
Article Not peer-reviewed version

Unbreakable SU(3) Atoms of Vacuum

Energy: A Solution for Cosmological

Constant Problem

Ahmed Farag Ali *

Posted Date: 7 October 2024

doi: 10.20944/preprints202405.1534.v2

Keywords: cosmological constant problem; mass-gap problem

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/241718


Article

Unbreakable SU(3) Atoms of Vacuum Energy: A
Solution for Cosmological Constant Problem

Ahmed Farag Ali 1,2,*
1 Essex County College, 303 University Ave, Newark, NJ 07102, United States; aali29@essex.edu
2 Dept. of Physics, Benha University, Benha 13518, Egypt

Abstract: Quantum Field Theory (QFT) and General Relativity (GR) are pillars of modern physics, each supported

by extensive experimental evidence. QFT operates within Lorentzian spacetime, while GR ensures local Lorentzian

geometry. Despite their successes, these frameworks diverge significantly in their estimations of vacuum energy

density, leading to the cosmological constant problem—a discrepancy where QFT estimates exceed observed

values by 123 orders of magnitude. This paper addresses this inconsistency by tracing the cooling evolution of the

universe’s gauge symmetries—from SU(3)× SU(2)× U(1) at high temperatures to SU(3) alone near absolute

zero—motivated by the experimental Meissner effect. This symmetry reduction posits that SU(3) forms the

fundamental "atoms" of vacuum energy. Our analysis demonstrates that the calculated number of SU(3) vacuum

atoms reconciles QFT’s predictions with empirical observations, effectively resolving the cosmological constant

problem. The third law of thermodynamics, by preventing the attainment of absolute zero, ensures the stability of

SU(3) vacuum atoms, providing a thermodynamic foundation for quark confinement. This stability guarantees a

strictly positive mass gap, defined by the vacuum energy density, and implies a Lorentzian quantum structure of

spacetime. Moreover, it offers insights into the origins of both gravity/gauge duality and gravity/superconductor

duality.

Keywords: cosmological constant problem; mass-gap problem

1. Introduction

The Standard Model (SM) of particle physics, fundamental to our understanding of the forces
of nature, is based on the symmetry group SU(3) × SU(2) × U(1)Y [1–3]. The Higgs mechanism,
driven by the vacuum expectation value (VEV) of the Higgs field, breaks the electroweak symmetry
SU(2)× U(1)Y down to U(1)em, providing mass to the W and Z bosons [4]. The discovery of the
Higgs boson experimentally confirmed this symmetry-breaking process [5], accounting for the mass of
most SM particles while leaving gluons and photons massless. However, the observation of neutrino
oscillations, which indicate non-zero neutrino masses, challenges the original SM that assumed
neutrinos to be massless [6,7]. Extensions like the see-saw mechanism and discrete symmetries have
been proposed to account for these masses while preserving the core SU(3) and U(1)em symmetries
within the frameworks of quantum chromodynamics (QCD) and quantum electrodynamics (QED) [8–
11]. Our current study explores the thermal history of the universe and the associated symmetry
breaking to identify the fundamental symmetry governing vacuum energy. As the universe cools
below a critical temperature Tc, a phase transition occurs that breaks the electromagnetic symmetry
U(1)em. This transition leads to superconductivity, characterized by zero electrical resistance and
the expulsion of magnetic fields—a phenomenon known as the Meissner effect [12]. The breaking of
U(1)em leaves SU(3) as the sole unbroken symmetry, underscoring its critical role in defining vacuum
energy dynamics near absolute zero (see Figure 1).
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Figure 1. SU(3) as the dominant symmetry near absolute zero, influenced by the Meissner effect.

Recent studies [13] have suggested that dark energy might behave like a superconductor within
scalar-vector-tensor gravity models, leading to a Meissner-like expulsion of spacetime by dark en-
ergy [14]. This intriguing perspective motivates our investigation into the role of SU(3) symmetry in
addressing the cosmological constant problem and aligning quantum field theory with general relativ-
ity. The persistence of SU(3) symmetry at low temperatures implies that it forms the fundamental
“atoms” of vacuum energy. By calculating the number of these SU(3) vacuum atoms throughout the
universe, we find a value that aligns theoretical predictions with observed vacuum energy densities.
This concordance effectively resolves the cosmological constant problem, bridging the gap between
the predictions of quantum field theory and cosmological observations. According to the third law
of thermodynamics, reaching absolute zero temperature—where volume theoretically vanishes—is
impossible because it requires an infinite number of cooling steps. This principle ensures a remnant vol-
ume of matter that cannot completely vanish, likely corresponding to the nucleon size of approximately
10−15 meters, where SU(3) symmetry operates effectively. This residual volume stabilizes the SU(3)
vacuum atoms, ensuring their structure remains intact. The unbreakability of these vacuum atoms,
guaranteed by this thermodynamic principle, provides a basis for quark confinement in quantum chro-
modynamics (QCD). Additionally, the inherent mass gap in SU(3) gauge theory—an energy threshold
below which no massless particles exist—further strengthens this connection. This framework not
only addresses a fundamental issue in theoretical physics but also suggests a deeper gauge-gravity
duality, indicating profound connections between quantum field theories and gravitational theories.
It also hints at a gravity-superconductor duality, where gravitational phenomena are analogous to
principles in superconductivity, opening new pathways to explore relationships among high-energy
physics, cosmology, and condensed matter physics.

