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Simple Summary: In silico methods have revolutionized drug development by enabling quick and 

cost‐effective  assessments,  but  they  face  limitations  in  predicting  complex  quantum‐level 

relationships,  requiring  validation  with  empirical  data.  This  review  examines  the  correlation 

between computational Gibbs energy  (ΔG) predictions and  in vitro  IC50 values  in MCF7 breast 

cancer  cells.  Contrary  to  theoretical  expectations  of  a  direct  relationship,  findings  reveal  no 

consistent  linear correlation due  to biological variability,  target‐specific  responses, and differing 

experimental  conditions.  To  improve  predictive  accuracy  and  drug  development,  integrated 

approaches  combining  computational  and  experimental  data,  considering  factors  like  chemical 

metabolism, cellular permeability, and target selectivity, are recommended. 

Abstract:  Background:  In  silico methods  have  transformed  the  field  of  drug  development  by 

allowing quick and cost‐efficient assessment of prospective  therapeutic substance. Nevertheless, 

these  computational  algorithms  encounter  constraints  when  it  comes  to  predict  the  complex 

relationships existing at  the quantum  level,  therefore requiring  thorough validation using actual 

data. Aims of Study: The aim of  this review was  to  investigate  the correlation between  in silico 

predictions of Gibbs energy  (ΔG) and  in vitro  IC50 values  throughout studies performed on  the 

MCF7 breast cancer cell line. Methodology: This review provides a systematic approach to collect 

relevant literature by employing the inclusion and exclusion criteria. Results: Experimental proof 

obtained from  investigations on MCF7 cells  indicate that, contrary to theoretical predictions of a 

direct relationship between ΔG and IC50 values, there is an absence of a consistent linear association 

among all the chemicals and protein targets that were examined. These contradictions arise due to 

factors such as variations in biology, particular responses to the target, and differences in conditions 

for  experimentation.  To  enhance  the  accuracy  of  predictions  and  optimize  drug  development 

processes, it is crucial to employ integrated methodologies that combine computational predictions 

with  empirical  data.  These  approaches  should  take  into  account  chemical metabolism,  cellular 

permeability, and target selectivity. Conclusion: In conclusion, this review demonstrates no linear 

correlation  between Gibbs  energy values  and  IC50 values  in MCF7  cell  studies.  Future  studies 

should focus on specific cell lines and receptors, under well‐defined experimental conditions and 

parameters, to enhance predictive accuracy and reliability in drug discovery. 
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1. Introduction 

Computational  chemistry  has  become  powerful  tools  in  the  field  of  drug  discovery  and 

development,  fundamentally  transforming  the  process  by  which  researchers  find  and  enhance 

prospective medicinal medicines. Computational  techniques  enable  the  simulation  and  study  of 

drug‐receptor  interactions,  making  it  possible  to  screen  large  chemical  libraries  quickly  and 

efficiently. In silico techniques greatly accelerate the discovery of new drugs by accurately predicting 

the binding affinity and stability of drug candidates, hence reducing the time and money required 

for traditional experimental procedures. [1–3] 

In silico approaches possess impressive capabilities, yet they are inherently limited in terms of 

their accuracy in predicting. The complicated principles of quantum physics, which drug molecules 

work  inside due  to  their  small dimensions,  are not  fully  captured  by most  computational  tools. 

Despite the use of modern techniques to make predictions at the quantum level, the quantum realm 

remains inherently unpredictable, which introduces a level of uncertainty to the simulation findings. 

The  unpredictability  of  drug  candidatesʹ  behavior  in  biological  systems  poses  a  barrier  to  the 

reliability of in silico approaches in accurately predicting their outcomes. [4,5] 

In order to improve the reliability and strength of in silico approaches, it is crucial to conduct 

thorough data  verification  and  validation. The  integration  of  empirical data with  computational 

predictions is essential for enhancing these models and ensuring their predictive capability. Through 

a thorough comparison of computer‐generated results with actual experimental results, researchers 

can detect inconsistencies, enhance algorithms, and ultimately create more precise and dependable 

computational tools for the process of discovering new drugs. [6,7] 

Several published research have examined the relationship between in silico (computer‐based) 

and  in  vitro  (laboratory‐based)  outcomes,  although  they  frequently  report  a  lack  of  consistent 

correlation.  These  findings  emphasize  the  complex  relationships  and  difficulties  involved  in 

converting computer predictions into biological actualities. This discrepancy highlights the need for 

further  focused  research  to  better  comprehend  the  processes  that  contribute  to  the  observed 

differences and to improve the accuracy of prediction of in silico approaches. [5,6,8,9] 

This work  is driven by  the necessity  for more  accurate  and dependable  associations,  and  it 

specifically  focuses on the development of drugs that combat breast cancer. Our study  intends to 

reduce variations by focusing primarily on the MCF‐7 cell line in laboratory conditions and precisely 

investigating protein targets that are expressed or dysregulated  in breast cancer. This approach  is 

important due to the widespread usage of in silico technologies in breast cancer research. We utilize 

IC50 values obtained from  in vitro experiments to directly quantify the cytotoxic doses of the test 

compounds  and  examine  their  relationship  with  Gibbs  energy  values  derived  from  in  silico 

investigations. This approach is founded on the theoretical assumption that there should be a direct 

link  between  IC50  and  Gibbs  energy  values.  This  correlation  allows  for  a  more  nuanced 

comprehension of the connection between computational predictions and experimental results in the 

development of drugs for breast cancer. 

