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Abstract: Recent years have seen a rapid uptake in distributed energy resources (DER). Such technologies pose
a number of challenges to network operators, which can ultimately limit the amount of rooftop solar
photovoltaics (PV) systems that can be connected to a network. The objective of this industry-based research
was to determine the potential network effects of forecast levels of customer owned rooftop solar PV on Energy
Queensland’s distribution network and formulate functions that can be used to determine such effects without
the requirement for detailed network modeling and analysis. In this research, many of Energy Queensland’s
distribution feeders were modelled using DIgSILENT PowerFactory and analyzed with forecast levels of solar
PV and customer load. Python scripts were used to automate this process and quasi dynamic simulation
(QDSL) models were used to represent the dynamic volt-watt and volt-var response of inverters, as mandated
by the Australian Standard AS/NZS 4777. In analyzing the results, linear regression was used to form trend
equations that represent various network characteristics against the number of PV connections. The trend
equations provide a way of approximating network characteristics for other feeders under various levels of
customer owned rooftop solar PV without the need for detail modeling.

Keywords: distributed energy resource; solar PV penetration; voltage rise; network constraints;
network modeling automation; reverse power flow; inverter energy systems

1. Introduction

The impact of residential inverter energy systems (IES) on distribution networks throughout the
past decade has been an intensely studied and discussed subject for distribution network operators
worldwide. The rapid uptake in renewable generation in Australia, specifically rooftop PV, is a result
of network feed-in tariffs combined with falling costs of PV systems driven by an overarching
transition in consumer attitude towards a decarbonized, greener energy future [1].

The state of Queensland (Qld) in Australia has the highest levels of residential rooftop PV
penetration by both capacity and percentage of dwellings [2]. High levels of IES penetration on
distribution feeders can lead to a host of power quality, plant rating and network issues, including
voltage rise, voltage unbalance, harmonic emissions, reverse power flow, poor power factor and
exceedance of plant ratings [3]. As a result, Energy Queensland, one of the distribution network
service providers in Queensland, has been experiencing voltage rise excursions beyond statutory
limits, as well as reverse power flows on distribution feeders [4].

Voltage rise occurs because for solar PV inverters to export power to the network, they must
increase the electrical potential to above that of the network. This effect is exacerbated with the
aggregation of many solar PV inverters on the same network.

At current, it is somewhat easy to determine the inverters’ impact on the network since solar PV
inverters up until recently had a fixed power factor of 0.9 lagging, as defined by the Australian
Standards at the time. However, in Australia, all new inverter installations from 2021 onwards must
comply with the volt-var and volt-watt response modes as stated in the Australian Standard
AS4777.2.2020 Grid connection of energy systems via inverters Inverter requirements [5]. These modes
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control the inverters’ active and reactive power output respectively, depending on the grid voltage;
this dynamic response makes it hard to forecast feeder characteristics using standard steady state
load flow techniques.

1.1. Research Motivation and Proposed Approch

The aim of this research was to investigate the automation of modeling Energy Queensland’s
low voltage (LV) networks in DIgSILENT PowerFactory and analyze the distribution network effects
of forecast levels of solar PV, including active and reactive power and voltage levels, to formulate
trend equations that could be used as a way of simplistically approximating network characteristics
of other feeders under various levels of IES penetration. Achieving this would elevate the
requirement for network planning engineers to conduct detailed network modeling and analyses
when assessing the future impacts of IES penetration on distribution networks.

In satisfying the research aim, the following objectives must be met:

e  Automate the process of constructing LV networks in DIgSILENT PowerFactory, onto the
already existing medium voltage (MV) network models;

e Automate the process of analyzing LV networks in DIgSILENT PowerFactory;

e Interpret and present resulting data in a way that is meaningful and usable.

Modeling LV networks and determining forecasts enable the ability to estimate active and
reactive power, voltage, and power factor across distribution networks, as well as how much
customers will export energy and experience curtailment of solar PV generation [6].

This is a two-part process:

1. First a script was developed to automate the modeling of LV networks onto the LV buses of
distribution transformers in the Energy Queensland’s existing distribution models (existing
models go down as far as the transformer LV terminals, this project looked to expand that all of
the way to the customer premises);

2.  Each distribution feeder was then analyzed using forecast levels of rooftop solar PV
installations and minimum underlying load for each year. Again, this process was
automated through a Python script. This is a worst-case scenario analysis to determine
levels of active and reactive power, voltage and power factor on the network across a
number of years.

2. Background

2.1. Generalised Overview

The network effects of the high IES penetration on distribution feeders is a well-researched and
commonly discussed topic in the power industry, as distributed generation has rapidly become a
fundamental component of the electricity system [7].

The advent of customer generation has seen a reverse of the traditional unidirectional power
flow model that electrical grids were designed and built to, where generation and load are at opposite
ends of the network. Having more small-scale distributed generators on the customer end of the
network will inherently require network operators to have greater visibility and control over the
entire network [8].

