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Abstract: Recent years have seen a rapid uptake in distributed energy resources (DER). Such technologies pose 

a number of challenges to network operators, which can ultimately limit the amount of rooftop solar 

photovoltaics (PV) systems that can be connected to a network. The objective of this industry-based research 

was to determine the potential network effects of forecast levels of customer owned rooftop solar PV on Energy 

Queensland’s distribution network and formulate functions that can be used to determine such effects without 

the requirement for detailed network modeling and analysis. In this research, many of Energy Queensland’s 

distribution feeders were modelled using DIgSILENT PowerFactory and analyzed with forecast levels of solar 

PV and customer load. Python scripts were used to automate this process and quasi dynamic simulation 

(QDSL) models were used to represent the dynamic volt-watt and volt-var response of inverters, as mandated 

by the Australian Standard AS/NZS 4777. In analyzing the results, linear regression was used to form trend 

equations that represent various network characteristics against the number of PV connections. The trend 

equations provide a way of approximating network characteristics for other feeders under various levels of 

customer owned rooftop solar PV without the need for detail modeling. 

Keywords: distributed energy resource; solar PV penetration; voltage rise; network constraints; 

network modeling automation; reverse power flow; inverter energy systems 

 

1. Introduction 

The impact of residential inverter energy systems (IES) on distribution networks throughout the 

past decade has been an intensely studied and discussed subject for distribution network operators 

worldwide. The rapid uptake in renewable generation in Australia, specifically rooftop PV, is a result 

of network feed-in tariffs combined with falling costs of PV systems driven by an overarching 

transition in consumer attitude towards a decarbonized, greener energy future [1].  

The state of Queensland (Qld) in Australia has the highest levels of residential rooftop PV 

penetration by both capacity and percentage of dwellings [2]. High levels of IES penetration on 

distribution feeders can lead to a host of power quality, plant rating and network issues, including 

voltage rise, voltage unbalance, harmonic emissions, reverse power flow, poor power factor and 

exceedance of plant ratings [3]. As a result, Energy Queensland, one of the distribution network 

service providers in Queensland, has been experiencing voltage rise excursions beyond statutory 

limits, as well as reverse power flows on distribution feeders [4]. 

Voltage rise occurs because for solar PV inverters to export power to the network, they must 

increase the electrical potential to above that of the network. This effect is exacerbated with the 

aggregation of many solar PV inverters on the same network. 

At current, it is somewhat easy to determine the inverters’ impact on the network since solar PV 

inverters up until recently had a fixed power factor of 0.9 lagging, as defined by the Australian 

Standards at the time. However, in Australia, all new inverter installations from 2021 onwards must 

comply with the volt-var and volt-watt response modes as stated in the Australian Standard 

AS4777.2.2020 Grid connection of energy systems via inverters Inverter requirements [5]. These modes 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 July 2023                   doi:10.20944/preprints202307.1245.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202307.1245.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

control the inverters’ active and reactive power output respectively, depending on the grid voltage; 

this dynamic response makes it hard to forecast feeder characteristics using standard steady state 

load flow techniques.  

1.1. Research Motivation and Proposed Approch 

The aim of this research was to investigate the automation of modeling Energy Queensland’s 

low voltage (LV) networks in DIgSILENT PowerFactory and analyze the distribution network effects 

of forecast levels of solar PV, including active and reactive power and voltage levels, to formulate 

trend equations that could be used as a way of simplistically approximating network characteristics 

of other feeders under various levels of IES penetration. Achieving this would elevate the 

requirement for network planning engineers to conduct detailed network modeling and analyses 

when assessing the future impacts of IES penetration on distribution networks.  

In satisfying the research aim, the following objectives must be met: 

• Automate the process of constructing LV networks in DIgSILENT PowerFactory, onto the 

already existing medium voltage (MV) network models; 

• Automate the process of analyzing LV networks in DIgSILENT PowerFactory; 

• Interpret and present resulting data in a way that is meaningful and usable. 

Modeling LV networks and determining forecasts enable the ability to estimate active and 

reactive power, voltage, and power factor across distribution networks, as well as how much 

customers will export energy and experience curtailment of solar PV generation [6]. 

