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Abstract: Jacobian theta function identities are related to the Addition formula for the Weierstrass

Sigma function. In this paper, from the Addition formula for Weierstrass Sigma function, new and

simple proofs of four square sums theorem are given. Using the addition formula of the theta

functions, we also give simple proofs of two square sums and eight square sums theorem.

Keywords: theta function; Weierstrass Sigma function; Weierstrass Elliptic function; square sums

theorem

MSC: 11F11; 11E25; 11F27; 33E05

1. Introduction

We suppose throughout this paper that q denotes exp(2πiτ), where τ has positive imaginary part.

We will use the familiar notations

(z; q)0 = 1, (z; q)n =
n−1

∏
k=0

(1 − zqk), n = 0, 1, 2, 3, · · ·

(a; q)∞ = lim
n→∞

(z; q)n =
∞

∏
n=0

(1 − zqn)

and sometimes write

(a, b, · · · , c; q)∞ = (a; q)∞(b; q)∞ · · · (c; q)∞.

Jacobian theta functions θ1(z|τ) are defined as

θ1(z|τ) = −iq1/8
∞

∑
n=−∞

(−1)nqn(n+1)/2e(2n+1)iz

= 2q1/8
∞

∑
n=0

(−1)nqn(n+1)/2 sin(2n + 1)z. (1.1)

θ2(z|τ) = q1/4
∞

∑
n=−∞

qn(n+1)e(2n+1)iz = 2q1/4
∞

∑
n=0

qn(n+1) cos(2n + 1)z, (1.2)

θ3(z|τ) =
∞

∑
n=−∞

qn2
e2niz = 1 + 2

∞

∑
n=0

qn2
cos 2nz, (1.3)

θ4(z|τ) =
∞

∑
n=−∞

(−1)nqn2
e2niz = 1 + 2

∞

∑
n=0

(−1)nqn2
cos 2nz. (1.4)
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From this, we readily find that θ1(z|τ) is an odd function and

θ1(z + π|τ) = −θ1(z|τ), θ1(z + πτ|τ) = −q−1/2e−2izθ1(z|τ). (1.5)

Using the well-known Jacobi triple product identity [1, P.21-22]. We can deduce the infinite

product representation for the theta functions above, namely:

θ1(z|τ) =2q1/4(sin z)(q2, q2e2iz, q2e−2iz; q2)∞, (1.6)

θ2(z|τ) =2q1/4(cos z)(q2,−q2e2iz,−q2e−2iz; q2)∞, (1.7)

θ3(z|τ) =(q2,−qe2iz,−qe−2iz; q2)∞,

θ4(z|τ) =(q2, qe2iz, qe−2iz; q2)∞.

[See for example, [5, P.469]. The trigonometric expansion of the θ1(z|τ) function’s logarithmic

derivative is

θ′1
θ1
(x|τ) = cot x + 4

∞

∑
n=1

q2n

1 − q2n
sin 2nx. (1.8)

From the definitions of theta functions, we easily know that

θ1(x|τ)θ2(x|τ) = (q2; q2)∞

(−q2; q2)∞
θ2(x|2τ) (1.9)

and

θ4(0|τ) =
(q; q)∞

(−q; q)∞
=

∞

∑
n=−∞

(−1)nqn2
= 1 + 2

∞

∑
n=0

(−1)nqn2
. (1.10)

We recall the addition formula for the Weierstrass Sigma function[See for example, [3, P.401]] as

following

℘(x|τ)− ℘(y|τ) = σ(x + y|τ)σ(x − y|τ)
σ2(x|τ)σ2(y|τ) . (1.11)

The Weierstrass ℘-function, σ-function and theta function θ1(x|τ) satisfy the following identities

respectively (See for example, [5, P.460])

σ(x|τ) = exp(ηx2)
θ1(z|τ)
θ′1(0|τ)

, (1.12)

℘(x|τ) = csc2 x − 8
∞

∑
n=1

nqn

1 − qn
cos 2nx − 1

3
E2(τ) = −1

3
E2(τ)−

( θ′1
θ1

)′
(x|τ), (1.13)

in which η = − θ′′′1 (0|τ)
6θ′1(0|τ)

and E2k(τ) are the normalized Eisnstein series defined by

E2k(τ) = 1 − 4k

B2k

∞

∑
n=1

n2k−1qn

1 − qn
, (1.14)
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where Bk are Bernoulli numbers defined as the coefficients in the power series

x

ex − 1
=

∞

∑
k=0

Bk
xk

k!
, |x| < 2π. (1.15)

