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Abstract: Weather and climate forecasting is extremely important for improving the socio-economic
well-being of the West African region. It safe-guards the region from weather and climate related
disasters. Hence, utilization of products from climate models are being encouraged and have
therefore become essential tools and life-savers, in spite of the fact that climate models do not fully
comply with attributes of forecast qualities - RASAP: reliability, association, skill, accuracy and
precision. This paper thus quantitatively evaluates, in comparisons to CRU and ERA5 datasets, the
RASAP compliance-level of the weather@home2 modelling system (w@h2: a successor to the well-
known weather@homel modelling system) which now produces an exceptionally large number of
ensembles of simulations (>10,000). Having been designed for the investigation of the behavior of
extreme weather under anthropogenic climate change, findings show that the performance of w@h2
in terms of climate variability may be more relevant than measures of the mean climatology. To
some significant extent w@h2 model provides little, if any, predictive information for precipitation
during the dry season, but may provide useful information during the monsoon seasons as well as
skill to capture the Little Dry Season over the Guinea zone; predictive skills for the onset season
suggest that the model is getting processes right. The w@h2 model is also able to reproduce all the
annual characteristics of the surface maximum air temperature over the sub-region with skill to
detect heat waves that usually ravage West Africa during the boreal spring. With synchronization
> 80% the model has the ability to reliably / accurately simulate the actual anomaly signs of the
observed climate parameters which is one of the special attributes of a model that is needed for
seasonal climate predictions and applications. The large sample sizes produced by the w@h2 model
are able to show that sampling quality of the tails of the distribution is no longer the primary
constraint / source of uncertainty. The study further furnishes a prospective user with information
on whether the model might be “useful or not” for a particular application.

Keywords: West Africa; forecast quality; Weather@home?; seasonal climate; evaluation

1. Introduction

Over the years, especially in West African region, researchers’ and stakeholders’ confidence in
the use of climate models is increasing. This is due to improvements in nearly all aspects of climate
models’ fidelity and skill, as well as more detailed understanding of the degree of fidelity and skill
(Mariotti et al., 2011; Nikulin et al., 2012; Diallo et al., 2013; Klein et al., 2015; Sylla et al., 2015).

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Consequently, information from climate models are extensively being used by the region’s policy
makers and various socio-economic sectors (e.g., water resources management, agriculture,
engineering, environmental management, health, insurance, researchers, etc.) either for risk
management or for day-to-day, season-to-season or long-term strategies and planning (Tall et al.,
2012; Niang et al., 2014; Nkiaka et al., 2019). Proliferation of climate models calls for caution among
researchers and stakeholders. To calm the fears and concerns of prospective users, thorough
performance evaluations of climate models have to be carried out before their eventual utilization.

The performance of a climate model can be evaluated according to these five attributes of
forecast qualities, hereafter known as RASAP: R (reliability), A (association), S (skill), A (accuracy), and
P (precision) (Storch and Zwiers, 2003; Walther and Moore, 2005; Ebert et al., 2013; Wilson and Giles,
2013). In short terms, reliability can be referred to as the ability of a forecast to provide an unbiased
estimate. According to Mason (2004) and Ebert et al. (2013) it is a key quality of a probabilistic long-
range forecast. Murphy (1988 and 1995) described association as a measure of linear relationship
between forecast and observation. Skill is a comparative quantity that shows if a set of forecasts is
better than a reference set, e.g., climatology, persistence, etc. It is a measure of relative ability of a set
of forecasts with respect to some set of standard reference forecasts (Wilks, 1995; Mason, 2004; Weigel
et al., 2006; Kim et al., 2016). Accuracy can be referred to as the overall correspondence or level of
agreement between model and observation. According to Wilson and Giles (2013) it summarizes the
overall quality of a forecast; while precision, a measure of uncertainty, is simply the absence of random
error, i.e.,, a measure of statistical variance of an estimation that is independent of a true value
(Debanne, 2000). Precision is described as the spread of the data whenever sampling is involved (West,
1999).