The amount of installed rooftop solar PV capacity in Australia is approximately 17 GW, in mid-
2023, with installations on over 30% of houses [9]. Distributed energy resources are rapidly changing
the load profile of the Australian national electricity market (NEM) and control of such resources will
be integral to maintaining a stable and reliable grid into the future [9].

2.1.1. Network Effects of High Solar PV Penetration

High IES penetration can lead to a number of power quality issues. If the statutory limits
imposed by local standards are exceeded, it will force network providers to either limit the number
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of IES connections on a particular part of the network or impose restrictions as to how they can
operate [10]. Such power quality issues include voltage rise, voltage unbalance and harmonics [3].
Other IES related issues or considerations for network operators include network protection, IES anti-
islanding schemes and plant capacity ratings under reverse power situations [11].

As previously mentioned, inverters must increase the electrical potential to above that of the
network in order to export power back into the network which results in voltage rise [12]. Network
components can also experience overloading due to reverse power flow from aggregated solar PV
export.

As the maximum demand of each customer is not expected to happen simultaneously, power
networks are often designed with a diversified load factor to maximize economic benefit [3]. Solar
PV generation has little diversity in generation, as rooftop solar panels on a row of houses all facing
the same direction will all generate maximum energy at the same time of day. For residential feeders,
the period of maximum generation occurs during the middle of the day, which is often when
households are consuming the least electricity and therefore excess energy is generated and exported
back to the grid [13].

An investigation into distribution networks in Sri Lanka found that the limiting factor in terms
of power quality acceptance and hence the determining factor of an LV networks hosting capacity, is
voltage rise [14]. Although [14] detailed that the connection requirement for IES installations was
unity power factor, and the Australian Standards previously required 0.9 lagging and now specify a
volt/var characteristic, the results are similar to what is being observed on the Energy Queensland’s
network [4].

2.1.2. Network Modeling Techniques

As discussed in Section 1, assessing the network effects of PV can be extremely difficult due to
the complexity and variation in distribution network topology. Research conducted in England
looked to cluster the characteristics of distribution networks into simplified models based on the
number of customers [15]. The researchers created a total of 11 networks to represent the 232 actual
networks analyzed as part of the study. The study concluded that the hosting capacity of each of the
232 networks could be determined within a high level of accuracy using the 11 representative
networks [15].

In determining the hosting capacity of MV and LV feeders, one study used a statistical network
modeling approach which simulated network load flow simulations under all possible
configurations of solar PV sizes connected at various locations, until a voltage or capacity violation
was reached [16]. The study determined that the smallest PV system to cause a violation at a certain
point of the network was considered the networks hosting capacity [16]. However accurate, this
methodology is computationally intense and requires networks to be modelled to a detail which may
present challenges for industry.

Recent research into the modeling and analysis of LV networks proposed a snapshot approach
to determining/forecasting network conditions under various scenarios [17]. The authors of the
research used a combination power flow analyses with available data such as smart meter readings
and processed the information through a state estimation [17]. Currently this technique is conceptual
and provides a proof of concept for future development.

The network modeling software has previously been used in various studies to conduct load
flow analyses on distribution feeders as a way to determine hosting capacity and voltage constraints
[18]. Commonly used for power flow analysis in research literature is DIgSILENT PowerFactory, as
its ease of use and function rich environment has made it a trustworthy tool amongst industry and
academia [19].

Reference [19] looked to combine DIgSILENT PowerFactory models with Monte Carlo
simulations, to develop a stochastic approach to determine PV hosting capacity. This research
however, like many investigating the effects of network PV, was based on static PV inverter settings


https://doi.org/10.20944/preprints202307.1245.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 July 2023 doi:10.20944/preprints202307.1245.v1

and hence does not demonstrate a technique for modeling the dynamic volt/var, volt/watt
requirement currently in place in Australia.

Modeling the steady state network effects of solar PV is relatively simple, although when
looking into dynamic inverter control or transient responses, certain inverter control parameters must
be modeled. Several studies attempted to construct generic inverter control models for EMT
simulations and concluded that the model was accurate for simulated aggregate inverter response
but not accurate to model individual inverter behavior [18,19].

DIgSILENT PowerFactory has the ability to create custom PV inverter controllers using the
quasi-dynamic simulation language (QDSL) models, which can be used to model the volt/var and
volt/watt characteristics of inverters [20]. It has been verified that that the QDSL simulations can be
used as a computationally efficient and quick approach to modeling the slow dynamics of inverter
functions such as active and reactive voltage control [21].