By (1.6)and (1.7) in above section, the identity (1.5) can be written in term of θ1(x|τ) as following

(see, for example, [2, P.13])

( θ′1
θ1

)′
(x|τ)−

( θ′1
θ1

)′
(y|τ) = θ′21 (0|τ)θ1(x + y|τ)θ1(x − y|τ)

θ2
1(x|τ)θ2

1(y|τ)
. (1.16)

2. The Main Conclusions

Representing natural numbers as sums of squares is an important topic in number theory. Given

a general natural number n, denote rl(n) the number of integer solutions of Diophantine equation

n = x2
1 + x2

2 + x2
3 + · · ·+ x2

l

which counts the number of ways in which n can be written as sums of l squares. In l-dimensional

space, rl(n) gives also the number of points with integer coordinates on the sphere. When l is odd, the

problem is very difficult. However for the even case, the problem may be treated in a fairly reasonable

manner. In this section, we will give simple and shot proofs of it by using theta function identities. At

the same time, we obtain some interesting results of theta functions.

Theorem 1. (Four square theorem)Every nature number can be expressed as sum of four square

numbers. Moreover we have

r4(n) = 8 ∑
d|n

d 6=0(mod4)

d. (2.1)

Proof: In (1.8), setting x = π/2 and y = π/4, we obtain that

( θ′1
θ1

)′
(

π

2
|τ)−

( θ′1
θ1

)′
(

π

4
|τ) = θ′21 (0|τ)θ1(

3π
4 |τ)θ1(

π
4 |τ)

θ2
2(0|τ)θ2

1(
π
4 |τ)

=
θ′21 (0|τ)
θ2

2(0|τ)
= θ2

3(0|τ)θ2
4(0|τ) = θ4

4(0|2τ).

In above identity, let q2 replaced by q, we have

( θ′1
θ1

)′
(

π

2
|τ
2
)−

( θ′1
θ1

)′
(

π

4
|τ
2
) = θ4

4(0|τ).

Combining (1.8) and(1.10) yields

θ4
4(0|τ) = 1 + 8

∞

∑
n=1

(−1)nnqn

1 + qn
.
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Using (1.8) and letting q replaced by −q in above identity give

( ∞

∑
n=−∞

qn2
)4

= θ4
3(0|τ) = 1 + 8

∞

∑
n=1

nqn

1 + (−q)n

= 1 + 8
∞

∑
n=1

(2n − 1)q2n−1

1 − q2n−1
+ 8

∞

∑
n=1

(2n)q2n

1 + q2n

= 1 + 8
∞

∑
n=1

(2n − 1)q2n−1

1 − q2n−1
+ 8

∞

∑
n=1

(2n)q2n

1 + q2n
+ 8

∞

∑
n=1

(2n)q2n

1 − q2n
+ 8

∞

∑
n=1

(2n)q2n

1 − q2n

= 1 − 32
∞

∑
n=1

nq4n

1 − q4n
+ 8

∞

∑
n=1

nqn

1 − qn

= 1 + 8
∞

∑
n=1

qn
(

∑
d|n

d − ∑
d|n

d=0(mod4)

d
)

.

Compare the coefficients of qn on both sides of above equation, we are able to complete the proof.

In [4, P.770], it presents a set of additive formulas of theta function as following

θ1(x|τ)θ1(y|τ) = θ2(x − y|2τ)θ3(x + y|τ)− θ2(x + y|2τ)θ3(x − y|τ), (2.2)

θ2(x|τ)θ2(y|τ) = θ2(x − y|2τ)θ3(x + y|τ) + θ2(x + y|2τ)θ3(x − y|τ). (2.3)

Differentiate both sides of the identity (2.2) with respect to x then set x = 0, we find that

θ′1(0|τ)θ1(y|τ) = [
( θ′3

θ3

)′
(y|2τ) +

( θ′2
θ2

)′
(−y|2τ)]θ2(−y|2τ)θ3(y|2τ)

−[
( θ′3

θ3

)′
(−y|2τ) +

( θ′2
θ2

)′
(y|2τ)]θ2(y|2τ)θ3(−y|2τ).