The paper is structured as follows: Section 2 investigates the thermal history of the universe and
its symmetry-breaking sequence, illustrating how SU(3) remains intact near zero Kelvin, forming the
foundational atoms of vacuum energy. Section 3 presents the solution to the cosmological constant
problem based on SU(3) vacuum atoms. Section 4 explores the implications for spacetime, demonstrat-
ing how SU(3) transforms Lorentzian spacetime into quantum Lorentzian spacetime, necessitating the
Snyder approach [15] to understand vacuum dynamics. Section 5 concludes the discussion.
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2. Manifesting SU(3) Vacuum Atoms through Symmetry Breaking

In the immediate aftermath of the Big Bang, the universe was extremely hot (T ≳ 1015 K) and
dominated by radiation.1. At these high temperatures, all fundamental forces were unified under
the gauge symmetry SU(3)× SU(2)× U(1)Y. The Standard Model Lagrangian before any symmetry
breaking is given by:

LSM = −1
4

Ga
µνGaµν − 1

4
Wi

µνWiµν − 1
4

BµνBµν + ψ iγµDµψ + (DµΦ)†DµΦ − V(Φ), (1)

where Ga
µν, Wi

µν, and Bµν are the field strength tensors corresponding to the SU(3), SU(2), and U(1)Y
gauge fields, respectively. Here, ψ represents the fermion fields, Φ is the Higgs field responsible for
electroweak symmetry breaking, Dµ is the covariant derivative, and V(Φ) is the Higgs potential. As
the universe expanded and cooled to the electroweak scale (T ≈ 1015 K), the Higgs field acquired a
vacuum expectation value (VEV):

Φ =

 0
v√
2

, with v ≈ 246 GeV, (2)

spontaneously breaking the electroweak symmetry SU(2)× U(1)Y down to U(1)em. This mechanism
gave masses to the W and Z bosons:

MW =
1
2

gv, MZ =
1
2

v
√

g2 + g′2, (3)

where g and g′ are the gauge couplings for SU(2) and U(1)Y, respectively. After this phase transition,
the unbroken symmetry was SU(3)× U(1)em. As the universe continued to cool and entered the
matter-dominated era, atoms, and large-scale structures formed. At temperatures approaching absolute
zero (T → 0 K), analogous to conditions in superconductivity, the electromagnetic U(1)em symmetry
can spontaneously break via a mechanism similar to the Meissner effect. Consider a composite scalar
field representing electron pairs:

χ = ψeψe, (4)

where ψe is the electron field. The effective Lagrangian for this field is:

Lχ =
1
2
(∂µχ)2 − µ2χ2 − λχ4 + e2χ2 Aµ Aµ, (5)

with µ2 < 0 and λ > 0. Spontaneous symmetry breaking occurs when χ acquires a VEV:

⟨χ⟩ =

√
− µ2

2λ
. (6)

This results in an effective photon mass:

mγ = e⟨χ⟩ ≤ 10−18 eV, as constrained by experiments [16]. (7)

Thus, near absolute zero, the U(1)em symmetry is spontaneously broken, leaving SU(3) as the remnant
unbroken symmetry governing the strong interaction. The breaking of U(1)em symmetry while SU(3)
remains unbroken at low temperatures suggests a profound connection between SU(3) symmetry and
vacuum energy. The SU(3) symmetry manifests in structures as small as nucleons, approximately

1 In QFT, temperature corresponds to the intrinsic energy of the quantum fields themselves, expressed as E = kBT.
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10−15 meters in size [16]. We can consider the vacuum of the universe as composed of N such SU(3)
vacuum atoms. The total number of these atoms is determined by the ratio of the universe’s volume to
the volume of a single SU(3) vacuum atom:

N =
Vuniverse

Vatom
. (8)

Taking the universe’s radius as ℓu ≈ 1026 m [17], and the size of an SU(3) vacuum atom as ℓproton ≈
10−15 m (i.e proton size), it follows that:

N ≈
(

ℓu

ℓproton

)3
=

(
1026 m

10−15 m

)3

= 10123 SU(3) vacuum atoms. (9)

We approximate both the universe and the proton as spherical in shape. This calculation indicates
that there are approximately 10123 SU(3) vacuum atoms filling the universe. The implications of this
vast number, supported by experimental observations analogous to the Meissner effect applied on a
cosmological scale [13,14], will be explored further. For the vacuum of the universe to be stable, these
SU(3) vacuum atoms must be unbreakable. According to the third law of thermodynamics, reaching
absolute zero temperature is impossible, as it would require an infinite number of cooling steps.
Consequently, SU(3) vacuum atoms cannot be further subdivided or broken apart. This resilience,
dictated by the third law, provides a thermodynamic basis for quark confinement, potentially offering
a novel explanation. Since the vacuum energy comprises N = 10123 identical atoms, each exhibiting
SU(3) symmetry, it is essential to account for the total number of vacuum atoms when computing the
vacuum energy density within the framework of quantum field theory. The universe’s thermal history
aligns with the sequence of symmetry breaking, as summarized in Table 1.

Table 1. Cosmological Eras with Corresponding Energy Scales, Temperatures, and Unbroken Symme-
tries.

Era Temperature Range Energy Scale Unbroken Symmetry
Radiation-Dominated Era T ≳ 1015 K E ≳ 102 GeV SU(3)× SU(2)× U(1)Y

Matter-Dominated Era 1015 K ≳ T > 0 K 102 GeV > E > 10−18 eV SU(3)× U(1)em
Dark Energy-Dominated Era T → 0 K E → 0 eV SU(3)

This sequence illustrates how the universe’s cooling correlates with the breaking of symmetries,
ultimately leaving SU(3) as the fundamental unbroken symmetry in the vacuum. The existence
of 10123 SU(3) vacuum atoms offers a new perspective on the quantum field theory. To reflect
this, the traditional gluon field strength tensor Ga

µν in Quantum Chromodynamics (QCD) should be
appropriately scaled. The conventional field strength tensor is:

Ga
µν = ∂µ Aa

ν − ∂ν Aa
µ + g f abc Ab

µ Ac
ν, (10)

where Aa
µ is the gluon gauge field, g is the coupling constant, and f abc are the structure constants of the

SU(3) group. By introducing a scaling factor to represent a gauge boson distributed over N discrete
units, the modified field strength tensor becomes:

G̃a
µν =

1√
N

Ga
µν =

1√
N

(
∂µ Aa

ν − ∂ν Aa
µ + g f abc Ab

µ Ac
ν

)
. (11)
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This scaling reflects the idea that each vacuum atom contributes only a fraction of the total field,
effectively distributing the gauge boson’s influence across the entire system. The modified Lagrangian
for the distributed gauge field becomes:

L = −1
4

G̃a
µνG̃aµν = − 1

4N
Ga

µνGaµν. (12)

By incorporating the factor of 1/N, the vacuum energy is effectively shared among the N SU(3)
vacuum atoms. This leads to the vacuum energy density for this gluon field being given by:

ρQFT
vac,SU(3)c

2 ≈ 1
N

∫ PPl

0

d3 p
(2πh̄)3

h̄ωp

2
. (13)

In the next section, we will demonstrate how this modified equation has significant implications for
the cosmological constant problem. This approach allows us to explore the impact of having a vast
number of vacuum constituents on the properties of the vacuum and the behavior of gauge fields at
cosmological scales. In the following section, we explore the implications for determining the vacuum
energy density.

3. A Solution for the Cosmological Constant Problem

Einstein’s field equations of General Relativity (GR) [18] are given by:

Rµν −
1
2

gµνR + Λgµν =
8πG

c4 Tµν, (14)

where Rµν is the Ricci curvature tensor, R is the Ricci scalar, gµν is the metric tensor, Λ is the cos-
mological constant, G is Newton’s gravitational constant, c is the speed of light, and Tµν is the
energy-momentum tensor. In a vacuum, where Rµν = 0 and R = 0, the energy-momentum tensor
becomes Tµν = ρvacc2gµν, with ρvac being the vacuum energy density. Substituting this into Einstein’s
equations, the cosmological constant relates to the vacuum energy density as:

ρvacc2 =
c4Λ
8πG

. (15)

Astrophysical observations provide a measured value of the cosmological constant, Λ ≈ 1.1 ×
10−52 m−2 [16], leading to an observed vacuum energy density:

ρobs
vacc2 ≈ 10−47 GeV4/(h̄c)3. (16)