2. Methodology 

This review article employs a systematic methodology to gather relevant literature, ensuring a 

focused discussion on the correlation between IC50 values and Gibbs energy (ΔG) in MCF7 cell line 

studies. A structured search strategy using specific keywords such as ʺIn Silico,ʺ ʺIn Vitro,ʺ ʺMCF7,ʺ 

and ̋ breast cancerʺ was applied to identify pertinent studies. Inclusion criteria mandated that studies 

provide both in vitro and in silico data, perform cytotoxicity assays on MCF7 cell lines, and conduct 

molecular docking  studies  targeting proteins  relevant  to breast  cancer. Only  studies  focusing on 

single  compounds were  included,  excluding  those  on multi‐compound  extracts.  This  approach 

ensured the collection of high‐quality, relevant research papers, all of which provided comprehensive 

in vitro cytotoxicity data and  in silico molecular docking studies. The consistent use of MCF7 cell 

lines across the selected studies facilitated a detailed analysis of the correlation between IC50 values 

and ΔG, providing a robust foundation for this review. 
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3. Molecular Docking Simulation in Drug Discovery 

3.1. Molecular Docking Simulations and Their Role in Drug Design 

Molecular docking simulations have emerged as a fundamental methodology in drug design, 

providing a computational approach to forecast the atomic‐level interactions between tiny chemicals 

(ligands) and biological molecules, typically proteins. This enables researchers to virtually evaluate 

the manner  in which a prospective medication candidate could attach  itself  to a particular  target 

protein that is linked to a certain disease. Important factors involve the prediction of binding affinity, 

where docking software calculates the strength of the contact between a ligand and a protein, aiding 

in the identification of molecules with strong affinity that are essential for the efficiency of drugs. In 

addition, docking simulations offer valuable information about the binding modes, which unveil the 

precise orientation and conformation of the ligand when it is attached to the protein. This knowledge 

is  helpful  in  the  process  of  lead  optimization.  Virtual  screening  relies  on  this methodology  to 

efficiently  screen  large  collections  of  prospective  drug  candidates  using  computer  simulations, 

resulting in a substantial reduction in time and resources compared to traditional high‐throughput 

screening methods. After identifying promising drug candidates, docking simulations can be used to 

enhance  their  structure  in order  to  improve  their  ability  to bind  to  specific  target proteins. This 

process involves iteratively refining the ligandʹs fit for the target protein, hence increasing its binding 

affinity  and  selectivity.  In  addition,  docking  simulations  provide  valuable  insights  into  the 

mechanism of action by illustrating the precise atomic‐level interactions between a drug candidate 

and  the  target  protein.  This  understanding  is  essential  for  comprehending  the  medicationʹs 

mechanism and possible adverse effects. Nevertheless, there are certain constraints to consider. One 

such limitation is the issue of accuracy, as the reliability of predictions relies heavily on the quality of 

both the protein structure and the docking software employed. Additionally, there is a limitation in 

terms of dynamics, as the process of docking often portrays an interaction in a fixed state, when in 

reality,  proteins  and  ligands  are  capable  of  flexibility  and  shape  alteration. Although  there  are 

limitations, molecular docking simulations are a potent tool that has transformed the field of drug 

discovery. They provide a  rapid and cost‐efficient method  to evaluate potential drug candidates, 

thereby expediting the development of novel therapeutics for diverse ailments. [10–12]. 

3.2. Overview of How Simulations Provide Insights into Molecular Behavior 

The  realm of molecules, characterized by complicated  interplay of  forces and  interactions,  is 

frequently  too  little  and  delicate  to  be  directly  observed.  Computer  simulations  are  effective 

instruments for revealing the intricacies of molecular behavior. They function as virtual laboratories, 

enabling  researchers  to modify  and  examine molecules  at  the  atomic  scale. There  are  two main 

categories of simulations: Molecular Dynamics (MD) simulations and Monte Carlo (MC) simulations. 

Molecular  dynamics  (MD)  simulations  are  akin  to microscopic  films,  as  they  trace  the  paths  of 

individual  atoms  throughout  time,  unveiling  alterations  in molecular  structure,  protein  folding 

routes, and the kinetics of chemical reactions. On the other hand, Monte Carlo simulations employ a 

statistical methodology by randomly selecting various arrangements and determining their energies 

in order  to  investigate  thermodynamic characteristics, phase changes, and  the binding of  ligands. 

Simulations  surpass  the  constraints  of  experiments  by  investigating  severe  situations,  offering 

intricate information at the atomic  level, and demonstrating the ability to forecast material design 

and  drug  development. Nevertheless,  these models  have  several  drawbacks  such  as  substantial 

computing expenses, reliance on model precision, and frequently shorter timeframes in comparison 

to  real‐world phenomena.  Simulations have  the  ability  to  alter  our  comprehension  of molecular 

behavior, providing distinctive perspectives  on  the dynamics,  interactions,  and  characteristics  of 

molecules. They are highly valuable tools in various domains such as medicine, materials science, 

chemistry, and physics. [13]. 
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3.3. The Use of Molecular Docking Simulation on Anti Breast Cancer Drug Design and Development 

Molecular docking simulations have emerged as a helpful tool in the battle against breast cancer, 

expediting the process of designing and developing novel anti‐cancer medications. The progression 

of  breast  cancer  is  frequently  dependent  on  the  presence  of  the  estrogen  receptor  (ER)  protein. 

