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Simple Summary

The authors aim to document a Uinta Basin snow shadow: reduced snowfall in the lee of the Wasatch
Mountains. These would change air-quality spatial patterns due to a strong link between ozone
concentration and snow depth in winter. We found broad evidence of a shadow in both case studies.
However, high uncertainty and low quality of data limits understanding, forecast accuracy, and
machine-learning training.

Abstract

After heavy snowfall in the Uinta Basin, Utah, elevated surface ozone occurs when a persistent cold-air
pool traps emissions from oil and gas industry operations. Sunlight, assisted by actinic flux from a high-
albedo snowpack, drives ozone buildup through photolysis. Snow coverage is paramount to initiate
the cold pool and drive ozone generation, hence its depth critical for predicting ozone concentrations.
The Basin’s location leeward of the Wasatch Mountains provides conditions for a precipitation shadow,
where sinking air suppresses snowfall. We analyzed multiple years of ground-based snow depth
measurements, surface ozone data, and meteorological observations; we found ozone tracks with snow
coverage, but diagnosing a shadow effect (and any impact on ozone levels) was difficult due to sparse,
noisy data. The uncertainty in linking snowfall variation to ozone levels hinders forecast quality in,
e.g., machine-learning training. We highlight importance of better understanding of regional variation
when issuing outlooks to protect local economy and health. Wider sampling of snow depth across the
Basin would benefit operational forecasters and, likely, predictive skill.

Keywords: ozone; air quality; mountain meteorology; snow shadow; precipitation shadow

1. Introduction
Episodes of elevated surface ozone concentrations may occur during winter in the Uinta Basin 1,

eastern Utah, USA (Figure 1). These occur when snowfall persists under a temperature inversion for
multiple days [1]; i.e., when cold air pools in the Basin, reversing the typical lapse of temperature with
height. This inverted thermal setup traps volatile organics 2 and nitrogen oxides (NOx) emitted from
nearby oil and gas industry [2,3]. Incoming solar radiation is sufficient to drive photolysis but too weak
to melt snow sufficiently to counteract nocturnal katabatic winds that fill the Basin with cold, dense
drainage flow from the surrounding high terrain [4]. High surface albedo maintains the feedback loop

1 The spelling Uinta— derived from Ute word “pine forest"—refers to geographical features, whereas Uintah has been
historically used to distinguish use in political and human contexts.

2 This nomenclature avoids definitions in terms of volatile organic compounds (i.e., VOCs) due to term’s restrictive definition,
and instead encompass a large set of compounds crucial to the Uinta Basin system.
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by reflecting insolation; critically, this actinic flux extends the path length for photolysis and increases
ozone production, resulting in unhealthy air quality that can exceed national U.S. regulatory limits
[5]. Despite the importance of snowfall to the Uinta Basin winter-ozone system—as seen in Figure 2
correlating local snow depth and ozone concentration—the influence of terrain on snowfall variation
remains poorly understood in part due to difficulty in high-resolution modeling [6] or sparse data in
rural areas. Understanding spatial variation in snow depth at the Basin floor is critical for creating
improved prediction models or training statistical models [7,8].

Figure 1. Outline of the two counties in the Uinta Basin, Utah; inset showing location of Utah (red star) in the
western continental USA, with select cities for reference marked by black squares. Study area divided into four
zones broadly used in the current study with selected cities for reference.

Figure 2. A hexplot that bins observations during winter days in the observation archive for snow depth against
ozone concentration. A simple linear fit (black line) shows that snowy days are also more likely to have unhealthy
levels of ozone.

Outside of wildfire-driven ozone episodes [9,10] and stratospheric intrusions [11], Uinta Basin
ozone episodes are intermittent in their wintertime occurrence [7]. The phenomenon is rare, otherwise
documented occasionally in, e.g., similar mountainous basins with oil and gas operations such as the
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Upper Green River Basin near Pinedale, Wyoming [12], and northern [13] and eastern China [14,15].
Ozone is more familiar as a summertime problem due to intense sunshine and more anthropogenic
pollution sources in cities like Los Angeles [16], Beijing [17], Salt Lake City [18], etc. Elevated levels may
also occur in rural areas with summertime oil and gas industrial emissions [19]. Health studies link
elevated ozone levels with added respiratory stress, particularly for sensitive groups with conditions
like asthma [20–22]. Regulatory responses in the USA are within purview of the Environmental
Protection Agency (EPA) which set the National Ambient Air Quality Standards (NAAQS) threshold
at 70 ppb for ozone. Predicting elevated levels of ozone is important for both public health and
protecting the local economy from sanctions and economic ramifications. Multiple days of high ozone
concentrations can trigger non-attainment designations and limits on industry operations. Hence, better
understanding is in the interest of all stakeholders and the public [23], not only of scientific interest.

However, predicting air quality is a challenge in mountainous regions [24,25], in part due to
complex interactions between atmospheric flow and orographic features [26, pp.327–334]. Subsequent
mechanisms (mountain waves, adiabatic effects, etc.) perturb windward flow characteristics and
dictate many features on the leeward microclimate [27]. One such phenomenon, the precipitation
shadow effect, is seen as increasing rain- or snowfall as one moves further leeward of a mountain
range [24] that are typically “more complex than the textbook explanation" [28]. It is defined by
the American Meteorological Society as “...a region of sharply reduced precipitation on the lee side of
an orographic barrier.“[29] The current study studies snowfall, but most documented cases involve
variations in rainfall. At the foundation, both phenomena occur through the same mechanism:

1. Moist flow encounters higher terrain and is forced upward
2. Rising air parcels cool, and resulting condensed water liquid precipitates predominately on the

windward side
3. This process depletes air parcels of moisture
4. When drier air descends on the leeward side, it warms adiabatically, further taking the air parcels

from saturation; hence, less moisture is available for precipitation
5. Subsiding, dry air creates a “shadow" of reduced snowfall or rainfall.

Strong adiabatic warming (i.e., from compression under gravity) can cause a föhn effect [30] on the
leeward side that can cause maximum dry-bulb temperatures that exceed those at locations typically
warmer (e.g., [31]). This warming can lead to the “snow-eater" effect seen in, e.g., the European Alps
[24,32], where snow-melt is limited to the mountain crest wake. Warming drying winds can also
exacerbate wildfire risks such as in destructive Santa Ana/Los Angeles events in the southwestern
U.S. [33–35]. Further, the sensitivity of snow depth to snow-water equivalent and humidity (e.g.,
sublimation) are further uncertainties that gives the prediction of snow depth challenges not seen in
rain shadows.

Regional studies, e.g., Mansfield [7, p.1] state as self-evident that a snow shadow exists in the
Basin; however, the authors are not aware of formal documentation or quantification of a Uinta Basin
snow shadow. The present study gauges evidence of this received wisdom, especially given the
importance of snowfall for initiating the winter-ozone feedback loop. Observations of meteorological
and air-quality parameters are critical for the Basin’s ozone warning program [8,23], both in nowcasting
(i.e., real-time monitoring of observations) and forecast-model optimization (whether evaluation or
machine-learning training). We restrict our focus to snowfall events with predominantly westerly flow
at Wasatch crest height, due to its prevailing frequency and association with textbook snow-bearing
storms [36]. We identify several important gaps that limit our understanding of spatial variation of
snow depth in the Uinta Basin, and hence winter ozone formation:

1. Do we find evidence of a Uinta Basin snow shadow? This would appear as less snow in the
lee of the Wasatch than on the windward slopes, the challenge of a fair comparison in varying
terrain notwithstanding;
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2. Do we see an impact of spatial snowfall variations on ozone levels? A greater extent of snow
coverage would provide conditions associated with unhealthy build-up of ozone. If less snow
falls in the western extent of the Basin, does this restrict ozone levels?;

3. How certain are our data in rural, complex terrain? High uncertainty reduces the rigor of
prediction, evaluation, and conceptual models. Data from in situ meteorological and chemistry
sensors is sparse in comparison to urban regions, and Doppler radar data poorly samples the
Basin. This is inherent noise.

We begin by reviewing pertinent studies that progressively link the meteorological impact of snow-
depth variation on air chemistry and ozone formation.

