

# 1 Mycorrhiza Fungus *Rhizophagus intraradices* Mediates Drought Tolerance in

## 2 *Eleusine coracana* Seedlings

Jaagriti Tyagi<sup>1</sup>, Neeraj Shrivastava<sup>1</sup>, A. K. Sharma<sup>2</sup>, Ajit Varma<sup>1</sup>, Ramesh Namdeo Pudake<sup>3,\*</sup>

## Affiliations:

Jaagriti Tyagi

1. Amity Institute of Microbial technology,  
Amity University Uttar Pradesh,  
Sector 125, Noida Express Way,  
Noida, U.P 201313, India

Neeraj Shrivastava

1. Amity Institute of Microbial technology,  
Amity University Uttar Pradesh,  
Sector 125, Noida Express Way,  
Noida, U.P 201313, India

A. K. Sharma

2. Department of Biological Sciences,  
College of Basic Sciences and Humanities,  
G. B. Pant University of Agriculture and Technology,  
Pantnagar - 263 145, India

Ajit Varma

1. Amity Institute of Microbial technology,  
Amity University Uttar Pradesh,  
Sector 125, Noida Express Way,  
Noida, U.P 201313, India

Ramesh Namdeo Pudake,

3. Amity Institute of Nanotechnology,  
Amity University Uttar Pradesh,  
Sector 125, Noida Express Way,  
Noida, U.P 201313, India

\* Corresponding author, Email: rnpudake@amity.edu  
Ph: 0091-7503149960

33 **Abstract:**

34 Under abiotic stress conditions, arbuscular mycorrhizal (AM) fungi help plants by improving  
35 nutrient and water uptake. Finger millet is an arid crop having soils with poor water holding  
36 capacity. Therefore, it is difficult for the plants to obtain water and mineral nutrients from the  
37 soil to sustain life. To understand the role of mycorrhizal symbiosis in water and mineral up-take  
38 from the soil, we studied the role of *Rhizophagus intraradices* colonization and its beneficial role  
39 for drought stress tolerance in finger millet seedling. Under severe drought stress condition, AM  
40 inoculation led to the significant increase in plant growth (7%), phosphorus, and chlorophyll  
41 content (29%). Also, the level of osmolytes including proline and soluble sugars were found in  
42 higher quantities in AM inoculated seedlings under drought stress. Under water stress, the lipid  
43 peroxidation in leaves of mycorrhized seedlings was reduced by 29%. The flavonoid content of  
44 roots in AM colonized seedlings was found 16% higher compared to the control, whereas the  
45 leaves were accumulated more phenol. Compared to the control, ascorbate level was found to be  
46 25% higher in leaf tissue of AM inoculated seedlings. Moreover, glutathione (GSH) level was  
47 increased in mycorrhiza inoculated seedlings with a maximum increment of 182% under severe  
48 stress. The results demonstrated that AM provided drought tolerance to the finger millet  
49 seedlings through a stronger root system, greater photosynthetic efficiency, a more efficient  
50 antioxidant system and improved osmoregulation.

51 **Key words:** Finger millet, Mycorrhiza, Drought, ROS, Antioxidant

52 **1. INTRODUCTION**

53 Finger millet (*Eleusine coracana* L.) is grown worldwide in more than 4 m ha, and is the  
54 staple food for millions of people in less developed countries of Africa and Asia (1). It is rich in  
55 calcium, phosphorus, iron, and amino acids like -cysteine, tyrosine, tryptophan, and methionine

56 (2), which are crucial for human health. This plant is grown in semiarid and tropical regions  
57 where the soils are suffering from the deficiency of nutrients, low precipitation, high  
58 evapotranspiration rates and other restrictive environmental factors. Drought is one of the most  
59 challenging threat that may cause serious losses in crop yield, and by 2025 up to 30% of the  
60 global crop yield losses are expected due to drought (3). Drought conditions threat crop  
61 productivity with finger millet no exception to it, so there is an urgent need to find solutions  
62 which can provide an optimum yield under the drought stress.

63 Many studies have been focused to understand the molecular and physio-chemical  
64 mechanism of drought tolerance in crop plants. Under water stress, various biochemical  
65 reactions occur in plants like reduction in chlorophyll content and increase in the production of  
66 reactive oxygen species (ROS) (4). Like other environmental stresses, the homeostasis between  
67 production and detoxification of ROS in plants affect the development and growth under water  
68 stress (5). These irregularities cause several cellular damages such as oxidative damage of  
69 proteins, nucleic acids and lipids (6-7). Water limitation influence many physiological processes  
70 by altering the production and accumulation of secondary metabolites like phenols and  
71 flavonoids (8). These are efficient chain-breaking antioxidants that can inhibit lipid peroxidation  
72 and reduce oxidative damage during water stress and helps in scavenging of ROS (9).

73 Recently the use of arbuscular mycorrhiza (AM) has received increased attention in crop  
74 physiology, because mycorrhized plants are generally more tolerant to abiotic stresses than non-  
75 mycorrhized plants. AM symbiosis protects the host plants against the harmful effects through  
76 different physiological mechanisms of drought avoidance (10-11). Promotion of plant growth  
77 under stress is due to establishment of the extensive hyphal networks, secretion of biomolecules  
78 like glomalin for improving soil structure, and increasing water and nutrient uptake (12).

79 Moreover, due to the presence of extra radical mycelium (ERM) the plant can effectively absorb  
80 water from the tightly held soil water around the roots, thus increase the soil-root hydraulic  
81 conductance (13). Previous reports have suggested that the AM symbiosis can help plant to  
82 achieve drought tolerance due to physical, nutritional, physiological and cellular processes (14).  
83 The effect of AM symbiosis for nutrient absorption and other growth parameters attributes in  
84 finger millet has been studied in recent past (15-16). But the studies to evaluate the AM  
85 symbiosis to mitigate abiotic stress in this millet crop are very less. In the previous study, plant  
86 growth promoting rhizobacteria (PGPR) and AM symbiosis was evaluated for reducing the  
87 effects of water stress (17). They found that the symbiosis of PGPR along with AMF has positive  
88 role on plant growth parameters during watered and water deficient conditions. But the  
89 underlying biochemical mechanism behind this association was not revealed, as only proline and  
90 superoxide dismutase (SOD) content were estimated. In the present study, we have evaluated the  
91 physiological and biochemical impacts of symbiotic association under drought in depth and  
92 reported here.

## 93 2. EXPERIMENTAL PROCEDURES

### 94 2.1 Plant material, soil and drought stress treatment

95 Finger millet seeds (cv. Ragi Korchara) were surface sterilized with 2% of sodium hypochlorite  
96 for 2 min followed by washing with sterilized distilled water for three times. The sterilized seeds  
97 were germinated in Petri plates containing sterilized wet filter paper with distilled water at  $27\pm2$   
98 °C. Three days old germinated seeds with uniform length of radical were transferred to pots (1.5  
99 1 size, 2 seedlings /pot) with the mixture of double autoclaved sand and soil in 1:1 proportion.  
100 The potting mixture was analysed for various soil parameters at Soil Testing Laboratory, IARI,  
101 New Delhi with standard established methods. The results of analysis showed that, it contained

102 0.10 % organic carbon (OC), 4.11 g kg<sup>-1</sup> of P and 18.57 g kg<sup>-1</sup> K, pH 8.33, electrical  
103 conductivity (EC) 0.34 ds/m, and field capacity (FC) of 33 %.

104 The seedlings with and without inoculation of AM fungus- *Rhizophagus intraradices* were  
105 exposed to drought stress conditions. For this, the starter culture of AM fungi was maintained  
106 and multiplied with maize seedlings in pots with autoclaved soil and sand in 1:1 ratio. The  
107 numbers of spores present in the inoculum were counted and 2 g of inoculum (50 spores g<sup>-1</sup>) was  
108 used by making holes at the immediate vicinity of the germinated seeds. For control treatment,  
109 microbial wash from same quantity of inoculum was added, which was prepared by filtering AM  
110 inoculum through Whatman filter paper. Seedlings were grown in glass house under controlled  
111 conditions with 28 °C temperature, 16 h photoperiod (2500 lx) and 60–70 % relative humidity.  
112 The experiment was carried out in a completely randomized design with three replications of  
113 each treatment.

114 Initially, the seedlings were irrigated with tap water to 100 % field capacity (FC) for one month.  
115 Later, water stress treatments were given by maintaining the soil water status to 100 % (well-  
116 watered), 60 % (mild stress) and 40 % (severe stress) of FC (18-19). To achieve the soil water  
117 status at 60 % and 40 % FC, pots were allowed to dry to reach the required level. During stress  
118 period of 10 days, the pots were weighed daily, and the amount of water lost by  
119 evapotranspiration replenished by re-watering. After 10 days of drought stress, seedlings were  
120 harvested by firmly shaking the pots to loosen the soil and then tilting the pots at < 45° of angle  
121 for smoothly pulling out the intact soil ball from the pots, without damaging the roots. For  
122 agronomical and biochemical estimation, treated and control samples were stored separately in  
123 plastic bags. The short duration storage was done at 4 °C for physiological observation, and for  
124 biochemical analysis the samples were stored at -80 °C.