Molecular docking is a vital technique used to identify prospective ER ligands by virtually screening 

collections of candidate molecules. This process aims to identify compounds that are anticipated to 

have a strong affinity for the ER binding pocket. This enables the rapid  identification of potential 

medication candidates that have the ability to disrupt estrogen signaling and hinder the proliferation 

of  cancer  cells.  In  addition,  docking  simulations  have  the  ability  to  specifically  target  different 

subtypes of  the  estrogen  receptor,  such  as ERα  and ERβ. This  enables  the development of more 

precise medicines that have fewer adverse effects. In addition to ER‐positive breast cancer, docking 

simulations can be used to target other signaling pathways that are utilized by cancer cells and to 

block  enzymes  that  are  essential  for  cancer  growth.  These  simulations  enhance  drug  design  by 

improving the structure of drug candidates to better match the binding pocket of the target protein. 

This results  in more powerful and specific medications. Additionally,  the simulations predict any 

unintended side effects to prevent unpleasant consequences. Nevertheless, docking simulations are 

subject  to  some  constraints,  including  their  ability  to  only  provide  a  fixed  representation  of 

interactions and their reliance on the accuracy of protein structures and docking software. Molecular 

docking simulations are transforming the field of anti‐breast cancer drug design by facilitating virtual 

screening, identifying targets, and optimizing leads. This provides a potent tool in the continuous 

fight against breast cancer, despite the obstacles faced. [14–17]. 

4. In‐Vitro Studies in Drug Discovery 

4.1. Explanation of In‐Vitro Experiments and Their Significance 

In vitro  investigations are  essential  in  the  initial  stages of drug discovery as  they provide a 

controlled  setting  to  investigate  the  interaction between prospective  therapeutic  compounds  and 

biological  targets.    These  studies  include  a  wide  variety  of  tests  aimed  at  evaluating  the 

effectiveness, strength, specificity, harmfulness, and pharmacokinetic characteristics of a potential 

medicine.    Enzyme inhibition assays can be used to quantify a compoundʹs capacity to bind to and 

hinder the activity of an enzyme linked with a disease. On the other hand, receptor binding assays 

assess the compoundʹs attraction to a particular cellular receptor.    Utilizing cultured cells or isolated 

tissues in in vitro models allows researchers to examine the effects of a medicine on cellular viability, 

signal  transduction  pathways,  and  specific  disease  characteristics.    Moreover,  in  vitro  ADME 

(absorption, distribution, metabolism, and  excretion)  studies have  the ability  to  forecast a drugʹs 

bioavailability,  likelihood  of  drug‐drug  interactions,  and  elimination  from  the  body.    The 

importance  of  in  vitro  research  rests  in  their  capacity  to  efficiently  evaluate  a  large  number  of 

therapeutic candidates, pick promising  leads  for further advancement, and detect potential safety 

issues before moving on to more intricate in vivo trials.    Although in vitro models may not possess 

the complete intricacy of a living organism, they offer essential insights that direct the drug discovery 

process and facilitate the creation of safe and effective treatments. [18–20]. 

4.2. Common Methodologies Used in In‐Vitro Studies 

Drug molecules  are  analyzed  using  a wide  range  of methods  in  laboratory  investigations  to 

examine their potential therapeutic effects.    Cell‐based assays are commonly used to evaluate several 

aspects of drug activity by exploiting cultivated cells.    The methods used to assess the effectiveness of 

drugs include: (1) Cytotoxicity assays, which measure cell death or proliferation when exposed to the 

drug;  (2) Enzyme  activity  assays, which quantify  the drugʹs  ability  to  inhibit or  activate  a  specific 

enzyme target; (3) Receptor binding assays, which determine the drugʹs affinity and selectivity for a 

specific cellular receptor; (4) Reporter gene assays, which monitor changes in gene expression caused 

by the drug; and (5) Cellular signaling assays, which evaluate the drugʹs impact on signal transduction 

pathways.    Surface  plasmon  resonance  (SPR)  and  isothermal  titration  calorimetry  (ITC)  are 
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biophysical techniques that accurately determine the binding affinity of medicines and their targets.   

In addition, cell‐free assays that utilize pure enzymes or separated proteins provide a quick evaluation 

of  a  drugʹs  interaction with  its  specific molecular  target.    Moreover,  in  vitro ADME  (absorption, 

distribution, metabolism, and excretion) experiments employ specialized methodologies to forecast the 

pharmacokinetic characteristics of a medicine.    The choice of these approaches relies on the particular 

drug target, intended result, and stage of drug discovery, collectively offering a thorough assessment 

of a drug moleculeʹs potential as a therapeutic agent. [21–23]. 

