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Abstract. In the paper, the author

(1) presents an explicit formula and its inversion formula for higher order
derivatives of generating functions of the Bell polynomials, with the help

of the Faà di Bruno formula, properties of the Bell polynomials of the

second kind, and the inversion theorem for the Stirling numbers of the
first and second kinds;

(2) recovers an explicit formula and its inversion formula for the Bell poly-
nomials in terms of the Stirling numbers of the first and second kinds, with 
the aid of the above explicit formula and its inversion formula for higher 
order derivatives of generating functions of the Bell polynomials;

(3) constructs some determinantal and product inequalities and deduces the

logarithmic convexity of the Bell polynomials, with the assistance of the

complete monotonicity of generating functions of the Bell polynomials.
These inequalities are main results of the paper.
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1. Introduction

In combinatorics, the Bell numbers, usually denoted by Bk for k ∈ {0}∪N, where
N denotes the set of all positive integers, count the number of ways a set with k
elements can be partitioned into disjoint and nonempty subsets. These numbers
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2 F. QI

have been studied by mathematicians since the 19th century, and their roots go
back to medieval Japan, but they are named after Eric Temple Bell, who wrote
about them in the 1930s. The Bell numbers Bk for k ≥ 0 can be generated by

ee
t−1 =

∞∑
k=0

Bk
tk

k!
= 1 + t+ t2 +

5

6
t3 +

5

8
t4 +

13

30
t5 +

203

720
t6 +

877

5040
t7 + · · ·

and the first ten Bell numbers Bk for 0 ≤ k ≤ 9 are

B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15,

B5 = 52, B6 = 203, B7 = 877, B8 = 4140, B9 = 21147.

In [1, Section 3], Asai, Kubo, and Kuo mentioned applications of the Bell numbers
Bn and its generalizations to white noise distribution theory. For more information
on the Bell numbers Bk, please refer to [1, 2, 3, 4, 5, 15, 16, 20] and plenty of
references therein.

As well-known generalizations of the Bell numbers Bk for k ≥ 0, the Bell poly-
nomials Bk(x) for k ≥ 0 can be generated by

ex(e
t−1) =

∞∑
k=0

Bk(x)
tk

k!
= 1 + xt+

1

2
x(x+ 1)t2 +

1

6
x
(
x2 + 3x+ 1

)
t3

+
1

24
x
(
x3 + 6x2 + 7x+ 1

)
t4 +

1

120
x
(
x4 + 10x3 + 25x2 + 15x+ 1

)
t5 + · · ·

and the first seven Bell polynomials Bk(x) for 0 ≤ k ≤ 6 are

1, x, x(x+ 1), x
(
x2 + 3x+ 1

)
, x

(
x3 + 6x2 + 7x+ 1

)
,

x
(
x4 + 10x3 + 25x2 + 15x+ 1

)
, x

(
x5 + 15x4 + 65x3 + 90x2 + 31x+ 1

)
.

In [18] it was pointed out that there have been studies on interesting applications
of the Bell polynomials Bk(x) in soliton theory, including links with bilinear and
trilinear forms of nonlinear differential equations which possess soliton solutions.
See, for example, [8, 9, 10]. Therefore, applications of the Bell polynomials Bk(x) to
integrable nonlinear equations are greatly expected and any amendment on multi-
linear forms of soliton equations, even on exact solutions, would be beneficial to
interested audiences in the research community. For more information about the
Bell polynomials Bk(x), please refer to [6, 7, 18, 19] and closely related references
therein.

In this paper, continuing the article [16], we present an explicit formula and its
inversion formula for higher order derivatives with respect to t of generating func-

tions exe
±t

for the Bell polynomials Bk(x) with the help of the Faà di Bruno formula,
properties of the Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1), and
the inversion theorem for the Stirling numbers s(n, k) and S(n, k), recover an ex-
plicit formula and its inversion formula for the Bell polynomials Bk(x) in terms of
the Stirling numbers s(n, k) and S(n, k), construct some determinantal and product
inequalities for the Bell polynomials Bk(x), and deduce the logarithmic convexity
of the Bell polynomials Bk(x).

2. Higher order derivatives for generating functions

In this section, by the Faà di Bruno formula, properties of the Bell polynomials
of the second kind Bn,k, and the inversion theorem for the Stirling numbers s(n, k)
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SOME INEQUALITIES OF THE BELL POLYNOMIALS 3

and S(n, k), we present an explicit formula and its inversion formula for higher

order derivatives with respect to t of the generating function exe
±t

.