VOs+NOx VOs+NOxWASATCH
MOUNTAINS

EASTERN
RIM

Uinta Basin
cold pool
over snow

High albedo increases
photolysis pathway

HCHO + hν → radicals
→ O3 formation

Westerly Flow

W E

Figure 3. Schematic of a west–east cross-section through the Uinta Basin (cf. Fig. 1, where W and E in the diagram
denote approximately Provo to Dinosaur, respectively) depicting the winter-ozone formation mechanism. The
persistent cold pool maintains snow cover (and hence high albedo), increasing the path length for photolytic
reactions to act on pollutants trapped within the cold pool. Volatile organics are abbreviated as VOs.

2. Background
The rarity of elevated wintertime surface ozone stems from the need to balance multiple factors

before winter ozone can be reliably generated:

• Equatorward enough to receive sufficient sunlight for photolysis
• Poleward enough to preserve snow (less insolation and lower temperatures)
• The higher the elevation, the stronger the insolation
• Complex terrain cold-pool formation in mountain valleys and basins
• Precursors to ozone (i.e., volatile organics; NOx)

Precursor emissions are provided mostly by oil and gas industry operations. The high elevation
also means background levels—even without human influence—are higher due to natural seepage
and stratospheric intrusion of ozone-rich air. Snow-bearing weather systems generally move with a
west-to-east component, though sensitivity of snowfall to wind direction in Utah [37] is outside the
scope of the current study.

We consider two windstorm subtypes. So-called Wasatch windstorms [38,39] occur in easterly
flow north of the Uinta Mountains (Figure 1). Flow blocked by the west–east Uinta Mountains is
funneled towards lower surface pressure in Salt Lake City. When easterlies cross the Wasatch Range,
windstorms can occur in Davis County (Figure 1), gusts measured as exceeding 46 m s−1 (102 mph;
89 kt). Air does not warm: the descending wind is similar to a waterfall [38]: a pooling of cold air
behind (east of) the crest that spills over the crest (Figure 1).
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Conversely, further south, westerly flow crossing the Wasatch into the Uinta Basin has a steeper
rise-and-fall for moist airflow to navigate. During (north-)westerlies, air is forced to rise from ~1300 m
(4250 ft) to ~3500 m at Wasatch crest-level (this results in the self-described “Greatest Snow On Earth"
[40]). Drier air parcels then descend into the Heber Valley (~1700 m), or continue over terrain exceeding
3000 m (9800 ft) between Heber City and Duchesne (~1700 m) (cf. terrain in Figures 1 and 3). Thus,
understanding flow in complex: will the flow descend into the Heber Valley (this may depend on
atmospheric stability)? Now in our area of interest, flow descends to the Basin’s lowest point ~1400 m
(4600 ft) near Ouray (Figure 1) and ascends gradually to a ~2500 m plateau east of the Utah–Colorado
border. Completing the bowl-like terrain pattern, the pre-Cambrian Uinta Range bound the Basin
to the north at 3500–4000 m; the Book and Roan Cliffs (generally, the Tavaputs Plateau) likewise at
~3000 m to the south.

Ozone episodes are most frequent in the second half of winter [7], whose higher solar angles in
February balance thermal disruption to persistent cold pools. While much work cited herein identifies
the connections between snowfall and ozone production, it does not fully quantify impacts of spatial
patterns. The sparse network of snowfall observations in the region provides a challenge towards
this endeavor. A lack of reliable data also hinders the development of predictive tools at short and
long temporal ranges. Continuously reliable data is fundamental to training machine learning and
AI-based models for winter air-quality prediction [e.g., 8,41].

Stockham et al. [27] found a standard definition of rain shadows can lack important local distinc-
tions, e.g., Peak District, UK. Representative timescales and physical mechanisms vary with latitude,
season, etc. Rain shadows occurred much less frequently than hypothesized: fewer than 1 in 5 days
with prevailing wind conditions. Representative of numerical prediction as a whole, Ghan et al. [42]
found climate models may struggle to capture precipitation shadows, consistently showing “too little
precipitation on the windward side" and vice versa: their models could not reproduce “sub-grid rain
shadows"; i.e., a suppression of precipitation occurring at scales below that which the model can
capture (i.e., the scale of truncation).

Even in the absence of complex topography, snow accumulation can be highly spatially variable.
Snow depth is sensitive to numerous mechanisms and surface characteristics, including sublimation,
melting, refreezing, settling, vegetation type, soil temperature, and the lofting and drifting of snow.
The reported depth of snow is modulated by wind-driven sublimation [43, p. 189], potentially relevant
given the long fetch along the Basin’s longest axis. Modeling evaporation and sublimation from a Basin
snow coverage can lead to unrealistic snow depth values [44, p. 2423], adding to uncertainty from
surface roughness (friction). Further, drifting and settling in varying terrain degrades representivity of
snow reports. Estimation of melt is reliable [45], but errors in soil temperature and intermittent melt–
freeze sequences can accumulate and not capture marginal freezing cases [46], degrade snow-water
equivalent estimates [47], etc. Compacting snow makes the pack denser but shallower [48].

It is unknown to what magnitude these variations impact ozone concentration. Yet despite the
challenges identified in conducting robust studies, snow shadows were documented in Maine, USA in
1942 [49], while Kusaka et al. [50] documented an unorthodox snow shadow on the Sea of Japan coast,
displaying parallels with US mountain phenomena [51] including involving seas or lakes [52].

3. Data and Methods
We recapitulate our main aim of exploring our observation dataset to determine whether there is

the signature of a snow shadow mechanism, as defined above.

3.1. Study Area

Figure 1 shows broad regions used herein, chosen during initial work and for reference to
areas in text. Stations that are listed as active in the Synoptic Weather data repository are plotted in
Figure 4 with their station ID to highlight the contrast in the amount of snow-depth observations
between the Wasatch Front and Uinta Basin (cf. terrain in Figure 1). Stations prefixed with “COOP"
are volunteer-run National Oceans and Atmospheric Administration (NOAA) Cooperative Stations
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(https://www.weather.gov/coop/overview, accessed 1 June 2025) that report snow-depth manually
once-daily with precision to the nearest 1 in (2.5 cm). This coarse sampling in time, space, and precision
poses an obstacle to finer, robust snow-depth measurement, especially in the western part of the Basin
leeward of the highest terrain (near Duchesne in Figs. 1 and 4).

Figure 4. Stations reporting snow depth in the Synoptic Weather database (all those ever marked ‘active’),
locations marked with magenta cross. Towns labeled with black squares for reference in later discussion. (Also
see Figure 1).

3.2. Cases and Data

Observation data is less reliable in complex terrain than flatter landscapes due to the low rep-
resentivity of stations and poor spatial/temporal sampling. Further, observational noise is not
consistent between stations: at least one station operated by the Bingham Research Center was
manually corrected for animal interference, for example, while we identified another site prone
to drifting near the sensor. Preliminary work revealed periods of unreliable data: measurement
gaps, obviously spurious outliers, and limited spatial coverage to increase confidence of observa-
tion fidelity. We acquired NOAA GOES-satellite visible-channel imagery from the repository at
https://www.star.nesdis.noaa.gov/goes/index.php to complement in situ observations for a basic
yes/no for snow coverage in the our study areas (Figure 1).

3.3. Data Collection

Utility of satellite is restricted by its infrequent sampling of the Basin (once or twice daily) and
frequent cloud cover during times where information on snowfall is most useful. Further, there are few
intersections of the relatively low frequency of satellite passes (≈ 1 day−1) and winter storm systems
that bear ≥ 75mm snow for the Basin (≈ 2 month−1) required to trigger the feedback loop for ozone
production (Figure 3).

Other satellite data relevant to the present topic [53,54], such as albedo or low-level lapse rates, are
outside the current scope but have found limited success in preliminary work due to large uncertainty.