4.3. Importance of Reliable In‐Vitro Data for Predicting Drug Behavior 

Accurate  in  vitro  data  plays  a  crucial  role  in  forecasting  how  drugs will  behave  in  living 

organisms,  serving  as  a  necessary  link  between  initial  discovery  and  successful  clinical  trials.   

Firstly, the use of strong and reliable in vitro data enables the rapid screening of large collections of 

prospective drug candidates, effectively identifying those that have the desired ability to bind to and 

selectively interact with the target molecule. This greatly decreases the amount of effort and money 

allocated to compounds that are unlikely to be successful.    Furthermore, in vitro experiments offer 

significant insights into the mechanism of action of a drug, clarifying its contact with the target and 

the subsequent cellular response. An essential aspect of this process is to comprehend the underlying 

mechanisms, which is vital for enhancing the effectiveness of primary chemicals and anticipating any 

possible unintended consequences.   Moreover, obtaining dependable  in vitro data  regarding  the 

ADME (absorption, distribution, metabolism, and excretion) properties of a drug aids in evaluating 

its  bioavailability,  potential  for  drug‐drug  interactions,  and  elimination  from  the  body.  This 

information  is  crucial  for making  informed  decisions  about  the  drugʹs  formulation  and  dosage 

strategies.    Although in vitro models cannot completely mimic the intricacies of a living organism, 

they provide a regulated and repeatable setting to produce statistically meaningful data. This data 

may then be used to make more confident predictions about how drugs would behave in a living 

organism. This ultimately enhances the rate of success in drug discovery, resulting in the creation of 

safer and more effective treatments. [24–26]. 

4.4. In‐Vitro Cytotoxicity Study in Anti Breast Cancer Drug Discovery and Development 

In the relentless quest for novel weapons against breast cancer, in‐vitro cytotoxicity assays play 

a  crucial  role  in  the  initial  phases  of  drug  discovery  and  development.  These  assays  provide  a 

controlled setting to evaluate the potential efficacy of new drug candidates by examining their ability 

to kill breast  cancer  cells. These assays assess  the  capacity of a potential  treatment  to hinder  the 

development or survival of breast cancer cells by employing  laboratory‐grown cultures of human 

breast  cancer  cell  lines  that  reflect  several  subtypes  of  the  disease.  The medication  candidate  is 

administered  to  the grown cells at different concentrations. Following  incubation, cell viability  is 

assessed using techniques such as the MTT test, XTT assay, cell counting, and Annexin V/PI staining. 

The  advantages  of  these  assays  encompass  their  capacity  for  high‐throughput  analysis,  cost‐

effectiveness, and ability to generate consistent outcomes in a controlled setting, enabling the early 

detection  of  potential  drug  candidates.  Nevertheless,  there  are  certain  constraints  such  as  the 

restricted intricacy and physiological significance of cell lines, as well as apprehensions regarding the 

drugʹs specificity towards cancer cells as opposed to healthy cells. Although there are difficulties, in‐

vitro cytotoxicity assays play a vital role in drug development by offering initial information on a 

medicationʹs  capacity  to  specifically  attack  and  destroy  cancer  cells.  This,  in  turn,  facilitates 

subsequent in‐vivo investigations and clinical trials. In addition to their role in initial screening, these 

assays  are  valuable  for  investigating  pharmacological  mechanisms  of  action,  assessing  the 

effectiveness of combination therapy, and finding potential candidates capable of overcoming drug 

resistance. In‐vitro cytotoxicity tests play a crucial role in the process of discovering drugs to combat 

breast cancer, making a substantial contribution to the battle against this destructive illness. [27–30]. 
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5. Basic Theory of the Correlation Between In‐Vitro and In‐Silico Study 

5.1. Theoretical Correlation Between Gibbs Energy and IC50 Values 

In the field of drug development, the Gibbs free energy (ΔG) derived from molecular docking 

simulations is frequently employed as a measure of the strength of interaction between a ligand (such 

as a drug molecule) and its target protein. The fundamental concept states that a decrease in ΔG value 

is indicative of a higher binding affinity. The reason for this is that the Gibbs free energy shift indicates 

the  spontaneity of  the  binding process. A greater negative  ΔG value  indicates  a more  favorable 

interaction. 

Conversely,  the half‐maximal  inhibitory concentration  (IC50) quantifies  the effectiveness of a 

molecule  in  suppressing  a  certain  biological  or metabolic  activity.  The  IC50  value  denotes  the 

concentration of the drug necessary to hinder 50% of the target activity. In theory, a drug that has a 

high binding affinity (shown by a larger negative ΔG) should need a smaller dose to accomplish the 

same degree of inhibition, leading to a lower IC50 number. 

The correlation between ΔG and IC50 can be estimated using the following equation: The change 

in Gibbs free energy (ΔG) can be calculated using the equation ΔG = RT ln (IC50), where R is the gas 

constant  and  T  is  the  temperature.  R  represents  the  gas  constant,  whereas  T  represents  the 

temperature measured in Kelvin. This equation demonstrates a negative correlation: if the value of 

ΔG decreases, the IC50 values should also fall, indicating a higher level of potency. [31–35]. 

