegetation density and provides an improved vegetation index using atmospheric
correction factors, water pipe correction factors, and blue light values [38]. Compared to the
Normalized Difference Vegetation Index (NDVI), it reduces errors due to atmospheric residuals and
can be used more effectively in seasonal and process-based models of forest vegetation [39,40,41].
Therefore, in this study, EVI was used to construct a species distribution model.

To construct the EVI, we used monthly averaged values for 2022 from Moderate Resolution
Imaging Spectroradiometer (MODIS) [42, 43] satellite imagery.

2.2. Creation of Species Distribution Models

2.2.1. MaxEnt

The MaxEnt model is a machine learning model based on the Maximum Entropy Approach, first
introduced by Berger et al. (1996) [44], which can estimate values by maximizing incomplete data [19]
and shows high accuracy compared to other species distribution models that use only species
occurrence data [45,46,47]. It is also commonly used in species distribution modeling because it
represents linear non-parametric relationships between variables [48,49].

Although the parameters are set by default within MaxEnt, this does not always result in an
optimal model, and can result in a suboptimal model [50,51]. Therefore, it is necessary to analyze the
complexity of the model with different combinations of parameters to select a combination with a

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1658.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 June 2025 d0i:10.20944/preprints202506.1658.v1

5 of 15

lower complexity for modeling and optimizing the model. Two main selectable parameters affect the
model performance: Feature Class (FC) and Regularization Multiplier (RM) [52]. FC refers to a set of
mathematical transformations of the independent variables used in the model to optimize the model,
and there are five types: Linear (L), Quadratic (Q), Product (P), Hinge (H), and Threshold (T) [48,53].
RM is a numerical parameter that controls the strength of the FC used in the model and can reduce
or increase the ease of modeling [54,55]. The Akaike information criterion (AIC) value is a statistic
that quantifies the degree of discrepancy between the true and candidate models, reflecting the fit
and complexity of the model; the model with the minimum AICc value, delta AICc, equal to zero, is
considered the best model [56,57].

In this study, 60 models were generated using six FCs (L, LQ, H, LQH, LQHP, and LQHPT) and
10RMs (0.5, 1, 1.5, 2,25, 3, 3.5, 4, 4.5, and 5). In addition, MaxEnt 3.4.4 and ENMeval packages were
run together in Rstudio, K-fold was performed 10 times, and the model with a delta AICc value of '0'
was finally selected.

In the modeling settings, FC was selected as LQHP, RM was selected as 3, and 'Replicated run
type' was set to '‘Bootstrap' and repeated 10 times.

The maximum number of background points was set to 10,000, which was typically set to 10,000
if there were more than 10,000 background points [58]. In this study, 98,928 potential background
points were identified as available within the spatial scope of the study; therefore, they were set to
10,000, and the results were outputted using logistic output.

2.2.2. Ensemble Model

Ensemble models are a recently developed method for predicting species distributions that
combine multiple algorithms and statistical models to reduce the uncertainty of a single model. It has
been proposed to improve outcomes such as predicting the current distribution of species, patterns
of species richness, and species diversity [11,59,60]. It has the advantage of providing a variety of
validation methods for the model that can overcome the shortcomings of other commonly used
models, and is currently widely used [60].

To create an ensemble model for predicting the potential habitats of Luciola unmunsana, Rstudio
4.3.3 to conduct the analysis. The Biomod2 package was utilized within Rstudio 4.3.3, and in this
study, 39 emergence sites were used as background data to generate pseudo-absence data containing
1000 non-emergence sites.

We used six individual models to build the ensemble model: GLM, GBM, CTA, FDA, MARS,
and RF among the models provided by Biomod2. The selected models require the input of non-
abundance and abundance data and are known to be more accurate than models based on abundance
data alone [13].