3.3.1. Doppler Radar

The Basin’s distance from the closest Doppler radars—part of the U.S. national radar network
(NEXRAD)—limits detection of Basin precipitation due to terrain beam-blocking. Radar sites at Grand
Junction (KGJX) and Salt Lake City/Promontory Point (KMTX) [55, their Figure 1] can overshoot
falling precipitation: as the beam radiates from the radome in a conical manner, a beam must be
high enough to clear the Basin’s circumferential terrain but low enough to sample below cloud base.
Resultant estimates of precipitation amounts are less reliable than, for instance, the downstream Great
Plains region [56, p. 2035]. In summer, cloud bases in the high desert can reach ~4 km AGL, meaning
rain or hail may be detected on radar, but evaporation and/or sublimation of the precipitation shaft
(i.e., virga) would occur undetected below the lowest possible beam (i.e., 0.2°). This would result in
an overestimation of rainfall. Conversely, shallow Basin winter cold pools are O(100 m) [1,25]. This
would result in underestimation of snowfall due to overshooting of the lowest radar beam. Due to the
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importance of radar coverage for predicting conditions for ozone formation, we inspect the sampling
regions more closely by computing the lowest height of a radar beam above the Basin from the two
radars in proximity (Figure 5). Beams blocked by terrain are masked with a black pixel and colored
pixels show the minimum height above ground level. The figure reveals how poorly that precipitation
detection could behave, particularly in the west and central parts of the Basin. (The mathematics of
our computation is presented in Appendix A). The same problem of overshooting radar beams is
documented elsewhere, including the windward Wasatch slopes as sampled from KMTX ([36]their
Figure 2)

Figure 5. Height above ground level (AGL) of the lowest three radar-beam tilts from Grand Junction (top three;
KGJX) and Salt Lake City (bottom three; KMTX). NEXRAD radar locations are at the bottom right (KGJX) and top
left (KMTX). The calculations shown are tilt angle at 0.2°, 0.5°, and 1.0°. The lowest 0.2°angle is permitted for
these two sites [e.g., 55] but is evidently of little use to the Basin (located center-right in each frame). Black pixels
indicate blocked radar beams from either radar site.

To summarize: regions where this surface significantly exceeds Basin-floor elevations indicate poor
radar sampling of precipitation due to blocking by the surrounding high terrain and inherent curvature
upwards of the conical beam. Eastern parts of the Basin (near Vernal) are mostly sampled due to
their line of sight to KGJX rather than KMTX blocked by the taller Wasatch Range. This creates high
uncertainty for live viewers of radar data regarding precipitation reaching the surface (hence, so too the
hydrometeor type). We see the signature of a so-called "radar hole" in later precipitation radar-derived
estimates.

3.3.2. In Situ Meteorological Sensors

We obtain 20 years of archived data from Synoptic Weather repositories (https://synopticdata.
com/national-mesonet-program/, accessed 1 January 2025), part of the U.S. National Mesonet Program.
All sites reporting snow depth in our period of record and zones of interest are shown in Figure 4. The
Bingham Research Center further deploys its own stations (those marked in red on Figure 4 maps)
as part of its air quality network (UBAIR). Raw data is sent from the field site via cellular internet
to Synoptic Weather repository archives almost immediately; however, multiple sources of error
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(e.g., drifting; animal interference; thermal contraction) necessitates careful postprocessing. Further
automating this error correction method is an ongoing effort to improve availability of snow data for
purposes of ozone forecasting.

Ozone concentrations were not necessarily sampled at the same site as snow depth but site
choice heavily accounted for suitable coherence between both observations’ insight into the real state.
The generalization of measured ozone concentration is uncertain and likely flow-dependent due to
non-constant emission inventories across the Basin (e.g., oil and gas rigs opening in new locations,
while old sites close). The changes are slow enough to enable skillful training of AI-based ozone
predictions [8], but it remains difficult to anticipate step changes in industry operations, and hence
ozone precursors.

3.3.3. Numerical Weather Prediction Model Data

The national Air Quality Model (AQM), part of the next generation of NOAA NWP systems
(the Unified Prediction System), can miss high-ozone events due to the small scale of the Basin and
coarse resolution of AQM. For instance, a high ozone event on Jan 31 2025 was not captured by AQM
forecasts (Figure 6a), while high ozone associated with wildfires in the U.S. Southwest were larger scale
and within the purview of AQM simulation (Figure 6b). This inability of traditional NWP models to
adequately capture both uncertainty and fine-scale airflow motivated the direct statistical prediction of
ozone using fuzzy logic inference to drive the Bingham Research Center’s yearly Ozone Alert program,
where stakeholders receive periodic email about potential elevated-ozone episodes. Thousands of
lightweight simulations can be performed for the cost of one traditional simulation that may be precise
and detailed, but not necessarily accurate and physically realistic: indeed, our observation network
is too coarse to verify the fine scales of up- and down-canyon flow simulated in a high-resolution
numerical experiment, for example.

We also deploy analyses from the High-Resolution Rapid Refresh (HRRR) model as a proxy
for gridded “truth", i.e., forecast hour 0. We primarily inspect two analysis products to supplement
observations of snow: its depth and spatial coverage.
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Version August 13, 2025 submitted to Air 9

(a) Forecast of surface ozone initialized 31 Jan
2025, hours 4–12: coarse AQM model missed the
> 70 ppb event in southcentral Basin.

(b) Forecast 8-hour average surface ozone for
hours 15–23, initialized 21 Apr 2025; cap-
tures stratospheric intrusion with elevated ozone
across SW.

Figure 6. Illustrative example of the dependence of AQM ozone forecast skill on season, due to the
shallow nature of cold-air pools in the Basin and the coarse grid spacing of AQM. The charts display
maximum 8-hour averaged surface ozone concentration, taken from the NOAA AQM model. The
first case was associated with a persistent, shallow cold pool enabling > 70 ppb measurements in
the south-central Basin—this is not captured by the coarse AQM model; the latter was tentatively
associated with large scale processes, likely stemming from an intrusion of stratospheric, ozone-rich
air in tandem with wildfire season expanding across North America.

PRECIPITATION ESTIMATES: RTMA 266

It is understandably difficult to estimate precipitation amounts in complex terrain 267

due to low representivity of stations, large variability in conditions, and sparsity of obser- 268

vations in remote areas. To supplement raw in situ observations, the Real-Time Mesoscale 269

Analysis (RTMA) system was developed by the National Centers for Environmental Pre- 270

diction (NCEP) to create more continuous maps of, e.g., precipitation across the USA at 271

5-km horizontal grid-spacing [57]. The system uses two-dimensional variational data as- 272

similation (2DVAR), where the Jacobian (linearized observation operator) adjusts a prior 273

model state towards an optimal combination of weather observations and model analyses, 274

representing a best guess. Originally, RTMA ingested Rapid Update Cycle model forecasts 275

down-scaled from 13-km to 5-km horizontal grid-spacing as background fields; later, the 276

system incorporated HRRR backgrounds that improved analysis quality further [58]. 277

Given our interest in air quality correlated with mountain meteorology, we note meth- 278

ods in RTMA that include terrain-following techniques designed to account for complex 279

orography, e.g., anisotropic background error covariances that follow terrain gradients 280

[57]. However, limitations remain outside of flat terrain [58] such as in Utah within the 281

U.S. Intermountain West [57, their Fig. 8]: some RTMA products displayed no skill in the 282

West over raw observations. These shortcomings were acknowledged, including issues 283

with quality control and optimization for cases in small-scale valleys and basins. Tyn- 284

dall and Horel [59] found disproportionate impacts from mountainous stations and rail- 285

network sensors in remote locations such as central–east Utah, including the Uinta Basin. 286

Accordingly, more advanced systems are required to capture high-complexity flow using, 287

e.g., flow-dependent covariance matrices [60], though even advanced methods performed 288

poorly in sloping terrain and elevations above ~1 km—typical of Utah’s ranges and basins 289

[61]. 290

For quantitative precipitation estimates (QPE), RTMA ingests Doppler radar data 291

from the NEXRAD WSR-88D national network operated by the National Weather Service. 292

Figure 6. Illustrative example of the dependence of AQM ozone forecast skill on season, due to the shallow nature
of cold-air pools in the Basin and the coarse grid spacing of AQM. The charts display maximum 8-hour averaged
surface ozone concentration, taken from the NOAA AQM model. The first case was associated with a persistent,
shallow cold pool enabling > 70 ppb measurements in the south-central Basin—this is not captured by the coarse
AQM model; the latter was tentatively associated with large scale processes, likely stemming from an intrusion of
stratospheric, ozone-rich air in tandem with wildfire season expanding across North America.

3.3.4. Precipitation Estimates: RTMA

It is understandably difficult to estimate precipitation amounts in complex terrain due to low
representivity of stations, large variability in conditions, and sparsity of observations in remote areas.
To supplement raw in situ observations, the Real-Time Mesoscale Analysis (RTMA) system was
developed by the National Centers for Environmental Prediction (NCEP) to create more continuous
maps of, e.g., precipitation across the USA at 5-km horizontal grid-spacing [57]. The system uses
two-dimensional variational data assimilation (2DVAR), where the Jacobian (linearized observation
operator) adjusts a prior model state towards an optimal combination of weather observations and
model analyses, representing a best guess. Originally, RTMA ingested Rapid Update Cycle model
forecasts down-scaled from 13-km to 5-km horizontal grid-spacing as background fields; later, the
system incorporated HRRR backgrounds that improved analysis quality further [58].