In Quantum Field Theory (QFT), as discussed by Steven Weinberg [19], the vacuum energy density
arises from summing the zero-point energies of quantum fields, including massless bosons like photons
and gravitons. It is calculated as:

ρQFT
vac c2 =

1
(2πh̄)3

∫ PPl

0
d3 p

h̄ωp

2
, (17)

where PPl = EPl/c is the Planck momentum, and ωp = c| p⃗| for massless particles. Integrating up to
the Planck scale yields:

ρQFT
vac c2 ≈

E4
Pl

(h̄c)3 ≈ 1076 GeV4/(h̄c)3. (18)

This theoretical value exceeds the observed vacuum energy density by 123 orders of magnitude:

ρQFT
vac

ρobs
vac

≈ 10123. (19)
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This enormous discrepancy is known as the cosmological constant problem [19], highlighting a
fundamental inconsistency between GR and QFT. While GR accommodates Lorentz symmetry locally
in curved spacetime, QFT operates under Lorentz symmetry in flat spacetime, leading to conflicting
predictions for the vacuum energy density. The core issue exists in Equation (18), which assumes that
the vacuum energy arises from a continuous spectrum of quantum fluctuations up to the Planck scale,
effectively treating the vacuum as a homogeneous entity with unlimited degrees of freedom. This
approach overlooks the possibility that the vacuum may consist of discrete units or that contributions
from quantum fluctuations could be limited. As discussed earlier, near absolute zero, the U(1)em

symmetry breaks due to the formation of an electron pair condensate, leaving SU(3) as the unbroken
symmetry. This phenomenon, analogous to the Meissner effect in superconductors, suggests that
the vacuum can be viewed as composed of discrete SU(3) vacuum atoms, each approximately 10−15

meters in size—the scale of nucleons. Recognizing that the vacuum energy is distributed over these
N = 10123 discrete units, the calculation of the vacuum energy density in QFT should be adjusted
accordingly. Based on the modified gauge field strength tensor and Lagrangian density, distributing
the gauge field over N SU(3) vacuum atoms as shown in Equations (11), (12), and (13), the modified
Lagrangian is expressed as:

LSU(3) = − 1
4N

Ga
µνGaµν. (20)

This modification implies that the vacuum energy density must be adjusted accordingly, leading to:

ρQFT
vac,SU(3)c

2 =
1
N

∫ PPl

0

d3 p
(2πh̄)3

h̄ωp

2
, (21)

which results in:

ρQFT
vac,SU(3)c

2 ≈ 1
N

E4
Pl

(h̄c)3 =
1

10123
E4

Pl
(h̄c)3 ≈ 10−47 GeV4/(h̄c)3. (22)

This adjusted value matches the observed vacuum energy density, effectively resolving the cosmo-
logical constant problem and reconciling QFT with GR under the condition that the vacuum energy
density is composed of 10123 SU(3) vacuum atoms. The division by N reflects the idea that each
vacuum atom contributes a finite amount to the total vacuum energy, aligning theoretical predictions
with observational data. This approach illustrates a connection between quantum mechanics and
general relativity by demonstrating how vacuum energy contributes to the cosmological constant in
Einstein’s field equations. Distributing the gauge field over N discrete units effectively dilutes the
energy density, similar to coarse-graining, where microscopic degrees of freedom have a reduced
impact on macroscopic properties. Furthermore, this concept parallels phenomena in condensed
matter physics, such as emergent gauge fields and fractionalization in systems like spin ice and frac-
tional quantum Hall states. These analogies suggest that distributing gauge fields over many units
could lead to novel emergent effects in high-energy physics, potentially bridging high-energy and
low-energy phenomena. An important consideration is whether the number N varies due to the
universe’s expansion, characterized by the Hubble parameter H(t). There are two possibilities:

1. The size of the SU(3) vacuum atoms expands with the universe, keeping N constant. Assuming
the proton expands at the same rate as the universe, we use the Hubble constant H0 ≈ 2.27 ×
10−18 s−1. Given the proton’s radius rp ≈ 0.84 × 10−15 m, the rate of expansion is ∆rp =

rp × H0 ≈ 1.91 × 10−33 m/s. Over 14 billion years (universe age), the proton’s radius increases
by ∆rp × universe age ≈ 8.3 × 10−16 m. This scenario preserves the vacuum energy density and
the cosmological constant, aligning with general relativity.