Theorem 2.1. For n ≥ 0, the nth derivative of the generating function exe
±t

with
respect to t can be computed by

∂nexe
±t

∂tn
= (±1)nexe

±t
n∑
k=0

S(n, k)
(
xe±t

)k
(2.1)

and the generating function exe
±t

satisfies a family of nonlinear ordinary differential
equations

n∑
k=0

(±1)ks(n, k)f (k)(t) = f(t)[ln f(t)]n, (2.2)

where x ∈ C, S(n, k) for n ≥ k ≥ 0, which can be generated by

(ex − 1)k

k!
=

∞∑
n=k

S(n, k)
xn

n!
,

represent the Stirling numbers of the second kind, and s(n, k) for n ≥ k ≥ 0, which
can be generated by

[ln(1 + x)]k

k!
=

∞∑
n=k

s(n, k)
xn

n!
, |x| < 1,

stand for the Stirling numbers of the first kind.

Proof. In combinatorics, the Bell polynomials of the second kind Bn,k are defined
by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

`1,...,`n∈{0}∪N∑n
i=1 i`i=n∑n
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i

for n ≥ k ≥ 0, see [3, p. 134, Theorem A], and satisfy identities

Bn,k
(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbnBn,k(x1, x2, . . . , xn−k+1) (2.3)

and
Bn,k(1, 1, . . . , 1) = S(n, k), (2.4)

see [3, p. 135], where a and b are any complex numbers. The Faà di Bruno formula
for computing higher order derivatives of composite functions can be described in
terms of the Bell polynomials of the second kind Bn,k by

dn

d tn
f ◦ g(x) =

n∑
k=0

f (k)(g(x))Bn,k
(
g′(x), g′′(x), . . . , g(n−k+1)(x)

)
, (2.5)

see [3, p. 139, Theorem C]. Applying f(u) = exu and u = g(t) = et to (2.5) and
making use of identities (2.3) and (2.4) yield

∂nexe
t

∂tn
=

n∑
k=0

∂kexu

∂uk
Bn,k

(
et, et, . . . , et

)
=

n∑
k=0

xkexuektBn,k(1, 1, . . . , 1) = exe
t
n∑
k=0

xkektS(n, k).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 August 2017                   doi:10.20944/preprints201708.0079.v2

Peer-reviewed version available at Mathematical Inequalities & Applications 2020, 23, 123-135; doi:10.7153/mia-2020-23-10

http://dx.doi.org/10.20944/preprints201708.0079.v2
https://doi.org/10.7153/mia-2020-23-10


4 F. QI

The explicit formula (2.1) for the plus sign case is thus proved.
In [21, p. 171, Theorem 12.1], it is stated that, if bα and ak are a collection of

constants independent of n, then

an =

n∑
α=0

S(n, α)bα if and only if bn =

n∑
k=0

s(n, k)ak. (2.6)

Combining this inversion theorem for the Stirling numbers with (2.1) arrives at
equations

n∑
k=0

s(n, k)
∂kexe

t

∂tk
= exe

t(
xet
)n

which is equivalent to that the generating function exe
t

satisfies the family of non-
linear ordinary differential equations in (2.2) for the plus sign case.

The equation (2.12) in the second proof of [16, Theorem 2.2] reads that

Bn,n(α) = αn and Bn+k+1,k(α, 0, . . . , 0) = 0, (2.7)

where α ∈ C and k, n ∈ {0} ∪N. Applying f(u) = exe
u

and u = g(t) = −t in (2.5),
taking α = −1 in (2.7), and utilizing (2.1) lead to

∂nexe
−t

∂tn
=

n∑
k=0

∂kexe
u

∂uk
Bn,k(−1, 0, . . . , 0) =

∂nexe
u

∂un
Bn,n(−1)

= (−1)nexe
u

n∑
k=0

S(n, k)
(
xeu
)k

= (−1)nexe
−t

n∑
k=0

S(n, k)
(
xe−t

)k
.

The formula (2.1) for the minus sign case follows immediately.
Employing the inversion theorem for Stirling numbers, demonstrated in (2.6), to

consider the formula (2.1) for the minus sign case give

n∑
k=0

s(n, k)(−1)k
∂kexe

−t

∂tk
= exe

−t(
xe−t

)n
which implies that the generating function exe

−t

satisfies the family of nonlinear
ordinary differential equations in (2.2) for the minus sign case. The proof of Theo-
rem 2.1 is thus complete. �

3. An explicit formula and its inversion formula

In this section, with the aid of Theorem 2.1, we recover an explicit formula and
its inversion formula for the Bell polynomials Bn(x) in terms of the Stirling numbers
s(n, k) and S(n, k).