Climate models do not fully pass thresholds for these measures over many regions of the world,
including the West African region, and hence they are not fully RASAP compliant. Assessing their
degree of RASAP compliance therefore provides a quantitative evaluation of their ability to represent
regional climate. Performances of several climate models have been evaluated over the West African
region. While some of these evaluations have been motivated by the importance of the West African
monsoon and its circulation features, others have been interested in mechanisms and processes
responsible for rainfall regimes (Xue et al., 2010; Nikulin et al., 2012; Diallo et al., 2013). There have
also been some evaluations to improve the understanding of the nature of the interactions across the
different dynamical systems within the West African monsoon (Mariotti et al.,, 2011; Zaroug et al.,
2013; Diallo et al., 2014; Klein et al., 2015; Sylla et al., 2015).

A major challenge in evaluating RASAP performance is that many of the measures require large
initial-condition ensembles of simulations, which can be computationally prohibitive. In this paper
we focus on evaluating the RASAP performance of a modelling system that has produced an
exceptionally large number of simulations, thus providing material for robust tests against the
RASAP measures — the weather@home2 modelling system (hereafter w@h2). w@h?2 is a successor to
the well-known weather@home modelling system (hereafter w@h1: Massey et al., 2015; Guillod et al.,
2017). Generally, the w@h2 modelling system can generate very large ensembles of simulations
(>10,000) that allow denser sampling of the climate distributions. This is made possible by the
enlistment of thousands of volunteers around the world who, on their personal computers, run
simulations starting from different initial conditions. The results are then uploaded onto the
climateprediction.net (CPDN: https://www.climateprediction.net) server facility hosted by the
University of Oxford (Anderson, 2004). The project runs the Hadley Centre Regional Model version
3P (HadRM3P) nested in the Hadley Centre Global Atmospheric Model (HadAM3P-N96: Jones et al.,
2004) over various domains of the world, now including West Africa. Details of the improvements
made in w@h2 in comparisons to w@hl are discussed in Guillod et al. (2017).

The w@h2 modelling system has been designed for the investigation of the behavior of extreme
weather under anthropogenic climate change. This means that measures of the performance of the
model in terms of climate variability are more relevant than measures of the mean climatology
(Bellprat and Doblas-Reyes, 2016; Lott and Stott, 2016; Bellprat et al., 2019). If the w@h2 modelling
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system is to be used to understand changes in extreme weather over West Africa, then it is pertinent
to evaluate the performance of the w@h2 simulations over the region.

Specifically, we are asking the following questions — 1. Are the w@h2 simulations, over West
Africa, reliable? 2. Does any linear association exist between the simulations and observations /
reanalysis over West Africa? 3. Do these simulations have skill over West Africa? 4. Are the
simulations accurate, as well as precise over this region? These questions are asked with a view to
understanding whether the w@h2 simulations may be useful for extreme event attribution analysis
over West Africa. This paper will utilize a series of statistical metrics to calculate the selected
attributes of forecast qualities, i.e., RASAP, to provide insights on the nature of the w@h?2 simulations.

West Africa, a unique region of atmospheric complexities, is a tropical land mass located roughly
within longitudes 20°W to 20°E, and latitudes 0° to about 25°N of the African continent (Figure 1).
The region comprises three climatic zones, namely: Guinea — a tropical rain forest along the Atlantic
coast; Savannah — a transition zone of short trees and grasses; and the Sahel — an Arid desert in the
northern inlands (Nicholson and Palao, 1993; Nicholson, 1995; Omotosho and Abiodun, 2007).
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Figure 1. The domain of West Africa showing the topography of the surface (shaded; meters) and
highlights of climatological zones — Guinea (green box), Savannah (blue box), and Sahel (red box).

