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Abstract: Molecular dynamics Molecular dynamics (MD) simulations have proven useful in studying 

the dynamics of Biomolecules, for instance proteins. However, the computational cost for conducting 

such simulations is high as reflected in the number of core-hours consumed in high performance 

computing (HPC) clusters. Although some techniques are available for enhancing the sampling of 

the conformational space, they usually make assumptions about the system by introducing empirical 

parameters. Machine learning (ML) models can overcome this issue because here, important features 

of the landscape can be inferred from the data themselves. In this work, we use an autoencoder ML 

model with three different flavors: Variational, Wasserstein, and Denoising to generate new protein 

conformations using MD trajectories as the training data. These generated structures can potentially 

enhance the ensemble of the original MD data. 
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1. Introduction 

Molecular dynamics (MD) simulations have proven useful to study the dynamics of 

Biomolecules, for instance proteins. However, these simulations are computationally expensive and 

consume many core-hours of high performance computing (HPC) clusters to achieve enough 

sampling of the energy landscape. To enhance the sampled configurational space, several techniques 

have been used in the past but some of them make assumptions on the system for instance using 

predefined collective variables [1–3] or by modifications of the energy landscape [4] where empirical 

parameters are introduced. 

More recently, machine learning (ML) models are being used to extract relevant features from 

the energy landscape which are then used to infer/interpolate new data. In particular, in the 

autoencoder (AE) machine learning model, one performs the training by first reducing the 

dimensionality of the data gradually to build a latent space and then use the compressed latent space 

to reconstruct the initial data through some metrics and regularization terms [5,6]. One advantage of 

the AE models is the reduced number of training parameters that are involved w.r.t. the fully 

connected neural networks. Once trained, these models can be used to generate new data. In the 

context of proteins, one can use existing data sets of protein structures collected through 

computational methods, classical (MD) or quantum mechanical (DFT, HF, among others) as the 

training data sets. These trained models can be used to extend the sampled ensemble of protein 

conformations using cheaper computational resources. In addition to the computational data sets, 

ML models open the window to include data from experiments, such as NMR, Cryo-EM, and X-ray 

crystallography. 

In the present work, we used three different flavors of AE models to generate new protein 

conformations using MD trajectories of the Shikimate Kinase enzyme for the training data set. A key 

difference between these three models is the way in which the latent space is created. For the first AE 

model, we used the variational autoencoder (VAE) model of Zhu et al. [7] which was originally used 

to extend the sampled space of intrinsic disordered proteins (IDPs). In the second and third models, 
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we studied the Wasserstein autoencoder (WAE) [8,9], and the Denoising autoencoder (DAE) [10] 

models, respectively. Details about the three models can be found in the Materials and Methods 

section. Because AE models are used as components of more complex workflows, understanding 

their performance can be beneficial when they are employed in standalone or as part of a larger 

workflow. The results of the three models are compared using standard analysis tools for MD. 

2. Materials and Methods 

2.1. Data Collection 

The MD trajectory used in the present study was taken initially from [11], where the Shikimate 

Kinase (SK) enzyme was simulated in the absence of substrates, and further extended to achieve 5 s. 

SK has three main domains called SB, , and LID domains which are highly flexible and allow this 

enzyme to harbor substrates for catalysis. Details for the MD simulations can be found in this 

reference paper. Frames for data collection were saved every 0.05 ns resulting in 1× 105 frames. 

2.2. Methods 

A schematic view of the three AE models is presented in Figure 1 (a)-(c), VAE, WAE, and DAE, 

respectively. 

 

Figure 1. Schematic view of how the three models VAE, WAE, and DAE map/build the input () and latent 

spaces (Ƶ). (a) In VAE, the encoder network 𝑄𝑉𝐴𝐸(Ƶ,) is forced to match individual data samples to the prior 

distribution.; (b) WAE uses the marginal of 𝑄𝑊𝐴𝐸(Ƶ,) over input samples to match a collective prior. 𝑃𝐺(, Ƶ) 

is the latent variable generative model. (c) In DAE, the initial data samples are corrupted with noise, and these 

data are used to build the latent space. 