125 **2.2 Morphological parameters of finger millet seedlings**

126 After drought treatment, randomly selected seedlings from each treatment were used to measure  
127 the plant height, number of leaves in plant and root length. Shoot and root dry weights of plant  
128 was estimated after drying at 75°C for 48 h in oven until a constant weight was obtained.  
129 Phosphorus content in seedlings of all the treatments was measured in oven dried samples (20).

130 **2.3 Estimation of root colonization**

131 Mycorrhizal colonization percentage in roots was measured according to the established method.  
132 Briefly, after washing with distilled water, roots were cleared in 5 % KOH solution at 95 °C for  
133 1 h, and then treated with 5 % HCl for 10 min. The cleared roots were stained with 0.05 %  
134 Trypan blue-lactic acid solution (v/v). The colonization frequency was estimated by grid-line  
135 intersect method (21), and three replicates per treatment were used for the measurements.

136 **2.4 Chlorophyll content in leaves**

137 Chlorophyll content in the leaves was estimated by adding 0.1 g of finely chopped leaf samples  
138 in 7 ml of dimethyl sulfoxide (DMSO) followed by incubation in water-bath at 65°C for 30 min  
139 until green tissues turned colourless (22). The cooled samples were filtered, and volume was  
140 made up to 10 ml by adding more DMSO. After vortexing for few seconds, UV light absorption  
141 was measured using spectrophotometer (UV/Vis-1800, Shimadzu, Japan) at 645 and 663 nm.  
142 DMSO without any plant sample was used as a control. The amount of total chlorophyll present  
143 in DMSO extract was measured as mg chlorophyll g<sup>-1</sup> tissue according to the following formula  
144 (23).

145 Total Chl (g l<sup>-1</sup>) = 0.0202 × A<sub>645</sub> + 0.00802 × A<sub>663</sub>

146

147

148 **2.5 Determination of proline content**

149 The proline content in finger millet tissues was determined by previously described method (24-  
150 25). Briefly, for this 0.1 g of fresh plant tissue was homogenized in 1.5 ml of 3 % sulfosalicylic  
151 acid and centrifuged for 5 min at 13,000 rpm. The supernatant of around 300  $\mu$ l was transferred  
152 into a new tube followed by the addition of 2 ml each of acid ninhydrin [1.25 g of ninhydrin in  
153 20 ml of phosphoric acid (6M) and 30 ml of glacial acetic acid] and glacial acetic acid. The  
154 mixture was kept in water bath (100°C) for 1h, and immediately cooled on ice. Toluene (1 ml)  
155 was added to the reaction and vigorously mixed for a few seconds. Toluene containing  
156 chromophore layer was removed from the aqueous phase and kept at room temperature.  
157 Absorbance of each sample was measured in spectrophotometer at 520 nm against Toluene  
158 blank. The standard curve was used to calculate the concentration of proline, with three  
159 independent replicates.

160 **2.6 Estimation of total soluble sugar (TSS)**

161 Total soluble sugars from the finger millet tissues were extracted and analysed according to the  
162 method reported earlier (26). In short, 0.1 g of tissue was homogenised in 2 ml of 80 % (v/v)  
163 ethanol, and vortexed for few seconds. The homogenates were allowed to stand at room  
164 temperature for 30 min and centrifuged at 10,000 rpm for 20 min. The resulted supernatants were  
165 stored at 4 °C until further analysis. Later, 5 ml of supernatant was mixed with 3 ml of freshly  
166 prepared anthrone reagent (200 mg anthrone, 100 ml of 72 % sulphuric acid), and followed by  
167 the incubation in the water bath at 100°C for 10 min, after which the absorbance was measured at  
168 620 nm. The TSS was determined using glucose as a standard and expressed as mg g<sup>-1</sup> fresh  
169 weight (FW) of plant tissue.

170

**171 2.7 Measurement of lipid peroxidation**

172 Measurement of lipid peroxidation was evaluated in terms of malondialdehyde (MDA) content  
173 as reported by Li et al., (27). The analysis contained 1.0 g of fresh grinded tissue mixed with 5  
174 ml solution of 0.6 % TBA in 10 % Trichloroacetic acid (TCA). The mixture was subsequently  
175 centrifuged at 12,000 rpm for 20 min, and 2 ml of the resultant supernatant was supplemented  
176 with 2 ml of 0.6 % thiobarbituric acid (TBA) in 10 % TCA. The reaction was incubated in  
177 boiling water for 15 min, and then quickly cooled on ice. Afterward it was centrifuged at  
178 12,000rpm for 10 min again, and the absorbance of the supernatant was measured at 450, 532  
179 and 600 nm.

180 The MDA content was calculated on a fresh weight bases using the below mentioned formula  
181  $\mu\text{M MDA g}^{-1}\text{ of FW} = 6.45 \times (\text{OD}_{532} - \text{OD}_{600}) - 0.56 \times \text{OD}_{450}$ .

**182 2.8 Estimation of hydrogen peroxide content**

183 Method suggested earlier was used for the estimation of hydrogen peroxide ( $\text{H}_2\text{O}_2$ ) content (28).  
184 Briefly, 0.5 g of plant tissue was homogenized in 0.1% TCA, and homogenized mixture was  
185 centrifuged at 12000 rpm. Later, the reaction mixture containing 0.5 ml of 10 mM potassium  
186 phosphate buffer (pH 7.0) and 1 ml of potassium iodide solution were thoroughly mixed to 0.5  
187 ml of the supernatant and absorbance was measured at 390 nm. A standard curve plotted using a  
188 known concentration of  $\text{H}_2\text{O}_2$ , was used to calculate the content of  $\text{H}_2\text{O}_2$ .

**189 2.9 Estimation of antioxidant compounds - Glutathione, Ascorbate, Phenols, and  
190 Flavonoids**

191 Glutathione (GSH) content was determined by following the method suggested in the previous  
192 report (29). Briefly, plant tissue (0.1 g) was homogenized in 1 ml of 5 % TCA under cold  
193 condition, and centrifuged at 10000 rpm for 10 min. 100  $\mu\text{l}$  of the supernatant was made up to

194 1.0 ml with 100 mM potassium phosphate buffer (pH 7.0) and 2 ml of 5,5-dithio-bis-(2-  
195 nitrobenzoic acid) (DTNB) solution. The resultant mixture was vortexed thoroughly for few  
196 seconds and incubated for 10 min for colour development. The intensity of the yellow colour  
197 developed was measured at 412 nm with spectrophotometer. The values were expressed as nM  
198 GSH g<sup>-1</sup> plant sample. GSH standards were prepared for concentrations ranging between 0 and  
199 50 ng ml<sup>-1</sup>.

200 The amount of ascorbic acid (AsA) was determined from 0.25 g of fresh tissues that were  
201 crushed in 10 ml of 6 % TCA (30). The homogenised mixture was centrifuged for 10 min at 4° C  
202 at 1000 rpm followed by the addition of 0.5 ml of 2 % dinitrophenyl hydrazine solution. A drop  
203 of thiourea solution (10 % thiourea in 70 % ethanol) was S to the mixture and boiled for 20 min.  
204 The resultant mixture was placed on ice to decrease the temperature to 25 °C followed by the  
205 addition of 5 ml of 80 % sulphuric acid (v/v) under cold conditions. The absorbance was  
206 measured at 530 nm, and AsA content was estimated by comparing it with the standard curve  
207 prepared by a known standard of ascorbic acid.

208 For the estimation of phenols and flavonoid content in finger millet seedlings, fresh plant tissues  
209 were collected and dried at 25°C in the dark. The dried tissues were grounded into fine powder.  
210 Out of this powdered tissue, 0.1 g was extracted in 10 ml methanol by shaking it overnight at  
211 room temperature, followed by sonication for 30 min. The resultant mixture was filtered, and  
212 filtrate was used for phenol and flavonoid estimation. For flavonoid estimation 500 µl of  
213 methanol extract was added to 0.5 ml of an 2% aluminium chloride solution in methanol (31).  
214 Incubation was done at room temperature for 60 min and absorbance was measured at 240 nm.  
215 The resulting yellow colour intensity indicated the presence of flavonoids. Standard curve  
216 plotted for solution of quercetin at varying concentrations (10, 20, 40, 80, and 160 µg ml<sup>-1</sup>) was

217 used for quantification, and total flavonoid content was expressed as quercetin (mg g<sup>-1</sup> dry  
218 weight).

219 Total phenolic content was determined by Folin-Ciocalteu method (32). A 1.16 ml of distilled  
220 water and 100 µl of Folin-Ciocalteu reagent were added to 20 µl aliquot of methanol extract,  
221 followed by addition of 300 µl of 20% Na<sub>2</sub>CO<sub>3</sub> solution. The mixture was kept in a shaking  
222 incubator at 40 °C for 30 min and its absorbance was measured at 760 nm. Gallic acid was used  
223 as a standard for the preparation calibration curve. Total phenolic contents were expressed as  
224 gallic acid (mg g<sup>-1</sup> dry weight).

