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Article

Presenting Circular Gravitational Fields: A Numerical
Exploration around Rotating Black Holes
Panagiotis Karmiris

Independent Researcher; unbinder@msn.com

Abstract: We present a novel theoretical framework, Circular Gravitational Fields (CGF), which extends
the gravitomagnetic analogy in general relativity by proposing that mass-energy currents generate a
circular component of the gravitational field. Our formulation provides a geometrically motivated
coupling between this circular field and spacetime curvature through the Ricci tensor, maintaining
consistency with established gravitational physics while predicting potentially observable deviations in
strong-field regimes. Using the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism, we perform
numerical simulations of rotating black holes to explore CGF behavior in strong gravitational fields.
We compare CGF predictions for key observables, including frame-dragging effects and gravitational
wave signatures, with solutions to Einstein’s equations. Our approach maintains consistency with
current observational constraints from gravitational wave observations [1] and cosmological surveys
[2], while offering new insights into the quantum nature of spacetime. The framework makes specific
predictions for next-generation experiments including Euclid, the Einstein Telescope [3], and pulsar
timing arrays, providing multiple avenues for empirical verification of these fundamental ideas about
the nature of time and reality.

Keywords: circular gravitational fields; general relativity; gravitomagnetism; numerical relativity;
spacetime geometry; einstein field equations; quantum gravity; bssn formalism; field coupling; ricci ten-
sor; numerical simulations; black hole dynamics; frame dragging; mass-energy currents; gravitational
wave physics

1. Introduction
General relativity (GR) provides a highly accurate description of gravitational phenomena, but its

nonlinear field equations often necessitate numerical methods, particularly in strong-field scenarios
such as black hole dynamics. This work introduces Circular Gravitational Fields (CGF), a theoretical
framework that builds upon the gravitomagnetic analogy in GR while incorporating novel geometric
couplings between mass-energy currents and spacetime curvature.

The fundamental premise of CGF emerges from deep philosophical considerations about the
nature of reality [4,5] combined with modern physical insights [6,7]. Across human civilizations
and throughout the development of physics, the connection between circular motion, time, and
fundamental forces has been a recurring theme [5]. Our work translates these insights into a rigorous
mathematical framework by proposing that mass-energy currents generate circular gravitational fields
analogous to, but geometrically distinct from, magnetic fields.

The CGF framework differs from standard gravitomagnetism by introducing specific geometric
couplings mediated by the Ricci tensor. This ensures consistency with vacuum Einstein equations
while potentially introducing observable modifications in matter-rich regions. These modifications
manifest most strongly in extreme environments, providing specific predictions testable through
gravitational wave observations [1].

We explore the CGF framework through numerical simulations using the BSSN formalism [8–10].
Our investigation focuses on:

1. The evolution and behavior of circular gravitational fields in strong-field regions
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2. Quantitative predictions for frame-dragging effects and their observational signatures
3. Modifications to gravitational wave generation and propagation
4. Compatibility with existing gravitational wave observations
5. Connections to quantum gravity approaches [11,12]

The emphasis of this work is twofold: first, to present a mathematically rigorous formulation
of CGF that maintains consistency with established gravitational physics while introducing well-
motivated modifications; second, to explore the observable consequences of these modifications
through detailed numerical simulations. Our results provide a foundation for testing CGF against
current and future gravitational wave observations [13], potentially offering new insights into the
unification of fundamental forces.

2. Theoretical Framework
2.1. Connection to Standard Gravitomagnetism

The gravitomagnetic analogy in general relativity provides an established framework for under-
standing certain gravitational phenomena. Drawing on insights from quantum geometry [14], we
extend this analogy through a novel coupling between mass-energy currents and spacetime curvature.
The standard gravitomagnetic decomposition gives:

Gravitational potential: Φ ↔ ϕ (Electric potential) (1)

Gravitomagnetic potential: Ai ↔ Ai (Magnetic vector potential) (2)

Mass current density: Jµ ↔ Jµ (Charge current density) (3)

The CGF framework extends this analogy by introducing a geometrically motivated coupling
between mass-energy currents and spacetime curvature. This coupling manifests through the Ricci
tensor:

Lcoupling =
λ

16πG
RijBiBj√−g (4)

This coupling term is fundamental to our unification approach, as it geometrically connects
the circular gravitational field to spacetime curvature in a way analogous to, but distinct from, the
electromagnetic coupling to charged matter.