2.3. Model Accuracy Verification

2.3.1. MaxEnt Model Accuracy Verification

To verify the accuracy of the MaxEnt model, an AUC test was performed. The AUC is a measure
of whether a true value is predicted by a true value or whether a false value is predicted by a true
value, and the accuracy is measured using the AUC value of the ROC curve [17,61]. In general, AUC
values are interpreted as 0.5-0.6 (failure), 0.6-0.7 (no value), 0.7-0.8 (poor), 0.8-0.9 (good), and <0.9
(excellent) [62].

2.3.2. Ensemble Model Accuracy Verification

Kappa, TSS, and AUC validations were performed to verify the accuracy of the ensemble
models. Kappa is used to determine the overall accuracy of model predictions by correcting the
possibility of classification matching by chance. It is mainly used to validate the accuracy of
occurrence and non-occurrence data [11]. In particular, it is widely used as a means of validating
models in ecology and validating the accuracy of land-cover classification using satellite imagery
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[11,63]. The value of the coefficient ranges between -1 and 1, with values of 0.2 or less indicating poor
agreement, values of 0.21 to 0.4 indicating moderate agreement, values of 0.41 to 0.6 indicating
moderate agreement, values of 0.61 to 0.8 indicating high agreement, and values of 0.81 to 1 indicating
perfect agreement [64].

The TSS value includes an assessment of the accuracy of both the occurrence and non-occurrence
data. Unlike the AUG, it is not dependent on the distribution area or shape of the target species and
is therefore often used to validate species distribution models [63]. A TSS coefficient value of 0.4 to
0.6 indicates ‘moderate agreement’, 0.6 to 0.7 indicates 'high agreement’, and 0.7 or higher indicates
‘near agreement' [12].

3. Results
3 1. Model Potential Habitat Prediction Results

3.1.1. MaxEnt Model Potential Habitat Prediction Results

To create a binomial map showing suitable and unsuitable habitats, the model was thresholded
through the Maximum training sensitivity plus specificity logistic threshold' value, and the threshold
value was 0.5872. After setting this threshold value using QGIS S/W 3.30.3, a binomial map was
created and masked with a map of tree cover from the land cover map to predict potential habitats
in the forest area (Table 1). The total area of potential habitat for Luciola unmunsana predicted using
the MaxEnt model was 8,785 k' (Table 2). The potential habitats are in the following order:
Jeollanam-do, Gyeongsangbuk-do, and Gyeongsangnam-do.

Table 1. MaxEnt and Ensemble Model Bidirectional Maps.

KXY

Gangwon

MaxEnt model Ensemble model

3.1.2. Ensemble Model Potential Habitat Prediction Results

To create a binomial map of the ensemble model, a probability map with values ranging from 0
to 1000 was thresholded. The threshold value that maximized the TSS value was used, and the
threshold value was derived as '659.” A bimodal map was created using QGIS S/W 3.30.3 as MaxEnt
and masked with the map of tree cover from the land cover map to predict the potential habitat in
the forest area (Table 1). The total area of potential habitat for Luciola unmunsana predicted using the
ensemble model was 6,971 ki’ (Table 2). Compared with the MaxEnt model, a relatively small area of
potential habitat was predicted, and the main areas of potential habitat were Jeollanam-do, Jeollabuk-
do, and Gyeongsangbuk-do, with Jeollanam-do as the new top distribution area.
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Table 2. MaxEnt and Ensemble Model Potential Habitat Key Predicted Regions.

Models Metropolitan City- State City - County - District
Gyeonggi-do 637
Gangwon-do 879
Chungcheongbuk-do 408
Chungcheongnam-do 402
MaxEnt Jeollabuk-do 988
Jeollanam-do 2,389
Gyeongsangbuk-do 1,436
Gyeongsangnam-do 1,646
Gyeonggi-do 205
Gangwon-do 441
Chungcheongbuk-do 348
Chungcheongnam-do 622
Ensemble ]Eollabul%—do 1,099
Jeollanam-do 1,885
Gyeongsangbuk-do 1,037
Gyeongsangnam-do 1,334

3.2. Contribution and Significance Analysis Results by Model Variable

3.2.1. Results of Contribution and Significance Analysis by MaxEnt Model Variables

When analyzing the contribution of each variable in the model, the land cover map contributed
the most (26%), followed by the EVI (25.1%), water network analysis (21.9%), and Bio12 (11.6% (Table
C1). In terms of importance, EVI had the highest contribution at 34%, followed by land cover (23.7
%), water network analysis (19.9 %), and Biol2 (6.6 %).