This is a two-part process: 

1. First a script was developed to automate the modeling of LV networks onto the LV buses of 

distribution transformers in the Energy Queensland’s existing distribution models (existing 

models go down as far as the transformer LV terminals, this project looked to expand that all of 

the way to the customer premises); 

2. Each distribution feeder was then analyzed using forecast levels of rooftop solar PV 

installations and minimum underlying load for each year. Again, this process was 

automated through a Python script. This is a worst-case scenario analysis to determine 

levels of active and reactive power, voltage and power factor on the network across a 

number of years. 

2. Background 

2.1. Generalised Overview 

The network effects of the high IES penetration on distribution feeders is a well-researched and 

commonly discussed topic in the power industry, as distributed generation has rapidly become a 

fundamental component of the electricity system [7]. 

The advent of customer generation has seen a reverse of the traditional unidirectional power 

flow model that electrical grids were designed and built to, where generation and load are at opposite 

ends of the network. Having more small-scale distributed generators on the customer end of the 

network will inherently require network operators to have greater visibility and control over the 

entire network [8]. 

The amount of installed rooftop solar PV capacity in Australia is approximately 17 GW, in mid-

2023, with installations on over 30% of houses [9]. Distributed energy resources are rapidly changing 

the load profile of the Australian national electricity market (NEM) and control of such resources will 

be integral to maintaining a stable and reliable grid into the future [9]. 

2.1.1. Network Effects of High Solar PV Penetration 

High IES penetration can lead to a number of power quality issues. If the statutory limits 

imposed by local standards are exceeded, it will force network providers to either limit the number 
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of IES connections on a particular part of the network or impose restrictions as to how they can 

operate [10]. Such power quality issues include voltage rise, voltage unbalance and harmonics [3]. 

Other IES related issues or considerations for network operators include network protection, IES anti-

islanding schemes and plant capacity ratings under reverse power situations [11]. 

As previously mentioned, inverters must increase the electrical potential to above that of the 

network in order to export power back into the network which results in voltage rise [12]. Network 

components can also experience overloading due to reverse power flow from aggregated solar PV 

export. 

As the maximum demand of each customer is not expected to happen simultaneously, power 

networks are often designed with a diversified load factor to maximize economic benefit [3]. Solar 

PV generation has little diversity in generation, as rooftop solar panels on a row of houses all facing 

the same direction will all generate maximum energy at the same time of day. For residential feeders, 

the period of maximum generation occurs during the middle of the day, which is often when 

households are consuming the least electricity and therefore excess energy is generated and exported 

back to the grid [13]. 

An investigation into distribution networks in Sri Lanka found that the limiting factor in terms 

of power quality acceptance and hence the determining factor of an LV networks hosting capacity, is 

voltage rise [14]. Although [14] detailed that the connection requirement for IES installations was 

unity power factor, and the Australian Standards previously required 0.9 lagging and now specify a 

volt/var characteristic, the results are similar to what is being observed on the Energy Queensland’s 

network [4]. 

2.1.2. Network Modeling Techniques  

As discussed in Section 1, assessing the network effects of PV can be extremely difficult due to 

the complexity and variation in distribution network topology. Research conducted in England 

looked to cluster the characteristics of distribution networks into simplified models based on the 

number of customers [15]. The researchers created a total of 11 networks to represent the 232 actual 

networks analyzed as part of the study. The study concluded that the hosting capacity of each of the 

232 networks could be determined within a high level of accuracy using the 11 representative 

networks [15]. 

In determining the hosting capacity of MV and LV feeders, one study used a statistical network 

modeling approach which simulated network load flow simulations under all possible 

configurations of solar PV sizes connected at various locations, until a voltage or capacity violation 

was reached [16]. The study determined that the smallest PV system to cause a violation at a certain 

point of the network was considered the networks hosting capacity [16]. However accurate, this 

methodology is computationally intense and requires networks to be modelled to a detail which may 

present challenges for industry. 

Recent research into the modeling and analysis of LV networks proposed a snapshot approach 

to determining/forecasting network conditions under various scenarios [17]. The authors of the 

research used a combination power flow analyses with available data such as smart meter readings 

and processed the information through a state estimation [17]. Currently this technique is conceptual 

and provides a proof of concept for future development. 

The network modeling software has previously been used in various studies to conduct load 

flow analyses on distribution feeders as a way to determine hosting capacity and voltage constraints 

[18]. Commonly used for power flow analysis in research literature is DIgSILENT PowerFactory, as 

its ease of use and function rich environment has made it a trustworthy tool amongst industry and 

academia [19]. 