Theorem 3.1. For n ≥ 0, the Bell polynomials Bn(x) can be computed by

Bn(x) =

n∑
k=0

S(n, k)xk (3.1)

and satisfy
n∑
k=0

s(n, k)Bk(x) = xn. (3.2)
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Proof. In light of the theory of series, it is easy to see that

Bn(x) = (±1)n lim
t→0

∂nex(e
±t−1)

∂tn
= (±1)ne−x lim

t→0

∂nexe
±t

∂tn
.

Combining this with (2.1) gives

Bn(x) = (±1)ne−x lim
t→0

(±1)nexe
±t

n∑
k=0

S(n, k)
(
xe±t

)k
=

n∑
k=0

S(n, k)xk.

The formula (3.1) follows.

Substituting f(t) = exe
±t

into (2.2) and taking t→ 0 result in
n∑
k=0

(±1)ks(n, k)(±1)kexBk(x) = exxn

which can be simplified as (3.2). The proof of Theorem 3.1 is complete. �

4. Inequalities for the Bell polynomials

In light of complete monotonicity of generating functions exe
−t

and with the
assistance of properties of completely monotonic functions, we now start out to
construct some determinantal and product inequalities for the Bell polynomials
Bn(x). From these inequalities, we can derive the logarithmic convexity of the
sequence of the Bell polynomials Bn(x). These inequalities are our main results in
this paper.

Theorem 4.1. Let m ≥ 1 be a positive integer and let |aij |m denote a determinant
of order m with elements aij.

(1) If ai for 1 ≤ i ≤ m are non-negative integers, then∣∣Bai+aj (x)
∣∣
m
≥ 0, x > 0 (4.1)

and ∣∣(−1)ai+ajBai+aj (x)
∣∣
m
≥ 0, x > 0. (4.2)

(2) If a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are non-increasing n-tuples

of non-negative integers such that
∑k
i=1 ai ≥

∑k
i=1 bi for 1 ≤ k ≤ n−1 and∑n

i=1 ai =
∑n
i=1 bi, then

n∏
i=1

Bai(x) ≥
n∏
i=1

Bbi(x), x > 0. (4.3)

Proof. Recall from [13, 25] that a function f is said to be absolutely monotonic
on an interval I if it has derivatives of all orders and f (k−1)(t) ≥ 0 for t ∈ I and
k ∈ N. Recall from [13, Chapter XIII], [22, Chapter 1], and [25, Chapter IV] that an
infinitely differentiable function f is said to be completely monotonic on an interval
I if it satisfies (−1)kf (k)(x) ≥ 0 on I for all k ≥ 0. Theorem 2b in [25, p. 145] reads
that, if f1(x) is absolutely monotonic and f2(x) is completely monotonic on their
defined intervals, then their composite function f1(f2(x)) is completely monotonic

on its defined interval. Consequently, the function exe
−t

for x > 0 is completely
monotonic with respect to t ∈ (0,∞).

In [12] and [13, p. 367], it was obtained that if f is completely monotonic on
[0,∞), then ∣∣f (ai+aj)(t)∣∣

m
≥ 0 (4.4)
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6 F. QI

and ∣∣(−1)ai+ajf (ai+aj)(t)
∣∣
m
≥ 0. (4.5)

Applying f(t) to the function exe
−t

in (4.4) and (4.5) and taking the limit t→ 0+

give

lim
t→0+

∣∣∣(exe−t)(ai+aj)∣∣∣
m

=
∣∣(−1)ai+ajexBai+aj (x)

∣∣
m
≥ 0

and

lim
t→0+

∣∣∣(−1)ai+aj
(
exe

−t)(ai+aj)∣∣∣
m

=
∣∣(−1)ai+aj (−1)ai+ajexBai+aj (x)

∣∣
m
≥ 0.

The determinant inequalities (4.1) and (4.2) follow.
In [13, p. 367, Theorem 2], it was stated that if f is a completely monotonic

function on [0,∞), then
n∏
i=1

[
(−1)aif (ai)(t)

]
≥

n∏
i=1

[
(−1)bif (bi)(t)

]
. (4.6)

Applying f(t) to the function exe
−t

in (4.6) and taking the limit t→ 0+ give

lim
t→0+

n∏
i=1

[
(−1)ai

(
exe

−t)(ai)]
=

n∏
i=1

[exBai(x)]

≥ lim
t→0+

n∏
i=1

[
(−1)bi

(
exe

−t)(bi)]
=

n∏
i=1

[exBbi(x)].