Among the response curves of each variable, the EVI, land cover, water network analysis, and
Bio12 were the most important (Table 3). The EVI response curve showed that the response gradually
increased as vegetation vigor increased, and the response curve of the water network analysis
showed that the response gradually decreased as the distance from the water system increased. In
addition, the response curve of the land-cover map showed that the response was relatively higher
in forested areas than in non-forested areas, and the response curve of Bio12 showed that the response
increased as annual precipitation increased.

Table 3. Variable-specific response curves.

Response of 1 to EVI Response of 1 to Landcovermap

E
2
2

00

000 005 010 015 020 025 030 035 040 045 050 055 Non-forest Forest
EVI Landcovermap

EVI Response Curves Land Cover Response Curve
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Response of 1 to Water network analysis map Response of 1 to Bio12

Iogistic output

0 100 200 300 00 500 800 700

. 1000 1500 2000 2500 3000
Water network analysis map

Bio12

Hydrography Response curve Bio 12 Response Curves

3.2.2. Importance Analysis Results by Ensemble Model Variable

The importance of each variable in the built model was the highest for EVI (39.3%), followed by
water network analysis (25.6%), Bio12 (10.1%), and land cover (8.3% (Table C2).
3.3. Model Accuracy Validation Results

3.3.1. MaxEnt Model Accuracy Validation Results

To determine the accuracy of the MaxEnt model implemented in this study, we used the AUC
test to determine potential habitat prediction performance (Figure 2). The accuracy of the AUC test
was 0.810, which is” good, indicating that the MaxEnt model implemented in this study had a
relatively good prediction performance.

Average Sensitivity vs. 1 - Specificity for 1

4 Mean (AUC=0.210) ®
Mean +i- one stdday ®
4 Random Prediction ®

o o o o
= m @~

Sensitivity (1 - Omission Rate)

o
L

0o 01 02 03 04 05 0.6 07 08 049 1.0
1 - Specificity (Fractional Predicted Area)

Figure 2. MaxEnt Model AUC Validation Results.

3.3.2. Ensemble Model Accuracy Validation Results

To evaluate the potential habitat prediction performance of the ensemble model implemented
in this study, Kappa, TSS, and AUC values were used to determine the accuracy (Table 4). The Kappa
value was 0.741, which indicates a high degree of agreement; the TSS value was 0.808, which indicates
near agreement; and the AUC value was 0.961, which indicates excellent prediction performance,
indicating that the ensemble model has a high level of prediction performance.

Table 4. Ensemble model sensitivity, specificity, and accuracy validation results.

Separation Sensitivity Specificity Accuracy
Kappa 76.316 96.196 0.741
TSS 89.474 91.304 0.808
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AUC 89.474 91.304 0.961

3.4. Key Variables and Potential Habitat Nesting Results

The variables with the highest importance in both models were the EVI, hydrographic network
analysis, land-cover maps, and Biol2. Therefore, the potential habitat area predicted by the model
was analyzed by overlaying the key variables with the predicted potential habitat area using the
model with the key variables with the highest importance in both models.

3.4.1. EVI and Predictive Potential Habitat Overlap Area Analysis

We overlaid the EVI with the predicted potential habitats from the MaxEnt and ensemble models
(Table 5) and found that both models predicted relatively large areas of potential habitats within the
0.4-0.5 range of vegetation vigor (Table 6). Values of EVI range from -1 to +1, and values in the 0.4-
0.5 range are generally considered to be areas of intermediate vigor and density of vegetation, which
can be categorized as low light forests with an understory vegetation [65]. These results are consistent
with the ecological characteristics of Luciola unmunsana, which prefers forest edges or low-light
forests where understory vegetation is developed and humidity remains stable [22,24,33].