2.1.3. Solar PV Modeling and Forecasting Techniques

The active power output of solar PV inverters is a function of the solar irradiation input to the
panels [22]. Studies have found that it is reasonable to assume the maximum allowable output of
inverters as per their connection agreements, when modeling the potential effects of solar PV on
networks [23]. Even though each rooftop solar panel on a feeder may not be generating maximum
power at the same time, due to varied panel directions/angles and potential shading, most connection
agreements around the world allow for a certain over sizing of panels to inverter capacity [24].
Therefore, if each solar panel system on a feeder is greater than 5kW and each inverter capacity is
equal to 5kW, then it can be assumed that it is possible to have each inverter simultaneously
generating its rated 5kW for a period of the day.

When forecasting time-of-day solar outputs, key input variables must be predicted. One study
developed a clear-sky model which used easily predictable meteorological inputs to determine solar
output for various times of day; such inputs included solar irradiance determined for location, time
and ambient temperature [25]. When compared with actual values the same study found the results
were reasonably accurate for clear sky days, however the model is unable to predict loss of generation
due to cloud coverage on unclear days [25].

A study in France [26] investigated methodologies from various research to determine the best
approach for short term solar forecasting. The study found that a statistical approach using the
mathematical principle of regression tree methodology combined with numerical weather
predictions was most accurate [26]. Another study which took a statistical approach to forecasting
PV generation, clustered historical generation and weather data and used curve extrapolation
methods to predict future generation with a high degree of accuracy, although such techniques
require high resolution input data [27]. A similar study investigates other mathematical forecasting
methods using historical data, including the parabolic curve model and half-sine model with similar
results [28].

2.1.4. Linear Regression and Network Forecasting

As network operators deal with networks both vast and complex, approximations and
assumptions must be made to make predictions about network conditions into the future. Regression
is a mathematical tool that is key to network forecasting [29]. Regression is a statistical model that
can be used to extrapolate dependent variables or responses from independent variables i.e., known
predictors [29].

Previous research used linear regression combined with deep learning techniques to estimate
LV network characteristics without the use of demand data and managed to achieve results within
10% of accuracy [30]. As the coordination and orchestration of distributed energy resources on
distribution networks becomes more complex, researchers in China have used regression techniques
to simplify the requirements for detailed network assessments [30]. Another study has designed a
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robust state estimation engine which utilizes statistical regression techniques to predict LV network
conditions using customer smart meter data [31].

2.2. Disntinctive Features in the Context of Queensland, Australia

Modeling the impacts IES penetration is often difficult due to the lack of quality data concerning

Energy Queensland’s LV networks. For this reason, an investigation was carried out by Energy
Queensland in 2013 [4], which using the best available data, constructed a list of Energy Queensland’s
typical networks, displayed in Tables 1 and 2. The list comprises of 16 LV networks across the most
common transformer sizes and categories including urban and rural. These networks do not
represent the best or worst but the average in terms of conductor type and network size for each
network type [4].

The process used to develop the representative networks was as follows [4]:

do0i:10.20944/preprints202307.1245.v1

1. The most common distribution transformer sizes were determined for each network type (urban
and rural), a transformer was considered to be common if it made up over 2% of transformers
in that specific network type;

2. The average number of customers was calculated for each transformer and network type. The
most typical transformer was determined by ranking the transformers in terms of their
Euclidean distance from the average, as illustrated in (1). For example, Euclidean distance for a
particular 25 kVA transformer = average number of customers served by 25 kVA transformers -
number of customers served by the particular 25 kVA transformer;

Euclidean distance (25kVA TF) = | TF no.cust — 25kVA TF no.cust | (1)

3.  The transformer with the smallest Euclidean distance was used to determine the characteristics
of the typical network by extracting the network data for that particular LV network;

4. Lastly, the list was circulated throughout Energy Queensland for critical review and any
necessary changes were made.

These representative networks and each of their elements are detailed in the following tables.
Table 1. Energy Queensland’s typical LV network construction.
Feeder TF size (kVA) No. of customers Conductor type Length Type
category

Urban 10 (1ph) 2 2 x 25mm?2 ABC 60m Overhead
Urban 25 3 2 x 95mm? ABC 100m Overhead
Urban 50 7 4 x 95mm? ABC 350m Overhead
Urban 50 8 120mm? Al 1C XLPE 300m Underground
Urban 63 5 4 x 95mm?> ABC 250m Overhead
Urban 100 20 4 x 95mm? ABC 370m Overhead
Urban 100 20 120mm?2 Al 1C XLPE 130m Underground
Urban 200 44 Mars 7/3.75 AAC 250m Overhead
Urban 315 38 Mars 7/3.75 AAC 350m Overhead
Urban 315 38 240mm? Al 4C XLPE 250m Underground
Urban 500 38 240mm? Al 4C XLPE 300m Underground
Rural 10 1 2 x 50mm? ABC 75m Overhead
Rural 25 2 4 x 95mm? ABC 120m Overhead
Rural 50 4 4 x 95mm?> ABC 250m Overhead
Rural 63 3 4 x 95mm? ABC 120m Overhead
Rural 100 7 Mars 7/3.75 AAC 300m Overhead
Rural 200 14 4 x 95mm? ABC 400m Overhead

Table 2. Additional assumptions for Energy Queensland’s LV networks.