Reference [19] looked to combine DIgSILENT PowerFactory models with Monte Carlo 

simulations, to develop a stochastic approach to determine PV hosting capacity. This research 

however, like many investigating the effects of network PV, was based on static PV inverter settings 
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and hence does not demonstrate a technique for modeling the dynamic volt/var, volt/watt 

requirement currently in place in Australia. 

Modeling the steady state network effects of solar PV is relatively simple, although when 

looking into dynamic inverter control or transient responses, certain inverter control parameters must 

be modeled. Several studies attempted to construct generic inverter control models for EMT 

simulations and concluded that the model was accurate for simulated aggregate inverter response 

but not accurate to model individual inverter behavior [18,19]. 

DIgSILENT PowerFactory has the ability to create custom PV inverter controllers using the 

quasi-dynamic simulation language (QDSL) models, which can be used to model the volt/var and 

volt/watt characteristics of inverters [20]. It has been verified that that the QDSL simulations can be 

used as a computationally efficient and quick approach to modeling the slow dynamics of inverter 

functions such as active and reactive voltage control [21]. 

2.1.3. Solar PV Modeling and Forecasting Techniques 

The active power output of solar PV inverters is a function of the solar irradiation input to the 

panels [22]. Studies have found that it is reasonable to assume the maximum allowable output of 

inverters as per their connection agreements, when modeling the potential effects of solar PV on 

networks [23]. Even though each rooftop solar panel on a feeder may not be generating maximum 

power at the same time, due to varied panel directions/angles and potential shading, most connection 

agreements around the world allow for a certain over sizing of panels to inverter capacity [24]. 

Therefore, if each solar panel system on a feeder is greater than 5kW and each inverter capacity is 

equal to 5kW, then it can be assumed that it is possible to have each inverter simultaneously 

generating its rated 5kW for a period of the day. 

When forecasting time-of-day solar outputs, key input variables must be predicted. One study 

developed a clear-sky model which used easily predictable meteorological inputs to determine solar 

output for various times of day; such inputs included solar irradiance determined for location, time 

and ambient temperature [25]. When compared with actual values the same study found the results 

were reasonably accurate for clear sky days, however the model is unable to predict loss of generation 

due to cloud coverage on unclear days [25]. 

A study in France [26] investigated methodologies from various research to determine the best 

approach for short term solar forecasting. The study found that a statistical approach using the 

mathematical principle of regression tree methodology combined with numerical weather 

predictions was most accurate [26]. Another study which took a statistical approach to forecasting 

PV generation, clustered historical generation and weather data and used curve extrapolation 

methods to predict future generation with a high degree of accuracy, although such techniques 

require high resolution input data [27]. A similar study investigates other mathematical forecasting 

methods using historical data, including the parabolic curve model and half-sine model with similar 

results [28]. 

2.1.4. Linear Regression and Network Forecasting 

As network operators deal with networks both vast and complex, approximations and 

assumptions must be made to make predictions about network conditions into the future. Regression 

is a mathematical tool that is key to network forecasting [29]. Regression is a statistical model that 

can be used to extrapolate dependent variables or responses from independent variables i.e., known 

predictors [29]. 

Previous research used linear regression combined with deep learning techniques to estimate 

LV network characteristics without the use of demand data and managed to achieve results within 

10% of accuracy [30]. As the coordination and orchestration of distributed energy resources on 

distribution networks becomes more complex, researchers in China have used regression techniques 

to simplify the requirements for detailed network assessments [30]. Another study has designed a 
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robust state estimation engine which utilizes statistical regression techniques to predict LV network 

conditions using customer smart meter data [31]. 

2.2. Disntinctive Features in the Context of Queensland, Australia 

Modeling the impacts IES penetration is often difficult due to the lack of quality data concerning 

Energy Queensland’s LV networks. For this reason, an investigation was carried out by Energy 

Queensland in 2013 [4], which using the best available data, constructed a list of Energy Queensland’s 

typical networks, displayed in Tables 1 and 2. The list comprises of 16 LV networks across the most 

common transformer sizes and categories including urban and rural. These networks do not 

represent the best or worst but the average in terms of conductor type and network size for each 

network type [4]. 