Table 5. MaxEnt and Ensemble Model Predicted Potential Habitat Key Overlap Ranges within EVI Ranges.

R
RS

je] a
0:4:0_-5 v o ’, ) ,"‘. vA""‘~ - 0.4-0.5
I rotential habitat (Maxent) [ potential habitat (Ensemble) |
MaxEnt model Ensemble model
Table 6. MaxEnt and the ensemble model predicted the potential habitat area by EVI range.
Separation Range Predicted area of potential habitat (kn’)
<0.1 0
0.1~0.2 0
02~03 38
MaxEnt 03~04 2,468
04~05 6,225
0.5~0.6 51
0.6< 3
Ensemble <0.1 0
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01~0.2 7
02~0.3 84
03~04 3,048
04~0.5 3,819
0.5~0.6 13
0.6 < 0

3.4.2. Hydrographic Maps and Predictive Potential Habitat Overlap Analysis

Based on the results of the water network analysis, we overlaid the predicted potential habitat
from the MaxEnt and ensemble models (Table 7) and found that both models predicted relatively
large areas of potential habitat within a range of 0-100 m distance to water (Table 8). These results
suggest that proximity to water resources is an important environmental factor for Luciola unmunsana.
Areas in close proximity to water systems have stable soil and air humidity, which is consistent with
Luciola unmunsana's preference for moist environments [22,24,33]. These areas may also provide
suitable conditions for the colonization of land snails, the main food source for Luciola unmunsana,
which may contribute to the maintenance of stable populations of Luciola unmunsana.

Table 7. MaxEnt and ensemble model predictions of potential habitat within the scope of the hydrographic map

Key overlap areas.

KX
KY

< o
A o
. , e :
7 | 0m-100m i
LY «
., ¥ I Fotential habitat (Maxent) R« [ Potential habitat (Ensemble)
MaxEnt model Ensemble model

Table 8. MaxEnt and the ensemble model predicted the potential habitat area by the hydrologic network analysis

map extent.
Separation Range Predicted area of potential habitat (kn’)
<100 5,592
101 - 200 2,183
201 - 300 684
MaxEnt 301 - 400 285
401 - 500 34
501 - 600 4
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600 < 3
<100 5,404
101 - 200 1,057
201 - 300 327
Ensemble 301 - 400 163
401 - 500 20
501 - 600 0
600 < 0

3.4.3. Biol2 and Predictive Potential Habitat Overlap Area Analysis

We overlaid the predicted potential habitats from Biol2 with the MaxEnt and ensemble models
(Table 9) and found that both models predicted relatively large areas of potential habitats within the
1,500 mm-2,000 mm annual precipitation range (Table 10).

Table 9. MaxEnt and Ensemble Model Predicted Potential Habitat Key Overlap Ranges within Bio12 Ranges.

K3
KRy

B 1500 mm - 2,000 mm B 2 iy I 1500 mm - 2.000 mm

' ¥ v B rotential hasitat (MaxEnt ' N [ Potential habitat (Ensemble)
MaxEnt model Ensemble model

Table 10. MaxEnt and the ensemble model predicted the potential habitat area by the Biol2 range.

Separation Range Predicted area of potential habitat (km")
<500 0
500 - 1,000 0
1,000 - 1,500 668
1,500 - 2,000 5,768
MaxEnt
2,000 - 2,500 2,266
2,500 - 3,000 62
3,000 - 3,500 15
3,500 < 6
<500 0
Ensemble
500 - 1,000 0
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1,000 - 1,500 1,234
1,500 - 2,000 4,394
2,000 - 2,500 1,313
2,500 - 3,000 25
3,000 - 3,500 5
3,500 < 0

4. Discussion

This study utilized a single model, MaxEnt, and a multiple model, an ensemble model, to predict
the potential habitats of Luciola unmunsana. Importance analysis of the variables in both models
showed that the EVI, land cover, hydrological network analysis, and annual precipitation (Bio12)
were highly important. The response curve analysis of each variable showed that the response value
of the EVI increased with increasing vegetation vigor, and the water network analysis showed that
the response increased with increasing distance from the water system. In the case of land-cover
maps, the response was higher in forested areas than in non-forested areas, and the response
increased as annual precipitation increased.