6. Development of Anti Breast Cancer Agent: In Silio and In Vitro Studies 

Table 1. In vitro cytotoxic studies of several compounds on the MCF‐7 cell line and molecular docking 

studies on several proteins, receptors, and enzymes with up‐down regulation on breast cancer. 

No  Compound test 
In vitro 

target 
In silico target 

IC50 

(μM) 

Gibbs Energy/Internal Energy 

(Kcal/mol) 
References 

1  5‐Pentylresorcinol    MCF7  BRCA1  919,44  ‐3,24  [36] 

2  1,3‐diynyl‐noscapinoids (Derivat 20)  MCF7  Tubulin  27,30  ‐6,70  [37] 

3  1,3‐diynyl‐noscapinoids (Derivat 21)  MCF7  Tubulin  18,70  ‐7,29  [37] 

4  1,3‐diynyl‐noscapinoids (Derivat 22)  MCF7  Tubulin  12,70  ‐7,47  [37] 

5  spirooxindoles (Derivat 9A)  MCF7  EGFR  6,47  ‐10,72  [38] 

6  Disogenin  MCF7  IGF1R  29,06  ‐8,60  [27] 

7  1‐Formyl‐2‐Pyrazolines    MCF7  EGFR‐TK  82,87  ‐7,90  [39] 

8  2‐(5,6‐dicyano‐1H‐imidazo[4,5‐b]pyrazin‐2‐yl)‐N‐phenylbenzamides  MCF7  Aurora Kinase  9,70  ‐10,50  [40] 

9  Adapalen  MCF7  ARPBCC  12,00  ‐10,20  [41] 

10 
(2R)‐2‐((S)‐sec‐butyl)‐5‐oxo‐4‐(2‐oxochroman‐4‐yl)‐2,5‐dihydro‐1H‐

pyrrol‐3‐olate 
MCF7  NUDT5  163,74  ‐6,57  [42] 

11  6,8‐dibromo‐2‐(4‐chlorophenyl)‐4‐oxo‐4H‐quinazoline  MCF7  ER Alpha  20,56  ‐25,30  [15] 

12  Quinolone  MCF7  TNFRSF5  0,05  ‐6,60  [43] 

13  Quinolone  MCF7  MK167  0,05  ‐6,90  [43] 

14  Nitidine  MCF7  Tubulin  0,28  ‐14,45  [44] 

15  DHNP  MCF7  Exemestane  209,52  ‐8,33  [45] 

16  HEHP  MCF7  Exemestane  30,67  ‐8,51  [45] 

17  4‐nitrobenzoyl‐3‐allylthiourea 
MCF7/HER

2 
HER2  225,00  ‐91,04  [46] 

18  4‐nitrobenzoyl‐3‐allylthiourea    MCF7  EGFR  85,00  ‐90,64  [46] 

19  bis(1,4‐dihydropyridine  MCF7  cIAP1  46,30  ‐21,34  [47] 

20  bis(1,4‐dihydropyridine  MCF7  xIAP  46,30  ‐22,04  [47] 

21  Azomethine  MCF7  6NLV‐4BRTH  140,46  ‐18,63  [48] 

22  Azomethine  MCF7  6NLV‐APTH  140,46  ‐19,84  [48] 

23  Pterostilbene  MCF7  Telomerase  49,07  ‐7,10  [49] 

24  1‐(4‐Bromophenyl)‐3‐(1,3‐dioxoisoindolin‐2‐yl)urea (7c)  MCF7  EGFR  5,99  ‐7,56  [50] 

25  1,3,5‐triazine (Derivat A)  MCF7  topoisomerase‐IIβ  12,40  ‐6,27  [51] 
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26  1,3,5‐triazine (Derivat B)  MCF7  topoisomerase‐IIβ  0,01  ‐7,52  [51] 

27 
3‐[(4‐hydroxyphenyl)methyl]‐octahydropyrrolo[1,2‐a]pyrazine‐1,4‐

dione 
MCF7  HER2  72,90  ‐9,40  [52] 

28 
11‐oxo‐11H‐pyrido [2, 1‐b] quinazoline‐6‐carboxylic acid 3 (deriivat 

B) 
MCF7  Hexamer‐DNA  2,07  ‐11,70  [53] 

29 
11‐oxo‐11H‐pyrido [2, 1‐b] quinazoline‐6‐carboxylic acid 3 (Derivat 

A) 
MCF7  Hexamer‐DNA  2,07  ‐8,32  [53] 

30  amide enriched 2‐(1H)‐ quinazolinone (Derivative A)  MCF7  EGFR  10,80  ‐9,00  [54] 

31  amide enriched 2‐(1H)‐ quinazolinone (Derivative b)  MCF7  EGFR  0,07  ‐9,67  [54] 

32 
Deoxybenzoins (1‐(2,4‐dihydroxyphenyl)‐2‐(4‐

hydroxyphenyl)ethanone) (Derivat A) 
MCF7  ER Alpha  12,00  ‐6,50  [55] 

33 
Deoxybenzoins (1‐(2,4‐dihydroxyphenyl)‐2‐(4‐

hydroxyphenyl)ethanone) (Derivat B) 
MCF7  ER Betha  5,00  ‐8,50  [55] 