2. The size of the SU(3) vacuum atoms remains constant, so N increases as the universe expands.
This implies that the dark energy density decreases over time, potentially aligning with recent
observations by the DESI collaboration [20–22].
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The second possibility invites exploration beyond standard general relativity, suggesting a dynamic
cosmological constant [23]. Modeling vacuum energy using SU(3) symmetry not only offers a solution
to the cosmological constant problem but also provides fresh insight into the Yang-Mills mass gap
problem [24]. The SU(3) mass gap manifests as a strictly positive vacuum energy density, protected
by the third law of thermodynamics, which prevents the subdivision of SU(3) vacuum atoms. By
interpreting the vacuum energy density in QFT using SU(3) vacuum atoms, a direct physical connec-
tion between the QCD mass gap and the vacuum energy density shaping spacetime emerges. This
framework, grounded in the experimental observation of the Meissner effect, provides a coherent and
logically consistent approach to resolving one of the most profound problems in theoretical physics,
bridging the gap between quantum field theory and general relativity.

4. SU(3) Vacuum Atoms/ Quantum Spacetime Correspondence

In general relativity, spacetime and energy are fundamentally equivalent, as captured by Einstein’s
field equations. This implies that any quantum description of energy, including the vacuum energy in
quantum field theory (QFT), must also include a corresponding spacetime structure. Consequently,
the SU(3) atoms of vacuum energy must be represented by a quantum Lorentzian spacetime in
order to maintain consistency between QFT and general relativity (GR) on a local scale. The first
quantum Lorentzian spacetime model was proposed by Snyder [15], who introduced the concepts of
non-commutative geometry and the generalized uncertainty principle (GUP). Snyder’s spacetime was
designed to address the ultraviolet (UV) divergences in QFT, by replacing the continuum nature of
spacetime with a lattice structure [25]. Despite its initial innovation, Snyder’s approach was eventually
abandoned due to the success of renormalization techniques, but it was rediscovered four decades
later in the context of noncommutative geometry [26,27]. Non-commutative geometry was later found
to arise in certain limits of M-theory and string theory, where it is equivalent to ordinary Yang-Mills
fields with higher-dimensional perturbations [28,29]. The phenomenological implications of non-
commutative geometry have since been widely explored [30,31]. Moreover, the GUP has its roots in
various approaches to quantum gravity, including string theory, black hole physics, and quantum
geometry [32–36], leading to substantial investigations into its phenomenological and experimental
consequences [37–47]. Snyder’s algebra is based on three primary generators: the position operator xµ,
the momentum operator pµ, and the Lorentz generators Jµν = xµ pν − xν pµ. These generators satisfy
the Poincaré algebra and introduce novel commutators that define a minimal length:

[xµ, xν] = ih̄βJµν, (23)

[xµ, pν] = ih̄
(
ηµν + βpµ pν

)
, where µ, ν = 0, 1, 2, 3. (24)

Here, β = β0

(
ℓPl
h̄c

)2
, where β0 is a dimensionless parameter. Equation (23) captures the non-commutative

nature of the geometry, while Equation (24) introduces the GUP, both preserving Lorentz symme-
try [15]. In Snyder’s model (β > 0), space is discrete while time is continuous, and in the anti-Snyder
model (β < 0), time is discrete and space is continuous. The algebra of Jµν and xµ is isomorphic to the
de Sitter/anti-de Sitter algebra, linking the momentum spaces of the Snyder and anti-Snyder models
geometrically to de Sitter and anti-de Sitter spacetimes [48]. Refining the Snyder model with isotropic
parametrizations while maintaining Lorentz/Poincaré symmetry, leads to the same non-commutative
relation and different forms of GUP as elaborated in [49,50]. In [43], it was shown that the cold atoms
can be best described by GUPs forms proposed in [51–53].

4.1. Spacetime Uncertainty: The Cause of Quantum Spacetime

Recent experiments have demonstrated that quantum phenomena can manifest at the scale of 10−5 m,
as observed in systems like quantum drums and Bose-Einstein condensates [54,55]. Gravitational

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 October 2024 doi:10.20944/preprints202405.1534.v2

https://doi.org/10.20944/preprints202405.1534.v2


8 of 16

experiments at this scale [56] confirm the validity of Newton’s law, implying that spacetime curvature
exists even at microscopic levels. In such scenarios, the metric is given by:

ds2 = −(1 + 2ϕ) dt2 + (1 − 2ϕ) dx⃗2, (25)

where ϕ is the Newtonian potential. This indicates that quantum entities can warp spacetime, making
the interplay between quantum mechanics and gravity significant. This challenges the conventional
Quantum Field Theory (QFT) assumption of flat spacetime. The uncertainty principle prevents
precise determination of particle positions, leading to gaps in the definition of spacetime or spacetime
uncertainty. An important question then arises: What is the form of spacetime uncertainty? Research by
Regge, Adler, Jack Ng, and others [57–66] has calculated deviations from Lorentz geometry due to

gravitational fields. In particular, Adler [57] demonstrated that for a particle with energy E = hν =
hc
l

(where l is the wavelength) and gravitational potential ϕ =
Gm

l
(with m being the mass), the fractional

deviation in the spacetime metric is:

∆g =
ϕ

c2 =
Gm
c2l

=
G(E/c2)

c2l
=

Gh
c3l2 =

ℓ2
Pl
l2 , (26)

where ℓPl is the Planck length. When ∆g ≪ 1, spacetime remains approximately Lorentzian; but as
∆g → 1, significant spacetime uncertainty arises, leading to spacetime foam. To address the challenges
posed by spacetime foam or spacetime uncertainty, two main approaches have been developed: the
path integral formulation and the quantum spacetime model.