Given our interest in air quality correlated with mountain meteorology, we note methods in RTMA
that include terrain-following techniques designed to account for complex orography, e.g., anisotropic
background error covariances that follow terrain gradients [57]. However, limitations remain outside
of flat terrain [58] such as in Utah within the U.S. Intermountain West [57, their Figure 8]: some
RTMA products displayed no skill in the West over raw observations. These shortcomings were
acknowledged, including issues with quality control and optimization for cases in small-scale valleys
and basins. Tyndall and Horel [59] found disproportionate impacts from mountainous stations and rail-
network sensors in remote locations such as central–east Utah, including the Uinta Basin. Accordingly,
more advanced systems are required to capture high-complexity flow using, e.g., flow-dependent
covariance matrices [60], though even advanced methods performed poorly in sloping terrain and
elevations above ~1 km—typical of Utah’s ranges and basins [61].

For quantitative precipitation estimates (QPE), RTMA ingests Doppler radar data from the
NEXRAD WSR-88D national network operated by the National Weather Service. De Pondeca et al.
[57] explain how radar data are combined with rain gauge information as Stage II analyses further
compared and detailed in [62, and refs. therein]. However, in regions such as the Uinta Basin with
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poor radar coverage (Figure 5) and sparse in situ observations (Figure 4), the existing high-terrain issue
of poor representivity and unreliable optimization schemes is compounded further. Accordingly, we
maintain a focus on trustworthiness of RTMA data in the Basin.

3.4. Filtering and Post-Processing

The sparse network of snowfall observations in the region makes it difficult to study these effects,
creating challenges for both understand the underlying processes and developing predictive tools.
Data obtained from Synoptic Weather have quality control, but nonetheless, we still need to apply more
post-processing where data gaps are not substantial (i.e., not representative in time; over ~3 hours)
We identified outliers in snow depth measurements from weather stations across the Uinta Basin,
Utah. The errors were mostly sudden spikes that diverging from recognizable snow-depth series. We
recognize that outliers result from sensor malfunctions, transmission errors, or genuine environmental
conditions. We also determine the error characteristics of the site of interest and sensitivity to local
conditions or terrain.

We must choose a filter that is balanced: extremes must be handled carefully to avoid squashing
events important to our air-quality context. Further, and with unavoidable subjectivity, the processing
should not fabricate large windows in time from which we infer results. In preliminary testing, we
found the Hampel filter [63, and refs. therein] most effective when evaluated subjectively by eye. It was
less likely to smooth out extreme values in preliminary testing than other filters, and was robust when
the chosen window was small enough to preserve persistent snowfall. The filter operates by sub-setting
a sliding window of size 2m, computing median-absolute-deviation (MAD) to identify outliers, and
replacing them with a subset median if they exceed a multiple n of the MAD. The drawback of the
Hampel filter is degraded performance in symmetric Gaussian-noise regimes. Ultimately, its best
subjective performance justified use of the Hampel method to filter snowfall time series used herein.
We do not filter the COOP network (i.e., once-daily quantized at 2.54 cm intervals). The group will
deploy the above filtering method on time series shown on the Research Center’s experimental Basin
air-quality portal at www.basinwx.com.

4. Results
Reiterating our goals, we review multiple sources of data—observations, RTMA, reanalyses—to
quantify any association between snow depth and distance from the Wasatch, and whether elevated
ozone patterns correspond to those in snow coverage. For reader reference, the study area begins
winter in UTC-7 and moves to UTC-6 by its conclusion.

Case 1: Late February 2023

In the first half of this case, elevated ozone occurred in the Basin (Figure 7). Snow depth during
this time was sufficient in the Basin (Figure 8) to allow buildup of ozone.
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Figure 7. Ozone concentration measured on the windward (Cooperview; Lindon; Rose Park) and leeward/Basin
(Castle Peak; Horsepool; Roosevelt) side of the Wasatch Mountains for the period 0600 UTC 18 February to
0600 UTC 24 February 2023. Simulated snow cover is shown in Figure 9 during this period.

Figure 8. Snow depth measured on the windward (Orem; Provo) and leeward/Basin (Castle Peak; Horsepool;
Roosevelt) side of the Wasatch Mountains for the same period as in Figure 7.

The early snow was captured in the HRRR analyses broadly correctly (Figure 9) but at a shallow
depth, potentially related to lack of radar detection, sampling by satellite, weather observation station
data, etc. Nonetheless, there is suggestion of less snowfall (a snow shadow) in observed data for the
snow passage round 23 February (contrast the two site groups in Figure 8).
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Figure 9. Snow depth (cm) and cover (percent area) from High Resolution Rapid Refresh (HRRR) model analysis
(forecast time zero), 1200 UTC 22 February 2023.

Relating this to the larger context, we see that a snow shadow, should it exist, is not reducing
snowfall coverage to an amount that precludes ozone buildup. Perhaps it reduces the probability a
cold pool will form, all else assumed constant; further exploration is outside the scope of the current
study.

We derived an estimate of total storm accumulation (or liquid equivalent, if snow) adding 6 days’
totals per grid point in RTMA data. Evidently, the estimated accumulated precipitation product from
RTMA (Figure 10), hence did not detect snowfall during the week with a critical snow-pack: moreover,
the radar “hole" is evident in near-zero accumulations for the Basin despite observed snowfall (implied
by satellite imagery in Figure 12). The precipitation product in Figure 10 and at other times (not
shown) often display a brighter band emanating from the radar location, marking a region (e.g., crest
level) where beams pass unobstructed until reaching the hydrometeor of interest.

Figure 10. Total storm precipitation (snow-water equivalent if frozen) from the RTMA gridded observation
product valid roughly at the end of the study period. Snow was observed on both sides of the Wasatch Range but
RTMA is unaware of much that fell across the Uinta Basin (cf. Figure 1).

The gross underestimate of snowfall in the Basin likely stems from under-sampling when terrain
blocks Doppler radar (cf. Figure 5) and not remedied by incorporation of sparse rain-gauge data
when producing the Stage II gridded QPE product. Indeed, the RTMA product’s use of radar data is
conspicuous by its prominent striping.
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Figure 11. HRRR analyses, similar to those in Figure 9, but valid 1200 UTC, 24 February 2023.

Figure 12. Visible satellite image (MODIS Terra), valid 2203 UTC, 24 February 2023, showing snow throughout the
Uinta Basin.

Analysis of the February 2023 episode reveals mixed evidence for snow shadow effects. While
satellite imagery (Figure 12) shows widespread snow coverage across the Basin, RTMA precipitation
estimates (Figure 10) failed to detect snowfall in the western Basin during the 22–28 February period,
likely due to radar beam blocking rather than actual precipitation differences. This creates an artifact
that presents similarly (but erroneously) as a snow shadow. Ozone concentrations (Figure 7) reached
70–100 ppb in Basin locations while remaining around 40 ppb on the Wasatch Front, consistent with
the winter ozone formation mechanism requiring persistent snow cover and trapped precursors.
The episode demonstrates that even modest snow accumulations can sustain ozone episodes when
combined with stable atmospheric conditions shown in Figure 3. Contributions to ozone concentration
from factors additional to spatial variation of snow depth (e.g., elevation; proximity to industry
operations) may be inextricable and preclude more certain diagnoses.

Case 2: 27 January 2025

The January 2025 case provides better RTMA–observation agreement, with HRRR analyses
(Figure 13) capturing both snow depth and coverage patterns visible in satellite imagery (Figure 14).
Snow depths show gradual increase from west to east across the Basin floor, potentially indicating
shadow effects, though it is difficult to corroborate in observations. Basin ozone concentrations touched
the 70 ppb threshold during this episode (not shown), with peak values correlating spatially with areas
of persistent snow cover identified in both model analyses and satellite data. These are supporting
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signs of a connection between spatial heterogeneity and ozone concentration, but do not robustly
diagnose a snow shadow explicitly.

Figure 13. An analysis of snow depth and coverage at 0000 UTC on 27 January 2025.