225 **2.10 Statistical analysis**

226 All experiments were performed in triplicate (n=3) and were expressed as average ± standard  
227 deviation. The data was analysed using two-way analysis of variance (ANOVA), with  
228 inoculation treatment (with and without AM) and water level as source of variation. Duncan's  
229 multiple range test (DMRT) was performed by SPSS software (33) for comparative analysis  
230 under all water levels in all treatments.

231 **3. RESULTS**

232 **3.1 Effect of AM inoculation on morphological parameters and phosphorous uptake**

233 To evaluate the response of finger millet seedlings to drought, the seedlings were subjected to  
234 well-watered (100 % FC), mild stress (60 % FC) and severe stress (40 % FC) condition for 10  
235 days. It was found that length, fresh weight, and dry weight of shoot and root were reduced under  
236 soil moisture depletion under mycorrhized and non-mycorrhized conditions (Fig. 1). However,  
237 compared to the non-mycorrhized seedlings, the reduction rate of morphological characters was  
238 negligible in mycorrhiza inoculated seedlings. Seedlings height was also more in the case of AM  
239 inoculated plants i.e. 44, 40, and 38 cm (18, 11 and 7 % more than non-inoculated seedlings)

240 (Table 1). Mycorrhiza treated seedlings showed maximum increase in the fresh weight of shoot  
241 and root at 60 % FC (mild stress) *i.e.* 54.46 and 62 %, respectively compared to the control.  
242 Number of leaves was more in the cases of treated plants, and highest percent increase was also  
243 observed under mild stress *i.e.* 33 % more than control. Mycorrhizal colonization had significant  
244 effect on the root length under severe drought stress, that showed 15 % more root length  
245 compared to the non-mycorrhizal seedlings. Highest increase in shoot dry mass was observed  
246 under severe stress (40 % FC), and it was found to be 70 % more compared to the control  
247 seedlings (Table 1). The results indicated that mycorrhiza inoculum has improved the biomass,  
248 especially the root biomass under water stress. To analyse the representative nutrient status of the  
249 seedlings, the phosphorous content was estimated; and found that it was significantly higher in  
250 AM seedlings. The highest percent increase (44 %) was observed at 40 % FC (2.27 mg g<sup>-1</sup> tissue)  
251 as compared to the control (1.57 mg g<sup>-1</sup> tissue) (Table 1).

252 **3.2 Mycorrhiza colonization of roots under water stress**

253 In the present study, no colonization by mycorrhiza was observed in non-inoculated seedlings. In  
254 the inoculated seedlings, it was decreased with the aggravation of drought stress, and was 54, 48  
255 and 25 % under well-watered, mild stress and severe stress, respectively (Table 1).

256 **3.3 Chlorophyll content in seedlings under stress**

257 AM inoculation was significantly increased the total chlorophyll content, even in drought stress.  
258 In AM-inoculated seedlings it was significantly more than un-inoculated seedlings, and highest  
259 increase observed at 100 % FC was 43 % (0.56 mg g<sup>-1</sup> FW). During the severe stress at 40 % FC,  
260 the total chlorophyll in AM-inoculated seedlings was 29 % (0.31 mg g<sup>-1</sup> FW) more than control  
261 (Fig. 2).

262

263 **3.4 Effect of drought on biochemical parameters of finger millet**264 **3.4.1 Proline content**

265 Because of the drought treatment, proline content was found to be more in leaves of AM treated  
266 finger millet compared to the non-inoculated seedlings (Fig. 3A). No significant differences were  
267 observed between AM-inoculated and control seedlings under well-watered condition. But under  
268 severe stress condition, proline content was  $27 \mu\text{g g}^{-1}$  of fresh weight in AM inoculated  
269 seedlings, *i.e.* 13.71 % higher than control ( $24.14 \mu\text{g g}^{-1}$  FW). We also found that root  
270 accumulated higher proline content compared to the leaves. In AM treated seedlings, proline  
271 content was significantly up-regulated under moderate and severe drought stresses, and highest  
272 concentration was found at 40 % FC *i.e.*  $63.57 \mu\text{g g}^{-1}$  of FW of root, whereas  $33.55 \mu\text{g g}^{-1}$  of FW  
273 in control (89.4 % more than control) (Fig. 3B).

274 **3.4.2 Total soluble sugars (TSS) content**

275 Our results indicated an increase in TSS content with the reduction in soil moisture in both the  
276 treatments (Fig. 3C and 3D). Soluble sugar level in leaves was more in AM-inoculated seedlings  
277 under both stresses, and higher content of TSS osmolyte was found in AM seedlings ( $173.73 \text{ mg g}^{-1}$  FW).  
278 The TSS osmolyte content in non-AM plants was found to be  $158.93 \text{ mg g}^{-1}$  FW under  
279 severe stress (40 % FC). Soluble sugar concentration in the roots of AM seedlings was increased  
280 significantly under 60 and 40 % FC, which was 53 % ( $90.82 \text{ mg g}^{-1}$  of FW) and 34 % ( $93.37 \text{ mg g}^{-1}$  FW)  
281 higher compared to the control ( $59.19 \text{ mg g}^{-1}$  of FW and  $90.82 \text{ mg g}^{-1}$  of FW) (Fig  
282 3D).

283 **3.4.3 Malondialdehyde (MDA) content**

284 To analyse lipid peroxidation, the MDA content was measured. In leaves, the inoculation of AM  
285 fungus was more persistent in improving plant membrane stability by decreasing the level of

286 MDA in finger millet under drought stress. Under severe stress condition, MDA content in  
287 leaves of AM treated seedlings was found to be less ( $44.66 \text{ nM g}^{-1}$  FW) than non-AM ( $54 \text{ nM g}^{-1}$   
288 of FW), that indicated the presence of less oxidative damage due to the AM treatment. It showed  
289 a 22 % decrease of MDA in non-AM seedlings (Fig. 3E). In the cases of roots, MDA  
290 accumulation was higher compared to the leaf tissues. Higher MDA content was observed under  
291 60 % and 40 % FC, and that was 18 % and 28 % more in non-AM plants compared to the  
292 mycorrhizal roots (Fig. 3F). These findings indicated that higher degree of oxidative stress was  
293 observed in control plants, and mycorrhiza helps in mitigating oxidative damage.

#### 294 **3.4.4 Hydrogen peroxide ( $\text{H}_2\text{O}_2$ ) content**

295 The  $\text{H}_2\text{O}_2$  content in finger millet tissues was increased in all the stress treatments, but we found  
296 that, in all the AM inoculated seedlings  $\text{H}_2\text{O}_2$  level was decreased significantly compared to the  
297 control. Highest  $\text{H}_2\text{O}_2$  content ( $0.59 \mu\text{M g}^{-1}$  of FW) was observed in non-AM plants under severe  
298 stress (40 % FC), whereas in AM treated plants it was found to be  $0.50 \mu\text{M g}^{-1}$  of FW (Fig. 4A).  
299 In the case of roots, the level of  $\text{H}_2\text{O}_2$  followed the same trend of leaves, where AM inoculation  
300 showed its significant effect under both stress levels. Higher variation among the control and  
301 treated roots was seen at 40% FC, where AM- seedlings showed 16 % less  $\text{H}_2\text{O}_2$  accumulation  
302 than control (Fig.4B).

#### 303 **3.4.5 Ascorbate (AsA) and Glutathione (GSH) content**

304 In the present study, ascorbate content (AsA) was found to be decreased with the increase in  
305 level of water stress, and AM inoculated plants had showed higher ascorbate content than control  
306 under all stress levels. In well-watered conditions, the differences in both non-mycorrhized and  
307 mycorrhized seedlings were non-significant, indicating nearly same ascorbate redox status (Fig.  
308 4C). With the depletion of water content, AM fungus was more able to improve the ascorbate

309 showed a significant increase of 10 % to 25 % under 60% and 40 % FC, respectively. Roots  
310 accumulated less ascorbate content compared to the leaf tissue and no significant changes were  
311 observed under mild and severe stress (Fig. 4D).

312 We also found that, GSH was highly affected by AM fungi; specially in the case of leaf tissue. It  
313 was increased in all drought stress treatments, but higher variation was found at 40 % FC with a  
314 significant increase of 182 % in AM inoculation ( $2.4 \mu\text{M g}^{-1}$  FW) compared to control seedlings  
315 ( $0.85 \mu\text{M g}^{-1}$  FW) (Fig.4D). Root accumulates significantly less amount of glutathione compared  
316 to the leaves, while the results were significant and in favour with the AM seedlings (Fig. 4E).

317 **3.4.6 Phenol and flavonoid content**

318 Total phenolic and flavonoid content were also assayed to understand the influence of water  
319 stress on secondary metabolites in finger millet seedlings. With the induced water stress, phenol  
320 level was increased in all the treatments (Fig.5A). No significant change was observed at 100 %  
321 FC, but AM showed its significant influence on phenol accumulation in roots under mild stress  
322 ( $139 \text{ mg gallic acid g}^{-1}$  of DW), which was 13 % more as compared to the non-AM seedlings. In  
323 the case of leaves under severe stress condition, mycorrhiza treatment was not effective in  
324 respect of increase in phenol content. Roots accumulated less phenol than leaf tissues; significant  
325 and high variation could be seen between roots of treated and control seedlings. High phenol  
326 content was observed in AM-inoculated roots under mild and severe stress ( $39.64 \text{ mg g}^{-1}$  of DW  
327 and  $48.66 \text{ mg g}^{-1}$  of DW, respectively). The increase was 35 % and 46 % more compared to the  
328 control (Fig. 5B).