Using the infinite product representations of theta functions , we easily get

tan y(q2; q2)4
∞(q2e2iy; q2)∞(q2e−2iy; q2)∞

(q4; q4)2
∞(−q2e2iy; q2)∞(−q2e−2iy; q2)∞

= tan y +
∞

∑
n=1

(−1)nq2n

1 + q2n
sin 2ny. (2.4)

Letting y = π
4 in above identity and making use of (1.10) give

θ2
4(0|τ) = 1 + 4

∞

∑
n=1

( q4n−1

1 + q4n−1
− q4n−3

1 + q4n−3

)

. (2.5)

Substituting q by −q in this equation, we arrive at

θ2
3(0|τ) =

(−q; q)2
∞

(q; q)2
∞

= 1 − 4
∞

∑
n=1

( q4n−1

1 + q4n−1
− q4n−3

1 + q4n−3

)

. (2.6)

Theorem 2. (Two square theorem)Every natural number can be expressed as sum of two square

numbers, moreover we have

r2(n) = 4 ∑
d|n

d≡1(mod4)

1 − ∑
d|n

d≡3(mod4)

1. (2.7)
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Proof: From (2.6) and (1.10) we get that

( ∞

∑
n=−∞

qn2
)2

= 1 − 4
∞

∑
n=1

( q4n−1

1 − q4n−1
− q4n−3

1 − q2n

)

= 1 − 4
∞

∑
n=1

∞

∑
k=1

(

qk(4n−1) − qk(4n−3)
)

= 1 + 4
∞

∑
n=1

qn
[

∑
d|n

d≡1(mod4)

1 − ∑
d|n

d≡3(mod4)

1
]

.

Compare the coefficients of qn on both sieds of this equation, we get

r2(n) = 4 ∑
d|n

d≡1(mod4)

1 − ∑
d|n

d≡3(mod4)

1.

We thus complete the proof.

Multiply both sides of the two equations (2.2) and (2.3), then Substitute the equations (1.9) into it

and replace 2τ by τ, We get

(q; q)2
∞

(−q; q)2
∞

θ2(2x|τ)θ2(2y|τ) = θ2
2(x − y|τ)θ2

3(x + y|τ)− θ2
2(x + y|τ)θ2

3(x − y|τ). (2.8)

In above identity place x and y with x + 1
4 πτ and y + 1

4 πτ respectively, we get

− (q; q)2
∞

(−q; q)2
∞

θ4(2x|τ)θ4(2y|τ) = θ2
2(x − y|τ)θ2

2(x + y|τ)− θ2
3(x + y|τ)θ2

3(x − y|τ). (2.9)

In above equation replace x with x + 1
2 π, we have

− (q; q)2
∞

(−q; q)2
∞

θ4(2x|τ)θ4(2y|τ) = θ2
1(x − y|τ)θ2

1(x + y|τ)− θ2
4(x + y|τ)θ2

4(x − y|τ). (2.10)

In above identity, setting y = 0, we get

− (q; q)2
∞

(−q; q)2
∞

θ4(2x|τ)θ4(0|τ) = θ4
4(x|τ)− θ4

1(x|τ). (2.11)

We recall the transformation formulas of modular(See for example, [1, P.339] ) as following

θ4(x/τ| − 1/τ) = (−iτ)
1
2 eiπx2/τθ2(x|τ), (2.12)

θ1(x/τ| − 1/τ) = −i(−iτ)
1
2 eiπx2/τθ2(x|τ). (2.13)

It be called the imaginary transformation formulas. Apply the imaginary transformation to identity

(2.13), we have

θ2(2x|τ)θ3
2(0|τ) = θ4

2(x|τ)− θ4
1(x|τ). (2.14)

Differentiating four times on both sides of this identity with respect to x and setting x = 0, we find

( θ′2
θ2

)′′′
(0|τ) = 2[θ′1(0|τ)]4

θ4
2(0|τ)

. (2.15)
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Combine (1.8) and (1.10), we have

θ8
4(0|τ) = 1 + 16

∞

∑
n=1

n3(−q)n

1 − qn
. (2.16)