In the path integral formulation, an accelerated trajectory in flat spacetime that does not follow the
least-action principle due to external forces is equivalent to a trajectory in curved spacetime that follows
the least-action principle along a geodesic. According to Einstein’s principle of equivalence, locally,
the effects of acceleration (external forces) and gravity (spacetime curvature) are indistinguishable. This
equivalence provides a physical justification for the path integral formulation in quantum mechanics,
introduced by Feynman in his seminal work on the spacetime approach to quantum mechanics [67]. By
summing over all possible trajectories—including those not following the least-action principle—the
path integral accounts for spacetime uncertainties and curvature arising from quantum phenomena.
This approach effectively incorporates the influence of spacetime curvature induced by quantum
uncertainties without explicitly modeling the curved spacetime. It recognizes that quantum particles do
not follow a single, definite path but instead take all possible paths simultaneously, each contributing to the
overall quantum amplitude. Thus, the path integral formulation, grounded in the equivalence principle,
provides a robust framework for understanding quantum mechanics in situations where spacetime
geometry is complex or uncertain. However, while the path integral formulation accommodates
spacetime uncertainties, it does not resolve the cosmological constant problem through renormalization
techniques and yields an infinite value for the vacuum energy density. Traditional QFT computes the
cosmological constant as the sum of vacuum fluctuation energies across all momentum states. This sum
diverges, necessitating the introduction of a cutoff—typically at the Planck scale—where it is presumed
that nature’s fundamental constants impose a limit. Yet, even with this cutoff, the calculated value
exceeds the observed cosmological constant by approximately 123 orders of magnitude, presenting a
profound discrepancy.

The quantum spacetime model, specifically Snyder’s quantum spacetime, offers a promising
alternative. It introduces a natural cutoff by defining a minimal measurable length scale ℓS = h̄

√
β [68–

77], eliminating the need for several renormalization techniques. Beyond this scale, particle positions
become fundamentally indeterminate due to quantum uncertainties. Since measuring distances de-
pends on particle positions, distances shorter than ℓS cannot be precisely measured without quantum
uncertainty, establishing ℓS as the minimal measurable length with certainty in nature. Below this min-
imal length, spacetime exhibits a non-deterministic, foamy character [78–81], reflecting fundamental
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quantum uncertainties. In other words, the underlying structure of spacetime includes regions where
spacetime is not well-defined, giving the physical cause for Snyder’s Lorentzian quantum spacetime
model. These gaps in information imply that spacetime cannot be meaningfully defined in regions
without information, giving rise to a quantum spacetime framework where uncertainties in particle
positions correspond to uncertainties in the geometry of spacetime itself. This offers new insights into
how quantum uncertainty transforms spacetime from a continuous manifold into a discrete quantum
entity, well-defined only up to a minimal measurable length.

4.2. Cosmological Constant in Quantum Spacetime

Snyder’s formulation of quantum spacetime incorporates the Generalized Uncertainty Principle
(GUP), which modifies the density of states. This modification inherently regularizes the divergence,
eliminating the need for an ultraviolet cutoff or conventional renormalization techniques [49,50,68–77].
The revised computation yields a finite result even when integrating from zero to infinity [76,77]:

ρ
Snyder-QFT
vac c2 =

1
(2πh̄)3

∫ ∞

0

d3 p
(1 + βp2)3

h̄ωp

2
≈ c

h̄3β2
=

E4
S

(h̄c)3 =
h̄c
ℓ4

S
, (27)

where ℓS = h̄
√

β represents the minimal length scale in Snyder’s quantum spacetime, and ES = h̄c/ℓS
is the corresponding energy scale. The parameter β, intrinsic to the quantum structure of spacetime,
ensures that the integral remains finite without invoking an ultraviolet cutoff, effectively resolving the
divergences encountered in traditional QFT. Furthermore, the equivalence between SU(3) vacuum
atoms and Snyder’s quantum spacetime suggests a relationship between β and the number of SU(3)
vacuum atoms, denoted as N. By equating Equation (27) with Equation (22), we establish:

1
N

E4
Pl

(h̄c)3 =
c

h̄3β2
, where β =

√
N c2

E2
Pl

. (28)

which leads to:
ℓS = h̄

√
β = ℓPlN

1
4 ≈ 10−5 m. (29)

Notably, this minimal length scale ℓS ≈ 10−5 m represents the geometric mean between the Planck
length ℓPl and the radius of the observable universe ℓu, as corroborated by previous studies [82–85]:

ℓS ≈
√
ℓPlℓu. (30)

Remarkably, this scale matches the one provided by experiments that demonstrate the interplay be-
tween quantum mechanics and gravity at the scale of 10−5 m. As previously mentioned, quantum
phenomena are manifested at this scale in systems like quantum drums and Bose-Einstein conden-
sates [54,55], and gravitational experiments [56] confirm the validity of Newton’s law at these scales,
implying that spacetime curvature exists even at microscopic levels. Building on these ideas, recent
work [82] proposes that spacetime uncertainty could be the key to understanding the value of the
cosmological constant.

4.3. Geometric implications

An intriguing relation connects the proton size, the universe’s radius, and the Planck scale.
Starting from Equations (29) and (30):

ℓS = ℓPlN1/4 =
√
ℓPlℓu, (31)

which implies:

N =

(
ℓu

ℓPl

)2
. (32)
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Equating this with Equation (9), we find: (
ℓu

ℓPl

)2
=

ℓ3
u

ℓ3
Proton

, (33)

leading to:
ℓ3

Proton ≈ ℓ2
Plℓu. (34)

This remarkable result suggests that the proton’s volume (ℓ3
Proton) is equivalent to that of a cylinder

whose base has a Planck-length radius and whose height is the universe’s radius. It is astonishing
to consider that such a geometric model links the smallest scale (Planck length) and the largest scale
(universe’s radius) in a single expression, prompting wonder and inviting further investigation into
the underlying geometric principles.

While the cylinder represents a three-dimensional shape connecting microscopic and cosmic
dimensions, the quanta of spacetime are proposed to be four-dimensional polytopes. Our recent
studies [86] identify this shape as the 24-cell at the electroweak scale. The 24-cell, a four-dimensional
polytope with 24 vertices, may represent the elementary particles of the Standard Model. Intriguingly,
the number of permutations of these vertices, 24! ≈ 6.2 × 1023, coincides with Avogadro’s number.
This correlation suggests a geometric significance to Avogadro’s constant, potentially indicating a
baseline complexity required for sentience and self-replication at molecular and cellular levels. Our
analysis further reveals that the 24-cell can be conceptualized by selecting eight vertices to form a
16-cell in three distinct configurations. These eight vertices correspond to the eight gluons of the SU(3)
gauge group in quantum chromodynamics, representing the strong force. The remaining sixteen
vertices form a tesseract (a four-dimensional hypercube), symbolizing the other elementary particles.
Accordingly, the fundamental components of spacetime may be modeled as SU(3) vacuum atoms
at low temperatures, structured as a 16-cell with eight vertices in pseudo-Euclidean spacetime. This
aligns with Riemannian geometry, which is locally Lorentzian. The geometric modeling presented
here opens new avenues for understanding the deep connections between fundamental scales in the
universe.

4.4. SU(3) Vacuum Atoms and Third Law of Thermodyanmics

The third law of thermodynamics states that as a system approaches absolute zero (0 K), its
entropy approaches a constant minimum, making it increasingly difficult to extract any further energy.
This law prevents a system from ever reaching absolute zero, implying that vacuum atoms of SU(3)
cannot collapse or be annihilated due to thermal fluctuations. Consequently, these atoms remain
stable and unbreakable, preserving the volume they occupy. This provides a thermodynamic basis for
quark confinement, ensuring the persistence of the vacuum structure and the stability of the confined
state. Building on this, the Generalized Uncertainty Principle (GUP), as discussed in [87], predicts
the existence of a minimal measurable length, which aligns with the third law’s implication of a
residual quantum volume. The GUP restricts how small space and energy can become, indicating
that spacetime itself has a non-zero minimum quantum volume. This quantum framework connects
the third law with the structure of spacetime at the smallest scales, suggesting that even at ultra-low
temperatures, a residual volume persists, preventing the collapse of spacetime to zero size. At the
quantum level, this stability is further reinforced by SU(3) symmetry, which, as our analysis supported
by the Meissner effect shows, remains unbroken even near absolute zero. The persistence of unbroken
SU(3) symmetry directly links to proton stability, ensuring that quarks remain confined within protons,
thereby explaining why protons do not decay. Additionally, this unbroken symmetry creates a mass
gap, ensuring that particles interacting via the strong force retain mass, which is essential for the
stability of matter and the structure of spacetime at quantum scales. Furthermore, the unbroken
SU(3) symmetry provides a physical basis for the third law of thermodynamics. It implies a non-zero
quantum volume, consistent with the GUP’s prediction of minimal measurable length, and this volume
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can be understood as "SU(3) atoms of vacuum energy." These atoms represent the smallest, stable units
of spacetime, ensuring its quantum structure remains intact even at near-zero temperatures. Thus, the
third law of thermodynamics, in conjunction with the GUP, establishes a non-zero minimum quantum
volume that preserves the integrity of spacetime. This framework links quark confinement, the mass
gap, and the unbroken SU(3) symmetry, forming a comprehensive explanation of how thermodynamic
laws and quantum principles interact to maintain the stability of quantum spacetime.