Figure 14. Visible satellite image (MODIS Terra), valid 2203 UTC, 27 January 2025, showing snow coverage across
the study region.

Surface dry-bulb and dew-point temperatures (Figure 15) display a wider-scale drying that more
holistically explains a reduction in precipitation Basin-wide, albeit not in the lee of the higher terrain.
Conceptually, weather effectively passes over the Basin—especially so during stable winter episodes
that reinforce over a snow pack—and this may track with a lack of documented windstorms or damage
in the lee of surrounding terrain.
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Figure 15. HRRR analyses, valid 1200 UTC, 27 January 2025, showing (a) 2-m dry-bulb (a) and dew-point (b)
temperatures.

Our analysis faced significant challenges in documenting snow shadow effects and air quality
implications. While qualitative evidence supported some elements of our initial science questions,
quantitative confirmation is hindered by: (1) radar beam blocking that creates artificial precipitation
holes in gridded products; (2) sparse in situ observations that inadequately sample spatial gradients;
and (3) complex terrain that confounds windward–leeward comparisons. Despite observational
limitations, connections emerge between snow coverage and ozone formation. As in many other cases
documented in Lyman et al. [64] and similar annual reports before it, episodes with widespread Basin
snow coverage produce elevated ozone concentrations exceeding 70 ppb when other conditions allow
(stable, high pressure; sufficient insolation), while periods with patchy or absent snow typically show
near-background ozone levels regardless of precursor emissions. This reminds operational forecasters
of the critical role in albedo for maintaining ozone-producing boundary layers (Figure 3).

5. Conclusions
We set out to address three key questions regarding snow shadows and winter ozone formation

in the Uinta Basin:
Do we find evidence of a Uinta Basin snow shadow? Broadly, yes. While the mathematical

theory and historical observations suggest reduced precipitation leeward of the Wasatch Mountains,
data-quality limitations prevent definitive confirmation. RTMA precipitation estimates are unreliable
due to radar coverage gaps, and while it appears to show a clear snow-shadow pattern in our case
studies (and other preliminary work), this is likely an artifact of sparse near-surface radar data.
Surface observations are too sparse for robust spatial analysis. However, satellite corroborated HRRR
numerical estimates of snow coverage, and the Perhaps this is unsurpring due to its lower elevation;
fair comparison of different elevations remains an open question.

Do we see an impact of spatial snowfall variations on ozone levels? Yes: in the first case
(e.g., Figure 7), Basin stations sampled high ozone daily maxima (i.e., over 70 ppb) absent along the
Wasatch Front (windward); regional connections may exist between snow coverage extent and ozone
concentrations, but elevation (cold pool strength) and contributions to high ozone from proximity to
industry are also inextricable factors. Fine-scale impacts of precipitation gradients on ozone spatial
patterns remain difficult to quantify, partly due to a small sample size.

How certain are our data in rural, complex terrain? Uncertainty is substantial and limits
predictive and diagnostic capability. Radar beam blocking creates systematic gaps in precipitation
monitoring; sparse surface networks inadequately capture spatial gradients; uncertainty hampers the
accuracy of our alert communications for industry regulatory compliance and public health.
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There are unique challenges of predicting elevated winter ozone in the Uinta Basin, Utah, USA.
Primarily, the dependence of ozone formation on sufficient snow depth necessitates good knowledge
of the current state for both nowcasting and initiating numerical prediction of high-ozone episodes.
In the authors’ experience, it is received wisdom in the local community that the Basin lies in a snow
shadow: a region with lower snowfall accumulations close in the lee of the crest but increasing depth
as one moves further leeward. The lower humidity and typical snowfall levels is quickly evident,
corroborating an accepted truth. However, during the course of increasing the rigor of a snow-shadow
diagnosis, and subsequent impact on ozone formation and prediction, relatively low data quality
(sparsity; representivity; sampling frequency or consistency) hampered more robust assessments of
precipitation estimates due to factors including radar-beam blocking, a sparse observation network,
and infrequent satellite passes.

Some adjacent takeaway points include:

• Poor estimates of precipitation accumulation from RTMA is insufficiently corrected by a sparse
network of radar and in situ observations;

• In summer, cloud base may be 1–2 km AGL; hence beams can sample precipitation that may
evaporate or sublimate between this level and the surface (virga), resulting in overestimation from
radar returns

• In winter, cloud bases are within the lowest kilometer, meaning any precipitation is unlikely to be
sampled despite lower likelihood of virga from the shorter, colder path to the surface

While it is less important to label a phenomenon with as many caveats as outlined above, under-
standing sources of observation and model error is paramount to improve training of machine-learning
or artificial-intelligence models.

High uncertainty should motivate larger, coarser ensembles (of traditional or AI sorted alike),
rather than running at finer resolutions. In balance, vertical grid spacing must be fine enough to
capture a shallow cold pool in a traditional NWP model. It is the curse of dimensionality, however,
that prevents the evaluator from knowing if the complexity is precision rather than accuracy.

5.1. Future Work

Research avenues slated for ongoing and future investigation include:

• Data analysis over a longer time period;
• Low-cost snow-depth sensors [e.g., 65] over a wide area, reporting live on the COOP network;
• Analysis of ozone concentration and snowfall amounts for weather systems with different pre-

vailing wind directions;
• Identification of new observation sites that would most benefit ozone and snow prediction [e.g.,

66];
• Methods to extract information (despite trends in industry operations and snowfall intermittency)

with further statistical processing [67].

Artificial Intelligence statement

The authors used the following large-language models during the course of the research, but no
generated text output was used verbatim in the manuscript, and all output was fact-checked by
the authors. For lower-complexity use-cases, we used DeepSeek R1 1776, an uncensored instance
of the open-sourced DeepSeek package hosted by Perplexity in the United States. On top of good
performance, a motivation for use of DeepSeek R1 1776 over, e.g., traditional web searches was its
lower energy footprint based on author estimates.
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The following abbreviations are used in this manuscript:

NOx Nitrogen oxides
BRC Bingham Research center
KVEL Vernal Regional Airport
KSLC Salt Lake International Airport
NOAA National Oceans and Atmospheric Agency
UFS Unified Forecasting System
NEXRAD Next Generation Radar?
HRRR High Resolution Rapid Refresh (model)
AQM Air Quality Model (NOAA UFS)
AGL Above Ground Level

Appendix A.
Computation of radar-beam height and terrain blocking We first obtained high-resolution Digital

Elevation Model (DEM) data covering the Uinta Basin. We use the USGS ~10 m grid downsampled to a
grid with spacing of 1°-by-1°designed for computational efficiency. The DEM ranges over a bounding
box extending from the Salt Lake City (KMTX) and Grand Junction (KGJX) radars (top left and bottom
right, respectively, in the six Figure 5 panels.

Grid Definition

We define a regular grid of longitude–latitude points

{
(λi, ϕj) : λmin ≤ λi ≤ λmax, ϕmin ≤ ϕj ≤ ϕmax

}
(A1)
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with spacings ∆λ, ∆ϕ chosen so that the horizontal cell-size ∆x ≈ Re cos ϕ ∆λ does not exceed
the vertical resolution requirements of the beam-width footprint at maximum range [68].

For each grid point (λi, ϕj) and for each radar site (λr, ϕr) we compute the slant range rij using
the spherical-Earth approximation:

rij = Re arccos
(
sin ϕr sin ϕj + cos ϕr cos ϕj cos(λi − λr)

)
, (A2)

where Re ≈ 6.371 × 106 m is the assumed mean Earth radius.

Beam Height Computation

At each slant range rij we compute the beam height above mean sea level for the lowest elevation
tilt θ (0.2° for KMTX and KGJX in low-level elevation mode):

hij = hr + rij sin θ +
r2

ij

2 Re
, (A3)

where hr is the radar site elevation. The first term accounts for the site height, the second for the
linear beam rise, and the third for Earth’s curvature (rationale taken from National Weather Service
recommendations for correcting beam bending correction at https://www.weather.gov/media/lsx/
wcm/decision/RadarTraining_2010.pdf, accessed 1 May 2025.)

Let Tij denote the terrain elevation from the DEM at grid cell (i, j). We define clearance

∆hij = hij − Tij . (A4)

A grid cell is not masked (visible) if ∆hij > 0, and blocked otherwise. For each cell we can record
the minimum sampling height

hmin, ij =

hij, ∆hij > 0,

∞, ∆hij ≤ 0,
(A5)

and optionally take the point-wise minimum over both radars:

h(combined)
min, ij = min

(
h(KMTX)

min, ij , h(KGJX)
min, ij

)
. (A6)

but results from this computation were used in analysis and not shown herein.