34  1,2,3‐triazole‐benzofuran    MCF7 
BCL,    Tubulin, C‐ABL,   

CLK‐3 
0,01  ‐8,02  [56] 

35  1,2,3‐triazole‐benzofuran    MCF7 
BCL,    Tubulin, C‐ABL,   

CLK‐2 
21,80  ‐2,74  [56] 

7. Discussion 

7.1. MCF‐7 Cell Line: A Key Model for Anti‐Breast Cancer Drug Development 

The MCF7  cell  line, which  first  emerged  in  the  1970s,  is  a  crucial  resource  in breast  cancer 

research, playing a fundamental role in the study of prospective anti‐cancer substances. MCF7 cells 

are derived from a pleural effusion of a woman with metastatic breast cancer and they represent an 

invasive ductal carcinoma, which is the most prevalent form of breast cancer. These cells display the 

traits of specialized mammary epithelium, including the presence of specific markers like E‐cadherin, 

β‐catenin, and cytokeratin 18 (CK18), while not showing markers associated with mesenchymal cells 

such vimentin and smooth muscle actin (SMA). Significantly, MCF7 cells have the ability to generate 

dome‐like structures in laboratory conditions, closely resembling the structures found in mammary 

glands. [57–61] 

MCF7 cells have strong expression of estrogen receptor (ER) and progesterone receptor (PR) at 

the molecular level. This characteristic makes them well‐suited for investigating estrogen‐dependent 

breast cancers, which are the most common form of the disease. The tumors do not have HER2 gene 

amplification, indicating that they belong to the luminal A subtype of breast cancer. This subtype is 

known to have a favorable prognosis. In addition, MCF7 cells exhibit characteristics similar to stem 

cells, allowing  them  to generate mammospheres (3D clusters)  in a  laboratory setting and develop 

tumors  in mice.  In  addition,  they  also  exhibit  the  presence  of  additional  receptors,  such  as  the 

androgen receptor, which may serve as prospective targets for innovative treatments. [57–61] 

The MCF7 cell line has numerous benefits for cytotoxicity investigations. Their proliferation and 

accessibility from commercial sources render them suitable for extensive‐scale experimentation. The 

fact that they are ER positive enables researchers to examine the impact of anti‐estrogen treatments 

on the proliferation and viability of cells. MCF7 cells serve as a typical model for luminal A breast 

cancer,  enabling  the  evaluation  of medication  effectiveness  against  this  prevalent  subtype.  The 

biology of MCF7 cells has been widely  studied  for many decades, establishing a strong basis  for 

future research. 

Nevertheless, it is crucial to acknowledge the constraints of MCF7 cells. They do not cover all 

types of breast cancer, so other cell lines must be used to provide a more complete understanding. 

Furthermore, the restricted ability of these malignancies to spread to other parts of the body may not 

accurately represent the very aggressive nature of metastatic cancers. Although MCF7 cells have the 

ability  to  generate  tumors  in  mice,  this  poses  ethical  concerns  in  the  context  of  animal 

experimentation. 

To  summarize,  the  MCF7  cell  line  is  an  effective  tool  for  early  drug  development  and 

comprehending  the mechanisms of anti‐cancer drugs, namely  those  that  target estrogen receptor‐
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positive breast tumors. Researchers must recognize the constraints of this cell line and employ it in 

conjunction with other cell lines and research methodologies to get a comprehensive comprehension 

of breast  cancer biology and  formulate efficacious  treatments. MCF7  cells are  commonly used  in 

cytotoxic studies due to their convenient proliferation, wide availability, and their ability to represent 

luminal A breast cancer. These cells have been extensively studied and characterized, making them 

highly valuable for breast cancer research. 

7.2. Protein, Receptor and Enzymes Used as Target for Development of Anti Breast Cancer Agent 

The  subsequent  targets  are  frequently  employed  in molecular docking  investigations  in  this 

study owing to their pivotal functions in cancer advancement and therapy: 

7.2.1. Maintenance of DNA Integrity and Preservation of Genomic Stability 

BRCA1, also known as Breast Cancer Type 1 Susceptibility Protein, plays a vital  role  in  the 

process of DNA repair and the preservation of genomic stability. BRCA1 mutations greatly enhance 

the probability of developing breast and ovarian cancer, making it a crucial focus for medicines aimed 

at leveraging its involvement in DNA repair processes to specifically eliminate cancer cells. [62,63] 

7.2.2. The Process of Cell Division and the Movement of Microtubules 

Tubulin, an essential protein  for the production of microtubules and cell division, represents 

another crucial target. By impeding the process of tubulin polymerization, the normal functioning of 

microtubules is disrupted, resulting in the halting of the cell cycle and the initiation of programmed 

cell death. This property makes it a viable approach in the treatment of cancer. Aurora Kinase, which 

regulates chromosome segregation and cytokinesis during cell division,  is a potential  therapeutic 

target for triggering mitotic arrest and death in cancer cells. [64] 