Element

Urban

Rural
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MEN resistance 10Q 1Q
Transformer earth resistance 10Q 1Q
Customer earth stake resistance 10Q 10Q
Distance between poles 15m 50m
Customer service* length 15m 30m

Customer service conductor type 25mm?2 Al 16mm2 Al
Customer mains* length 15m urban 20m

Customer mains conductor type 10mm?2 CU 10mm2 CU

* Customers service refers to the cable between the pole to the customers premises (point-of-attachment). *
Customers mains refers to the cable between the point-of -attachment and the customers switchboard.

The information regarding the topology and construction of Energy Queensland’s network is
stored inside the database of a geographic information system (GIS) program called Smallworld. The
proposed research uses the data in Smallworld to reconstruct the network in DIgSILENT
PowerFactory. If the data is insufficient for any LV networks, representative networks will be used
instead, based off the information in the tables above.

Energy Queensland currently has regional DIgSILENT PowerFactory models where every
substation and distribution feeder are modelled down to the distribution transformer LV terminal.
The LV networks will be modelled directly onto the LV bus of the distribution transformers in the
DIgSILENT PowerFactory regional models.

The representative networks are made more accurate for the purpose of this research by using
the actual number of customers for each transformer. The length of the LV feeder was extended if the
number of customers exceeded the line capacity given a specified number of customers per pole and
distance between poles. The models are also equipped with multiple earth neutrals (MEN), earth
stakes and line coupling to accurately model the overhead phase and neutral wires.

2.2.1. Network Forecasting in Energy Queensland

The forecasting team at Energy Queensland determine a variety of forecasts at each zone
substation and distribution feeder level, that span up to the year 2060. The proposed research utilizes
two forecasts, the 50% probability of exceedance (POE) feeder underlying load and feeder number of
PV system connections. The forecast methodologies are detailed in the Energy Queensland’s strategic
forecasting annual report 2021 [32].

As a part of the forecasting, a linear regression model of previous datasets to project their
forecasts forward, using a number of different scenarios. For example, the minimum underlying load
forecast considers feeder growth, customer load mix, electric vehicle (EV) and PV uptakes. Each
scenario has a low, medium and high uptake forecast. The average of the scenarios at any time-step
is considered to be the 50 POE forecast, which are used in this research work.

The term "minimum underlying load’ refers to the load on the feeder irrespective of contribution
from distributed solar PV generation. In other words, it is the load as seen by the feeder, plus the
portion of the load being supplied locally by the rooftop PV, expressed in (2).

minimum underlying load = minimum load on a distribution feeder + expected rooftop PV

generation (2)

The minimum load on a distribution feeder is a measured value, while the expected rooftop PV
generation for each feeder is determined as a function of the connected PV capacity and global
horizontal index (GHI), as expressed in (3).

Generation(kW): = GHI: x PV Panel Capacity (kW) x Generation Coefficients 3)

In (3), GHI is the total solar radiation incident on a horizontal surface while the generation
coefficients are calculated figures determined by the forecasting team at Energy Queensland, who
looked at sample of PV systems on a particular network and back calculated the associated power
generation as a function of GHI and panel capacity. The generation coefficients change across regions
to reflect a number of variables in solar output and efficiency.
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Using a specific feeder as an example, the forecast data illustrated in Table 3 is obtained as a part
of this research and used as an input to analyze each year for that specific feeder, from 2020 to 2060.

Table 3. Energy Queensland feeder forecast example.

Forecast Year Num PV Systems Underlying kW Underlying kvar
2020 169 845.7 -60.9
2021 177 851.7 -60.5
2022 184 856.8 -60.2
2060 646 1779.2 -42.0

2.2.2. Grid connection of solar PV systems via inverters

Australian Standard 4777.2.2020 [5] mandates a curtailment scheme for active and reactive
power, known as volt/var and volt/watt control, where each inverter has the same control scheme
regardless of where it is located on the network. These control modes are also enforced by Energy
Queensland’s Standard for Small IES Connections [33].

The volt-var mode illustrated in Figure 1, instructs the single phase inverter to either inject or
absorb reactive power depending on whether the grid voltage is lower than 220 V or higher than 240
V. Since the inverter’s export is capped at 5 kVA per-phase under a basic contract in Queensland,
absorbing or injecting reactive power will reduce the active power output capability of the inverter
if the inverter’s apparent power reaches the 5 kVA limit.

A
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S 40- \
= 20
< (V, =240,0%)
E 0 o o [ ] o ]
.. g g2 g g g\ g8 8 8
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/

Figure 1. Energy Queensland’s micro-embedded generation volt-var connection requirement [33].

