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Abstract: Parametric decay instabilities frequently occur in wave interactions. These instabilities typically have

thresholds for wave amplitudes. They arise when nonlinearity, such as a spatial pressure inhomogenety, couples

different waves. For these instabilities to arise, the waves must satisfy frequency and wavenumber matching

conditions, which follow from the laws of energy and momentum conservation. However, parametric instabilities

are not limited to wave interactions; the simples form of parametric instability is parametrically coupled oscillators.

Magnetized plasma represents a unique wave medium in which numerous waves of various polarizations and

spatial-temporal scales are easily excited and weakly damped. The greater the number of wave types, the

easier it is to satisfy resonance conditions like the frequency and wavenumber matching conditions, and thus

parametrically excite, or "drive" new waves from the initial wave. Therefore, in magnetized plasma, all known

types of parametric instabilities can arise.
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1. Wave Equation

It is natural to start the discussion of the theory of parametric decay instabilities by considering
parametric resonance (PR) [1–6]. In this case, it is convenient to choose a model that is close to reality
and has sufficient simplicity to trace on this model the main qualitative patterns that govern decay
parametric instabilities. It is not difficult to choose such a model. In oscillatory systems the discussion
of parametric instabilities begins with the analysis of solutions of the Mathieu equation [7–11]. In our
case for a wave medium, such as plasma, it is convenient to refer to the following equation:

∂2u/∂t2 − υ2[1 + ε cos(ω0t − k0x)]∂2u/∂x2 = 0, (1)

where we assume the linear dispersion relation ω = kυ.
Obviously, Eq.1 can be considered as one of the simplest generalizations of the Mathieu equation

to wave media. In the absence of a term proportional to ε, such equations in linear approximation
describe many well-known waves: acoustic, magnetosonic, Alfvénic, etc. Thus, for linear acoustic
waves in a homogeneous plasma from the equations:

∂ρ/∂t + ρ0∂u/∂x = 0;
ρ0∂u/∂t = −∂p/∂x; p/ργ = const ,

}
(2)

where ρ, u, p are respectively density, mass velocity and pressure; γ is the adiabatic exponent; the
index zero denotes unperturbed quantities, follows the equation

∂2u/∂t2 − υ2∂2u/∂x2 = 0,

where υ2 ≡ γp0/ρ0 (sound speed).
Suppose we are interested in low-amplitude Alfvén waves.
The propagation of Alfvén waves can be described by a wave equation:

∂2u
∂t2 = v2

A
∂2u
∂x2 (3)
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where vA = B0√
µ0ρ0

is the Alfvén speed.
Here the x-axis is directed along B, and (u denotes any of the components of the mass velocity

perpendicular to B0.
Let the density ρ be modulated by a sinusoidal pump wave of small amplitude, then

v2
A = v2

A0
[1 + ε cos(ω0t − k0x)]. (4)

Formal substitution of these values into (2) and (3) leads to equations of type (1). A rigorous
derivation of the equations describing the propagation of sound or Alfvén waves in a medium with
wave density modulation will give rise to additional harmonic terms associated with other nonlinear
terms (such as, for example, the convective term). This circumstance significantly complicates the
equations, but does not change the nature of the parametric relationship, so for a qualitative analysis it
is sufficient to limit ourselves to the choice of the model equation (1). We can say that Eq.(1) describes
a wave medium in which the influence of the pump wave is reduced to the modulation of the wave
phase velocities.

2. Parametric Decay Instability (PDI). Regions of Instability

Let’s consider how the parametric coupling arises for a pair of waves

ω1, k1; ω2, k2

described by Eq.(1). It is easy to see that in the absence of a pump wave (ε = 0) Eq.(1) describes
independent spatiotemporal harmonics with the linear dispersion relation ω(k) = kvA.

To investigate the coupling of waves, it is convenient to switch to Fourier components in (1)
for the spatial variables Vk(t) =

∫ ∞
−∞ u(x, t)e−ikx dx and transfer the term that takes into account the

influence of the pump waves to the right-hand side of the equation.
So, we will use the wavenumber representation of u(x, t) , which is Vk(t) =

∫ ∞
−∞ u(x, t)e−ikx dx.