7.2.3. Receptor Tyrosine Kinases 

Receptor  tyrosine  kinase  a  type  of  protein  that  play  a  role  in  cell  signaling  by  transferring 

phosphate groups to tyrosine residues. EGFR, also known as Epidermal Growth Factor Receptor, and 

its tyrosine kinase domain, referred to as EGFR‐TK, have significant functions in the processes of cell 

proliferation, survival, and differentiation. EGFR is frequently overexpressed or mutated in various 

types of cancer, such as breast cancer. By specifically  targeting EGFR,  it  is possible  to  impede  the 

growth and advancement of tumors. Likewise, HER2 (Human Epidermal Growth Factor Receptor 2), 

a different  type of protein  that  triggers cell growth,  is excessively produced  in highly aggressive 

breast tumors. By specifically focusing on HER2, it is possible to greatly enhance the prognosis and 

overall well‐being of patients. The Insulin‐like Growth Factor 1 Receptor (IGF1R) is responsible for 

regulating cell growth and promoting cell survival. By blocking IGF1R, cancer cell proliferation can 

be reduced and the effectiveness of other treatments can be enhanced. [65,66] 

7.2.4. Estrogen Receptors 

Estrogen Receptor Alpha (ER Alpha) plays a vital role in controlling the activation of genes in 

response to estrogen. A significant number of breast malignancies have ER‐positive characteristics, 

and the inhibition of ER Alpha can effectively suppress the development and proliferation of cancer 

cells driven by estrogen. Exemestane, an aromatase inhibitor, reduces the levels of estrogen and is 

employed  in the treatment of estrogen‐dependent breast cancer. ER Beta (Estrogen Receptor Beta) 

provides alternate approaches for the treatment of estrogen‐dependent breast tumors. [67,68] 

7.2.5. Immune Response and Cellular Proliferation 

TNFRSF5  (CD40)  and  Ki‐67  (MK167)  play  crucial  roles  in  immune  responses  and  cellular 

proliferation, respectively. Therefore, they are significant targets for manipulating immune responses 

and evaluating the efficacy of anti‐cancer therapies. [69] 
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7.2.6. Regulation of Apoptosis 

Proteins like cIAP1 (Cellular Inhibitor of Apoptosis Protein 1) and xIAP (X‐linked Inhibitor of 

Apoptosis Protein) prevent cell death by attaching to and deactivating caspases, which are enzymes 

involved in the process of apoptosis. By specifically targeting these inhibitors, it is possible to induce 

apoptosis (cell death)  in cancer cells, hence  improving the effectiveness of cancer treatments. BCL 

proteins,  which  control  programmed  cell  death  (apoptosis),  are  important  targets  for  cancer 

treatment. [70,71] 

7.2.7. Cellular Metabolism and Telomere Maintenance 

NUDT5, a Nudix Hydrolase 5 enzyme, is involved in cellular metabolism. Inhibiting NUDT5 

can interfere with crucial metabolic processes in cancer cells, resulting in decreased cell growth and 

survival. Telomerase, an enzyme that preserves the length of telomeres and safeguards chromosomes 

from  deterioration,  is  frequently  overexpressed  in  cancer  cells, making  it  a  possible  target  for 

restricting their ability to replicate. [72] 

7.2.8. DNA Transcription and RNA Processing 

Topoisomerase‐IIβ, which plays a role in DNA transcription, is specifically targeted to inhibit 

DNA replication in cancer cells, ultimately resulting in cell death. CLK‐3, also known as CDC‐like 

Kinase 3, plays a  role  in controlling RNA splicing.  If CLK‐3  is  inhibited,  it can  interfere with  the 

processing of RNA in cancer cells. This disruption has the potential to cause the cells to stop dividing 

and undergo programmed cell death, known as apoptosis. [73,74] 

7.2.9. The Cytoskeleton and Cellular Movement 

ARPBCC,  also  known  as Actin‐Related  Protein  Binding  Complex  Component,  controls  the 

structure of  the  actin  cytoskeleton  and  the  shape of  cells. Directing  efforts  against ARPBCC  can 

impact the movement of cancer cells and potentially hinder the spread of cancer to other parts of the 

body.   

7.2.10. Signal Transduction 

Signal transduction refers to the process by which cells communicate and transmit signals inside 

the body. C‐ABL, also known as ABL Proto‐Oncogene 1, Non‐Receptor Tyrosine Kinase, plays a 

crucial  role  in many  communication  pathways. As  a  result,  it  is  an  important  target  for  cancer 

treatment. [75]. 

7.3. Correlation Between In‐Vitro Cytotoxicity Study (IC50) and Molecular Docking Study (Gibs Energy) 

Several important insights are revealed when examining the dynamics of IC50 values and Gibbs 

energy (ΔG) in MCF7 cell investigations. IC50 values vary greatly, ranging from very strong (e.g., 

0.01 μM) to weaker (e.g., 82.87 μM) (Table 1). These values represent the different abilities of drugs 

to inhibit specific protein targets in MCF7 cells. These values are crucial in clinical contexts, providing 

guidance for determining appropriate dosage strategies and assessing the effectiveness of treatments. 

[76–79] 

Theoretical  frameworks  of  ΔG  emphasize  its  function  in  assessing  the  thermodynamic 

favorability of compound‐protein interactions. Lower ΔG values (‐14.45 kcal/mol to ‐2.74 kcal/mol) 

suggest higher binding affinities (Table 1), which are essential for optimal therapeutic activity. ΔG 

predictions  are  used  as  prognostic markers  in  the  field  of  drug  discovery,  helping  to  prioritize 

compounds for further research based on their capacity to bind.   