The same applies for the volt-watt response, seen in Figure 2, where the single phase inverters
curtail active power generation if the voltage exceeds 253 V.
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Figure 2. Energy Queensland’s micro-embedded generation volt-watt connection requirement [33].

3. Network Modeling Approach

Prior to the uptake of solar PV systems, LV networks were not essential for traditional network
planning studies and as a result information regarding the constructed of these networks is often
incomplete. Energy Queensland’s distribution networks models in DIgSILENT PowerFactory do not
include the LV conductors.

The LV portion of the network is critical for modeling the effects of customers PV, as inverters
control their active and reactive power outputs based on the voltages seen at the inverter terminals.
The proposed research looks to expand the distribution network models to include the LV networks,
as seen in Figure 3, so that a realistic analysis can be conducted.

Current State Future State
PowerFactory Models PowerFactory Models

« Zone Subsiation
Transformer

Medium Voitage »
Distribution Feeder
w Vo ltage
Feeder

A Customer Load

Distribution Y
Substation

< <k

Figure 3. LV network modeling.

Two methods are utilized for constructing LV networks in DIgSILENT PowerFactory for the
purpose of analysis. For each LV network, an attempt is made to construct actual models i.e., genuine
representations of the real network. If the data is incomplete or insufficient, i.e., missing conductor
type information, load-flow analyses cannot be performed and therefore representative networks are
constructed in place of the actual.

3.1. Actual Networks

The project initially looked to create actual LV networks by programmatically tracing the
Smallworld geospatial database. The term ‘actual’ means replicating networks as they appear in the
GIS program. Smallworld, which is reflective of the real-world networks. For this task, a Python script
was developed which when ran in DIgSILENT PowerFactory, goes through each distribution
substation and collects the substation ID, which is in the substation elements name. With the ID
collected, the GIS database is queried for the structural object related to that substation (either pole
or padmount). The Smallworld database is then queried for the line object(s) (wire or cables)
connected to that structural object. This process is repeated using a recursive programming technique
until the trace either reaches the end of the line, an open point, or another distribution transformer,
as illustrated in Figure 4.
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Figure 4. LV network tracing process.

As mentioned in Section 2.2, a major problem is the lack of quality data concerning LV networks,
which means that actual networks could not always be created. Common problems include missing
conductor types and the reliability of network open points.

3.2. Representative Networks

Due to the challenges detailed in Section 3.1, this research looked to build representative LV
networks when actual networks could not be created.

The script developed for modeling the representative networks, when ran in DIgSILENT
PowerFactory, goes through each distribution substation and collects the substation ID, transformer
size and number of LV phases. With the ID collected, a number of corporate databases are queried to
get information such as the number of connected customers and the feeder planning classification
say urban or rural.

Using the transformer capacity and planning category, the LV network is matched to one of the
representative models detailed in Tables 1 and 2, in Section 2.2. The network is made more accurate
by using the actual number of customers and extending the length on the line if the number of
customers exceeds the line length, given a specified number of customers per pole and distance
between poles.

3.3. DIgSILENT PowerFactory network automation

Using the Python PowerFactory application interface (API), a script is used to automate the
construction of the LV networks.
This process is as follows for each distribution transformer:

1. The substation ID is attained, which is the string of numbers in the first part of the substation
element name;

2. The substation ID is used as the argument, i.e., input, to trace the LV network in the Smallworld
database and get substation details, such as number of customers and number of existing PV
installations;

3. The traced network is analyzed for completeness by checking if there are any unknown
conductor types;

4. If the data is complete, the actual networks are constructed in DIgSILENT PowerFactory,
otherwise representative networks are used.

This process is illustrated in Figure 5.
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Figure 5. Constructing LV networks script flowchart.

Figure 6 shows the DIgSILENT PowerFactory application while the networks are being
constructed. The output window on the bottom of the screen lists each of the networks as they are
being created. The network model on the top of the screen shows the distribution network overview
and each of the circular objects are distribution transformers; the two colors represent two different
distribution feeders. The LV networks are not visible on this graphic but appear once a distribution
substation is clicked on, which opens the internal view.
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Figure 6. Constructing LV networks in DIgSILENT PowerFactory.

Figures 7 and 8 display a distribution transformer with a single customer on DIgSILENT
PowerFactory, both before and after the LV network was created respectively. The original load has
been switched out of service on the transformers LV bus. To the left, 3 additional buses can be seen,
the bus on the far left is a typical pole with a MEN, the next bus represents the attachment point on
the house and the final bus represents the end of a customer mains from the point of attachment to
the switchboard; the load is now located there along with an earth stake and an inverter. The inverter
is in service but may be switched in or out during the analysis phase if required, as this customer
may or may not be forecast to have a PV inverter. The model is again equipped with line coupling to
more accurately model the overhead phase and neutral wires.

HV distribution transformer bus

LV distribution transformer bus
PEQ7645/PEQ7645/139§37.T1_LV _

Customer load J_

\/

PE07645/139537.T1_LV_Tariff ERIET1-TOTAL

Figure 7. DIgSILENT PowerFactory distribution transformer model before LV network creation.