329 Total flavanoid content in the leaves and roots was also increased in both treatments with the  
330 reduction in soil moisture level. No significant difference was observed under well-watered

331 condition, but in the leaves of mycorrhizal treated seedlings, there was a 30 % (0.025 mg g<sup>-1</sup> of  
332 DW) and 50 % (0.030 mg g<sup>-1</sup> of DW) increase in flavonoid content compared to non-AM plant  
333 under mild (0.015 mg g<sup>-1</sup> of DW) and severe stress (0.022 mg g<sup>-1</sup> of DW ) (Fig.5C). Results also  
334 showed that finger millet roots accumulated more flavonoid than leaves (Fig. 5D). At 60 % FC,  
335 flavonoid content in the AM-inoculated roots was nearly same as compared to the control, but  
336 under severe stress condition mycorrhiza showed a significant effect with 16.48 % increase  
337 compared to the control.

338 **4. DISCUSSION**

339 Seedling stage is more sensitive to the drought stress than the subsequent ones. It severely limits  
340 the crop stand and subsequent yield of various crop plants. The aim of the present study was to  
341 evaluate the effect of mycorrhizal symbiosis during water stress on growth of finger millet  
342 seedlings. Avoidance and tolerance are the two main strategies through which mycorrhized  
343 plants cope up with abiotic stress (11). Extensive hyphal network makes it perfect drought  
344 avoider by maintaining an adequate hydration status inside the plant cell and promote the plant  
345 growth through enhanced absorption of nutrition's from the soil (10). Along with this, the effect  
346 of AM on the stress tolerance has often been measured in terms of osmolyte, secondary  
347 metabolite accumulation and biomass production (34).

348 In the present study, AM symbiosis enhanced the growth and biomass of finger millet seedlings  
349 under water stress. Drought stress has reduced the shoot and root biomass of finger millet  
350 seedlings (both AM and non-AM seedlings). However, the length, fresh and dry weights of the  
351 roots and shoots in AM seedlings were found to be in treated plants under mild and severe  
352 drought stress. Similar results were previously reported in *Pistacia vera L* (35) and *Zea mays*

353 (36) where AM fungi had enhanced the tolerance potential to the abiotic stresses by improving  
354 the physiological parameters. Drought affects plant chlorophyll content, indicating a lower  
355 photosynthetic capacity. But chlorophyll content in AM treated finger millet seedlings was more  
356 by 23.68 % and 29.16 % under mild and severe stress condition, respectively. This indicated that  
357 lesser damage to photosynthetic ability of finger millet was might be due to greater availability  
358 of nutrient and water content from the soil through AM symbiosis. Similar results were also  
359 reported in other crops under severe drought stress (37-38). We found enhanced accumulation of  
360 phosphorous in mycorrhizal seedlings under well-watered and severe stress conditions, and  
361 similar finding was previously observed in many other plant species (39).

362 Drought stress in finger millet seedlings significantly affected the mycorrhizal colonization.  
363 Similar results have been reported in *Helianthemum almeriense* and *Terfezia claveryi* orchards  
364 (40). The results have confirmed the hypothesis that after establishment of initial symbiosis of  
365 AM with plant, water stress reduces the AM growth in the soil by inhibiting the spore  
366 germination and spread of extra radical mycelium (ERM) through branching (41). The lesser the  
367 photosynthetic efficiency in the host plant induced by drought stress, lesser the quantity of root  
368 carbohydrates, and hence the rate of AM colonization (42-43).

369 Proline has been broadly considered as a drought-inducible metabolite with an osmoprotective  
370 role. It has been reported that, accumulation and interaction of proline and soluble sugars  
371 preserved a high antioxidant protection in leaves of *Arabidopsis thaliana* under drought stress  
372 (44). As expected, we also found high proline content under drought stress. The higher proline  
373 accumulation in AM treated finger millet root and leaf was more than that of non-AM plant  
374 under severe stress and was in agreement with the previous findings (17). It was also found that  
375 leaves have lower proline content as compare to roots, which might be probably because, its

376 synthesis occur in the shoots and then transported to the roots to maintain the growth at low  
377 water level (45).

378 Along with proline, soluble sugars also play an important role in protecting membrane integrity  
379 through osmotic adjustment (5). In our study, drought was found to increase the accumulation of  
380 soluble sugars more in the presence of AM compared to the control. Leaves in AM treated  
381 seedlings were accumulated more carbohydrate than roots and may be an outcome of the  
382 enhanced photosynthetic efficiency and the sink effect of fungal demand for sugars from leaves  
383 to roots (45-46).

384 We also found that AM inoculation resulted in reduced the lipid peroxidation and hydrogen  
385 peroxide concentration in seedlings under the drought stress. In roots, higher lipid peroxidation  
386 was observed under severe stress, and less MDA was accumulated in AM treated roots. Most of  
387 the studies have demonstrated that lipid peroxidation is a biomechanism of cellular damage in  
388 living organisms and can be used as an indicator of oxidative stress. The increase of MDA  
389 content in the leaves indicates that the bulk oxidative lipid synthesis was induced by drought,  
390 suggesting a close relationship between drought and oxidative stress (47-48).

391 Interestingly ascorbate protects the plant cell against oxidative damage by its ability to function  
392 as an electron donor in a broad range of enzymatic and non-enzymatic reactions (50). Both AsA  
393 and GSH participate in the AsA-GSH cycle and helps to neutralise H<sub>2</sub>O<sub>2</sub> into water and oxygen  
394 (51). The H<sub>2</sub>O<sub>2</sub> content was increased with drought in control seedlings, but in treated plants it  
395 was significantly reduced. The H<sub>2</sub>O<sub>2</sub> content was highly affected at mild stress that shows 44 %  
396 less H<sub>2</sub>O<sub>2</sub> content in AM seedlings than control. It was reported that AM symbiosis improve the  
397 response of plants to drought largely through the accumulation of the antioxidant compound like

398 glutathione. The glutathione was found to be associated with a reduction in oxidative damage to  
399 membrane lipids and cellular H<sub>2</sub>O<sub>2</sub> (11,52). On the other hand, ascorbate levels were less in the  
400 mycorrhizal plants compared to the non-mycorrhizal counterparts. Similar findings were found  
401 in the present study as well, where the leaves of AM inoculated finger millet had increased  
402 glutathione level in severe drought stress, and ascorbate levels were decreased in the mycorrhizal  
403 plants. This is in accordance with the previous reports in rice where antioxidant compound  
404 glutathione was higher in AM plants compared to the non-AM (53).

405 In our study, phenols and flavonoids content in finger millet leaves were increased during  
406 drought stress. High content of phenol and flavonoid was also observed in AM treated seedlings.  
407 Recent studies have shown that accumulation of phenols, flavonoids can significantly increase in  
408 the plants under mild drought stress (54). As ROS is highly responsible for oxidative burst in  
409 plant cell, prevention of ROS production is achieved by compounds such as phenolic, flavonoids,  
410 and antioxidants. The drought stress lead to enhancement of these metabolites in the seedlings.

## 411 **5. CONCLUSION**

412 From the results, we conclude that AM fungi symbiosis with the finger millet seedlings has  
413 improved it's growth performance under drought stress. The beneficial effect of the AM  
414 symbiosis was linked to the effective osmotic adjustment mechanism by accumulation of proline  
415 and soluble sugars; along with soluble phenols and AsA-GSH cycle. The drought stress  
416 decreased the shoot and root yield, but enhanced the accumulation of phosphorus and water,  
417 which could help seedlings to cope up with the water stress conditions. Thus, the arbuscular  
418 mycorrhizal fungi *Rhizophagus intraradices* can be an efficient plant growth promoting fungi to  
419 enhance drought tolerance in finger millet seedlings. Further research on the molecular aspects of

420 this AM assisted drought tolerance can reveal more to understand the molecular basis of drought  
421 tolerance.

#### 422 **AUTHOR CONTRIBUTIONS**

423 JT performed the experiments, NS performed data analysis and paper drafting; AKS, AV, and  
424 RNP designed the experiments, supervised the work and finalized the manuscript. All the authors  
425 have read the manuscript and provided comments.

#### 426 **ACKNOWLEDGMENTS**

427 Authors gratefully acknowledge the funding to RNP under Start-up Research Grant (Life  
428 Sciences) by Science and Engineering Research Board, Department of Science & Technology,  
429 Government of India (SB/FT/LS-104/2012).

