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Abstract 

Tinnitus is an extremely common condition that involves the perception of sound without an external 
auditory stimulus. However, its origins are not well understood and established treatment options 
are very limited. Based in part on well-established comorbidities, we here develop the idea, with 
considerable, mechanistic, and self-consistent evidence, that tinnitus is fundamentally caused by a 
disorder of the cochlear microcirculation leading to ischaemia and oxidative stress, that this 
disruption is effected via fibrinaloid microclot complexes that inhibit the microcirculation, and that 
their avoidance or removal by pharmacological or other means might provide considerable benefits 
to tinnitus sufferers. Such means include anticoagulants, fibrinolytics and antioxidants, the latter 
commonly acting via the transcription factor Nrf2, and there is evidence for their efficacy, usually (to 
date) just when they are tested alone. The evidence, including imaging evidence, and extensive 
evidence regarding the thrombotic mechanisms of toxicity of ototoxic drugs, and in particular of 
cisplatin, seems sufficiently strong to warrant further development.   

Keywords: tinnitus; fibrinaloid microclot complexes; microcirculation; coagulopathy; inflammation; 
oxidative stress 

Introduction 

Tinnitus is a common and sometimes devastating condition that involves the perception of 
sound without an external auditory stimulus [1-9]. While truly objective measures are elusive [2, 10-
12], it may be classified into subjective or objective, depending on whether, respectively, it is detected 
only by the patient or also by an external examiner [13]. However, its nature and severity can be quite 
heterogeneous [7, 14, 15]. In addition, tinnitus may be classified into pulsatile or non-pulsatile; the 
former is much rarer (ca 4% of patients) and is synchronous with the patient’s heartbeat [16]. Tinnitus 
can be quite debilitating [17], and pulsatile tinnitus can potentially have multiple origins, including 
structural, metabolic, and vascular [18]. By contrast, the origins of non-pulsatile tinnitus are much 
more obscure, and pharmacological and other therapeutic options are seen as limited [12, 19-24]. 
While standard inflammatory biomarkers have mostly not been found in plasma for simple tinnitus 
[25-27] (cf. [28])(they have for tinnitus with distress [29] or after noise-induced hearing loss [30]), 
oxidative stress is a feature of all of these kinds of chronic disease [31] (including tinnitus [32-35]), 
and there is fairly extensive evidence, developed further below, that antioxidants may be of value 
[23, 32, 36-41].  

Our chief argument herein is that a pro-thrombotic state of the microcirculation, involving 
microclots leading to oxidative stress and cochlear cell death, is core to the development of (both 
hearing loss [42] and) tinnitus. Mean platelet volume (MPV) is considered to be associated with 
highly pro-thrombotic states [43-70]. Importantly for our analysis here, MPV is increased in tinnitus 
sufferers [28, 71-76], as are the platelet width distribution [73] and the neutrophil:lymphocyte ratio 
[75]. Similarly, microvascular compressions of the cochlear nerve can lead to tinnitus [77-83], and 
these can be caused by blockages in the microcirculation, again consistent with our thesis.  

We note explicitly that the cochlea is mainly supplied by one terminal artery, the labyrinthine 
artery, which renders it very sensitive to circulatory alterations and ischemia [84-97]. Consequently, 
as with many related syndromes [98, 99], and while downstream effects are clearly neural in nature 
[100-103], we argue here that it is an impairment of the microcirculation (and, in particular, the 
cochlear microcirculation) that is chiefly involved [32, 39, 97, 104-111]. For instance, arterial stiffness 
can lead to impaired cochlear microcirculation [112], to ischaemia [112] and to tinnitus [113-116]. A 
vascular origin for at least pulsatile tinnitus (PT) is also implied by the considerable success of 
stenting [117-124], and we rehearse other evidence below.  
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Fibrinaloid Microclot Complexes 

Some time ago we discovered that blood can clot into an anomalous, amyloid form [125, 126], to 
create what are referred to as fibrinaloid microclot complexes, and this was true in a variety of 
diseases (see Table 1). These insoluble microclots are typically observed to have equivalent diameters 
in the range 2-200 μm, and so are entirely capable of restricting blood flow to the capillaries and 
microcirculation. In the case of Long COVID, as an example, the microclots observed [127-137] 
provide a straightforward explanation for many of the observed symptoms, including fatigue [138], 
post-exertional symptom exacerbation [139], autoimmunity [140], postural orthostatic tachycardia 
syndrome (POTS) [141], atrial fibrillation [142], and fibromyalgia [143], as well as accounting for the 
success of fibrinolytic enzymes [144] and anticoagulation therapies [145] and the anomalous 
amyloidogenic proteome observed in the microclots that differs greatly from that of normal clots (that 
roughly reflects the plasma proteome) [146-148]. As with all amyloids, fibrinaloid microclot 
complexes may be stained using the fluorogenic stain thioflavin T that exhibits green fluorescence 
when bound to amyloid [149-153]. Figure 1 shows an example taken from an Open Access (CC-BY 
4.0) paper [125] that we published in 2016. In this case the microclots can be induced by bacterial 
lipopolysaccharide, but other papers show that the addition of 17-β-oestradiol [154, 155] or the SARS-
CoV-2 spike protein [156, 157] can also do this.  