HV distribution transformer bus

Customer Customer point of Street pole LV distribution

switchboard ~ attachment transformer bus
Phase(s) wire — /A '
Neutral wire — Solar Load Earth LV distribution
PV Stake
Customer service

Customer mains

Figure 8. DIgSILENT PowerFactory distribution transformer model after LV network creation.

4. Proposed Methodology for Network Analysis
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With the LV networks on each distribution transformer constructed along each of the feeders in
a DIgSILENT PowerFactory regional model, the analysis of each distribution feeder can begin.
The methodology for the analysis is as follows:

1. The forecasting database is queried for the number of PV systems and minimum underlying
load for each year between 2020 and 2060 for each feeder;

2. The minimum load is applied to the feeder and a load flow is conducted with feeder load scaling
switched on;

3. Each load element is set to the resulting P and Q values and feeder load scaling is switched off.
This step allows for the customers to determine the feeder load, as opposed to having the feeder
converge to a specified value;

4. The number of PV systems forecast for that year are switched into service across a random
distribution on the feeder. Each PV system is created with a QDSL model for fixed power factor,
and volt/var and volt/watt schemes. If the year is 2020, the inverters’ fixed power factor model
is activated. For every year after, activated inverters have the volt/var and volt/watt models
activated. Each PV system is set to have a rated output of 5kVA to simulate a maximum
generation i.e., the worst case scenario;

5. Aload flow is conducted with feeder load scaling switched off;

Data points across the network are recorded;

7. Steps 1-6 are repeated for each year studied (2020 - 2060), changing the minimum load and
activating additional of PV systems as per the forecast;

8.  The data is exported for further analysis.

>

The above process is illustrated in Figure 9.

AIIocate minimum Conduct load flow Set resulting load Switch forecast

START AN/iLYSIS K under!ymg load to with feeder load values to each number of PV

Initial year = 2020 : : '
feeder scaling on customer systems in-service

Yes
i Export Results
Inyaar= 2060 END ANALYSIS
No

Set PV systems with
volt/var volt/wat
QDSL models

Switch feeder load
scaling off and
conduct load flow

Record results

Set PV systems with
fixed PF QDSL
models

Year + 1 [“

Figure 9. Network analysis script flowchart.

4.1. QDSL solar PV modeling

Each solar PV element activated in DIgSILENT PowerFactory is equipped with a QDSL element
which allows for the inverters to dynamically control active and react power outputs as a function of
the network voltage input. QDSL simulations achieve this through additional control loops after each
time step, which are customizable through a series parameters, equations, and logic scrips, as
illustrated in Figure 10.
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convergent
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Figure 10. DIgSILENT PowerFactory QDSL models - Simulation Procedure [20].

An example of how this is applied to PV models in shown in Figures 11 and 12. Figure 11
displays the voltage, active and reactive power reference points that are used in the load flow outer
loop script in Figure 12 to calculate the inverters active and reactive power setpoints.

fchaa Name [2-1-1-2-1- PQQDSL model |
Load Flow L
Description Model Definition v || = | .Is\1ph PV Aph P(V) Q(V) QDSL type Cancel
[ Out of Service
Parameters: S
Initial value (o
VQ1 Volt-Var reference voltage 1 [kV] 0.207
VQ2 Volt-Var reference voltage 2 [kV] 0.22
VQ3 Volt-Var reference voltage 3 [kV] 0.24
VQ4 Volt-Var reference voltage 4 [kV] 0.258
Q1 Reactive power level 1 (var %% rated VA) [%] 44,
Q2 Reactive power level 2 (var % rated VA) [%] 0.
Q3 Reactive power level 3 (var % rated VA) [%] 0.
Q4 Reactive power level 4 (var % rated VA) [%] -60.
VP1 Volt-Watt reference voltage 1 [kV] 0.207
VP2 Volt-Watt reference voltage 2 [kV] 0.22 i

Figure 11. DIgSILENT PowerFactory QDSL element volt-var and volt-watt parameters.
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Basic Data Equations  Control
Results [ Linear model
Initialisation Inputs/Outputs for load flow equations: vz
Load Flow Name Usage Class name Variable name Bus/Phase name e
Quasi-Dynamic Simulation 1 LocalBusv Input ElmTerm u A
- Encrypt
escription 2 PVOutputP Output ElmPvsys pset