Although  theoretical  predictions  indicate  a  clear  relationship  between  ΔG  and  IC50  values, 

where a lower ΔG corresponds to better potency (lower IC50) [80–82], findings in this review from 

MCF7 cell research reveal a more intricate situation. Although many compounds display predictable 

patterns,  the dataset demonstrates a degree of unpredictability  (Figure 1). Main Discovery  in  this 
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study  revealed  an  important  finding  regarding  the  correlation.  While  theoretical  expectations 

indicate a direct correlation between ΔG and IC50 values, the dataset shows that there is no consistent 

linear  correlation  across  all  compounds  and  protein  targets  tested  (Figure  1).  Simply  Despite 

attempting a thorough analysis by categorizing the target receptor, we have not discovered any linear 

correlation  between  the  Gibbs  energy  value  and  the  IC50  value.  This  disparity  highlights  the 

intricacies  involved  in  transforming  theoretical  predictions  into  practical  results  in  the  field  of 

pharmaceutical  research.  Biological  intricacies  inside  cellular  contexts  have  a  significant  impact, 

affecting the effectiveness of compounds beyond what can be predicted by ΔG. Divergent IC50 values 

might arise due to several factors, including drug absorption, metabolism, and unique interactions 

with physiological pathways, despite the indication of great binding affinity based on ΔG. [80–82] 

 

Figure 1. Correlation of cytotoxic results of the experiments of several compounds on the MCF‐7 cell 

line  in  an  in‐vitro  study,  as  well  as  the  molecular  docking  investigations  on  various 

proteins/receptors/enzymes that exhibit up‐regulation or down‐regulation in breast cancer. 

In addition, the presence of target‐specific variability adds more complexity to the interaction. 

Protein targets have distinct interactions with substances because of differences in their structure and 

function [83,84]. Differences in the amounts of target expression, alterations that occur after protein 

synthesis, and the specific location inside the cell all have a major effect on the measured IC50 values, 

regardless of the predictions of thermodynamic free energy change (ΔG). Various factors, such as 

different methods used in experiments, specific details of cell culture, and the sensitivity of the assay, 

can cause variations in IC50 results. These variations may hide any connections between ΔG and IC50 

values that are seen in real‐world situations. 

In the future, the combination of computational ΔG estimates with empirical IC50 data shows 

potential when used together. Nevertheless, comprehensive assessments that span the metabolism 

of compounds, the permeability of cells, and the selectivity of targets are essential in order to improve 

the accuracy of predictions and optimize tactics for discovering drugs. Precision medicine strategies, 

customized for individual protein targets and biological circumstances, provide chances to discover 

potent and selective treatment options. 

To  summarize,  the  complex  connection between  IC50 values and  ΔG  in MCF7  cell  research 

emphasizes the difficulties of converting theoretical projections into practical results in the field of 

drug development. Researchers can improve the reliability of preclinical assessments and advance 

personalized medicine by addressing biological complexities and experimental factors. 
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8. Limitation and Challenge 

There  are various  inherent  limits  and obstacles  in  comprehending  IC50 numbers and Gibbs 

energy (ΔG) in MCF7 cell investigations. The presence of biological complexity, such as variations in 

cellular surroundings and interactions with pathways, has an independent impact on IC50 values, 

which makes precise measurements more challenging, regardless of ΔG predictions. Moreover, the 

presence of various structural and functional traits  in protein targets, such as Tubulin, EGFR, and 

HER2, leads to different reactions to chemicals. This variability makes it difficult to establish general 

correlations between ΔG‐IC50. The presence of many experimental elements, such as different assay 

techniques and settings, leads to variations in measurements. Therefore, it is necessary to establish 

standardized protocols in order to provide reliable validation. The ability of ΔG to accurately predict 

IC50 values is still a difficult task, and it requires the development of better computational models 

and empirical validations. To connect preclinical discoveries with clinical uses, it is necessary to tackle 

translational challenges such as the metabolism of compounds and the individualized responses of 

patients. The integration of extensive datasets and the construction of complete models are essential 

for  enhancing  drug  discovery  and  personalized  medicine  techniques.  These  approaches  help 

overcome hurdles and improve therapeutic development. 

9. Conclusion 

In conclusion,  the examination of  IC50 values and Gibbs energy  (ΔG)  in MCF7 cell  research 

highlights the complex nature of drug discovery and development. This review establishes that there 

is no  immediate  correlation between Gibbs  energy and  IC50 values. To  improve  the accuracy of 

predictions  and  the  possibility  for  practical  application,  it  is  important  to  combine  advanced 

computational models with empirical validations and foster cooperation across different disciplines. 

To enhance the accuracy and dependability of future studies, it is recommended to concentrate on 

certain  cell  lines  in  in vitro  cytotoxic  investigations  and  to  target  specific  receptors  in molecular 

docking studies, all conducted under clearly specified experimental parameters. Furthermore,  the 

utilization of precise parameters in computational models, such as binding affinities and molecular 

dynamics,  can  enhance  the  accuracy  of  predictions  and  strengthen  the  effectiveness  of  drug 

development procedures. 
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