 

Figure 1. Staining of fibrinaloid microclot complexes in platelet-poor plasma (PPP) using the fluorogenic stain 
thioflavin T (ThT). A. Control PPP with ThT and thrombin. B as panel A but pre-incubated with 0.2 ng.L-1 
bacterial lipopolysaccharide (LPS). Taken from the CC-BY 4.0 publication [125]. 

The purpose of the present article, therefore, summarised in the style of a Graphical Abstract in 
Figure 2, is to bring together the extensive and self-consistent evidence that supports the idea that 
fibrinaloid microclot complexes impacting the cochlear microcirculation can account for the 
symptoms of tinnitus; this leads to some immediate suggestions for effective treatments, for which 
scattered evidence also exists. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 August 2025 doi:10.20944/preprints202508.1557.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1557.v1
http://creativecommons.org/licenses/by/4.0/


 4 of 47 

 

 

Figure 2. A summary of what follows, in the style of a ‘graphical abstract’. 

Results and Analysis 

Comorbidities of Tinnitus and Fibrinaloid Microclot Measurements 

As with a previous set of strategies [98, 99, 146-148, 158], we begin by comparing those diseases 
in which microclots have been determined experimentally with those that are known comorbidities 
of tinnitus (Table 1). Many are cardiovascular in nature [9, 159-161], though note that some are also 
comorbidities of age [2, 162], and age-related hearing loss and tinnitus are related [10, 163-165]. 

Table 1. Diseases that are comorbidities of tinnitus and for which fibrinaloid microclot complexes have also been 
measured. 

Disease or syndrome References indicating 

tinnitus as a comorbidity 

References showing the 

presence of fibrinaloid 

microclot complexes 

Alzheimer’s dementia 

incl cognitive impairment. 

Clear amyloid involvement 

[166-174] 

 

[175, 176] 

[31, 177-180] 

COVID19 [95, 111, 181-193] [127, 128, 156, 157, 194] 
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Diabetes, type 2 [9, 195-199] [194, 200-202] 

Migraine [203] [204] 

Myalgic encephalomyelitis/ 

chronic fatigue syndrome 

(ME/CFS) 

[95, 205] [206-208] 

Parkinson’s disease [167] [200, 209-211] 

Post-COVID syndromes [95, 212-220] [127-129, 133, 134, 221-223] 

Rheumatoid arthritis [9, 224-226] [139, 227-229] 

The principle of this strategy is straightforward [142]: if diseases X and Y have comorbidities it 
is likely that they one may cause the other or – especially when there are so many comorbidities – 
that each is caused by something upstream of both, and here we suggest both that this is the case and 
that an important ‘upstream’ element on the aetiological is represented by fibrinaloid microclot 
complexes. The conclusion is equally obvious: every single disease in Table 1 in which fibrinaloid 
microclot complexes have been detected is also accompanied by tinnitus, and we consider this to be 
a causal relationship because of other contributing and mechanistic evidence that we shall adduce 
below. 

Syndromes for which fibrinaloid microclot complexes are known but for which we have yet to 
find published evidence of tinnitus include hereditary haemochromatosis [230] and, in particular, 
sepsis (see [231, 232]). Hearing loss is a frequent severity-related accompaniment – and possible cause 
– of tinnitus [164, 233-240]) and is also an accompaniment of experimental sepsis in mice [241] and 
post-septicaemia in humans [242, 243]). By contrast, many articles show comorbidities of tinnitus but 
where microclots have not yet been assessed. Some are summarised in Table 2. 

Table 2. Some diseases or syndromes that show comorbidities of tinnitus but where microclots have not yet been 
assessed. 