#### 430 **References**

- 431 1. Upadhyaya, H. D.; Ramesh, S.; Sharma, S.; Singh, S. K.; Varshney, S. K.; Salma, N. D.;  
432 Ravishankar, C. R.; Narasimhudu, Y.; Reddy, V. G.; Sahrawat, K. L.; Dhanalakshmi, T. N.  
433 Genetic diversity for grain nutrients contents in a core collection of finger millet (*Eleusine*  
434 *coracana* (L.) Gaertn.) germplasm. *Field Crops Research*, 2011, *121*, 42-52.
- 435 2. Kumar, A.; Gaur, V. S.; Goel, A.; Gupta, A. K. De novo assembly and characterization of  
436 developing spikes transcriptome of finger millet (*Eleusine coracana*): A minor crop having  
437 nutraceutical properties. *Plant Molecular Biology Reporter*, 2015, *33*, 905-922.
- 438 3. Rosegrant, M. W.; Cai, X.; Cline, S. A. World water and food to 2025: Dealing with scarcity. *Intl*  
439 *Food Policy Res Inst*, 2002
- 440 4. Kurepin, L. V.; Ivanov, A. G.; Zaman, M.; Pharis, R. P.; Hurry, V.; Hüner, N. P. Interaction of  
441 glycine betaine and plant hormones: Protection of the photosynthetic apparatus during abiotic  
442 stress. In *Photosynthesis: Structures, mechanisms, and applications*. Springer, Cham, 185-  
443 2022017
- 444 5. Choudhury, F. K.; Rivero, R. M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic  
445 stress and stress combination. *The Plant Journal*, 2017, *90*(5), 856-867.
- 446 6. Noctor, G.; Mhamdi, A.; Foyer, C. H. The roles of reactive oxygen metabolism in drought: not  
447 so cut and dried. *Plant Physiology*, 2014, *164*, 1636-1648.

448 7. Petrov, V.; Hille, J.; Mueller-Roeber, B.; Gechev, T. S. ROS-mediated abiotic stress-induced  
449 programmed cell death in plants. *Frontiers in plant science*, 2015, 6, 69.

450 8. Ma, D.; Sun, D.; Wang, C.; Li, Y.; Guo, T. Expression of flavonoid biosynthesis genes and  
451 accumulation of flavonoid in wheat leaves in response to drought stress. *Plant Physiology and*  
452 *Biochemistry*, 2014, 80, 60-66.

453 9. Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as  
454 ROS-scavengers during environmental stress in plants. *Frontiers in Environmental Science*, 2014,  
455 2, 53.

456 10. Augé, R. M.; Toler, H. D.; Saxton, A. M. Arbuscular mycorrhizal symbiosis alters stomatal  
457 conductance of host plants more under drought than under amply watered conditions: a meta-  
458 analysis. *Mycorrhiza*, 2015, 25, 13-24.

459 11. Dastgoer, K. M. G.; Stephen J. W. Plant-Fungi Association: Role of fungal endophytes in  
460 improving plant tolerance to water stress. In *Plant-Microbe Interactions in Agro-Ecological*  
461 *Perspectives*, Springer, Singapore, 2017, 143-159.

462 12. Miransari, M. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different  
463 types of soil stress. *Plant Biology*, 2010, 12, 563-569.

464 13. Gonzalez-Dugo, V.; Durand, J. L.; Gastal, F. Water deficit and nitrogen nutrition of crops -A  
465 review. *Agronomy for sustainable development*, 2010, 30, 529-544.

466 14. Zou, Y. N.; Wang, P.; Liu, C. Y.; Ni, Q. D.; Zhang, D. J.; Wu, Q. S. Mycorrhizal trifoliate orange  
467 has greater root adaptation of morphology and phytohormones in response to drought stress.  
468 *Scientific reports*, 2017, 7, 41134.

469 15. Karasawa, T., and Takebe, M., Temporal or spatial arrangements of cover crops to promote  
470 arbuscular mycorrhizal colonization and P uptake of upland crops grown after nonmycorrhizal  
471 crops. *Plant and soil*, 2012, 353, 355-366.

472 16. Ramakrishnan, K.; Bhuvaneswari, G. Effect of inoculation of am fungi and beneficial  
473 microorganisms on growth and nutrient uptake of *Eleusine coracana* (L.) Gaertn.(Finger millet).  
474 *International Letters of Natural Sciences*, 2014, 8, 2.

475 17. Kamal, R.; Gusain, Y. S.; Sharma, I. P.; Sharma, S.; Sharma, A. Impact of arbuscular  
476 mycorrhizal fungus, *Glomus intraradices*, *Streptomyces* and *Pseudomonas* spp. strain on finger  
477 millet (*Eleusine coracana* L.) cv Korchara under water deficit condition. *African Journal of*  
478 *Biotechnology*, 2015, 14, 3219-3227.

479 18. Colman, E. A laboratory procedure for determining the field capacity of soils. *Soil science*, 1947,  
480 63, 277-284.

481 19. Veihmeyer, F.; Hendrickson, A., Methods of measuring field capacity and permanent wilting  
482 percentage of soils. *Soil science*, 1949, 68, 75-94.

483 20. Nouri, E.; Breuillin-Sessoms, F.; Feller, U.; Reinhardt, D. Phosphorus and nitrogen regulate  
484 arbuscular mycorrhizal symbiosis in *Petunia hybrida*. *PLoS One*, 2014, 9(3), e90841.

485 21. Giovannetti, M.; Mosse, B. An evaluation of techniques for measuring vesicular arbuscular  
486 mycorrhizal infection in roots. *New phytologist*, 1980, 84, 489-500.

487 22. Hiscox, J.T.; Israelstam, G. A method for the extraction of chlorophyll from leaf tissue without  
488 maceration. *Canadian Journal of Botany*, 1979, 57, 1332-1334.

489 23. Arnon, D. I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in *Beta vulgaris*. *Plant*  
490 *Physiology*, 1949, 24, 1.

491 24. Bates, L.; Waldren, R.; Teare, I. Rapid determination of free proline for water-stress studies.  
492 *Plant and soil*, 1973, 39, 205-207.

493 25. Tyagi, J.; Pudake, R. N. Spectrophotometric assays to evaluate the rhizospheric microbes  
494 mediated drought tolerance in plants. In: Modern tools and techniques to understand microbes.  
495 Springer, 2017, 413-429.

496 26. Wang, S.; Zhu, Y.; Jiang, H.; Cao, W. Positional differences in nitrogen and sugar concentrations  
497 of upper leaves relate to plant N status in rice under different N rates. *Field Crops Research*,  
498 2006, 96, 224-234.

499 27. Li, Y.; Zhao, H.; Duan, B.; Korpelainen, H.; Li, C. Effect of drought and ABA on growth,  
500 photosynthesis and antioxidant system of *Cotinus coggygria* seedlings under two different light  
501 conditions. *Environmental and Experimental Botany*, 2011, 71, 107-113.

502 28. Junglee, S.; Urban, L.; Sallanon, H.; Lopez-Lauri, F. Optimized assay for hydrogen peroxide  
503 determination in plant tissue using potassium iodide. *American Journal of Analytical Chemistry*,  
504 2014, 5, 730.

505 29. Moron, M.S.; Depierre, J.W.; Mannervik, B. Levels of glutathione, glutathione reductase and  
506 glutathione S-transferase activities in rat lung and liver. *Biochimica et Biophysica Acta (BBA)-*  
507 *General Subjects*, 1979, 582, 67-78.

508 30. Mukherjee, S.; Choudhuri, M. Implications of water stress-induced changes in the levels of  
509 endogenous ascorbic acid and hydrogen peroxide in *Vigna* seedlings. *Physiologia Plantarum*,  
510 1983, 58, 166-170.

511 31. Bettaieb, I.; Hamrouni-Sellami, I.; Bourgou, S.; Limam, F.; Marzouk, B. Drought effects on  
512 polyphenol composition and antioxidant activities in aerial parts of *Salvia officinalis* L. *Acta*  
513 *Physiologiae Plantarum*, 2011, 33, 1103-1111.

514 32. Slinkard, K.; Singleton, V. L. Total phenol analysis: automation and comparison with manual  
515 methods. *American Journal of Enology and Viticulture*, 1977, 28, 49-55.

516 33. Verma, J. Data analysis in management with SPSS software. Springer Science & Business Media,  
517 2012.

518 34. Quiroga, G.; Erice, G.; Aroca, R.; Chaumont, F.; Ruiz-Lozano, J. M. Enhanced drought stress  
519 tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related  
520 to a broader and differential regulation of host plant aquaporins than in a drought-tolerant  
521 cultivar. *Frontiers in plant science*, 2017, 8, 1056.

522 35. Abbaspour, H.; Saeidi-Sar, S.; Afshari, H.; Abdel-Wahhab, M. Tolerance of mycorrhiza infected  
523 pistachio (*Pistacia vera* L.) seedling to drought stress under glasshouse conditions. *Journal of*  
524 *plant physiology*, 2012, 169, 704-709.

525 36. Bárzana, G.; Aroca, R.; Bienert, G. P.; Chaumont, F.; Ruiz-Lozano, J. M. New insights into the  
526 regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought  
527 stress and possible implications for plant performance. *Molecular Plant-Microbe Interactions*,  
528 2014, 27, 349-363.

529 37. Ashraf, M.; Harris, P. Photosynthesis under stressful environments: an overview  
530 *Photosynthetica*, 2013, 51, 163-190.