Overlaying the highly significant variables with the predicted potential habitat, the EVI was 0.4
to 0,5, the distance from the water bodies was 0-100 m, and the annual precipitation was 1,500 mm-—
2,000 mm. Taken together, these results suggest that the most suitable areas for Luciola unmunsana
are those with forested vegetation and relatively close proximity to water systems, where humidity
is stable.

The predicted area of the potential habitat was found to be lower in the ensemble model (6,971
k' compared to 8,785 ki’ in the MaxEnt model. This result was likely due to the tendency of the
MaxEnt model to overestimate potential habitats, as in previous studies [66,67], and the fact that the
ensemble model only identified potential habitats where the predictions of all six models were used
to build the model overlap.

5. Conclusions

The aim of this study was to predict the potential habitats of Luciola unmunsana, a major
environmental indicator species in South Korea. To this end, we constructed the occurrence points of
Luciola unmunsana and predicted potential habitats using MaxEnt and ensemble models for South
Korea. To predict potential habitats, we reviewed the main environmental factors that affected the
habitat of Luciola unmunsana in previous studies and constructed them as variables for analysis.
Subsequently, the contribution and significance of the variables were evaluated, and the prediction
accuracy of the two models was verified.

The main findings of this study are as follows. First, both models showed that EVI, hydrological
network analysis, land cover, and annual precipitation (Biol2) were relatively influential in
predicting Luciola unmunsana potential habitats. The response curve analysis of MaxEnt showed that
the response value increased as the EVI increased, and the response tended to increase with
increasing distance from the water system. In the case of the land cover map, the response was higher
in forested areas and the response value increased with higher annual precipitation.

Second, we overlaid the predicted potential habitats with variables that showed high importance
in determining their distribution and found that areas with high vegetation vigor within the forest,
close proximity to water systems, and relatively high annual precipitation, which allows humidity to
remain stable, were analyzed as potential habitats for Luciola unmunsana. These results are consistent
with the ecological characteristics of Luciola unmunsana, which prefers forest edges or low-light
forests with developed understory vegetation and stable humidity [22,24,33], as well as the habitat
characteristics of its main food source, terrestrial snails [23].
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Third, field visits and literature surveys of sites predicted as potential habitats, but not existing
sites, such as Geumsan-gun, Chungcheongnam-do, Yeongam-gun, Jeollanam-do, Mudongsan
Mountain, Gwangju-si, Gwangju, and Gijang-gun, Busan, confirmed the occurrence of Luciola
unmunsana. As a result of the model accuracy verification, the MaxEnt model was evaluated as 'good,
" with an AUC value of 0.810. In addition, the ensemble model was evaluated as 'good’ with a Kappa
value of 0.741, a TSS value of 0.808, and a near agreement level, and the AUC value of 0.961 was
evaluated as 'excellent. ” Therefore, the potential habitat prediction results of this study were reliable
based on the relatively high model accuracy, and we believe that key habitats were predicted even in
areas where no emergence points were entered.

This study is significant in that it is the first to establish a national-level species distribution
model for Luciola unmunsana, which is declining owing to industrialization and urbanization, and to
predict potential habitats by applying various environmental variables reflecting ecological
characteristics, thereby providing basic data for the conservation and utilization of Korea's major
emotional insect and environmental indicator species. In particular, it can be utilized as basic data for
academic and practical use because it derives more reliable prediction results by combining a single
model, MaxEnt, and a multiple-model, ensemble model. However, to improve the ease and accuracy
of future species distribution models, it will be necessary to build additional emergence point data
and utilize them for model construction. In addition, the spatial resolution was re-projected to 1 km
x 1 km to analyze South Korea. Consequently, a single pixel may contain various environmental and
topographical characteristics, and some details may have been lost. Therefore, future studies with
regional spatial coverage may need to input variables with higher spatial resolutions to improve the
precision and predictive power of the model.
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Appendix A

Table Al. Ecological Climate Index List (O'Donnell and Ignizio, 2012)[23].