Disease or syndrome Selected references Comments 

Atherosclerosis [244] Atherosclerotic plaques 

frequently display amyloid 

Atrial fibrillation (AF) [245, 246] Fibrinaloid microclot 

complexes provide a ready 

explanation as being a cause 

rather than an effect of AF 

[142] 

Congestive heart failure [109]  

Erectile dysfunction [247] This is well known to be 

overcome by vasodilators [248] 

Fibromyalgia [95, 249-251] Microclots are also strongly 

implicated [143] 

Myocardial infarction [252]  

Postural orthostatic 

tachycardia syndrome (POTS) 

[95, 253-255] Fibrinaloid microclot 

complexes provide a ready 

explanation for POTS [141] 

Psoriasis [256-259]  

Raynaud’s phenomenon [260, 261]  
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Sickle cell disease [262-265] Clear example in which a 

primary cause that leads to a 

lowered microcirculation is 

associated with tinnitus 

Sjögren’s syndrome [167]  

Systemic sclerosis [266-271]  

We note here that psoriasis [272-276], Raynaud’s phenomenon [277-284], Sjögren’s syndrome 
[284] and systemic sclerosis [285-289] are well established as disorders of the microcirculation [98], 
so it is close to certain that microclots will be found in these cases too. Psoriasis too is certainly a 
coagulopathy [290].  

In addition, a variety of infectious or post-infection disorders that bear similarities to Long 
COVID (well established to be associated with fibrinaloid microclot complexes) predispose to 
tinnitus [291]. These include Ebola [292, 293],  Gulf War illness (tinnitus was the only symptom 
reported by more than 30% of veterans from this conflict [294]), HIV/AIDS [295, 296], Lyme disease 
[297, 298] and Varicella Zoster Virus [291, 299, 300].  

Cancer is also  prothrombotic [301-304], and cancer survivors too are far more prone to tinnitus 
[305, 306], though we recognise that disentangling these phenomena from the ototoxicities of various 
cancer chemotherapies is not easy [307-309]. Finally, periodontitis is associated with tinnitus [310], 
and microbes and their cell wall components are entirely causative of fibrinaloid microclot complexes 
(e.g. [31, 125, 126, 178, 210, 211, 311]). Porphyromonas gingivalis and its protease gingipain are also 
heavily involved [180, 312, 313]. 

One particular feature of (especially pulsatile) tinnitus is that it may be a harbinger of 
haemorrhagic or ischaemic stroke [112, 314]. It is thus highly relevant that we recently demonstrated 
that the thrombi removed by mechanical thrombectomy following an ischaemic stroke are also 
amyloid in character [315, 316], and that this is entirely consistent with the amyloidogenic contents 
of the proteome of such thrombi [146, 148], giving a strong indication that the macroclots of ischaemic 
stroke are formed by accretion of the fibrinaloid microclot complexes. 

Tinnitus, Hearing Loss, Ageing and Endothelial Senescence/Dysfunction 

Any independent variable that correlates with tinnitus may be seen as a candidate for a causal 
role with a mechanistic basis. Age-related hearing loss (ARHL or presbycusis) and tinnitus are 
themselves correlated, so tinnitus is associated with ageing [164, 317-321]. While many things vary 
with age we would here highlight endothelial senescence or dysfunction [322-326], since this is 
strongly correlated with fibrinaloid microclot formation [99, 128, 135, 136, 206, 208, 227, 327-331]. 
These observations are at least consistent with the mechanisms set down here. 

Ototoxic Drugs 

Ototoxic drugs are those that can potentially cause damage to the inner ear, leading for instance 
to hearing loss and/or tinnitus. While there is no certainty that they cause hearing issues by the same 
mechanisms as those occurring in their absence, the fact that they are ototoxic can certainly help to 
provide important mechanistic clues. The commonest examples [332, 333] are probably 
aminoglycoside antibiotics such as gentamycin [334-336] and, in particular, cancer chemotherapeutic 
agents such as cisplatin [309, 336-357]. As expected [358-363], drug transporters are heavily involved, 
and are being identified [342, 354, 356, 364-369]. Gentamycin toxicity occurs via an activation process 
involving the formation of an iron-gentamycin complex with free radical production [370, 371], and 
antioxidants are protective [372]. In the case of the platinum drugs, Reactive Oxygen Species and 
oxidative stress [373, 374] leading to apoptosis are certainly also involved in ototoxicity, since various 
antioxidants [375-377] such as N-acetyl cysteine [378, 379], α-lipoic acid [380, 381], astaxanthin [382], 
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astragalosides [383], ergothioneine [384] honokiol [385], other polyphenols [353, 386], resveratrol 
[387, 388] and sodium thiosulphate [389-393] are protective. 