531 38. Yooyongwech, S.; Samphumphuang, T.; Tisarum, R.; Theerawitaya, C.; Chaum, S. Arbuscular  
532 mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato  
533 genotypes involves osmotic adjustments via soluble sugar and free proline. *Scientia*  
534 *Horticulturae*, 2016, 198, 107-117.

535 39. Burgelea, C.; Zaharescu, D. G.; Dontsova, K.; Maier, R.; Huxman, T.; Chorover, J. Mineral  
536 nutrient mobilization by plants from rock: influence of rock type and arbuscular mycorrhiza.  
537 *Biogeochemistry*, 2015, 124, 187-203.

538 40. Morte, A.; Navarro-Ródenas, A.; Nicolás, E. Physiological parameters of desert truffle  
539 mycorrhizal *Helianthemum almeriense* plants cultivated in orchards under water deficit  
540 conditions. *Symbiosis*, 2010, 52, 133-139.

541 41. Augé, R. M. Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis.  
542 *Mycorrhiza*, 2001, 11, 3–42.

543 42. Amiri, R.; Nikbakht, A.; Etemadi, N. Alleviation of drought stress on rose geranium  
544 [*Pelargonium graveolens* (L.) Herit.] in terms of antioxidant activity and secondary metabolites  
545 by mycorrhizal inoculation. *Scientia Horticulturae*, 2015, 197, 373-380.

546 43. Wu, Q. S.; Zou, Y. N.; Huang, Y. M. The arbuscular mycorrhizal fungus *Diversispora spurca*  
547 ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme  
548 activities of citrus seedlings. *Fungal ecology*, 2013, 6, 37-43.

549 44. Sperdouli, I.; Moustakas, M. Interaction of proline, sugars, and anthocyanins during  
550 photosynthetic acclimation of *Arabidopsis thaliana* to drought stress. *Journal of plant physiology*,  
551 2012, 169, 577-585.

552 45. Sharma, S.; Villamor, J.G.; Verslues, P. E. Essential role of tissue-specific proline synthesis and  
553 catabolism in growth and redox balance at low water potential. *Plant Physiology*, 2011, 157,  
554 292-304.

555 46. Aroca, R.; Porcel, R.; Ruiz-Lozano, J. M. Regulation of root water uptake under abiotic stress  
556 conditions. *Journal of experimental botany*, 2012, 63, 43-57.

557 47. Zhang, Z.; Zhang, J.; Huang, Y. Effects of arbuscular mycorrhizal fungi on the drought tolerance  
558 of *Cyclobalanopsis glauca* seedlings under greenhouse conditions. *New forests*, 2014, 45, 545-  
559 556.

560 48. Bacon, C. W.; White, J. F. Functions, mechanisms and regulation of endophytic and epiphytic  
561 microbial communities of plants. *Symbiosis* 2016, 68, 87-98.

562 49. Huang, Y. M.; Zou, Y. N.; Wu, Q. S. Alleviation of drought stress by mycorrhizas is related to  
563 increased root H<sub>2</sub>O<sub>2</sub> efflux in trifoliate orange. *Scientific reports*, 2017, 7, 42335.

564 50. Akram, N. A.; Shafiq, F.; Ashraf, M. Ascorbic acid-a potential oxidant scavenger and its role in  
565 plant development and abiotic stress tolerance. *Frontiers in plant science*, 2017, 8, 613.

566 51. Sharma, P.; Jha, A. B.; Dubey, R. S.; Pessarakli, M. Reactive oxygen species, oxidative damage,  
567 and antioxidative defense mechanism in plants under stressful conditions. *Journal of Botany*,  
568 2012, 2012, 1-26.

569 52. Li, J.; Wang, Y.; Pritchard, H.W.; Wang, X. The fluxes of H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub> can be used to evaluate  
570 seed germination and vigor of *Caragana korshinskii*. *Planta*, 2014, 239, 1363-1373.

571 53. Ruiz-Sánchez, M.; Aroca, R.; Muñoz, Y.; Polón, R.; Ruiz-Lozano, J. M. The arbuscular  
572 mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of  
573 rice plants subjected to drought stress. *Journal of plant physiology*, 2010, 167, 862-869.

574 54. Gharibi, S.; Tabatabaei, B. E. S.; Saeidi, G.; Goli, S. A. H. Effect of drought stress on total  
575 phenolic, lipid peroxidation, and antioxidant activity of *Achillea* species. *Applied Biochemistry*  
576 and Biotechnology, 2016, 178, 796-809.

577

578 **Figure legends:**

579 **Fig.1** Effect of mycorrhiza on plant growth at 100% field capacity (A), 60% field capacity (B),  
580 and 40% field capacity (C); effect of different field capacity on root length of control (NM) plant  
581 (D) and root length of mycorrhizal (M) plants (E); microscopic images of stomata from leaves of  
582 finger millet control leaves in which stomata are open (F); closed stomata in leaves exposed to  
583 drought stress (G); trypan blue stained finger millet plant roots (a) spores; (b) arbuscules; and (c)  
584 intraradical hyphae (H).

585 **Fig.2** Effect of different soil water levels (100%, 60%, and 40% FC) and AM colonization on  
586 chlorophyll content in finger millet leaves. Values are the means of three replications  $\pm$  SD.  
587 Mean with same letter are not significantly different ( $P < 0.05$ ). Control (non-mycorrhizal NM)  
588 and treated (mycorrhizal M), FC: Field capacity, WW: well-watered, MS: mild-stress, and SS:  
589 severe-stress

590 **Fig. 3** Effect of water stress and AM on proline content in leaves (A) and roots (B), Total soluble  
591 sugars (TSS) leaves (C) and roots (D), Malondialdehyde (MDA) content in leaves (E), and root  
592 (F) in Finger millet seedlings. Values are the means of three replications  $\pm$  SD. Mean with same  
593 letter are not significantly different ( $P < 0.05$ ). Control (non-mycorrhizal NM) and treated  
594 (mycorrhizal M), FC: Field capacity, WW: well-watered, MS: mild-stress, and SS: severe-stress

595 **Fig.4** Effect of drought stress on hydrogen peroxide ( $H_2O_2$ ) content leaves (A) and roots (B),  
596 ascorbate-glutathione status in leaves (C) (E) and roots (D) (F) at different moisture levels  
597 (100%, 60%, and 40% field capacity (FC). Values are the means of three replications  $\pm$  SD.  
598 Mean with same letter are not significantly different ( $P < 0.05$ ). Control (non-mycorrhizal NM)  
599 and treated (mycorrhizal M), FC: Field capacity, WW: well-watered, MS: mild-stress, and SS:  
600 severe-stress

601 **Fig.5** Effect of drought stress on antioxidant metabolites in finger millet total phenol in leaves  
602 (A) and roots (B), Total flavonoid in leaves (C) and roots (D) with and without AM inoculation.  
603 Values are the means of three replications  $\pm$  SD. Mean with same letter are not significantly  
604 different ( $P < 0.05$ ). FC: Field capacity, WW: well-watered, MS: mild-stress, and SS: severe-  
605 stress