Version 3 PVOutputQ Output ElmPvsys qset

Load flow equations

double PVGenQ, VQrange, Qrange, PVGenP, VPrange, Prange, PVGenS, NewPVGenQ: Lol

! determine required reactive power response based on bus voltage and the
! relevant volt-var reference voltage limits
if (LocalBusV <= VQ1) {
PVGenQ = PVrating * Q1 / 100;
}
else if (LocalBusV < VQ2) {
VQrange = VQ2 - VQ1:
Qrange
PVGenQ
}
else if (LocalBusV = VQ2) {
PVGenQ = PVrating * Q2 / 100;
}
else if (LocalBusV < VQ3) {
VQrange = VQ3 - VQ2:
Qrange = Q3 - Q2
PVGenQ = PVrating * (Q2 + ((LocalBusV - VQ2) / VQrange) * Qrange) / 100:
}
else if (LocalBusV = VQ3) {
PVGenQ = PVrating * Q3 / 100;
}
<

Q2 - Q1
PVrating * (Q1 + ((LocalBusV - VQ1) / VQrange) * Qrange) / 100:

Figure 12. DIgSILENT PowerFactory QDSL element volt-var and volt-watt load flow script.

5. Results

Using a single distribution feeder at Boldon Hill, Qld, Australia as an example, the following
plots illustrate the results of the forecast analysis, illustrating how the PV systems on the feeder
respond to network voltage.

Figure 13 illustrates the voltage seen at each inverters terminals, as forecast number of PV
systems increases each year, so too does the average voltage. This result confirms the theoretical
principle that increasing energy generation on a system will result in an increase in system voltage.
There are more data points each year as the forecast number of PV systems on the feeder increase.

Boldon Hill Feeder - PV Terminal Voltage

Feeder
e 14110 Boldon Hill
265
260
< 255
(0] ]
> H
8 250 §
S
E 245
240 :
235 e

2020 2025 2030 2035 2040 2045 2050 2055 2060
Forecast Year

Figure 13. Bolden Hill distribution feeder — PV system voltage.

Figures 14 and 15 illustrate the inverters” active and reactive power output. Since every inverter
in year 2020 is set with a fixed power factor of 0.9, the active and reactive power output of every PV
system in service that year is 4.5 kW and -2.17 kvar respectively.

For years after 2020, the volt-var and volt-watt responses are evident from the curtailment of
active power and reactive power absorption experienced by some inverters, which is a result of the
voltage experiences by those inverters.
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Boldon Hill Feeder - PV Active Power Response
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Figure 14. Bolden Hill distribution feeder — PV system active power output.

Boldon Hill Feeder - PV Reactive Power Response
00

PV Reactive Power Output (kvar)

* e+ o+ e s s e *» e & 8 & e s

-25 Feeder
* 14110 Boldon Hill

2020 2025 2030 2035 2040 2045 2050 2055 2060
Forecast Year

Figure 15. Bolden Hill distribution feeder — PV system reactive power response.

Figure 14 shows that a few of the solar PV systems begin to curtail their active power output at
year 2029 and by year 2048 they have completely curtailed to 1 kW, or 20% rated output as described
in AS4777 [5], when the network voltage exceeds 260 V. These particular systems curtailing more
heavily than the rest would indicate that they are either on a highly resistive sections of the network,
which would be more susceptible to voltage rise, or they are on the same LV network and the effects
of exporting energy are compounding.

It is to be noted that the forementioned results are based off a combination of representative and
actual networks, and forecast input data. Accordingly, by aggregating the results across many
feeders, appropriate trends can be determined.

5.1. Active Power Response on Distribution Feeders

A number of zone substations and distribution feeders have been analyzed. The feeders are
categorized into the planning categories of urban and rural as a way to compare similar feeders, as
the topology of urban and rural feeders are quite different at both the MV and LV levels. The number
of PV systems is used to compare feeders of various sizes as opposed to years.

5.1.1. Urban Feeder

Looking at the MV distribution feeder level, Figure 15 illustrates the relationship between the
number of PV systems and the minimum active power levels on urban feeders. It can be observed
that with almost all feeders studied, as the number of PV systems is increased across years, the active
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power flows on the feeder are reversed, resulting in a net export of active power from the feeder into
the substation.

The x-axis in Figure 16 represents the number of PV systems on each distribution feeder for each
of the years analyzed. The y-axis represents the active power seen by each distribution feeder in MW,
under minimum forecast load and influenced by the distributed PV generation. The legend shows
each distribution feeder analyzed, represented by the different colors on the graph.

Urban Feeders - Active Power
Feeder

Feeder 0 e Feeder 17

0 e Feeder1 Feeder 18
Feeder 2 e Feeder 19

e Feeder3 Feeder 20

-2 Feeder 4 Feeder 21

g Feeder 5 Feeder 22
= 5, . Feeder 6 Feeder 23
< 4 *oe fe, Feeder 7 Feeder 24
g N Feeder 8 e Feeder25
& e Feeder9 Feeder 26
[ Feeder 10 e Feeder27
=z 6 e Feeder 11 Feeder 28
<% Feeder 12 Feeder 29
Feeder 13 Feeder 30

-8 Feeder 14 Feeder 31
Feeder 15 Feeder 32

Feeder 16 e Feeder33

0 500 1000 1500 2000 2500
Number of PV Systems

Figure 16. Urban distribution feeders’” minimum active power level.