Given the equation:

∂2u
∂t2 = v2

A[1 + ε · cos(ω0t − k0x)]
∂2u
∂x2

First, we take the Fourier transform of both sides of the equation with respect to x.
The Fourier transform of ∂2u

∂t2 is:

F
{

∂2u
∂t2

}
=

∂2Vk(t)
∂t2

The Fourier transform of ∂2u
∂x2 is:

F
{

∂2u
∂x2

}
= −k2Vk(t)

Now, consider the term with the cosine function:

F
{

v2
A[1 + ε cos(ω0t − k0x)]

∂2u
∂x2

}
The cosine term can be written using Euler’s formula:

cos(ω0t − k0x) =
1
2

(
ei(ω0t−k0x) + e−i(ω0t−k0x)

)
The Fourier transform of cos(ω0t− k0x) will result in two delta functions in the frequency domain:

F{cos(ω0t − k0x)} =
1
2

(
eiω0tδ(k + k0) + e−iω0tδ(k − k0)

)
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Combining these results, the Fourier transform of the product

[
v2

Aε cos(ω0t − k0x)
]∂2u

∂x2

involves the convolution of the individual transforms. Let:

f (x) = cos(ω0t − k0x) and g(x) =
∂2u
∂x2

The convolution in the Fourier domain is:

F{ f (x)g(x)} =
1
2

v2
Aε

[
eiω0tδ(k + k0) + e−iω0tδ(k − k0)

]
∗ (−k2Vk(t))

The convolution of a delta function with another function shifts the argument of the function:

−1
2

v2
Aε

[
(k + k0)

2Vk+k0(t)e
iω0t + (k − k0)

2Vk−k0(t)e
−iω0t

]
Simplifying, we get:

F
{[

v2
Aε cos(ω0t − k0x)

]∂2u
∂x2

}
= −1

2
v2

Aε
[
(k0 + k)2Vk0+k(t)eiω0t + (k0 − k)2V∗

k0−k(t)e
−iω0t

]
Combining everything, the equation in wavenumber space is:

∂2Vk(t)
∂t2 + v2

Ak2Vk(t) +
1
2

v2
Aε

[
(k0 + k)2eiω0tVk0+k(t) + (k0 − k)2e−iω0tV∗

k0−k(t)
]
= 0

or, taking into account that ω(k) = v2
Ak2, we have:

∂2Vk(t)
∂t2 + ω(k)Vk(t) = −1

2
εv2

A

[
(k0 + k)2eiω0tVk0+k(t) + (k0 − k)2e−iω0tV∗

k0−k(t)
]

(5)

The equation we obtained is actually not a single equation. Considering the continuous spectrum
of waves, any waves, it can be said that this is a system of two equations for coupled waves with
wave numbers k and k0 ± k. Note that ε is a small quantity.

First of all, we note that in the zeroth approximation in ε, all Vk oscillate with their own
frequencies ωk. The weak coupling does not significantly change the frequency of the oscillator.
However, in the case when the forcing force in the right-hand side of Eq.(5) falls into resonance
with the natural frequency, the oscillator can be excited.

The resonance condition for the second term in the right-hand side of Eq.(5) has the form:
ω0 − ω(k0 − k) = ω(k), for the first: ω0 + ω(k0 + k) = ω(k).

Let the first condition be fulfilled, then the another term is non-resonant and can be ignored.
In turn, the Fourier component Vk0−k of the resonance part of the equation Eq.(5) is described by

the equation

d2V∗
k0−k/dt2 + ω2(k0 − k)V∗

k0−k = −(ε/2)(2k0 − k)2v2
A exp(iω0t)V2k0−k−

−(ε/2)k2v2
A exp(−iω0t)Vk

(6)

In this equation also the second term is resonant. Therefore, considering only the resonant
interaction of two coupled oscillators (designated as oscillator 1 and oscillator 2), we obtain the
following shortened system:
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∂2Vk1(t)
∂t2 + ω2(k1)Vk1 = −1

2
v2

Aε · (k2)
2e−iω0tV∗

k2
(t)

∂2Vk2(t)
∂t2 + ω2(k2)Vk2 = −1

2
v2

Aε · (k1)
2eiω0tVk1(t)

(7)

where the notation k2 = k0 − k1 is introduced.
Taking into account the resonance conditions for frequencies, it can be said that parametrically

related waves are those whose frequencies and wave vectors satisfy the conditions

ω0 = ω1(k1) + ω2(k2)

k0 = k1 + k2
(8)

i.e., the conditions of spatiotemporal synchronization. These conditions look like the energy and
momentum conservation conditions in quantum mechanics. Thus, they remind us of the deep
connection between the quantum mechanical and wave descriptions of wave processes.

In accordance with the above, we will seek the solution (7) in the form Vk = a(t) exp[−iω(k)t],
where a(t)-slowly changing amplitudes of the coupled waves. Then

−2iω1
∂a1

∂t
= −

( ε

2

)
k2

2v2
Aa∗2 exp(−i∆ωt)

−2iω2
∂a∗2
∂t

= −
( ε

2

)
k2

1v2
Aa1 exp(i∆ωt)

(9)

where
∆ω = ω0 − ω1 − ω2.