Substituting q by −q in this equation, we arrive at

( ∞

∑
n=−∞

qn2
)8

= 1 + 16
∞

∑
n=1

(−1)n n3q2n

1 − q2n
+ 16

∞

∑
n=1

n3qn

1 − q2n
. (2.17)

Theorem 3.(Eight square theorem) Every nature number can be expressed as sum of eight square

numbers, moreover we have

r8(n) = 16 ∑
d|n

(−1)n+dd3. (2.18)

Proof: From (2.16), we have

θ8
4(0|τ) = 1 + 16

∞

∑
n=1

n3(−q)n

1 − qn

= 1 + 16
∞

∑
n=1

(2n − 1)3q2n−1

1 + q2n−1
+ 16

∞

∑
n=1

(2n)3q2n

1 − q2n

= 1 + 16
∞

∑
n=1

(2n − 1)3q2n−1

1 + q2n−1
+ 16

∞

∑
n=1

(2n)3q2n

1 − q2n

+16
∞

∑
n=1

(2n − 1)3q2n−1

1 − q2n−1
− 16

∞

∑
n=1

(2n − 1)3q2n−1

1 − q2n−1

= 1 + 16
∞

∑
n=1

n3qn

1 − qn
− 32

∞

∑
n=1

(2n − 1)3q4n−2

1 − q4n−2

= 1 + 16
∞

∑
n=1

qn ∑
d|n

d3 − 32
∞

∑
n=1

qn ∑
2d|n

d(odd)

d3

= 1 + 16
∞

∑
n=1

qn
(

∑
d|n

d3 − 2 ∑
2d|n

d(odd)

d3
)

.

If n is even, setting n = 2k yields

∑
d|n

d3 − 2 ∑
d|k

d(odd)

d3 = ∑
d|k

d(even)

d3 + ∑
d|k

d(odd)

d3 − 2 ∑
d|k

d(odd)

d3

= (−1)d ∑
d|n

d3.

If n is odd, we are able to know that

∑
d|2k

d3 − 2 ∑
2d|n

d(odd)

d3 = ∑
d|n

d3.
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In summary, we have

∑
d|n

d3 − 2 ∑
2d|n

d(odd)

d3 = ∑
d|n

(−1)n+dd3.

Compare the coefficient of qn on both sieds of above equation, we have

r8(n) = 16 ∑
d|n

(−1)n+dd3.

3. A Special Cases

We recall the Lambert series as following

φ(q) =
∞

∑
n=−∞

qn2
,

from which the generating function of rk(n) can be deduced as

φk(q) =
∞

∑
n=−∞

rk(n)q
n.

Combine the definitions of theta functions, we easily know that

φ(q) =
∞

∑
n=−∞

qn2
= θ3(0|τ) = (q2; q2)∞(−q; q2)2

∞.

φ(−q) = θ4(0|τ) =
(q; q)∞

(−q; q)∞
.

Then we have

Corollary 1. Let φ(q) be as the above, we have

φ(−q3)φ(−q) = 1 + 2
∞

∑
n=1

(n

3

) (−1)nqn

1 + qn
, (3.1)

φ(q3)φ(q) = 1 + 2
∞

∑
n=1

(n

3

) qn

1 + (−q)n
, (3.2)

where
(

n
3

)

denotes the Legendre symbol.

Proof: In equation (2.4), set y = π
3 and then replace q2 by q, we are able to obtain

√
3(q3; q3)∞(q; q)∞

(−q3; q3)∞(−q; q)∞
= tan

π

3
+ 4

∞

∑
n=1

(−1)nqn

1 + qn
sin

2nπ

3
,

which implies

(q3; q3)∞(q; q)∞

(−q3; q3)∞(−q; q)∞
= 1 + 2

∞

∑
n=1

(n

3

) (−1)nqn

1 + qn
.
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Then we get

φ(−q3)φ(−q) = 1 + 2
∞

∑
n=1

(n

3

) (−1)nqn

1 + qn
.

Replacing q by −q in above equation, we get immediately

φ(q3)φ(q) = 1 + 2
∞

∑
n=1

(n

3

) qn

1 + (−q)n
.

Thus we complete this corollary.
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