The product inequality (4.3) follows. The proof of Theorem 4.1 is complete. �

Corollary 4.1. The sequence {Bn(x)}n≥0 for x > 0 is logarithmically convex.

Proof. In [13, p. 369] and [14, p. 429, Remark], it was stated that if f(t) is a
completely monotonic function such that f (k)(t) 6= 0 for k ≥ 0, then the sequence

ln
[
(−1)k−1f (k−1)(t)

]
, k ≥ 1 (4.7)

is convex. Applying this result to the function exe
−t

for x > 0 figures out that the
sequence

ln
[
(−1)k−1

(
exe

−t)(k−1)]→ x+ lnBk−1(x), t→ 0+

for k ≥ 1 is convex. Hence, the sequence {Bn(x)}n≥0 is logarithmically convex.
Alternatively, letting

` ≥ 1, n = 2, a1 = `+ 2, a2 = `, and b1 = b2 = `+ 1

in the inequality (4.3) leads to B`(x)B`+2(x) ≥ B2
`+1(x) which means that the

sequence {Bk(x)}k∈N is logarithmically convex. The proof of Corollary 4.1 is com-
plete. �

Corollary 4.2. If ` ≥ 0 and n ≥ k ≥ 0, then

[Bn+`(x)]k[B`(x)]n−k ≥ [Bk+`(x)]n, x > 0.

Proof. This follows from taking

a = (

k︷ ︸︸ ︷
n+ `, . . . , n+ `,

n−k︷ ︸︸ ︷
`, . . . , `) and b = (k + `, k + `, . . . , k + `)

in the inequality (4.3). The proof of Corollary 4.2 is complete. �
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Theorem 4.2. If ` ≥ 0, n ≥ k ≥ m, 2k ≥ n, and 2m ≥ n, then

Bk+`(x)Bn−k+`(x) ≥ Bm+`(x)Bn−m+`(x), x > 0. (4.8)

Proof. In [23, p. 397, Theorem D], it was recovered that if f(t) is completely mono-
tonic on (0,∞) and if n ≥ k ≥ m, k ≥ n− k, and m ≥ n−m, then

(−1)nf (k)(t)f (n−k)(t) ≥ (−1)nf (m)(t)f (n−m)(t).

Replacing f(t) by the function (−1)`
(
exe

−t)(`)
in the above inequality leads to

(−1)n
(
exe

−t)(k+`)(
exe

−t)(n−k+`) ≥ (−1)n
(
exe

−t)(m+`)(
exe

−t)(n−m+`)
.

Further taking t → 0+ finds the inequality (4.8). The proof of Theorem 4.2 is
complete. �

Theorem 4.3. For x, ` ≥ 0 and m,n ∈ N, let

G`,m,n = B`+2m+n(x)[B`(x)]2 −B`+m+n(x)B`+m(x)B`(x)

−B`+n(x)B`+2m(x)B`(x) +B`+n(x)[B`+m(x)]2,

H`,m,n = B`+2m+n(x)[B`(x)]2 − 2B`+m+n(x)B`+m(x)B`(x)

+B`+n(x)[B`+m(x)]2,

I`,m,n = B`+2m+n(x)[B`(x)]2 − 2B`+n(x)B`+2m(x)B`(x)

+B`+n(x)[B`+m(x)]2.

Then
G`,m,n ≥ 0, H`,m,n ≥ 0,

H`,m,n Q G`,m,n when m ≶ n,

I`,m,n ≥ G`,m,n ≥ 0 when n ≥ m.
(4.9)

Proof. In [24, Theorem 1 and Remark 2], it was obtained that if f is completely
monotonic on (0,∞) and

Gm,n = (−1)n
{
f (n+2m)f2 − f (n+m)f (m)f − f (n)f (2m)f + f (n)

[
f (m)

]2}
,

Hm,n = (−1)n
{
f (n+2m)f2 − 2f (n+m)f (m)f + f (n)

[
f (m)

]2}
,

Im,n = (−1)n
{
f (n+2m)f2 − 2f (n)f (2m)f + f (n)

[
f (m)

]2}
for n,m ∈ N, then

Gm,n ≥ 0, Hm,n ≥ 0,

Hm,n Q Gm,n when m ≶ n,

Im,n ≥ Gm,n ≥ 0 when n ≥ m.
(4.10)