The process used to develop the representative networks was as follows [4]: 

1. The most common distribution transformer sizes were determined for each network type (urban 

and rural), a transformer was considered to be common if it made up over 2% of transformers 

in that specific network type; 

2. The average number of customers was calculated for each transformer and network type. The 

most typical transformer was determined by ranking the transformers in terms of their 

Euclidean distance from the average, as illustrated in (1). For example, Euclidean distance for a 

particular 25 kVA transformer = average number of customers served by 25 kVA transformers - 

number of customers served by the particular 25 kVA transformer; 

Euclidean distance (25kVA TF) = |TF no.cust − 25kVA TF no.cust|     (1) 

3. The transformer with the smallest Euclidean distance was used to determine the characteristics 

of the typical network by extracting the network data for that particular LV network; 

4. Lastly, the list was circulated throughout Energy Queensland for critical review and any 

necessary changes were made. 

These representative networks and each of their elements are detailed in the following tables.   

Table 1. Energy Queensland’s typical LV network construction. 

Feeder  

category 

TF size (kVA) No. of customers Conductor type Length  Type 

Urban  10 (1ph) 2 2 x 25mm2 ABC 60m Overhead 

Urban 25 3 2 x 95mm2 ABC 100m Overhead 

Urban 50  7 4 x 95mm2 ABC 350m Overhead  

Urban 50 8 120mm2 Al 1C XLPE 300m Underground  

Urban 63 5 4 x 95mm2 ABC 250m Overhead  

Urban 100 20 4 x 95mm2 ABC 370m Overhead  

Urban 100 20 120mm2 Al 1C XLPE 130m Underground 

Urban 200 44 Mars 7/3.75 AAC 250m Overhead 

Urban 315 38 Mars 7/3.75 AAC 350m Overhead 

Urban 315 38 240mm2 Al 4C XLPE 250m Underground 

Urban 500 38 240mm2 Al 4C XLPE 300m Underground 

Rural  10 1 2 x 50mm2 ABC 75m Overhead 

Rural 25 2 4 x 95mm2 ABC 120m Overhead 

Rural 50 4 4 x 95mm2 ABC 250m Overhead 

Rural 63 3 4 x 95mm2 ABC 120m Overhead 

Rural 100 7 Mars 7/3.75 AAC 300m Overhead 

Rural 200 14 4 x 95mm2 ABC 400m Overhead 

Table 2. Additional assumptions for Energy Queensland’s LV networks. 

Element  Urban  Rural  
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MEN resistance 10Ω  1Ω 

Transformer earth resistance 10Ω  1Ω 

Customer earth stake resistance  10Ω  10Ω 

Distance between poles  15m 50m 

Customer service* length 15m  30m 

Customer service conductor type 25mm2 Al 16mm2 Al 

Customer mains* length 15m urban 20m 

Customer mains conductor type 10mm2 CU 10mm2 CU 

* Customers service refers to the cable between the pole to the customers premises (point-of-attachment). * 

Customers mains refers to the cable between the point-of -attachment and the customers switchboard. 

The information regarding the topology and construction of Energy Queensland’s network is 

stored inside the database of a geographic information system (GIS) program called Smallworld. The 

proposed research uses the data in Smallworld to reconstruct the network in DIgSILENT 

PowerFactory. If the data is insufficient for any LV networks, representative networks will be used 

instead, based off the information in the tables above. 

Energy Queensland currently has regional DIgSILENT PowerFactory models where every 

substation and distribution feeder are modelled down to the distribution transformer LV terminal. 

The LV networks will be modelled directly onto the LV bus of the distribution transformers in the 

DIgSILENT PowerFactory regional models. 

The representative networks are made more accurate for the purpose of this research by using 

the actual number of customers for each transformer. The length of the LV feeder was extended if the 

number of customers exceeded the line capacity given a specified number of customers per pole and 

distance between poles. The models are also equipped with multiple earth neutrals (MEN), earth 

stakes and line coupling to accurately model the overhead phase and neutral wires. 

2.2.1. Network Forecasting in Energy Queensland 

The forecasting team at Energy Queensland determine a variety of forecasts at each zone 

substation and distribution feeder level, that span up to the year 2060. The proposed research utilizes 

two forecasts, the 50% probability of exceedance (POE) feeder underlying load and feeder number of 

PV system connections. The forecast methodologies are detailed in the Energy Queensland’s strategic 

forecasting annual report 2021 [32]. 

As a part of the forecasting, a linear regression model of previous datasets to project their 

forecasts forward, using a number of different scenarios. For example, the minimum underlying load 

forecast considers feeder growth, customer load mix, electric vehicle (EV) and PV uptakes. Each 

scenario has a low, medium and high uptake forecast. The average of the scenarios at any time-step 

is considered to be the 50 POE forecast, which are used in this research work. 