2.2.1. Variational Autoencoder (VAE) Model 

In the VAE model, the encoder network is modeled through the 𝑄𝑉𝐴𝐸(Ƶ,) distribution that 

maps the input space () to the latent space (Ƶ). The decoder or generative model is given by the 

𝑃𝐺(, Ƶ) distribution. The loss function is computed as in Ref. [7]: 

𝐿𝑉𝐴𝐸 = 𝐿𝑅 + 𝐿𝐾𝐿 , (1) 

𝐿𝑅 is the reconstruction loss computed as the logarithmic mean squared error between the input 

data and the reconstructed data. 𝐿𝐾𝐿  is the Kullback-Leibler (KL) [12] divergence regularization 

term. 

2.2.2. Wasserstein Autoencoder (WAE) Model 

The WAE model uses a marginal distribution 𝑄(Ƶ) of the encoder distribution 𝑄𝑊𝐴𝐸(Ƶ,). In 

this model the loss is given by, 

𝐿𝑊𝐴𝐸 = 𝐿𝑅 + 𝜆𝐿𝑀𝑀𝐷2 . (2) 

Here, the reconstruction error 𝐿𝑅 was computed as the mean squared error between the input 

and reconstructed data. The maximum mean discrepancy (MMD) [13,14] loss between two 
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probability distributions 𝜋 and 𝜋′ , in the present case the Gaussian prior 𝑃(Ƶ) and latent space 

marginal (𝑄(Ƶ)) distributions, was computed as follows: 

𝐿𝑀𝑀𝐷2 = 𝔼𝑥,𝑥′∼𝜋[𝑘(𝑥, 𝑥
′)] + 𝔼𝑦,𝑦′∼𝜋′[𝑘(𝑦, 𝑦

′)] − 2𝔼𝑥∼𝜋,𝑦∼𝜋′[𝑘(𝑥, 𝑦)], (3) 

where the kernel function is the radial basis function (RBF) defined by, 

𝑘(𝑥, 𝑦) = exp (−
‖𝑥−𝑦‖2

2𝜎2
) (4) 

with a standard deviation 𝜎. The parameter 𝜆 is a weighting factor for the MMD term which has a 

value of 10 in the present simulations. 

2.2.3. Denoising Autoencoder (DAE) Model 

In this model, the initial data are corrupted with Gaussian noise. The idea of adding/subtracting 

noise from input data has been used in other ML models [15,16]. The loss function is computed in 

DAE by considering only the reconstruction error: 

𝐿𝐷𝐴𝐸 = 𝐿𝑅 (5) 

This error is calculated as the mean squared error between the input and reconstructed data. 

2.3. Postprocessing and Analysis of Data 

The MD trajectories were postprocessed with the Visual Molecular Dynamics (VMD) [17] (v. 

1.9.4) software by extracting all atoms in the protein structure except for the hydrogen atoms. The 

data set for the autoencoder models was partitioned in 80% for the training set (TrS) and 20% for the 

testing set (TsS) using the preprocessing script given in Ref. [7]. Models’ training was done with Keras 

(v. 2.11) and Tensorflow (v. 2.11) libraries. To collect the performance metrics for the models (Table 

1) we used 5 epochs as simulations displayed convergence already for this value. 

Table 1. SpCC and MSE values for the VAE, WAE, and DAE models using the TrS and TsS. 

Model SpCC TrS SpCC TsS MSE TrS (Å2) MSE TsS (Å2) 

VAE 0.997 0.992 0.64 1.60 

WAE 0.996 0.992 0.69 1.59 

DAE 0.996 0.993 0.66 1.49 

The integrity of reconstructed structures from the three AE methods was analyzed through the 

Spearman correlation coefficient (SpCC) which measures the correlation in the monotonic growing 

between the ranked distributions for the original and reconstructed data. For instance, a SpCC value 

close to +1 indicates that both distributions grow in the same direction for each data sample. In 

addition to this, we also used the mean square error (MSE) between these two distributions. 

The conformations generated (a total of 1× 105) were inspected with standard analysis tools for 

MD trajectories including the root mean square deviation (RMSD), root mean square fluctuation 

(RMSF), and principal component analysis (PCA). For the RMSD calculations, the reference structure 

was the first frame of the MD trajectory in all cases and the backbone atoms were selected for the 

computation. In the case of the RMSF results, only the C atoms were selected. The RMSF curves for 

the AE models were translated to match the value of the MD RMSF at 5 Å. Regarding PCA, all protein 

atoms except for hydrogen atoms were considered for the computation. 