Replacing f(t) by (−1)`
(
exe

−t)(`)
in Gm,n, Hm,n, and Im,n and simplifying produce

Gm,n = (−1)`+n
{(
exe

−t)(`+2m+n)
[(
exe

−t)(`)]2
−
(
exe

−t)(`+m+n)(
exe

−t)(`+m)(
exe

−t)(`)
−
(
exe

−t)(`+n)(
exe

−t)(`+2m)(
exe

−t)(`)
+
(
exe

−t)(`+n)[(
exe

−t)(`+m)
]2}

,

Hm,n = (−1)`+n
{(
exe

−t)(`+2m+n)
[(
exe

−t)(`)]2
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8 F. QI

− 2
(
exe

−t)(`+m+n)(
exe

−t)(`+m)(
exe

−t)(`)
+
(
exe

−t)(`+n)[(
exe

−t)(`+m)
]2}

,

Im,n = (−1)`+n
{(
exe

−t)(`+2m+n)
[(
exe

−t)(`)]2
− 2
(
exe

−t)(`+n)(
exe

−t)(`+2m)(
exe

−t)(`)
+
(
exe

−t)(`+n)[(
exe

−t)(`+m)
]2}

.

Further taking t→ 0+ reveals

lim
t→0+

Gm,n = e3G`,m,n, lim
t→0+

Hm,n = e3H`,m,n, and lim
t→0+

Im,n = e3I`,m,n.

Substituting these quantities into (4.10) and simplifying bring about inequalities
in (4.9). The proof of Theorem 4.3 is complete. �

Theorem 4.4. For x, k ≥ 0 and n ∈ N, we have[
n∏
`=0

Bk+2`(x)

]1/(n+1)

≥

[
n−1∏
`=0

Bk+2`+1(x)

]1/n
. (4.11)

Proof. If f is a completely monotonic function on (0,∞), then, by the convexity of
the sequence (4.7) and Nanson’s inequality listed in [11, p. 205, 3.2.27],[

n∏
`=0

(−1)k+2`+1f (k+2`+1)(t)

]1/(n+1)

≥

[
n∏
`=1

(−1)k+2`f (k+2`)(t)

]1/n
for k ≥ 0. Replacing f(t) by exe

−t

in the above inequality results in[
n∏
`=0

(−1)k+2`+1
(
exe

−t)(k+2`+1)

]1/(n+1)

≥

[
n∏
`=1

(−1)k+2`
(
exe

−t)(k+2`)

]1/n
for k ≥ 0. Letting t → 0+ in the above inequality leads to (4.11). The proof of
Theorem 4.4 is complete. �

Remark 4.1. This paper is a revised version of the preprint [17].
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[14] J. E. Pečarić, Remarks on some inequalities of A. M. Fink, J. Math. Anal. Appl. 104 (1984),

no. 2, 428–431; Available online at https://doi.org/10.1016/0022-247X(84)90006-4.
[15] F. Qi, An explicit formula for the Bell numbers in terms of the Lah and Stirling numbers,

Mediterr. J. Math. 13 (2016), no. 5, 2795–2800; Available online at https://doi.org/10.

1007/s00009-015-0655-7.
[16] F. Qi, Some inequalities for the Bell numbers, Proc. Indian Acad. Sci. Math. Sci. 127 (2017),

no. 4, in press; Available online at https://doi.org/10.1007/s12044-017-0355-2.

[17] F. Qi, Some inequalities of the Bell polynomials, Preprints 2017, 2017080079, 10 pages;
Available online at https://doi.org/10.20944/preprints201708.0079.v1.

[18] F. Qi, D. Lim, and B.-N. Guo, Explicit formulas and identities for the Bell polynomials and
a sequence of polynomials applied to differential equations, Rev. R. Acad. Cienc. Exactas F́ıs.

Nat. Ser. A Mat. RACSAM (2018), in press; Available online at https://doi.org/10.1007/

s13398-017-0427-2.
[19] F. Qi, D.-W. Niu, and B.-N. Guo, Some identities for a sequence of unnamed polynomials

connected with the Bell polynomials, Preprints 2017, 2017080044, 10 pages; Available online

at https://doi.org/10.20944/preprints201708.0044.v1.
[20] F. Qi, X.-T. Shi, and F.-F. Liu, Expansions of the exponential and the logarithm of power

series and applications, Arab. J. Math. (Springer) 6 (2017), no. 2, 95–108; Available online

at https://doi.org/10.1007/s40065-017-0166-4.
[21] J. Quaintance and H. W. Gould, Combinatorial Identities for Stirling Numbers. The un-

published notes of H. W. Gould. With a foreword by George E. Andrews. World Scientific

Publishing Co. Pte. Ltd., Singapore, 2016.
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