The term ’minimum underlying load’ refers to the load on the feeder irrespective of contribution 

from distributed solar PV generation. In other words, it is the load as seen by the feeder, plus the 

portion of the load being supplied locally by the rooftop PV, expressed in (2).  

minimum underlying load = minimum load on a distribution feeder + expected rooftop PV 

generation                (2) 

The minimum load on a distribution feeder is a measured value, while the expected rooftop PV 

generation for each feeder is determined as a function of the connected PV capacity and global 

horizontal index (GHI), as expressed in (3). 

Generation(kW)t = GHIt × PV Panel Capacity (kW) × Generation Coefficients (3) 

In (3), GHI is the total solar radiation incident on a horizontal surface while the generation 

coefficients are calculated figures determined by the forecasting team at Energy Queensland, who 

looked at sample of PV systems on a particular network and back calculated the associated power 

generation as a function of GHI and panel capacity. The generation coefficients change across regions 

to reflect a number of variables in solar output and efficiency.  
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Using a specific feeder as an example, the forecast data illustrated in Table 3 is obtained as a part 

of this research and used as an input to analyze each year for that specific feeder, from 2020 to 2060. 

Table 3. Energy Queensland feeder forecast example. 

Forecast Year  Num PV Systems Underlying kW Underlying kvar 

2020 169 845.7 -60.9 

2021 177 851.7 -60.5 

2022 184 856.8 -60.2 

….    

2060 646 1779.2 -42.0 

2.2.2. Grid connection of solar PV systems via inverters 

Australian Standard 4777.2.2020 [5] mandates a curtailment scheme for active and reactive 

power, known as volt/var and volt/watt control, where each inverter has the same control scheme 

regardless of where it is located on the network. These control modes are also enforced by Energy 

Queensland’s Standard for Small IES Connections [33]. 

The volt-var mode illustrated in Figure 1, instructs the single phase inverter to either inject or 

absorb reactive power depending on whether the grid voltage is lower than 220 V or higher than 240 

V. Since the inverter’s export is capped at 5 kVA per-phase under a basic contract in Queensland, 

absorbing or injecting reactive power will reduce the active power output capability of the inverter 

if the inverter’s apparent power reaches the 5 kVA limit.  

 

Figure 1. Energy Queensland’s micro-embedded generation volt-var connection requirement [33]. 

The same applies for the volt-watt response, seen in Figure 2, where the single phase inverters 

curtail active power generation if the voltage exceeds 253 V.  
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Figure 2. Energy Queensland’s micro-embedded generation volt-watt connection requirement [33]. 

3. Network Modeling Approach  

Prior to the uptake of solar PV systems, LV networks were not essential for traditional network 

planning studies and as a result information regarding the constructed of these networks is often 

incomplete. Energy Queensland’s distribution networks models in DIgSILENT PowerFactory do not 

include the LV conductors. 

The LV portion of the network is critical for modeling the effects of customers PV, as inverters 

control their active and reactive power outputs based on the voltages seen at the inverter terminals. 

The proposed research looks to expand the distribution network models to include the LV networks, 

as seen in Figure 3, so that a realistic analysis can be conducted. 

 

Figure 3. LV network modeling. 

Two methods are utilized for constructing LV networks in DIgSILENT PowerFactory for the 

purpose of analysis. For each LV network, an attempt is made to construct actual models i.e., genuine 

representations of the real network. If the data is incomplete or insufficient, i.e., missing conductor 

type information, load-flow analyses cannot be performed and therefore representative networks are 

constructed in place of the actual. 

3.1. Actual Networks 

The project initially looked to create actual LV networks by programmatically tracing the 

Smallworld geospatial database. The term ‘actual’ means replicating networks as they appear in the 

GIS program. Smallworld, which is reflective of the real-world networks. For this task, a Python script 

was developed which when ran in DIgSILENT PowerFactory, goes through each distribution 

substation and collects the substation ID, which is in the substation elements name. With the ID 

collected, the GIS database is queried for the structural object related to that substation (either pole 

or padmount). The Smallworld database is then queried for the line object(s) (wire or cables) 

connected to that structural object. This process is repeated using a recursive programming technique 

until the trace either reaches the end of the line, an open point, or another distribution transformer, 

as illustrated in Figure 4. 
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Figure 4. LV network tracing process. 