References
1. Neemann, E.M.; Crosman, E.T.; Horel, J.D.; Avey, L. Simulations of a cold-air pool associated with elevated

wintertime ozone in the Uintah Basin, Utah. Atmos. Chem. Phys. 2015, 15, 135–151. https://doi.org/10.5194/
acp-15-135-2015.

2. Lyman, S.; Tran, T. Inversion structure and winter ozone distribution in the Uintah Basin, Utah, U.S.A.
Atmos. Environ. 2015, 123, 156–165. https://doi.org/10.1016/j.atmosenv.2015.10.067.

3. Schnell, R.C.; Oltmans, S.J.; Neely, R.R.; Endres, M.S.; Molenar, J.V.; White, A.B. Rapid photochemical
production of ozone at high concentrations in a rural site during winter. Nat. Geosci. 2009, 2, 120–122.
https://doi.org/10.1038/ngeo415.

4. Schnell, R.C.; Johnson, B.J.; Oltmans, S.J.; Cullis, P.; Sterling, C.; Hall, E.; Jordan, A.; Helmig, D.; Petron,
G.; Ahmadov, R.; et al. Quantifying wintertime boundary layer ozone production from frequent profile
measurements in the Uinta Basin, UT, oil and gas region. J. Geophys. Res. 2016, 121. https://doi.org/10.100
2/2016jd025130.

5. Edwards, P.M.; Brown, S.S.; Roberts, J.M.; Ahmadov, R.; Banta, R.M.; deGouw, J.A.; Dubé, W.P.; Field, R.A.;
Flynn, J.H.; Gilman, J.B.; et al. High winter ozone pollution from carbonyl photolysis in an oil and gas basin.
Nature 2014, 514, 351–354. https://doi.org/10.1038/nature13767.

6. Jones, C.; Tran, H.; Tran, T.; Lyman, S. Assimilating satellite-derived snow cover and albedo data to improve
3-D weather and photochemical models. Atmosphere (Basel) 2024, 15, 954. https://doi.org/10.3390/atmos1
5080954.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2025 doi:10.20944/preprints202508.1019.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

 https://www.weather.gov/media/lsx/wcm/decision/RadarTraining_2010.pdf
 https://www.weather.gov/media/lsx/wcm/decision/RadarTraining_2010.pdf
https://doi.org/10.5194/acp-15-135-2015
https://doi.org/10.5194/acp-15-135-2015
https://doi.org/10.1016/j.atmosenv.2015.10.067
https://doi.org/10.1038/ngeo415
https://doi.org/10.1002/2016jd025130
https://doi.org/10.1002/2016jd025130
https://doi.org/10.1038/nature13767
https://doi.org/10.3390/atmos15080954
https://doi.org/10.3390/atmos15080954
https://doi.org/10.20944/preprints202508.1019.v1
http://creativecommons.org/licenses/by/4.0/


19 of 21

7. Mansfield, M.L. Statistical analysis of winter ozone exceedances in the Uintah Basin, Utah, USA. J. Air Waste
Manag. Assoc. 2018, 68, 403–414. https://doi.org/10.1080/10962247.2017.1339646.

8. Lawson, J.R.; Lyman, S.N. A preliminary fuzzy inference system for predicting atmospheric ozone in an
intermountain basin. Air 2024, 2, 337–361. https://doi.org/10.3390/air2030020.

9. Xu, L.; Crounse, J.D.; Vasquez, K.T.; Allen, H.; Wennberg, P.O.; Bourgeois, I.; Brown, S.S.; Campuzano-Jost,
P.; Coggon, M.M.; Crawford, J.H.; et al. Ozone chemistry in western U.S. wildfire plumes. Sci. Adv. 2021,
7, eabl3648. https://doi.org/10.1126/sciadv.abl3648.

10. Jaffe, D.A.; Wigder, N.L. Ozone production from wildfires: A critical review. Atmos. Environ. (1994) 2012,
51, 1–10. https://doi.org/10.1016/j.atmosenv.2011.11.063.

11. Lin, M.; Fiore, A.M.; Cooper, O.R.; Horowitz, L.W.; Langford, A.O.; Levy, H.; Johnson, B.J.; Naik, V.; Oltmans,
S.J.; Senff, C.J. Springtime high surface ozone events over the western United States: Quantifying the role of
stratospheric intrusions. Journal of Geophysical Research: Atmospheres 2012, 117. https://doi.org/10.1029/20
12JD018151.

12. Mansfield, M.L.; Hall, C.F. A survey of valleys and basins of the western United States for the capacity to
produce winter ozone. J. Air Waste Manag. Assoc. 2018, 68, 909–919. https://doi.org/10.1080/10962247.2018.
1454356.

13. Tang, G.; Wang, Y.; Li, X.; Ji, D.; Hsu, S.; Goa, X. Spatial-temporal variations in surface ozone in Northern
China as observed during 2009–2010 and possible implications for future air quality control strategies.
Atmospheric Chemistry and Physics 2012, 12.

14. Li, G.; Bei, N.; Cao, J.; Wu, J.; Long, X.; Feng, T.; others. Widespread and persistent ozone pollution in eastern
China during the non-winter season of 2015: observations and source attributions. Atmospheric Chemistry
and Physics 2017, 17.

15. Li, K.; Jacob, D.J.; Liao, H.; Qiu, Y.; Shen, L.; Zhai, S.; Bates, K.H.; Sulprizio, M.P.; Song, S.; Lu, X.; et al. Ozone
pollution in the North China Plain spreading into the late-winter haze season. Proc. Natl. Acad. Sci. U. S. A.
2021, 118. https://doi.org/10.1073/pnas.2015797118.

16. Peterson, J.; Demerjian, K. The sensitivity of computed ozone concentrations to U.V. radiation in the Los
Angeles area. Atmospheric Environment 1976, 10, 459–468. https://doi.org/10.1016/0004-6981(76)90026-3.

17. He, H.; Li, Z.; Dickerson, R.R. Ozone pollution in the North China Plain during the 2016 Air Chemistry
Research in Asia (ARIAs) campaign: Observations and a modeling study. Air (Basel) 2024, 2, 178–208.
https://doi.org/10.3390/air2020011.

18. Jaffe, D.A.; Ninneman, M.; Nguyen, L.; Lee, H.; Hu, L.; Ketcherside, D.; Jin, L.; Cope, E.; Lyman, S.; Jones,
C.; et al. Key results from the salt lake regional smoke, ozone and aerosol study (SAMOZA). J. Air Waste
Manage. Assoc. 2024. https://doi.org/10.1080/10962247.2024.2301956.

19. Marsavin, A.; Pan, D.; Pollack, I.B.; Zhou, Y.; Sullivan, A.P.; Naimie, L.E.; Benedict, K.B.; Juncosa Calahoranno,
J.F.; Fischer, E.V.; Prenni, A.J.; et al. Summertime ozone production at Carlsbad caverns National Park, New
Mexico: Influence of oil and natural gas development. J. Geophys. Res. 2024, 129. https://doi.org/10.1029/
2024jd040877.

20. Balmes, J.R. The role of ozone exposure in the epidemiology of asthma. Environ. Health Perspect. 1993, 101
Suppl 4, 219–224. https://doi.org/10.1289/ehp.93101s4219.

21. McConnell, R.; Berhane, K.; Gilliland, F.; London, S.J.; Islam, T.; Gauderman, W.J.; Avol, E.; Margolis, H.G.;
Peters, J.M. Asthma in exercising children exposed to ozone: a cohort study. Lancet 2002, 359, 386–391.
https://doi.org/10.1016/S0140-6736(02)07597-9.

22. Zu, K.; Shi, L.; Prueitt, R.L.; Liu, X.; Goodman, J.E. Critical review of long-term ozone exposure and asthma
development. Inhal. Toxicol. 2018, 30, 99–113. https://doi.org/10.1080/08958378.2018.1455772.

23. Bingham Research Center.; Lawson, J.R. 2023 Annual Report: Bingham Research Center, 2023. https:
//doi.org/10.5281/ZENODO.13999275.