West African climates result from the interactions of two migrating air masses: tropical maritime
and tropical continental air masses. At the surface, these two air masses meet at a belt of variable
width and stability called the Inter-Tropical Discontinuity (ITD: Omotosho, 2007) or the Inter-
Tropical Convergence Zone (ITCZ) if at upper level. The north and south migration of ITD, which
follows the annual cycle, influences the climate of the region (Nicholson, 1993; Omotosho, 2007).
Besides ITD there are other key climate modification mechanisms over West Africa. Most relevant
are the El Nino Southern Oscillation (ENSO; Latif and Grotzner, 2000; Camberlin et al., 2001;
Newman et al., 2003), the sea surface temperature (SST) anomalies over the Gulf of Guinea (GOG;
Omotosho and Abiodun, 2007; Odekunle and Eludoyin, 2008), the African Easterly Jet (AE]J; Diedhiou
et al., 1998; Grist and Nicholson, 2001; Afiesimama, 2007), and the thermal lows (Parker et al., 2005;
Lavaysse et al., 2006, 2009, 2010). The region’s climate is classified into two seasons driven by the
position of the ITD - the dry season and the rainy season. The period of dry season runs
approximately from November to March / April. It is a time of hot and dry tropical continental air
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mass driven by the ridges from the northern hemispheric mid-latitude high pressure system. During
these periods, the prevailing northeasterly winds, north of the ITD, bring dry and dusty conditions
across the region with the southernmost extension of this air mass occurring in January between
latitudes 5° and 7°N. Tropical maritime southwesterly air mass is found at the southern ends of the
ITD. The moist air mass dominates during the periods of the rainy seasons. The region’s rainy seasons
run from April / May to October depending on the climatic zone of interest (Figure 1: Nicholson and
Grist, 2003; Redelsperger et al., 2006; Omotosho and Abiodun, 2007). The northernmost penetration
of the wet air mass is in August, usually between latitudes 19° and 22°N. With all these atmospheric
complexities, the use of dynamical climate models for forecasting of weather and projection of climate
are indispensable over the region. Therefore, performance evaluation of meteorological forecasts and
or simulations is crucial for understanding the errors of, monitoring the accuracy of, and making
progress in climate modelling systems (Ebert et al., 2013).

While this section introduces the motivations and concept of the study including the description
of the study domain and its complexities, section 2 will discuss the data sets analysed in the paper,
and the adopted analysis procedures. Section 3 will describe the results, while Section 4 will provide
summary and conclusions.

2. Datasets and the Analysis Procedures
2.1. Datasets — Observation, Reanalysis, and Simulation Data Sets

This study used monthly precipitation and near surface maximum air temperature from three
categories of datasets — gridded observational, reanalysis, and w@h2 simulation. The observation
datasets are from the University of East Anglia Climate Research Unit (CRU version TS4.03 (CRU-
TS4): https://crudata.uea.ac.uk/cru/data/hrg/; New et al., 2000; Harris et al., 2013). This is based on
analysis of records of observations from over 4000 weather stations. The reanalysis datasets are from
the European Centre for Medium-Range Weather Forecasts (ECMWEF — ERA version 5 (ERA5):
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5; Hersbach et al., 2018).
Simulated datasets are from the w@h2 modelling system obtained from the CPDN team
(https://www.climateprediction.net) at the University of Oxford. The w@h2 modelling system
(HadRM3P nested in Had AM3P-N96: Jones et al., 2004) is executed in various regional domains over
the world, including an African domain that encompasses West Africa.

These datasets have different spatial resolutions. The observed variables (CRU) are on a
horizontal grid resolution of 0.5°x0.5° longitude-latitude, while the reanalysis (ERA5) datasets have
a horizontal resolution of 30 km grid. Horizontal resolution of w@h2 simulations is about 0.22° (25
km) compared to about 0.44° (50 km) in w@h1. For uniformity, the horizontal resolutions of all the
simulated (w@h2) and the reanalysis (ERA5) datasets were re-gridded to match that of the
observation (CRU) dataset before they were analyzed. All monthly simulated variables from w@h2
used in this study are from 71 ensemble members per year. Each ensemble member differs only
slightly in their initial conditions and we focus on the 31-year period from January 1987 to December
2017.

2.2. Methodology and Analysis Procedures

This paper aims to evaluate the performances of the w@h2 simulations over West Africa in line
with the qualities of selected forecast attributes —- RASAP. In comparisons to CRU and ERA5 datasets,
w@h?2 simulations are subjected to a series of quantitative statistical metrics to calculate RASAP
measures. As depicted in Table 1, temporal and spatial analyses of these statistical metrics are carried
out and then presented in various graphical formats for interpretation. We also place some figures in
the supplementary domain of this paper for clarity of purpose.

Results and analyses from this study will be presented on the basis of calendar months, in
reflection of their common usage in climate services throughout the region and of the typical monthly
duration of noteworthy extreme events in the region (e.g., Lawal et al., 2019).
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Table 1. List of statistical metrics used to calculate the attributes of forecast qualities in this study.