4.5. Phenomenological Implications

The quantum spacetime, where each quantum is characterized by SU(3) symmetry, is illustrated
in Figure 2a. The study [88,89] represented quantum spacetime using the charge radius as a key
characteristic for a wide range of physical objects. The exploration of how mass (M) and charge
radius (R) correlate across different scales—from microscopic to macroscopic, as illustrated in Fig-
ure 2b—uncovers a pattern strikingly similar to the behavior seen in quark-gluon plasma (QGP) [90].
This resemblance offers experimental support that SU(3) atoms, which represent a core symmetry in
the governance of quark-gluon plasma, are equally pivotal in shaping the fabric of quantum spacetime.
The linkage of the mass-radius dynamic with dark matter, further explored in [91], accentuates the
importance of these observations.

(a) (b)
Figure 2. (a) SU(3) structure of quantum Lorentzian spacetime, and (b) logarithmic plot of mass and
radius for particles and elements, normalized by proton mass and Compton wavelength [16,92–94].
Figure 2b is from our study [89].

The findings presented in this paper establish a link between the number of SU(3) atoms and
the vacuum energy density, which determines the cosmological constant of the universe. This insight
highlights a correspondence between Quantum Chromodynamics (QCD) and gravity. Our symmetric
analysis supports the gauge-gravity duality framework [95–98], and in particular the dS/CFT corre-
spondence [96] as the more accurate and physically relevant description of the universe. By applying
the Meissner effect, we provide a symmetric demonstration of the gravity/superconductor duality [99].
It is known that SU(3) symmetry, fundamental to QCD, is represented by massless gluons. It is worth
mentioning that the concept of Glueballs—bound states of these gluons—has been proposed as a
potential model for dark matter in references [100,101]. We aim to investigate the connection between
Glueballs and our proposed solution to the cosmological constant problem, which integrates SU(3)
symmetry with dark energy.
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5. Conclusions

During its evolution from a hot, primordial state, the universe expands and cools, governed by the
SU(3)× SU(2)×U(1) gauge symmetry foundational to the Standard Model of particle physics. At the
electroweak scale, this symmetry undergoes spontaneous breaking to SU(3)× U(1). As temperatures
approach near absolute zero, the Meissner effect leads to the further breaking of U(1) symmetry,
leaving SU(3) as the sole unbroken symmetry. This progression suggests that SU(3) symmetry
underpins the fundamental "atoms" of vacuum energy. The stability of these SU(3) "atoms" at low
temperatures exemplifies the third law of thermodynamics, which states the impossibility of reaching
absolute zero where volume and pressure vanish. This constancy ensures that the SU(3) vacuum
"atoms" are indivisible, forging a profound link between the third law of thermodynamics and quark
confinement. The total number of SU(3) vacuum atoms in the universe, each approximately 10−15

meters in size—akin to nucleons—aligns precisely with the ratio between the theoretical vacuum
energy and the observed vacuum energy density. This alignment effectively resolves the cosmological
constant problem. Furthermore, defining dark energy in terms of these 10123 SU(3) vacuum atoms
offers insights into the mass gap challenge within Yang-Mills theory. It appears that the mass gap in
SU(3) arises from a strictly positive vacuum energy density. Remarkably, this framework is reinforced
by the third law of thermodynamics, which affirms the unbreakable integrity of the SU(3) vacuum
"atoms". Given that the vacuum is composed of N SU(3) atoms embedded in Lorentzian spacetime,
and considering the equivalence of energy and spacetime based on general relativity, this suggests that
Lorentzian spacetime transitions from continuous to quantum to adequately describe these vacuum
atoms. This perspective aligns with Snyder’s formulation of quantum Lorentzian spacetime. Exploring
the connections between SU(3) symmetry and Snyder’s quantum spacetime presents a promising
avenue for future research that may be related to new insights in lattice gauge theory. We hope to
report on these topics in the future.
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