Obviously, in the present context, and since many drugs are prothrombotic [394-398],  the 
question arises as to whether ototoxic drugs may also act by slowing cochlear blood flow, for instance 
by inducing microclots or microthromboses, and gentamycin certainly does decrease carotid blood 
flow [335]. Most strikingly, cisplatin, probably the most ototoxic drug known, is a well-known 
inducer of clotting (e.g. [399-434]), though as yet it does not seem to have been assessed whether such 
clots are amyloid in nature. Cisplatin raised cochlear α-fibrinogen levels six-fold, while the protective 
antioxidant and mucolytic molecule erdosteine more than reversed this [435]. Overall there is a vast 
literature showing the thrombogenic potential of cisplatin, and since it is also the most ototoxic drug 
it would seem to be beyond coincidence that ototoxic drugs serve to induce clotting if fibrinaloid 
microclot complexes are not on the aetiological pathway to both ototoxicity and tinnitus. 

Role of Anticoagulants in Treating Tinnitus 

If fibrinaloid microclot complexes are involved, it is to be supposed that inhibiting their 
production might be of benefit. Importantly, this has been shown in a number of cases, including via 
the use of sulodexide, alone [436] or in combination with the antioxidant melatonin [437, 438], 
enoxaparin [439, 440], and apixaban [441]. Haemofiltration was also effective [440]. Note that both 
sulodexide [442, 443] and enoxaparin [444] have also shown themselves to be of value in the treatment 
of Long COVID, a syndrome closely associated with fibrinaloid microclot complexes (Table 1).  

Role of Fibrinolytic Enzymes in Treating Tinnitus 

As well as anticoagulants that lower the rate of production of fibrinaloid microclot complexes, a 
number of protease enzymes are known to have fibrinolytic properties, and consequently can remove 
microclots [144]. These include nattokinase [445-456], serrapeptase [457-460] and lumbrokinase [461-
466] and it is therefore to be predicted that these too will have benefits in treating tinnitus. This has 
indeed been shown for nattokinase [467] and lumbrokinase [468], and a website also reports 
https://www.ehealthme.com/ds/nattokinase/tinnitus/ that of “58,751 people who take Nattokinase 
(nattokinase) or have Tinnitus… no report of Tinnitus is found in people who take Nattokinase.” 

Role of Antioxidants in Treating Tinnitus 

By blocking up the microcirculation, fibrinaloid microclot complexes necessarily induce 
oxidative stress [138, 139], and as mentioned, oxidative stress is a significant feature of the 
development of tinnitus [32-35]). Consequently there is evidence that antioxidants may be of value 
in contributing to treating it [23, 32, 36-41, 469-474]. Yang and colleagues [35] point out the likely 
involvement of the transcription factor Nrf2 in this. Nrf2 activation has widespread cardiovascular 
benefits [475-482], leads to the transcription of a large number of antioxidant response elements [483-
488], and, importantly here, to cochlear protection [489-498]. Other antioxidant nutraceuticals such 
as ergothioneine [499-510] and kynurenic acid (KYNA) [511-514], whose mechanisms of action 
include Nrf2, may thus be useful components of therapies designed to alleviate tinnitus. While we 
are not aware of direct studies, hearing loss is a common accompaniment to tinnitus [233, 234, 515], 
and ergothioneine has been shown to ameliorate it [384, 516]. KYNA did serve to antagonise 
glutamate-induced cochlear neurotoxicity in neonatal rats [517]. Melatonin, that may also act via 
blocking iron-catalyses ROS production [518], is a well-established antioxidant [519] that acts via Nrf2 
(e.g. [488, 520-524], and  has also been stated to be of benefit in tinnitus [469, 525-533]. Sulforaphane, 
an isothiocyanate cytoprotective commonly found in brassicas, also activates Nrf2 [534-545], but does 
not seem to have been assessed for tinnitus [490]. Other natural product antioxidants known to 
activate Nrf2 include polyphenols such as curcumin [546, 547], epigallocatechin gallate [548, 549], 
quercetin [550] [551, 552] and resveratrol [553-556], and certain diterpenoids [557, 558] and 
triterpenoids [559-563] (see also [147]). Finally, here, and most pertinently, it is also worth 
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commenting that Nrf2 activation, which can also involve autophagy [542, 564-568], seems to assist in 
the amelioration of amyloid-induced issues by a variety of means [569-580]. 

Dosing 

We note that the above says nothing about dosing, since this is intended to be a high-level 
analysis. This said, experience of many other chronic, inflammatory diseases suggests that what 
works for one individual may have no effect in others [581]. In an elementary combinatorial sense 
[582], if 10 out of the ~25,000 human genes can each have two alleles whose gene product varies in 
activity by a factor two, this variation alone, not even accounting for lifestyle, can explain a roughly 
1000-fold (210) variation in any trait of interest. However, by narrowing treatment modalities to just 
three classes (antioxidants, anticoagulants, fibrinolytics, plus maybe vasodilators [24]) it is 
anticipated that discovering the best combined treatments and doses for an individual should be 
more straightforward. 