606

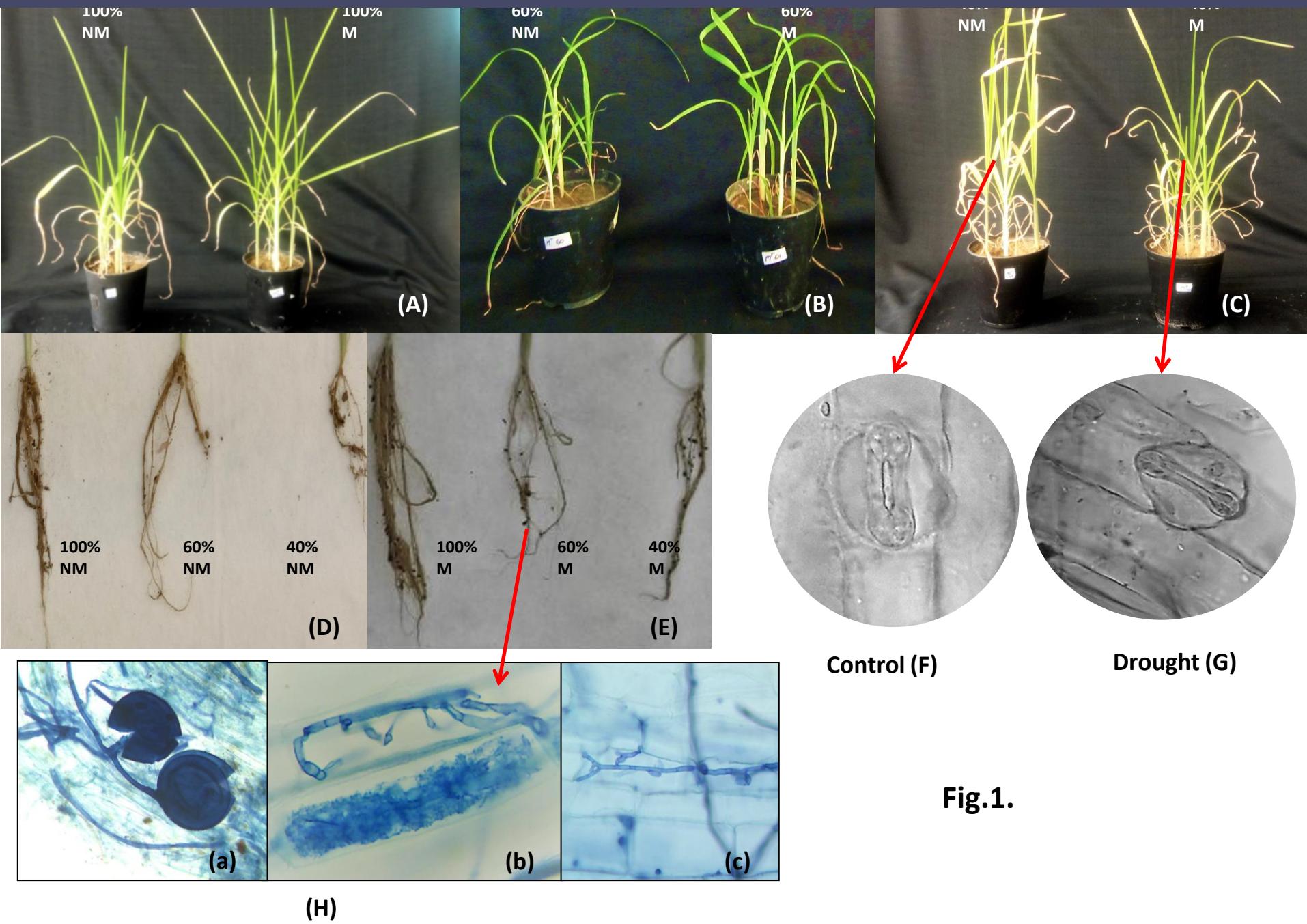
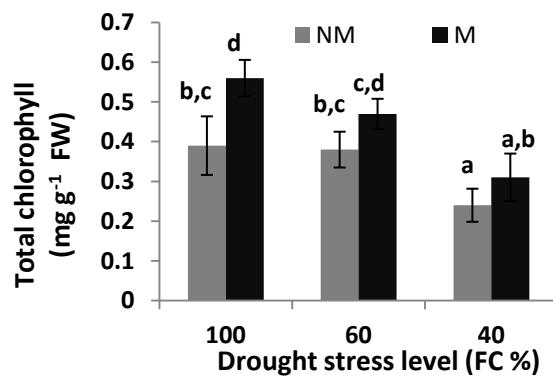
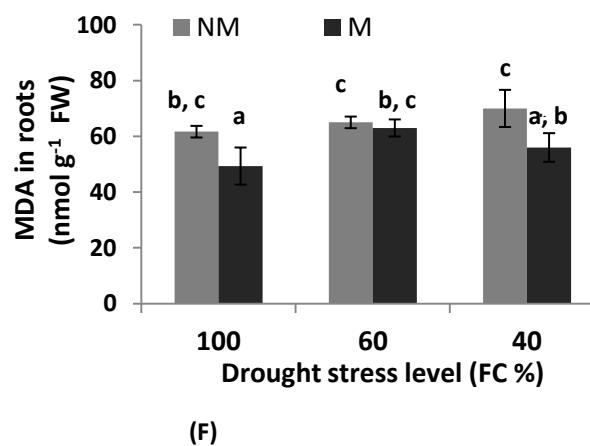
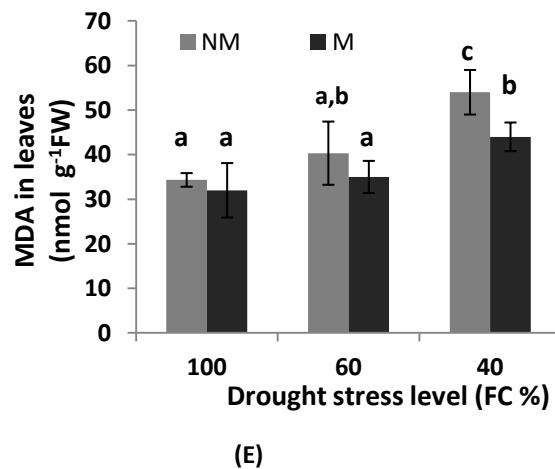
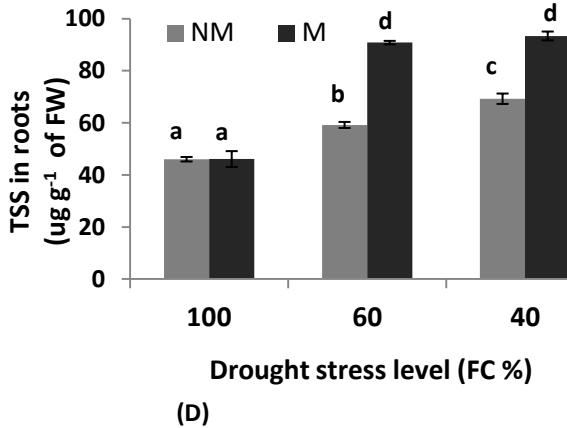
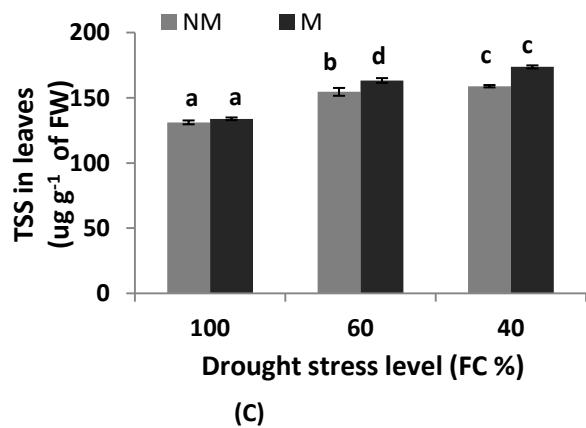
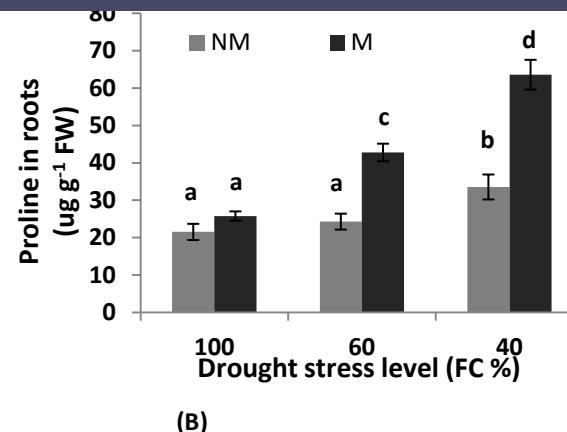
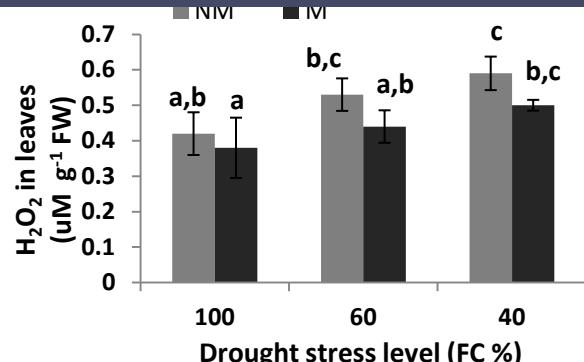



Fig.1.



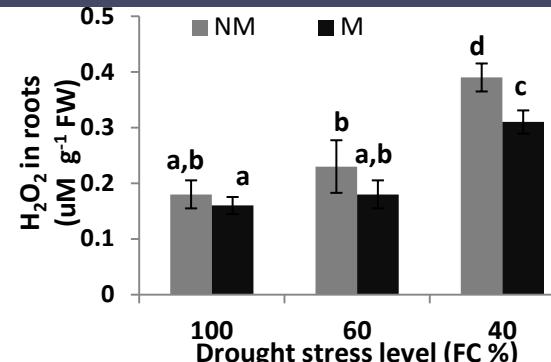
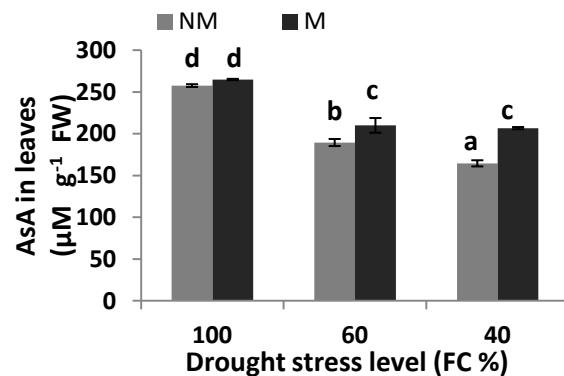
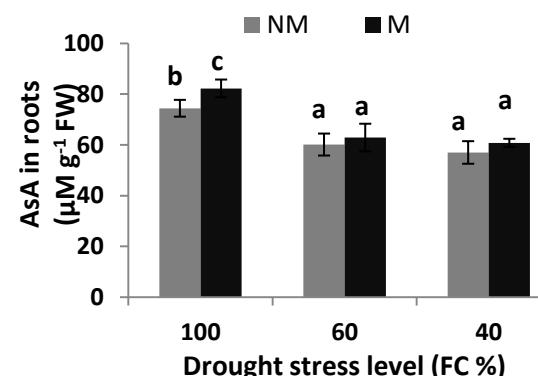