As mentioned in Section 2.2, a major problem is the lack of quality data concerning LV networks, 

which means that actual networks could not always be created. Common problems include missing 

conductor types and the reliability of network open points.  

3.2. Representative Networks 

Due to the challenges detailed in Section 3.1, this research looked to build representative LV 

networks when actual networks could not be created. 

The script developed for modeling the representative networks, when ran in DIgSILENT 

PowerFactory, goes through each distribution substation and collects the substation ID, transformer 

size and number of LV phases. With the ID collected, a number of corporate databases are queried to 

get information such as the number of connected customers and the feeder planning classification 

say urban or rural. 

Using the transformer capacity and planning category, the LV network is matched to one of the 

representative models detailed in Tables 1 and 2, in Section 2.2. The network is made more accurate 

by using the actual number of customers and extending the length on the line if the number of 

customers exceeds the line length, given a specified number of customers per pole and distance 

between poles.  

3.3. DIgSILENT PowerFactory network automation 

Using the Python PowerFactory application interface (API), a script is used to automate the 

construction of the LV networks. 

This process is as follows for each distribution transformer:  

1. The substation ID is attained, which is the string of numbers in the first part of the substation 

element name; 

2. The substation ID is used as the argument, i.e., input, to trace the LV network in the Smallworld 

database and get substation details, such as number of customers and number of existing PV 

installations;  

3. The traced network is analyzed for completeness by checking if there are any unknown 

conductor types;  

4. If the data is complete, the actual networks are constructed in DIgSILENT PowerFactory, 

otherwise representative networks are used. 

This process is illustrated in Figure 5. 
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Figure 5. Constructing LV networks script flowchart. 

Figure 6 shows the DIgSILENT PowerFactory application while the networks are being 

constructed. The output window on the bottom of the screen lists each of the networks as they are 

being created. The network model on the top of the screen shows the distribution network overview 

and each of the circular objects are distribution transformers; the two colors represent two different 

distribution feeders. The LV networks are not visible on this graphic but appear once a distribution 

substation is clicked on, which opens the internal view. 
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Figure 6. Constructing LV networks in DIgSILENT PowerFactory. 

Figures 7 and 8 display a distribution transformer with a single customer on DIgSILENT 

PowerFactory, both before and after the LV network was created respectively. The original load has 

been switched out of service on the transformers LV bus. To the left, 3 additional buses can be seen, 

the bus on the far left is a typical pole with a MEN, the next bus represents the attachment point on 

the house and the final bus represents the end of a customer mains from the point of attachment to 

the switchboard; the load is now located there along with an earth stake and an inverter. The inverter 

is in service but may be switched in or out during the analysis phase if required, as this customer 

may or may not be forecast to have a PV inverter. The model is again equipped with line coupling to 

more accurately model the overhead phase and neutral wires.  

 

Figure 7. DIgSILENT PowerFactory distribution transformer model before LV network creation. 

 

Figure 8. DIgSILENT PowerFactory distribution transformer model after LV network creation. 

4. Proposed Methodology for Network Analysis 
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With the LV networks on each distribution transformer constructed along each of the feeders in 

a DIgSILENT PowerFactory regional model, the analysis of each distribution feeder can begin. 

The methodology for the analysis is as follows: 

1. The forecasting database is queried for the number of PV systems and minimum underlying 

load for each year between 2020 and 2060 for each feeder; 

2. The minimum load is applied to the feeder and a load flow is conducted with feeder load scaling 

switched on; 

3. Each load element is set to the resulting P and Q values and feeder load scaling is switched off. 

This step allows for the customers to determine the feeder load, as opposed to having the feeder 

converge to a specified value; 

4. The number of PV systems forecast for that year are switched into service across a random 

distribution on the feeder. Each PV system is created with a QDSL model for fixed power factor, 

and volt/var and volt/watt schemes. If the year is 2020, the inverters’ fixed power factor model 

is activated. For every year after, activated inverters have the volt/var and volt/watt models 

activated. Each PV system is set to have a rated output of 5kVA to simulate a maximum 

generation i.e., the worst case scenario; 

5. A load flow is conducted with feeder load scaling switched off; 

6. Data points across the network are recorded; 

7. Steps 1-6 are repeated for each year studied (2020 - 2060), changing the minimum load and 

activating additional of PV systems as per the forecast; 

8. The data is exported for further analysis. 

The above process is illustrated in Figure 9.  