24. Whiteman, C.D. Mountain Meteorology: Fundamentals and Applications; Oxford University Press, USA, 2000; p.
355.

25. Tran, T.; Tran, H.; Mansfield, M.; Lyman, S.; Crosman, E. Four dimensional data assimilation (FDDA) impacts
on WRF performance in simulating inversion layer structure and distributions of CMAQ-simulated winter
ozone concentrations in Uintah Basin. Atmos. Environ. (1994) 2018, 177, 75–92. https://doi.org/10.1016/j.
atmosenv.2018.01.012.

26. Markowski, P.; Richardson, Y. Mesoscale Meteorology in Mid-latitudes; Wiley-Blackwell, 2010; p. 407.
27. Stockham, A.J.; Schultz, D.M.; Fairman, J.G.; Draude, A.P. Quantifying the Rain-Shadow Effect: Results from

the Peak District, British Isles. Bull. Am. Meteorol. Soc. 2017. https://doi.org/10.1175/BAMS-D-17-0256.1.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2025 doi:10.20944/preprints202508.1019.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1080/10962247.2017.1339646
https://doi.org/10.3390/air2030020
https://doi.org/10.1126/sciadv.abl3648
https://doi.org/10.1016/j.atmosenv.2011.11.063
https://doi.org/10.1029/2012JD018151
https://doi.org/10.1029/2012JD018151
https://doi.org/10.1080/10962247.2018.1454356
https://doi.org/10.1080/10962247.2018.1454356
https://doi.org/10.1073/pnas.2015797118
https://doi.org/10.1016/0004-6981(76)90026-3
https://doi.org/10.3390/air2020011
https://doi.org/10.1080/10962247.2024.2301956
https://doi.org/10.1029/2024jd040877
https://doi.org/10.1029/2024jd040877
https://doi.org/10.1289/ehp.93101s4219
https://doi.org/10.1016/S0140-6736(02)07597-9
https://doi.org/10.1080/08958378.2018.1455772
https://doi.org/10.5281/ZENODO.13999275
https://doi.org/10.5281/ZENODO.13999275
https://doi.org/10.1016/j.atmosenv.2018.01.012
https://doi.org/10.1016/j.atmosenv.2018.01.012
https://doi.org/10.1175/BAMS-D-17-0256.1
https://doi.org/10.20944/preprints202508.1019.v1
http://creativecommons.org/licenses/by/4.0/


20 of 21

28. Van den Hende, C.; Van Schaeybroeck, B.; Nyssen, J.; Van Vooren, S.; Van Ginderachter, M.; Termonia, P.
Analysis of rain-shadows in the Ethiopian Mountains using climatological model data. Clim. Dyn. 2021,
56, 1663–1679. https://doi.org/10.1007/s00382-020-05554-2.

29. American Meteorological Society. Rain shadow, 2024.
30. Hoinka, K.P.; Tafferner, A.; Weber, L. The ‘miraculous’ föhn in Bavaria of January 1704. Weather 2009,

64, 9–14. https://doi.org/10.1002/wea.251.
31. Bennie, J.J.; Wiltshire, A.J.; Joyce, A.N.; Clark, D.; Lloyd, A.R.; Adamson, J.; Parr, T.; Baxter, R.; Huntley, B.

Characterising inter-annual variation in the spatial pattern of thermal microclimate in a UK upland using
a combined empirical–physical model. Agric. For. Meteorol. 2010, 150, 12–19. https://doi.org/10.1016/j.
agrformet.2009.07.014.

32. Strauss, S. An ill wind: the Foehn in Leukerbad and beyond. J. R. Anthropol. Inst. 2007, 13, S165–S181.
https://doi.org/10.1111/j.1467-9655.2007.00406.x.

33. Kochanski, A.K.; Jenkins, M.A.; Mandel, J.; Beezley, J.D.; Krueger, S.K. Real time simulation of 2007 Santa
Ana fires. For. Ecol. Manage. 2013, 294, 136–149. https://doi.org/10.1016/j.foreco.2012.12.014.

34. Raphael, M.N. The Santa Ana Winds of California. Earth Interact. 2003, 7, 1–13. https://doi.org/10.1175/10
87-3562(2003)007<0001:TSAWOC>2.0.CO;2.

35. Seydi, S.T. Assessment of the January 2025 Los Angeles County wildfires: A multi-modal analysis of impact,
response, and population exposure. arXiv [eess.SP] 2025, [arXiv:eess.SP/2501.17880].

36. Schultz, D.; Steenburgh, W. Understanding Utah Winter Storms. Bull. Am. Meteorol. Soc. 2002, pp. 189–210.
37. Steenburgh, W.; Halvorson, S.F.; Onton, D.J. Climatology of Lake-Effect Snowstorms of the Great Salt Lake.

Mon. Weather Rev. 2000, 128, 709–727. https://doi.org/10.1175/1520-0493(2000)128<0709:COLESO>2.0.CO;
2.

38. Lawson, J.; Horel, J. Analysis of the 1 December 2011 Wasatch Downslope Windstorm. Weather Forecast. 2015,
30, 115–135, [http://dx.doi.org/10.1175/WAF-D-13-00120.1]. https://doi.org/10.1175/WAF-D-13-00120.1.

39. Bestul, K.A. Analysis, Forecast Skill, and Predictability of Downslope Wind Events Along the Wasatch Front
2023.

40. Steenburgh, W.J.; Alcott, T.I. Secrets of the “greatest snow on earth”. Bull. Am. Meteorol. Soc. 2008,
89, 1285–1294. https://doi.org/10.1175/2008bams2576.1.

41. Yang, S.; Hao, X.; Li, N.; Liao, H.; Li, J. Seasonal prediction of ozone pollution in central-east China using
machine learning. Aerosol Sci. Eng. 2025, pp. 1–9. https://doi.org/10.1007/s41810-025-00310-7.

42. Ghan, S.J.; Shippert, T.; Fox, J. Physically based global downscaling: Regional evaluation. J. Clim. 2006,
19, 429–445. https://doi.org/10.1175/jcli3622.1.

43. Pomeroy, J.; Gray, D.; Landine, P. The Prairie Blowing Snow Model: characteristics, validation, operation.
Journal of Hydrology 1993, 144, 165–192. https://doi.org/10.1016/0022-1694(93)90171-5.

44. Essery, R.; Li, L.; Pomeroy, J. A distributed model of blowing snow over complex terrain. Hydrological
Processes 1999, 13, 2423–2438. https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2423::AID-HYP8
53>3.0.CO;2-U.

45. Franz, K.J.; Hogue, T.S.; Sorooshian, S. Operational snow modeling: Addressing the challenges of an
energy balance model for National Weather Service forecasts. J. Hydrol. (Amst.) 2008, 360, 48–66. https:
//doi.org/10.1016/j.jhydrol.2008.07.013.

46. Franz, K.J.; Hogue, T.S.; Sorooshian, S. Snow model verification using ensemble prediction and operational
benchmarks. J. Hydrometeorol. 2008, 9, 1402–1415. https://doi.org/10.1175/2008jhm995.1.

47. Veals, P.G.; Pletcher, M.; Schwartz, A.J.; Chase, R.J.; Harnos, K.; Correia, J.; Wessler, M.E.; Steenburgh, W.J.
Predicting snow-to-liquid ratio in the mountains of the western United States. Weather Forecast. 2025, -1.
https://doi.org/10.1175/waf-d-24-0233.1.

48. Bormann, K.J.; Westra, S.; Evans, J.P.; McCabe, M.F. Spatial and temporal variability in seasonal snow density.
J. Hydrol. (Amst.) 2013, 484, 63–73. https://doi.org/10.1016/j.jhydrol.2013.01.032.