Fig.2

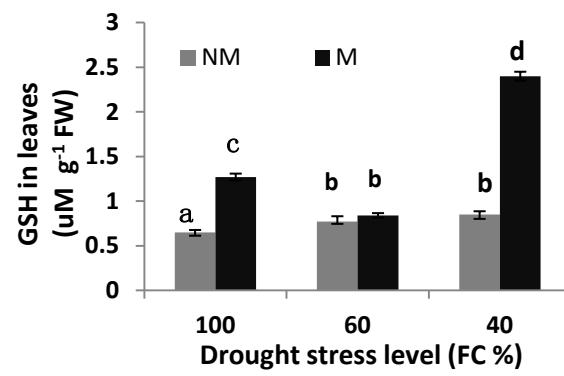
Fig.3







(A)




(B)



(C)



(D)



(E)

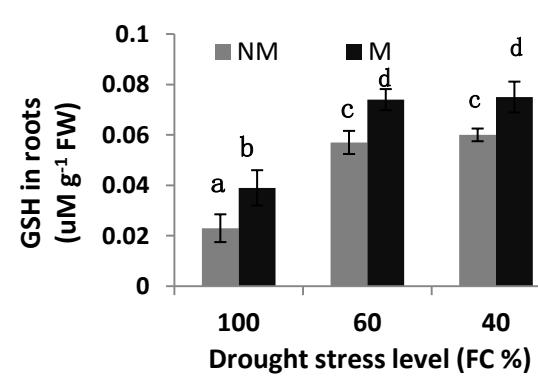
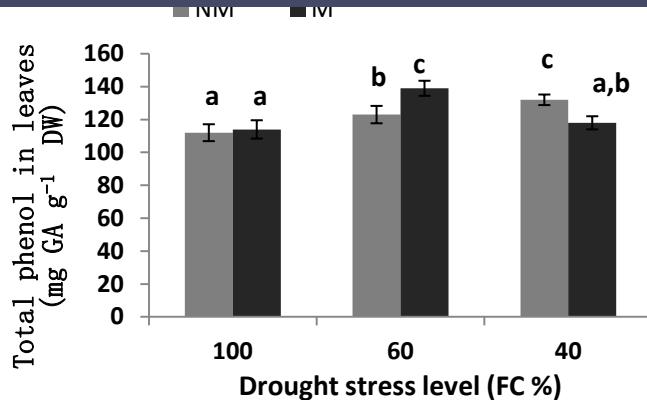
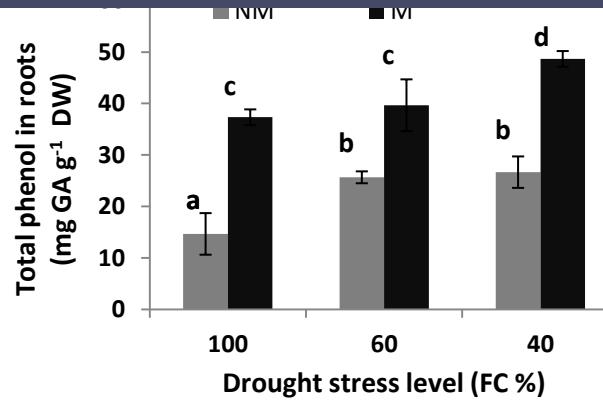
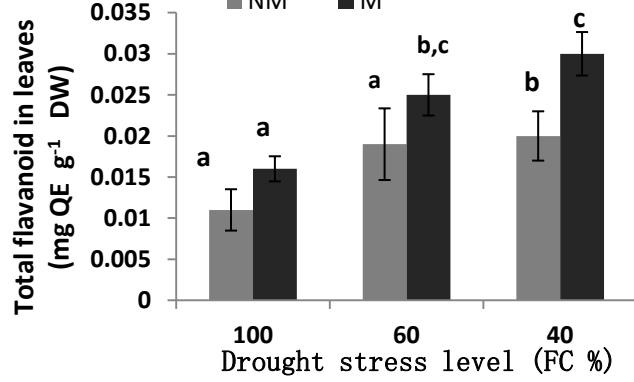
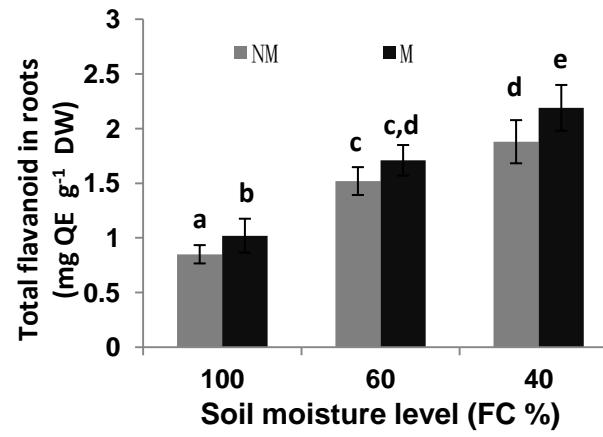





Fig. 4


Fig. 5




(A)



(B)



(C)



(D)

**Table.1 : Effect of mycorrhiza on finger millet plant characteristics** – shoot and root length, shoot and root fresh weight, shoot and root dry weight, number of leaves per plant, root colonization percentage (%) and phosphorus content, **under different moisture regimes**.

Values are the means of three replications  $\pm$  SD, and same letters indicate that means are not significantly different ( $P < 0.05$ ). **NM**: non-inoculated control and **M**: inoculated with mycorrhiza, **FC**: Field capacity, **WW**: well-watered, **MS**: mild-stress, and **SS**: severe-stress

| Drought Treatment    | Fungal Inoculants | Shoot length (cm)   | Root length (cm)   | Shoot fresh weight (gm) | Shoot dry weight (gm) | Root fresh weight (gm) | Root dry weight (gm)  | No. of Leaves/Plant | Phosphorus content (mg/g tissue) | Mycorrhizal Colonization (%) |
|----------------------|-------------------|---------------------|--------------------|-------------------------|-----------------------|------------------------|-----------------------|---------------------|----------------------------------|------------------------------|
| <b>100 % FC (WW)</b> | <b>NM</b>         | 37.6 $\pm$ 0.36a,b  | 17.9 $\pm$ 0.56c   | 1.98 $\pm$ 0.11b        | 0.20 $\pm$ 0.03b      | 0.18 $\pm$ 0.02b       | 0.036 $\pm$ 0.02b,c   | 7.3 $\pm$ 0.57b,c   | 3.66 $\pm$ 0.14 c                | 0.00 $\pm$ 0.0a              |
|                      | <b>M</b>          | 44.7 $\pm$ 2.08d    | 20.6 $\pm$ 1.21d   | 2.76 $\pm$ 0.18c        | 0.29 $\pm$ 0.01c      | 0.28 $\pm$ 0.02c       | 0.049 $\pm$ 0.003c    | 9.3 $\pm$ 0.57d     | 4.29 $\pm$ 0.44d                 | 54.0 $\pm$ 5.29c             |
|                      |                   | 36.4 $\pm$ 0.81 a,b | 14.8 $\pm$ 0.47b   | 1.12 $\pm$ 0.13a        | 0.17 $\pm$ 0.03b      | 0.16 $\pm$ 0.01b       | 0.028 $\pm$ 0.004a,b  | 6.3 $\pm$ 0.57a,b   | 3.43 $\pm$ 0.20c                 | 0.00 $\pm$ 0.0a              |
|                      | <b>M</b>          | 40.5 $\pm$ 1.46c    | 15.6 $\pm$ 1.28b   | 1.73 $\pm$ 0.28b        | 0.21 $\pm$ 0.03b      | 0.26 $\pm$ 0.01c       | 0.03 $\pm$ 0.001a,b,c | 8.0 $\pm$ 1.0c      | 3.83 $\pm$ 0.08c,d               | 48.0 $\pm$ 8.0c              |
| <b>40 % FC (SS)</b>  | <b>NM</b>         | 36.0 $\pm$ 1.25 a   | 12.1 $\pm$ 0.66a   | 0.90 $\pm$ 0.24a        | 0.10 $\pm$ 0.02a      | 0.13 $\pm$ 0.02a       | 0.015 $\pm$ 0.002a    | 5.3 $\pm$ 0.57a     | 1.57 $\pm$ 0.29a                 | 0.00 $\pm$ 0.0a              |
|                      | <b>M</b>          | 38.7 $\pm$ 0.87 b,c | 14.0 $\pm$ 1.70a,b | 1.15 $\pm$ 0.13a        | 0.17 $\pm$ 0.03b      | 0.17 $\pm$ 0.02b       | 0.018 $\pm$ 0.003a,b  | 6.6 $\pm$ 0.57b     | 2.27 $\pm$ 0.24b                 | 25.3 $\pm$ 4.93b             |