2.2. Field Structure and Dynamics

The fundamental fields in CGF emerge from a geometrical extension of the ADM formalism [15],
defining:

Bij = ∇i Aj −∇j Ai (5)

Bi =
1
2

ϵijkBjk (6)

where Ai represents the circular gravitational potential and Bij the field strength tensor. Unlike
standard gravitomagnetism, these fields couple to spacetime geometry through:

∇jBij = −κϵijkl JjBkl + λRi
jBj +O(B3) (7)

This evolution equation introduces three key modifications to standard gravitomagnetism:

• Geometric coupling through the Ricci tensor term λRi
jBj

• Modified mass-energy current coupling via κ

• Nonlinear self-interactions O(B3) analogous to Yang-Mills theories
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For rotating axisymmetric sources with angular momentum J, the leading-order circular field
strength becomes:

|B| = 2GM
c2r4

√
J2 − (J · r̂)2

[
1 +

GM
c2r

+O
(

J2

M4

)]
(8)

2.3. Action Principle and Field Equations

The complete action for CGF takes the form:

S =
∫ [

1
16πG

R +
c4

32πG
BijBij

+
c

16πG
ϵijkl Ai JjBkl

+
λc4

32πG
RijBiBj

]√
−g d4x (9)

This action integrates gravitational and CGF dynamics through:

1. The Einstein-Hilbert term
2. Kinetic terms for the circular field
3. Mass-energy current coupling
4. Geometric coupling through the Ricci tensor

Variation with respect to the metric yields modified Einstein equations:

Gµν = 8πG(Tµν + T(B)
µν ) (10)

where T(B)
µν represents the stress-energy contribution from the circular field and its geometric

coupling. The quantum properties of this system emerge naturally through canonical quantization
[16], leading to modified Wheeler-DeWitt equations:[

− h̄2

24πG
∂2

∂a2 +
h̄2

2a3
∂2

∂T2 + a3V(T)

]
Ψ(a, T) = 0 (11)

where Ψ(a, T) represents the quantum state of the combined gravitational-temporal system [17].

3. Numerical Implementation
3.1. BSSN-CGF Evolution System

We extend the BSSN formalism to accommodate CGF while preserving hyperbolicity and con-
straint preservation. The complete set of evolved variables includes the standard BSSN variables:

χ = γ−1/3 (conformal factor) (12)

γ̃ij = χγij (conformal metric) (13)

K = γijKij (trace of extrinsic curvature) (14)

Ãij = χ(Kij −
1
3

γijK) (traceless extrinsic curvature) (15)

Γ̃i = γ̃jkΓ̃i
jk (conformal connection) (16)

alongside the CGF variables (Ai, Bi). Following [8], the evolution equations become:
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∂tγ̃ij = βk∂kγ̃ij + 2γ̃k(i∂j)β
k − 2

3
γ̃ij∂kβk

− 2αÃij + κ1αBiBj (17)

∂tK = βi∂iK − DiDiα + α(KijKij + κ2BijBij) (18)

The CGF evolution equations incorporate geometric coupling terms:

∂t Ai = −αBi + βj∂j Ai + Aj∂iβ
j + ∂i(αΦ) + Si(Bj, Rij, Ji) (19)

where the source terms Si contain both gravitational and field couplings:

Si = α(λRijBj + κϵijk J jBk) (20)

This coupling structure mirrors electromagnetic field evolution while maintaining geometric
consistency with general relativity [18].

3.2. Numerical Methods

Our implementation employs high-order numerical schemes designed to handle the coupled
field-geometry system:

3.2.1. Spatial Discretization

We use fourth-order centered finite differences following [10]:

∂x fi =
1

12∆x

2

∑
k=−2

ck fi+k +O(∆x4) (21)

with coefficients:
{c−2, c−1, c0, c1, c2} = {1,−8, 0, 8,−1} (22)

Modified stencils near boundaries preserve stability while maintaining accurate field evolution:

∂x f1 =
− f3 + 4 f2 − 3 f1

2∆x
+O(∆x2) (23)

3.2.2. Time Integration

The evolution employs a fourth-order Runge-Kutta scheme with adaptive timestep:

∆t = CCFL min
(

∆x
λmax

,
∆x√

κ1 + κ2

)
(1 − ϵ∥C∥) (24)

where λmax includes both gravitational and CGF characteristic speeds, crucial for capturing the
unified field dynamics.