 

Figure 9. Network analysis script flowchart. 

4.1. QDSL solar PV modeling 

Each solar PV element activated in DIgSILENT PowerFactory is equipped with a QDSL element 

which allows for the inverters to dynamically control active and react power outputs as a function of 

the network voltage input. QDSL simulations achieve this through additional control loops after each 

time step, which are customizable through a series parameters, equations, and logic scrips, as 

illustrated in Figure 10.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 July 2023                   doi:10.20944/preprints202307.1245.v1

https://doi.org/10.20944/preprints202307.1245.v1


 13 

 

 

Figure 10. DIgSILENT PowerFactory QDSL models - Simulation Procedure [20]. 

An example of how this is applied to PV models in shown in Figures 11 and 12. Figure 11 

displays the voltage, active and reactive power reference points that are used in the load flow outer 

loop script in Figure 12 to calculate the inverters active and reactive power setpoints.  

 

Figure 11. DIgSILENT PowerFactory QDSL element volt-var and volt-watt parameters. 
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Figure 12. DIgSILENT PowerFactory QDSL element volt-var and volt-watt load flow script. 

5. Results  

Using a single distribution feeder at Boldon Hill, Qld, Australia as an example, the following 

plots illustrate the results of the forecast analysis, illustrating how the PV systems on the feeder 

respond to network voltage.   

Figure 13 illustrates the voltage seen at each inverters terminals, as forecast number of PV 

systems increases each year, so too does the average voltage. This result confirms the theoretical 

principle that increasing energy generation on a system will result in an increase in system voltage. 

There are more data points each year as the forecast number of PV systems on the feeder increase. 

 

Figure 13. Bolden Hill distribution feeder – PV system voltage. 

Figures 14 and 15 illustrate the inverters’ active and reactive power output. Since every inverter 

in year 2020 is set with a fixed power factor of 0.9, the active and reactive power output of every PV 

system in service that year is 4.5 kW and -2.17 kvar respectively. 

For years after 2020, the volt-var and volt-watt responses are evident from the curtailment of 

active power and reactive power absorption experienced by some inverters, which is a result of the 

voltage experiences by those inverters. 
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Figure 14. Bolden Hill distribution feeder – PV system active power output. 

 

Figure 15. Bolden Hill distribution feeder – PV system reactive power response. 

Figure 14 shows that a few of the solar PV systems begin to curtail their active power output at 

year 2029 and by year 2048 they have completely curtailed to 1 kW, or 20% rated output as described 

in AS4777 [5], when the network voltage exceeds 260 V. These particular systems curtailing more 

heavily than the rest would indicate that they are either on a highly resistive sections of the network, 

which would be more susceptible to voltage rise, or they are on the same LV network and the effects 

of exporting energy are compounding. 

It is to be noted that the forementioned results are based off a combination of representative and 

actual networks, and forecast input data. Accordingly, by aggregating the results across many 

feeders, appropriate trends can be determined. 

5.1. Active Power Response on Distribution Feeders  

A number of zone substations and distribution feeders have been analyzed. The feeders are 

categorized into the planning categories of urban and rural as a way to compare similar feeders, as 

the topology of urban and rural feeders are quite different at both the MV and LV levels. The number 

of PV systems is used to compare feeders of various sizes as opposed to years.  

5.1.1. Urban Feeder 

Looking at the MV distribution feeder level, Figure 15 illustrates the relationship between the 

number of PV systems and the minimum active power levels on urban feeders. It can be observed 

that with almost all feeders studied, as the number of PV systems is increased across years, the active 
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power flows on the feeder are reversed, resulting in a net export of active power from the feeder into 

the substation. 

The x-axis in Figure 16 represents the number of PV systems on each distribution feeder for each 

of the years analyzed. The y-axis represents the active power seen by each distribution feeder in MW, 

under minimum forecast load and influenced by the distributed PV generation. The legend shows 

each distribution feeder analyzed, represented by the different colors on the graph. 

 

Figure 16. Urban distribution feeders’ minimum active power level. 

Using linear regression, a general rule for urban feeder active power as a function of the number 

of PV installations can be determined, as illustrated in Figure 17. 

 

Figure 17. Urban distribution feeders’ minimum active power level – trend line. 