2.4. Code Availability 

The codes for the three autoencoder models can be found here https://github.com/pojeda/AE-

variants. 

3. Results and Discussion 
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The SpCC for the SK protein showed values for both the training and testing sets larger than 

those reported in Ref. [7]. This can be due to the fact that SK has a more ordered structure in 

comparison to the IDPs discussed in that reference. The values for SpCC were close for the three 

different methods for this SK protein ~0.99. Regarding, the MSE values were similar for all methods 

in the training set, but we noticed that DAE had a lower value for the testing set w.r.t. to the other 

two methods. Notice that we have not conducted an extensive exploration of the hyperparameters 

involved in the model and we used values similar to those of Zhu et al. [7]. Results for SpCC and 

MSE can be seen in Table 1. 

We noticed that even though the SpCC and MSE values showed that the reconstructed data was 

close to the original data, the generated protein structures presented distortions in the bond lengths 

especially in the flexible LID region. This issue has been previously faced by postprocessing the 

structures [7,18]. Other approaches can be used, for instance graph neural networks [19] and rigid 

body transformations [20]. 

By using the trained models, new conformations were generated. We investigated the capability 

of the models to generate an ensemble of conformations similar to the original MD ensemble. Thus, 

as a first approach we took the initial structure from the MD simulations and computed the RMSD 

values for the models. This can give us an idea of how the conformational space was explored. Using 

the RMSD values we constructed histograms of counts as it can be seen in Figure 2. The distribution 

for the MD case showed a peak ~2.4 Å while the AE models had a peak ~2.25 Å. The exploration 

range for the AE models was limited, especially for the DAE model where generated structures were 

close to the peak value. In all models, structures with RMSD values lower than 1.4 Å and close the 

initial one were not generated. 

 

Figure 2. Histograms of counts for the RMSD values computed for the MD data (a), and the VAE (b), WAE (c), 

and DAE (d) models. 

The variations in the displacement of the protein residues can be monitored through the RMSF 

values which are presented in Figure 3. Because the RMSF values can be correlated to the temperature 

of the environment, especially for the highly flexible regions, we argue that the three different AE 
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models display a lower temperature than the MD data. However, the trend of the fluctuations follows 

a similar pattern as in the MD case for the flexible SB, , and LID domains. Fluctuations are 

considerably reduced in the DAE model. 

 

Figure 3. RMSFs computed for the MD, and the three AE models. Overall, the fluctuations were reduced in the 

flexible parts of the protein structure especially in the DAE model. 

We also monitored the sampling of the conformational space for the generated structures in a 

reduced dimensional space through principal component analysis (PCA), see Figure 4. Here, we can 

see that the VAE model learns some structure from dynamical data which is reflected in the pattern 

displayed by the corresponding plot. 
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Figure 4. (a) Projected MD trajectory of SK protein onto the first two eigenvectors. (b)-(d) Projected protein 

structures generated with the three AE models: VAE, WAE, and DAE, respectively, onto the first two 

eigenvectors from the MD trajectory. . 

The PCA plots show that the different AE models can help to sample the conformational space 

in different ways. In the case of WAE the points corresponding to the generated structures are spread 

in the projected space while in DAE model the data points are more localized. 

4. Conclusions 

We have compared three different flavors of AE models, i.e. Variational, Wasserstein, and 

Denoising to generate protein structures not included in the original data from MD simulations. 

According to the RMSD and PCA analysis, the three models explore the conformational space in a 

different way, for instance the WAE model showed spread distribution of structures while the DAE 

displayed a more restricted distribution. 

The RMSF analysis suggests that the generated conformations, considered as an ensemble, are 

not at the same temperature as the original MD ensemble. In particular, the flexible regions displayed 

attenuated fluctuations w.r.t. to the original MD data. 

One shortcoming of the present simulations is that the bond lengths and angles of the generated 

structures are distorted, which opens the possibility for further improvement of the models. 

Acknowledgments: This research was conducted using the resources of High Performance Computing Center 

North (HPC2N). 
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