Attrib Descripti ;
Tibu escriptive Statistical Metric Inference Reference
tes Statistics

A long-term arithmetic mean.
A= 2o T0ix 1)
A = average (or arithmetic mean); n
. = the number of terms (e.g., the Hidore et al.
Climatology = number of items or numbers being seasonal or annual cycle of a (2009)
averaged or length of observations); variable.
xi = the value of each individual
variable in the list of parameters
being averaged.
The difference between the values

To determine the monthly,

of simulations (w@h2) and A measure of over- (positive
. observations (CRU) or reanalysis  bias) (?r un.der-estlmelltlons Walther and
ias . negative bias) of variables.
Bias (B) (ERA5) (negative bias) of bl Moore (2005)
B=F-0 ... ) Generally, bias gives marginal
B =bias; F = simulations; O = distributions of variables.

observations or reanalysis.
Normal bias calculations and, the
results divided by the length of

observations. A measure to estimate the
..? MBE = ZTB ....... (3a) average bias in the model. It is
E Mean bias error or the average forecast or Walther and
% (MBE) MBE = A, — 4, ... (3b) simulation error representing Moore (2005)
[~ MBE = mean bias error; Af= the systematic error of a model
arithmetic mean of the forecast or ~ to under- or over-forecast.
simulation; Ao = arithmetic mean of
the observation or reanalysis.
Provides information on bias,
outliers, error magnitude,
Point or aerial average plots of linear association, peculiar
ria’ average b T ass  pecut Wilks (1995),
w@h2 simulations versus behaviors in extremes, misses X
. . . Jolliffe and
Scatter diagrams observation (CRU) and reanalysis ~ and false alarms. Perfect
. . L Stephenson
(ERAD) values. simulation points in (2012)
comparison to observation
should be on the 45° diagonal
line.
A statistical measure of the
strength of a linear
relationship between the
paired variables i.e.,
simulations and observation /
reanalysis data sets. By design
it is constrained as -1 <r<1.
c Spatio-temporal Pearson’s Product- pggitive values denote direct Murohy (1988
£ ) Moment Correlation Coefficient  |inear association; negative urphy (
8 **Correlation e n(X Fx0)—(5 F)(3 0) 1 denote i i and 1995) and,
o coefficient (r) VIREF2-EF)?|[nE 0% (20)?] values denote mverse iear gy ch and
% (@) association; a value of 0 Zuwiers (2003)
....... W
< denotes no linear association;

r = correlation coefficient
while the closer the value is to

1 or -1, the stronger the linear
association. Perfect
relationship is denoted by 1. It
is not sensitive to the bias but
sensitive to outliers that may
be present in the simulations.
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CoD is a measure of potential
skill, i.e., the level of skill
attainable when the biases are

Mathematically, this is a square of
the correlation coefficient.
CoD = 12

CoD = coefficient of determination

Coefficient of
determination
(CoD)

eliminated. It is also a
measure of the fit of
regression between forecast
and observation. It is a non-
negative parameter with a
maximum value of 1. For a
perfect regression, CoD = 1.
CoD tends zero for a non-
useful forecast.

Murphy (1995)
and, Storch and
Zwiers (2003)

A measure of the accuracy of the Positive values (maximum of

forecast in terms of the probability
assigned. It compares the
performance of a forecasting
system against a simple
climatological reference.

RPSS =1— et (6a)
RPSclim

RPSS = ranked probability skill
score; RPSsest is the ranked
probability score of the forecast;
RPScim is the ranked probability
score of a climatological reference.
Where

1
RPS = E* Yn=1(Foum — Ocum)2

Ranked
probability skill
score (RPSS)

Skill

(RPS = ranked probability score;
Feum = cumulative value of forecast;
Owm = cumulative value of
observation.)

Measures the forecast
accuracy with respect to a
reference forecast (e.g.,
observed climatology).

1) have skill while negative
values (up to negative

infinity) have no skill. Positive

RPSS implies that the RPS is

lower for the forecasts than it

is for climatology forecasts.
Thus, the score reflects

Wilks (1995),
Storch and

discrimination, reliability and Zwiers (2003)

resolution.

RPS measures the squared
forecast error, and therefore
indicates to what extent the

forecasts lack success in
discriminating among
differing observed outcomes,
and/or have systematic biases
of location and level of
confidence. Thus, the score
reflects the degree of a lack of
discrimination, reliability
and/or resolution.