The linear regression equation for the trend line is: 

y = −3.42x + 324.01          (4) 

The formula is in the format y = mx + c where: 

• y is the feeder active power in kW; 

• m is the gradient (-3.42); 

• x is the number of PV systems installed on the feeder; 

• c is the y crossing, which is this case is approximately 324 kW. 

5.1.2. Rural Feeder 

A similar trend, as seen on urban feeders, has been found for rural feeders as seen in Figures 18 

and 19, whereas the number of PV systems increases, during times of low load and high generation, 

the feeders’ net load becomes negative, meaning they feed active power back into the substation. 
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Figure 18. Rural distribution feeders’ minimum active power level. 

 

Figure 19. Rural distribution feeders’ minimum active power level – trend line. 

The linear regression equation which represents the minimum active power levels on rural 

distribution feeders with number of PV systems is: 

y = −4.13x + 153.47           (5) 

5.2. Reactive Power Response on Distribution Feeders 

By subtracting resulting levels of reactive power from the forecast underlying reactive power at 

each time step, we can determine the PV systems’ reactive power contribution to the feeder. 

5.2.1. Urban Feeders 

Figure 20 illustrates a decrease in reactive power of distribution feeders as the number of PV 

systems increases. This response is indicative of the inverter’s volt/var control, where reactive power 

absorption is used to lower the voltage at the inverter terminals. 
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Figure 20. Urban distribution feeders’ reactive power contribution from PV. 

The linear regression equation which represents the minimum reactive power levels on urban 

distribution feeders with number of PV systems, as represented by the trend line in Figure 21, is: 

y = −1.6x − 1.03           (6) 

 

Figure 21. Urban distribution feeders’ reactive power contribution from PV – trend line. 

5.2.2. Rural Feeders 

Looking at the reactive power contribution by PVs on rural feeders, as shown in Figure 22, and 

trend for rural feeder reactive power as shown in Figure 23, it can be seen that the rate of decrease in 

reactive power is greater than that of urban feeders, which is expected as rural networks are often 

longer and built for less capacity which would make them more susceptible to the effects of PV 

generation. 
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Figure 22. Rural distribution feeders’ reactive power contribution from PV. 

 

Figure 23. Rural distribution feeders reactive power contribution from PV – trend line. 

The linear regression equation which represents the minimum reactive power levels on rural 

distribution feeders with number of PV systems is: 

Y = −1.57x − 9.84         (7) 

5.3. Effect of PV systems on Distribution Feeder Power Factor 

Figures 24 and 25 illustrate effect of PV systems on urban and rural feeders respectively. The 

power factor in each plot shows a shifting from positive to negative values as the flow of power 

reverses.  
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Figure 24. Variation in power factor on urban distribution feeders. 

 

Figure 25. Variation in power factor on rural distribution feeders. 

6. Discussion and Conclusion 

Due to issues in the quality of LV network data, modeling and analyzing actual LV networks 

was not always achievable and therefore a combination of actual and representative models were 

used in this paper. The proposed research verified that clustering LV networks into representative 

models for the use of PV analysis can yield results within a high degree of accuracy to that of an 

actual network analysis. 

Using the proposed approach, a number of Energy Queensland’s distribution feeders were 

analyzed, and the results grouped into the feeder’s reliability category of urban or rural to compare 

feeders of similar network construction and topology. Comparing the number of installed solar PV 

systems for each distribution feeder with values measured at the feeder terminal, such as active 

power and reactive power, revealed a fairly pronounced trend between the feeders of a similar 

topology. 

Using linear regression, trends were determined thus creating a simple metric by which to 

determine the network characteristics for other feeders with various levels of solar PV penetration. 

This estimation can easily be used as a rough guide for planning engineers to determine worst-case 

levels of power and voltage on particular feeders. 

The power factor analysis raises the interesting question of whether current standards 

and regulations reflect the reality on LV networks and whether or not network power factor 

statutory limits apply during periods of low load. Most network operators’ performance standards 

specify a power factor operating range of around 0.9 lagging to 0.9 leading. 

In addition to satisfying the objectives, the proposed research delivered the ability to automate 

the creation of LV networks into Energy Queensland’s regional models, which is a tool that can be 

used to help analyze LV networks in ways such as assessing the hosting capacity of specific LV 

networks, assessing IES and load connections, assessing EV charging and vehicle to grid impacts, 

developing future inverter operating controls and testing of equipment including STATCOMS and 

voltage regulators at LV level. 
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