49. Fobes, C.B. Snowfall in Maine. Geogr. Rev. 1942, 32, 245. https://doi.org/10.2307/210273.
50. Kusaka, H.; Suzuki, N.; Yabe, M.; Kobayashi, H. The snow-shadow effect of Sado Island on Niigata City and

the coastal plain. Atmos. Sci. Lett. 2023, 24. https://doi.org/10.1002/asl.1182.
51. Ikeda, S.; Wakabayashi, R.; Izumi, K.; Kawashima, K. Study of snow climate in the Japanese Alps:

Comparison to snow climate in North America. Cold Reg. Sci. Technol. 2009, 59, 119–125. https:
//doi.org/10.1016/j.coldregions.2009.09.004.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2025 doi:10.20944/preprints202508.1019.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1007/s00382-020-05554-2
https://doi.org/10.1002/wea.251
https://doi.org/10.1016/j.agrformet.2009.07.014
https://doi.org/10.1016/j.agrformet.2009.07.014
https://doi.org/10.1111/j.1467-9655.2007.00406.x
https://doi.org/10.1016/j.foreco.2012.12.014
https://doi.org/10.1175/1087-3562(2003)007<0001:TSAWOC>2.0.CO;2
https://doi.org/10.1175/1087-3562(2003)007<0001:TSAWOC>2.0.CO;2
http://arxiv.org/abs/2501.17880
https://doi.org/10.1175/1520-0493(2000)128<0709:COLESO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<0709:COLESO>2.0.CO;2
http://arxiv.org/abs/http://dx.doi.org/10.1175/WAF-D-13-00120.1
https://doi.org/10.1175/WAF-D-13-00120.1
https://doi.org/10.1175/2008bams2576.1
https://doi.org/10.1007/s41810-025-00310-7
https://doi.org/10.1175/jcli3622.1
https://doi.org/10.1016/0022-1694(93)90171-5
https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2423::AID-HYP853>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2423::AID-HYP853>3.0.CO;2-U
https://doi.org/10.1016/j.jhydrol.2008.07.013
https://doi.org/10.1016/j.jhydrol.2008.07.013
https://doi.org/10.1175/2008jhm995.1
https://doi.org/10.1175/waf-d-24-0233.1
https://doi.org/10.1016/j.jhydrol.2013.01.032
https://doi.org/10.2307/210273
https://doi.org/10.1002/asl.1182
https://doi.org/10.1016/j.coldregions.2009.09.004
https://doi.org/10.1016/j.coldregions.2009.09.004
https://doi.org/10.20944/preprints202508.1019.v1
http://creativecommons.org/licenses/by/4.0/


21 of 21

52. Veals, P.G.; Steenburgh, W.J.; Nakai, S.; Yamaguchi, S. Factors affecting the inland and orographic enhance-
ment of sea-effect snowfall in the Hokuriku region of japan. Mon. Weather Rev. 2019, 147, 3121–3143.
https://doi.org/10.1175/mwr-d-19-0007.1.

53. de Gouw, J.A.; Veefkind, J.P.; Roosenbrand, E.; Dix, B.; Lin, J.C.; Landgraf, J.; Levelt, P.F. Daily satellite
observations of methane from oil and gas production regions in the United States. Sci. Rep. 2020, 10, 1379.
https://doi.org/10.1038/s41598-020-57678-4.

54. Zoogman, P.; Jacob, D.J.; Chance, K.; Liu, X.; Lin, M.; Fiore, A.; Travis, K. Monitoring high-ozone events in
the US Intermountain West using TEMPO geostationary satellite observations. Atmos. Chem. Phys. 2014,
14, 6261–6271.

55. Jellis, D.; Bowman, K.; Rapp, A. Lifetimes of overshooting convective events using high-frequency gridded
radar composites. Mon. Weather Rev. 2023. https://doi.org/10.1175/mwr-d-23-0032.1.

56. Carbone, R.E.; Tuttle, J.D.; Ahijevych, D.A.; Trier, S.B. Inferences of Predictability Associated with Warm
Season Precipitation Episodes. J. Atmos. Sci. 2002, 59, 2033–2056, [http://dx.doi.org/10.1175/1520-
0469(2002)059<2033:IOPAWW>2.0.CO;2]. https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>
2.0.CO;2.

57. De Pondeca, M.S.F.V.; Manikin, G.S.; DiMego, G.; Benjamin, S.G.; Parrish, D.F.; James Purser, R.; Wu, W.S.;
Horel, J.D.; Myrick, D.T.; Lin, Y.; et al. The Real-Time Mesoscale Analysis at NOAA’s National Centers
for Environmental Prediction: Current Status and Development. Weather and Forecasting 2011, 26, 593–612.
https://doi.org/10.1175/WAF-D-10-05037.1.

58. Morris, M.T.; Carley, J.R.; Colón, E.; Gibbs, A.; De Pondeca, M.S.F.V.; Levine, S. A quality assessment
of the Real-Time Mesoscale Analysis (RTMA) for aviation. Weather Forecast. 2020, 35, 977–996. https:
//doi.org/10.1175/waf-d-19-0201.1.

59. Tyndall, D.; Horel, J. Impacts of Mesonet Observations on Meteorological Surface Analyses. Weather and
Forecasting 2013, 28, 254–269. https://doi.org/10.1175/WAF-D-12-00027.1.

60. Knopfmeier, K.; Stensrud, D. Influence of mesonet observations on the accuracy of surface analyses generated
by an ensemble Kalman filter. Weather and Forecasting 2013, 28, 815–841. https://doi.org/10.1175/WAF-D-
12-00078.1.

61. Ancell, B.C.; Mass, C.F.; Cook, K.; Colman, B. Comparison of surface wind and temperature analyses from
an ensemble Kalman filter and the NWS Real-Time Mesoscale Analysis system. Weather Forecast. 2014,
29, 1058–1075. https://doi.org/10.1175/waf-d-13-00139.1.

62. Nelson, B.R.; Prat, O.P.; Seo, D.J.; Habib, E. Assessment and Implications of NCEP Stage IV Quantitative
Precipitation Estimates for Product Intercomparisons. Weather Forecast. 2016, 31, 371–394. https://doi.org/
10.1175/WAF-D-14-00112.1.

63. Pearson, R.K.; Neuvo, Y.; Astola, J.; Gabbouj, M. Generalized Hampel Filters. EURASIP J. Adv. Signal Process.
2016, 2016, 1–18. https://doi.org/10.1186/s13634-016-0383-6.

64. Lyman, S.; Jones, C.; Lawson, J.R.; Mansfield, M.; David, L.; O’Neil, T.; Holmes, B. Bingham Center 2023
Annual Report. Technical report, 2023. https://doi.org/10.5281/zenodo.13999274.

65. Holder, J.; Jordan, J.; Johnson, K.; Akinremi, A.; Roberts-Semple, D. Using low-cost sensing technology
to assess ambient and indoor fine particulate matter concentrations in New York during the COVID-19
lockdown. Air (Basel) 2023, 1, 196–206. https://doi.org/10.3390/air1030015.

66. Ancell, B.; Hakim, G.J. Comparing Adjoint- and Ensemble-Sensitivity Analysis with Applications to Observa-
tion Targeting. Mon. Wea. Rev. 2007, 135, 4117–4134, [http://journals.ametsoc.org/doi/pdf/10.1175/2007MWR1904.1].
https://doi.org/10.1175/2007MWR1904.1.

67. Mansfield, M.L.; Hall, C.F. Statistical analysis of winter ozone events. Air Qual. Atmos. Health 2013,
6, 687–699. https://doi.org/10.1007/s11869-013-0204-0.

68. Doviak, R.J.; Zrnic, D.S.; Schotland, R.M. Doppler radar and weather observations. Appl. Opt. 1994, 33, 4531.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2025 doi:10.20944/preprints202508.1019.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1175/mwr-d-19-0007.1
https://doi.org/10.1038/s41598-020-57678-4
https://doi.org/10.1175/mwr-d-23-0032.1
http://arxiv.org/abs/http://dx.doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2
http://arxiv.org/abs/http://dx.doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2
https://doi.org/10.1175/WAF-D-10-05037.1
https://doi.org/10.1175/waf-d-19-0201.1
https://doi.org/10.1175/waf-d-19-0201.1
https://doi.org/10.1175/WAF-D-12-00027.1
https://doi.org/10.1175/WAF-D-12-00078.1
https://doi.org/10.1175/WAF-D-12-00078.1
https://doi.org/10.1175/waf-d-13-00139.1
https://doi.org/10.1175/WAF-D-14-00112.1
https://doi.org/10.1175/WAF-D-14-00112.1
https://doi.org/10.1186/s13634-016-0383-6
https://doi.org/10.5281/zenodo.13999274
https://doi.org/10.3390/air1030015
http://arxiv.org/abs/http://journals.ametsoc.org/doi/pdf/10.1175/2007MWR1904.1
https://doi.org/10.1175/2007MWR1904.1
https://doi.org/10.1007/s11869-013-0204-0
https://doi.org/10.20944/preprints202508.1019.v1
http://creativecommons.org/licenses/by/4.0/