Separation Description Unit
Bio01 Average annual temperature °C
Bio02 Average daily temperature range °C
Bio03 Isothermality %
Bio04 Temperature seasonality (standard deviation) °C
Bio0O4a Temperature seasonality (CV) %
Bio05 Highest temperature in warmest month °C
Bio06 Lowest temperature in the coldest month °C
Bio07 Annual temperature range °C
Bio08 Average temperature in the wettest quarter °C
Bio09 Average temperature of the driest quarter °C
Biol0 Average temperature in warmest quarter °C
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Bioll Average temperature of the coldest quarter °C
Biol2 Annual precipitation mm
Biol3 Precipitation in the wettest month mm
Biol4 Precipitation in the driest month mm
Biol5 Precipitation seasonality %
Biol6 Precipitation in wettest quarter mm
Biol7 Dryest quarter precipitation mm
Biol8 Precipitation in warmest quarter mm
Bio19 Coldest quarter precipitation mm
Appendix B

Table A2. MaxEnt and Ensemble Model Potential Habitat Key Predicted Regions.

Models Metropolitan City- State City - County - District
Gangwon-do Yangyang-gun
Gyeonggi-do Gapyeong-gun, Yangpyeong-gun
Chungcheongbuk-do Yeongdong-gun
Chungcheongnam-do Geumsan-gun
Jeollabuk-do Muju-gun, Wanju-gun, Jinan-gun
Gangjin-gun, Gwangyang-si, Damyang-
MaxEnt Jeollanam-do gun, Boseong-gun, Suncheon-si, Yeongam-
gun, Jangseong-gun, Jangheung-gun
Gyeongsangbuk-do Mungyeong City, Cheongdo Cou‘nty,
Cheongsong County, Pohang City
Gyeongsangnam-do Yangsan-si, Hadong-gun
Ulsan Metropolitan City Ulju-gun
Busan Metropolitan City Gijang-gun
Gangwon-do Hwacheon-gun
Chungcheongbuk-do Yeongdong-gun, Okcheon-gun
Chungcheongnam-do Geumsan-gun, Nonsan-gun
Jeollabuk-do Muju—gun, Sunc‘:hang—gun,
Wanju-gun, Jinan-gun
Gwangyang-si, Gurye-gun, Naju-si,
Ensemble Jeollanam-do Damyang-gun, Yeongam-gun,
Jangseong-gun, Jangheung-gun
Gwangju Metropolitan City Dong-gu
Gyeongsangbuk-do Cheongdo-gun
Gyeongsangnam-do Goseong-gun, Yangsan-si, Hadong-gun
Ulsan Metropolitan City Ulju-gun
Busan Metropolitan City Gijang-gun
Appendix C

Table A3. Contribution and Importance of MaxEnt Variables.

Input variables

Percentage contribution (%)

Permutation Importance (%)

Bio01 0.9
Bio02 0.3
Bio04 4.5
Biol2 11.6

1.4
0.2
6.5
6.6
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Biol4 42 4.0

Biol5 1.8 1.0

Slope 22 0.7
Shaded Corridor 1.4 2.1
Hydrologic Network 1.9 199

Analysis Map

Land cover map 26.0 23.7
EVI 25.1 34.0

Table A4. Importance by the ensemble model variable.

Input variables Permutation Importance (%)
Bio01 5.4
Bio02 0.8
Bio04 1.6
Biol2 10.1
Biol4 1.0
Biol5 1.8
Slope 53

Shaded Corridor 0.8
Hydrologic Network 5.6

Analysis Map )
Land cover map 8.3
EVI 39.3
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