It is easy to see that the solution to (9) is:

a1 ∼ exp
(
−i

∆ω

2
t + νt

)
;

a∗2 ∼ exp
(

i
∆ω

2
t + νt

)
,

(10)

where

ν =
√

γ2
D − (∆ω)2/4; γ2

D ≡
ε2k2

1k2
2v4

A
16ω1ω2

(11)

This solution describes a first-order parametric decay instability. It follows from (11) that at zero
frequency detuning, i.e., at ∆ω = 0 [this means strict fulfillment of the resonance conditions (8)],
the amplitudes of the waves a1 and a2 grow exponentially with an increment γ = γD. In this case,
the relationship ω1ω2 > 0 must be fulfilled, which, together with the resonance conditions, gives
ω0 > ω1, ω2.

In other words, in the case of parametric resonance instability, waves with frequencies less than the
pump wave frequency are excited (red satellites). It should be noted that in the absence of dissipation
the increment of the decay instability is proportional to the first power of the pump wave amplitude:

γD ∼ ε

Equation (11) determines the width of the first-order instability zone n = 1. For detuning
|∆ω/2| > γD, the instability disappears. This means that the width of the first PI zone is proportional
to the first power of the pump wave amplitude.
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Knowing the theory of parametric resonance in oscillatory systems, this conclusion could have
been made immediately after reducing the problem to solving the shortened equations (7), which
describe a system of two parametrically coupled oscillators.

It should be emphasized that the system of shortened equations is obtained using the condi-
tions of not only temporal (!0 = !1 + !2), but also spatial k0 = k1 + k2 resonance. The similarity of
(1) with Mathieu’s equation, as well as the method of obtaining systems of shortened equations (based
on spatiotemporal resonance of modes), allow qualitative conclusions to be drawn about higher-order
parametric resonance and the corresponding instability zones.

Obviously, for waves of relatively small amplitude (in our example, ρ̃ ≪ ρ0), the increment of the
n-th order PI γn ≈ εn.

Accordingly, the instability zone narrows with increasing n, since |∆ωn|/2 = γn, where ∆ωn =

nω0 − ω1 − ω2.
Figure 1 shows the zones of PI of the n-th order.

00

0

0

2

3

1 2

Figure 1. Stability - instability chart of the parametric interaction. (Mathieu equation stability chart).

Instabilities of the first and second orders are of mos practical importance due to decrease in
increments and the narrowing of instability zones with increasing n.

PI of the second order manifest themselves in those cases when PI of the first order do not arise
due to the impossibility of fulfilling conditions (8).

In systems where PI of the first order are absent, the conditions for the occurrence of PI of the
second order are usually met.
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3. Thresholds of PDI

Parametric decay instabilities arise when the amplitudes exceed certain values. In the approxi-
mation of a homogeneous plasma, these thresholds are determined by the decrements of the excited
wave doublet, which can be shown by introducing dissipation terms into equation (7). This is not
difficult to do if small imaginary additions to the natural frequencies ωi are introduced according to the
scheme ωi → ωi + iγi, where γi are the decrements of the corresponding waves. Assuming ∆ω = 0
and performing simple calculations and taking dissipation into account, we obtain the following
expression for the growth rate of the parametrically excited wave νD :

νD = −γ1 + γ2

2
+

√
γ2

D +
(γ1 − γ2)2

4
, (12)

The requirement νD > 0 gives the expression for the instability threshold in general form:

γ̂2
D > γ1γ2 (13)

or for the model problem (7):

εthr =
16ω1ω2γ1γ2

k2
1k2

2v4
A

(14)

From (13), it follows that the threshold disappears when at least one of the decrements of the
excited wave pair tends to zero.

4. Conclusions

In this work, we have explored the fundamental dynamics of Parametric Decay Instability (PDI)
within a magnetized plasma environment. By analyzing the mathematical frameworks, such as the
modified Mathieu equation, and applying it to wave media, we demonstrated how PDI is driven
by resonance conditions between waves of different frequencies and wavenumbers. Specifically, we
showed that parametric instabilities can arise under the influence of a pump wave, and their occurrence
is governed by energy and momentum conservation, similar to quantum mechanical systems.

One of the key findings is that the instability threshold is highly dependent on the amplitudes of
the interacting waves, where exceeding a certain amplitude initiates the instability. Furthermore, the
resonant conditions dictate the regions of instability, with the first-order instabilities being the most
prevalent due to their larger growth rates and broader regions of resonance.

The study also highlights the practical significance of first and second-order parametric instabili-
ties, particularly in scenarios where the conditions for first-order instability are not met. These insights
are crucial for understanding wave dynamics in plasma and could have applications in controlled
fusion, space physics, and plasma-based devices.
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