Using linear regression, a general rule for urban feeder active power as a function of the number
of PV installations can be determined, as illustrated in Figure 17.

Urban Feeder - Active Power Trend

Active Power (MW)

500 1000 1500 2000 2500
Number of PV Systems

Figure 17. Urban distribution feeders” minimum active power level — trend line.

The linear regression equation for the trend line is:
y =-3.42x + 324.01 4)
The formula is in the format y = mx + ¢ where:
e vy is the feeder active power in kW;
e mis the gradient (-3.42);
e xis the number of PV systems installed on the feeder;
e cisthey crossing, which is this case is approximately 324 kW.

5.1.2. Rural Feeder

A similar trend, as seen on urban feeders, has been found for rural feeders as seen in Figures 18
and 19, whereas the number of PV systems increases, during times of low load and high generation,
the feeders’ net load becomes negative, meaning they feed active power back into the substation.
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Rural Feeders - Active Power
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Figure 18. Rural distribution feeders’ minimum active power level.
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Figure 19. Rural distribution feeders’ minimum active power level — trend line.

The linear regression equation which represents the minimum active power levels on rural
distribution feeders with number of PV systems is:
y =—4.13x +153.47 ®)

5.2. Reactive Power Response on Distribution Feeders

By subtracting resulting levels of reactive power from the forecast underlying reactive power at
each time step, we can determine the PV systems’ reactive power contribution to the feeder.

5.2.1. Urban Feeders

Figure 20 illustrates a decrease in reactive power of distribution feeders as the number of PV
systems increases. This response is indicative of the inverter’s volt/var control, where reactive power
absorption is used to lower the voltage at the inverter terminals.
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Figure 20. Urban distribution feeders’ reactive power contribution from PV.

The linear regression equation which represents the minimum reactive power levels on urban
distribution feeders with number of PV systems, as represented by the trend line in Figure 21, is:
y =-1.6x-1.03 (6)

Urban Feeder - Reactive Power Trend

Reactive Power (Mvar)

500 1000 1500 2000 2500
Number of PV Systems

Figure 21. Urban distribution feeders’ reactive power contribution from PV — trend line.

5.2.2. Rural Feeders

Looking at the reactive power contribution by PVs on rural feeders, as shown in Figure 22, and
trend for rural feeder reactive power as shown in Figure 23, it can be seen that the rate of decrease in
reactive power is greater than that of urban feeders, which is expected as rural networks are often
longer and built for less capacity which would make them more susceptible to the effects of PV
generation.
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Figure 22. Rural distribution feeders’ reactive power contribution from PV.
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Figure 23. Rural distribution feeders reactive power contribution from PV — trend line.

The linear regression equation which represents the minimum reactive power levels on rural
distribution feeders with number of PV systems is:
Y =-1.57x—-9.84 (7)

5.3. Effect of PV systems on Distribution Feeder Power Factor

Figures 24 and 25 illustrate effect of PV systems on urban and rural feeders respectively. The
power factor in each plot shows a shifting from positive to negative values as the flow of power

reverses.
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Figure 24. Variation in power factor on urban distribution feeders.
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Figure 25. Variation in power factor on rural distribution feeders.

6. Discussion and Conclusion

Due to issues in the quality of LV network data, modeling and analyzing actual LV networks
was not always achievable and therefore a combination of actual and representative models were
used in this paper. The proposed research verified that clustering LV networks into representative
models for the use of PV analysis can yield results within a high degree of accuracy to that of an
actual network analysis.

Using the proposed approach, a number of Energy Queensland’s distribution feeders were
analyzed, and the results grouped into the feeder’s reliability category of urban or rural to compare
feeders of similar network construction and topology. Comparing the number of installed solar PV
systems for each distribution feeder with values measured at the feeder terminal, such as active
power and reactive power, revealed a fairly pronounced trend between the feeders of a similar
topology.

Using linear regression, trends were determined thus creating a simple metric by which to
determine the network characteristics for other feeders with various levels of solar PV penetration.
This estimation can easily be used as a rough guide for planning engineers to determine worst-case
levels of power and voltage on particular feeders.

The power factor analysis raises the interesting question of whether current standards
and regulations reflect the reality on LV networks and whether or not network power factor
statutory limits apply during periods of low load. Most network operators’ performance standards
specify a power factor operating range of around 0.9 lagging to 0.9 leading.

In addition to satisfying the objectives, the proposed research delivered the ability to automate
the creation of LV networks into Energy Queensland’s regional models, which is a tool that can be
used to help analyze LV networks in ways such as assessing the hosting capacity of specific LV
networks, assessing IES and load connections, assessing EV charging and vehicle to grid impacts,
developing future inverter operating controls and testing of equipment including STATCOMS and
voltage regulators at LV level.
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