3.3. Constraint Preservation and Error Analysis

The unified field theory introduces additional constraints beyond the standard Hamiltonian and
momentum constraints of GR. The complete set includes:
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CB = ∂iBi = 0, (25)

(CGF divergence)

Hmod = R − KijKij + K2 − 16πρ + κH BijBij = 0, (26)

(Modified Hamiltonian)

Mmod
i = ∂jK

j
i − ∂iK − 8π ji + κMϵijkBjBk = 0, (27)

(Modified momentum)

Following [19], we implement constraint damping through modified evolution equations:

∂tu → ∂tu + λCCni (28)

4. Numerical Experiments and Predictions
4.1. Test Cases and Convergence Analysis

We establish a hierarchy of test cases that probe both gravitational and circular field dynamics:

1. Schwarzschild spacetime (a = 0):
Bi = 0, ∂tBi = 0 (29)

verifying that the circular field vanishes in spherically symmetric cases.
2. Slow-rotation Kerr (a ≪ M):

Bϕ =
2GJ
c2r4 sin θ

[
1 + α

GM
c2r

+O(a2)

]
(30)

demonstrating the emergence of CGF in rotating systems.
3. Extreme Kerr (a ≈ M):

Bϕ =
2GJ
c2r4 sin θ f (r/M, a/M) (31)

exploring strong-field unification effects.

4.2. Observable Predictions

The CGF framework makes specific, testable predictions for gravitational phenomena. Following
[20], we identify several key observables:

4.2.1. Frame-Dragging Effects

The presence of the circular gravitational field modifies the frame-dragging frequency:

ωCGF = ωGR

[
1 + ξ

GM
c2r

(
J

Mr2c

)2
+O

(
GM
c2r

)2
]

(32)

For typical stellar-mass black holes (M = 10M⊙), we predict:

δω/ω = (3.2 ± 0.2)× 10−3ξ at r = 10GM/c2 (33)

δω/ω = (4.1 ± 0.3)× 10−4ξ at r = 20GM/c2 (34)

4.3. Gravitational Wave Signatures

The unification of gravitational and circular fields manifests distinctly in gravitational wave
signals through multiple channels:
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4.3.1. Phase Evolution

The gravitational wave phase includes modifications due to CGF effects:

ΦCGF = ΦGR + β

(
GMω

c3

)5/3
f (q)

(
J1 + J2

GM2

)
+O(ω7/3) (35)

where the mass-ratio function f (q) encodes binary system dynamics:

f (q) =
q2

(1 + q)2

(
1 +

3
4

q +
3

16
q2 +O(q3)

)
(36)

4.3.2. Amplitude and Polarization Modifications

The CGF theory predicts unique modifications to gravitational wave strain:

hCGF = hGR

(
1 + γχ2 + δχ4 +O(χ6)

)
eiΨB (37)

where χ is the effective spin parameter and ΨB represents additional polarization modes arising
from circular field coupling:

χ =
1

M2 |S1 + S2|+O
(

S3

M6

)
(38)

4.3.3. Quasinormal Mode Signatures

CGF predicts distinctive shifts in black hole quasinormal mode frequencies [21]:

∆ωR = (0.37 + 0.15a∗)M−1 (39)

∆ωI = −(0.19 + 0.08a∗)M−1 (40)

5. Observational Tests and Constraints
5.1. Current Observational Bounds

Analysis of LIGO/Virgo O3 data [1] places constraints on CGF parameters:

|ξ| < 0.1 (Frame-dragging, 90% C.L.) (41)

|β| < 0.05 (Phase evolution, 90% C.L.) (42)

|γ| < 0.08 (Amplitude modifications, 90% C.L.) (43)

5.2. Future Observational Prospects

Next-generation detectors [3,13] will significantly enhance sensitivity:

Table 1. Projected Detector Sensitivities to CGF Effects

Detector Phase Resolution Amplitude Sensitivity Timeline
Cosmic Explorer 0.02 rad 0.5% 2035
Einstein Telescope 0.01 rad 0.3% 2035
LISA 0.005 rad 0.1% 2037

These improvements will enable tests of the unified field theory through:

1. Direct measurement of CGF-induced phase shifts
2. Detection of additional polarization modes
3. Precise mapping of frame-dragging modifications
4. Observation of modified quasinormal mode spectra
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6. Discussion
6.1. Theoretical Implications

Our numerical results reveal several fundamental aspects of the CGF framework:

1. Consistency with GR: In weak-field regimes (r ≫ GM/c2), CGF modifications scale as:

∆CGF ∝
(

GM
c2r

)n( J
M2c

)m
(44)

where typically n ≥ 2 and m ≥ 2, ensuring compatibility with classical tests of GR [18].
2. Strong-Field Unification: Near the horizon (r ∼ GM/c2), the circular field strength becomes

comparable to geometric curvature:

∥B∥2

R2
Riemann

= O(1) (45)

suggesting a deep connection between gravitational and electromagnetic-like phenomena in
extreme environments.

3. Energy Conservation: The modified stress-energy tensor satisfies:

∇µTµν
total = 0 +O(B4) (46)

preserving fundamental conservation laws while incorporating field interactions.

6.2. Connection to Quantum Gravity

The CGF framework naturally suggests connections to various quantum gravity approaches
[11,12]:

• The geometric coupling through the Ricci tensor provides a potential bridge between classical
and quantum descriptions of spacetime

• The nonlinear field interactions parallel those found in loop quantum gravity
• The emergence of circular fields from mass-energy currents suggests deep connections to holo-

graphic principles

6.3. Technical Challenges

Several numerical challenges remain in fully exploring the unified theory:

1. Long-term Stability: Constraint damping parameters must be carefully tuned:

λC = α0

√
κ1 + κ2

∆x2 +O(∆x) (47)

2. Resolution Requirements: The minimum resolution needed scales as:

∆xmin ≈ GM
c2

(
J

GM2c

)1/2
(48)

particularly in regions where field-geometry coupling is strong.

7. Conclusions and Future Work
We have presented a comprehensive numerical implementation of the Circular Gravitational

Field framework, demonstrating:

1. A stable evolution scheme for the coupled field-geometry system with fourth-order convergence
2. Specific, quantitative predictions for gravitational wave observations
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3. Natural emergence of electromagnetic-like phenomena from geometric principles
4. Clear observational pathways for testing unification predictions

Future research directions include:

1. Binary black hole simulations incorporating full CGF dynamics
2. Detailed investigation of quantum aspects of the unified theory
3. Development of enhanced numerical methods for strong-field regimes
4. Exploration of connections to other unification approaches

The CGF framework provides a promising avenue for understanding the deep connections
between gravity and electromagnetism, with specific predictions accessible to current and future
gravitational wave detectors [13].

Acknowledgments: The author thanks his family for valuable support, discussions and insights.

Appendix A Detailed Derivation of CGF Field Equations
The CGF field equations emerge from careful variation of the action. Starting with equation (9),

we expand:

δS =
∫ [

δR
16πG

+
c4

32πG
δ(BijBij)

+
c

16πG
ϵijklδ(Ai JjBkl)

+
λc4

32πG
δ(RijBiBj)

]√
−g d4x (A1)

The variation yields three coupled equations:

1. Metric field equations
2. CGF evolution equations
3. Constraint equations

Appendix B Numerical Implementation Details
Appendix B.1 Finite Difference Stencils

For interior points (i > 2, i < N − 2):

∂
(4)
x fi =

1
12∆x

(− fi+2 + 8 fi+1 − 8 fi−1 + fi−2) (A2)

For boundary points (i ≤ 2 or i ≥ N − 2):

∂
(2)
x fi =

1
2∆x

(− fi+2 + 4 fi+1 − 3 fi) (A3)

Appendix B.2 Constraint Damping Parameters

Optimal damping parameters determined through numerical experimentation:

α0 = 0.1 ± 0.02 (A4)

β0 = 0.05 ± 0.01 (A5)

γ0 = 0.02 ± 0.005 (A6)

Appendix C WKB Analysis of Field Modes
Following [22], we analyze the high-frequency behavior of the coupled field system. The WKB

ansatz:
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Ψ(a, T) = eiS(a,T)/h̄ (A7)

leads to the Hamilton-Jacobi equation:(
∂S
∂a

)2
− 24πG

a3

(
∂S
∂T

)2
+ 24πGa3V(T) = 0 (A8)
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