Consonance of Therapeutics Against Microclots 

Taken together, the fact that three different kinds of therapeutics can be of benefit in treating 
tinnitus, each of which would antagonise the amount or effects of fibrinaloid microclot complexes (as 
would stenting), is very striking and entirely consistent with an aetiological role for the microclots in 
the development of tinnitus. Other preliminary data linking improvements in the cochlear 
microcirculation to tinnitus improvement include pycnogenol [583, 584] (a mixture of antioxidant 
procyanidins [585]) and a cocktail referred to as Acustop [586]. Since causing or adding fibrinaloid 
microclot complexes to assess their effects would be unethical, the best we can do is to seek to relate 
their presence and number to the severity of the disease, just as has been done in Long COVID [130].  

Discussion 

We have brought together a number of strands of public data that lead to a coherent picture (in 
the sense used by Thagard [587-591]) in which fibrinaloid microclot complexes have a causal or 
aetiological involvement in the development of tinnitus: 

1. Every disease in which microclots have been measured experimentally demonstrates a 
comorbidity with tinnitus, making it hard not to suppose that the microclots are causative of 
each 

2. There is extensive evidence that ototoxic drugs such as cisplatin can induce clotting 
3. Activation of Nrf2 and its antioxidant response elements is protective against orotoxicity 
4. Microclots provide a straightforward mechanistic explanation for tinnitus by decreasing the 

cochlear microcirculation 
5. Microclots thereby produce reactive oxygen species, inflammation [592-595] and, in particular, 

oxidative stress, a hallmark of tinnitus 
6. Stenting also improves tinnitus (by increasing blood flow) 
7. Three other therapies designed to obviate microclots or their effects have shown promise when 

applied singly, namely the use of various anticoagulants, the use of fibrinolytic enzymes, and 
the use of antioxidants 

8. The transcription factor Nrf2 seems to play an important role. 

These points are illustrated in Figure 3. 
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Figure 3. A summary of the main features of the self-consistent set of ideas developed herein (Created in  
https://BioRender.com). 

Conclusions and Prospects 

We consider that the disparate evidence we have brought together, in this purposely synthetic 
review [596], provides a robust set of interlinked and self-consistent arguments to the effect that 
microclot impairment of the cochlear microcirculation is likely to be a significant contributor to 
tinnitus, and that this recognition offers exciting and novel microclot-based treatment prospects by 
combining those nostrums that even alone seem to have shown efficacy in some individuals.  

The evidence above, to the effect that tinnitus starts as a coagulopathy, includes measurements 
of mean platelet volume, the extensive comorbidities with known coagulopathies, the demonstrable 
deficiencies in the microcirculation, and the beneficial effects of interventions (stenting, 
anticoagulation, antioxidants, fibrinolytics) that would help ameliorate the effects of poor blood flow 
(‘blood stasis’) within the microcirculation. As such, the proposal is entirely self-consistent.  
Consequently there are some obvious and technically implementable strategies or 
measurements that will help to sustain or refute these arguments. These include: 
• Fibrinaloid microclot complexes measurements, using fluorescence microscopy or flow 

clotometry, on platelet-poor plasma of individuals with tinnitus, and an assessment of their 
relationship to disease severity. 

• Correlation of these with endothelial dysfunction [32] (measured e.g. by EndoPAT [597, 598]) 
and tinnitus severity measured with suitable scales [599] such as the Tinnitus Functional Index 
[600, 601] and/or the Tinnitus Handicap Inventory [602] and/or the Tinnitus and Hearing 
Survey [603] 

• Assessment of whether known ototoxic drugs can induce fibrinaloid microclot complexes 
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• In vivo imaging of the cochlear and more general microcirculation of those with tinnitus and 
controls, using methods [604] such as endoscopy [605], fluorescence microscopy [30, 606-608], 
two-photon microscopy [609], and optical microangiography [84, 610, 611], and especially laser 
speckle contrast imaging and laser Doppler optical microangiography [99, 612-625]; many of 
these have already demonstrated a lowered blood flow accompanying hearing loss. There is 
also a role for the more widely (and financially) accessible methods of capillaroscopy [98]. 

• Controlled therapeutic trials of suitable mixtures of anticoagulants, fibrinolytic enzymes and 
antioxidants, as well-established systems biology considerations (e.g. [147, 626-629]) tell us that 
normally multiple targets must be hit simultaneously to have substantial biological effects. 

Hopefully the arguments raised in this review will encourage domain experts to take up some 
of these ideas and approaches. 
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