Mason (2004),
Weigel et al.
(2006), and Kim
et al. (2016)

The sum of the absolute values of
the normal bias calculations and,

A measure of how big of an
error we can expect from the
forecast on average, without
considering their directions.
MAE measures the accuracy
of a continuous variable.
Though, just like the root

the results divided by the length of mean square error (RMSE), it Pledger (2000),

observations.
1
MAE = 2 + ¥, |B,|
MAE = mean absolute error; |Bil =
absolute values of individual bias.

Mean absolute
error (MAE)

also measures the average

Pledger and

magnitude of the errorsina Schwarz (2002)

set of forecasts; however,
while RMSE utilizes a

quadratic scoring rule, MAE is
a linear score — which means

that all the individual
differences are weighted

equally in the average. MAE

ranges from zero to infinity.
Lower values are better.

and, Storch and

Zwiers (2003)
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It measures the magnitudes of
the error, weighted on the
squares of the errors. Though,

The square root of the average of it does not indicate the

the squares of the errors direction of the error; Rosenberg et al.
7 q 1 ' however, it is good in (1995), Zelmer
& Rootmeansquare  RMSE = V[= = 31 (B)?] 8 |
3 error (RMSE) n = penalizing large error. Itis and Esch (1999)
- ®) sensitive to large values (e.g., and, Storch and
< 8 &
RMSE _dljo?ctl mfanlsquar;: e.rror, . in precipitation) and outliers. Zwiers (2003)
= individual values of bias. This is very useful when large
errors are undesirable. Ranges
from zero to infinity. Lower
values are better.
With the use of contingency tables, Synchr ?n%zation fO.CL.lS.eS on
combinations of positive and the predictive capabilities of a
negative anomaly hits in the model. It shows how much a
predictions of inter-annual simulated value agrees with ~ Misra (1991),
anomalies are enumerated and 2% observed value in the signs ~ Storch and
Synchronization pressed as a percentage of the of their anomalies without =~ Zwiers (2003),
(Syn) total prediction events. taking magnitudes into Lawal (2015)
Syn = ZPa*INa 100% ©) consideration. Therefore, the and, Wilson and
yn= n o R evaluated synchronization, in ~ Giles (2013)
Syn.=. sync.hromzatlon; Pn= tl.‘ue probabilistic sense, is similar
positive hits; N.h = true negative to accuracy. The best
hits. synchronization is 100%.
This is the square root of variance. S .
td helps to determine the
ST Cr—ane)? . . West (1999),
Std (o) = 2=t oavel spread of simulations and or
n observations from their Brose et al.
Standard = e (10) respective means, i.e., how far (2003), Melo et
deviation (Std) Std (o) = standard deviation, xi = the fP th ro ¢ al. (2003) and,
value of each individual variable, rom e.mean agroup o Storch and
_ numbers is. It has the same .
Xave = the average value of x . Zwiers (2003)
distribution. unit as the mean.
It is used for comparing the
degree of variation from one
data series to another (in this
A ratio of standard deviation of a case between forecast or
population to the mean of the simulation and observation
o population, usually expressed as a where the means are
'g Coefficient of percentage. significantly different from WeSStto(rlcgl?zLjind,
.2 -
§ variation (CoV) CoV = i *100% ... (11)  one another). A lower CoV Zwiers (2003)
R~ CoV = coefficient of variation; ¢ = implies low degree of
standard deviation; u = arithmetic variation while a higher CoV
mean. implies a higher variation.

Therefore, the higher the CoV
the greater the level of
spreading around the mean.
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This makes it possible to
access the statistics of
different fields (observations
and simulations) on the same
scale. Here, Taylor diagrams
are used to depict the
normalized standard
deviation in line with
correlation coefficients. The

e . diagrams are able to measure
Normalization is carried out by

Normalized g . how well observations and West (1999) and,
dividing the standard deviation of . .
standard the simulations bv the standard simulations match each other  Storch and
deviation (NSD) © simuiations by the standar in terms of: 1. similarity as ~ Zwiers (2003)

deviation of the observations. ;
measured by correlation

coefficients, and 2. deviation
factors as measured by
normalized standard
deviations. Taylor diagrams
are able to provide a
summarizing evaluation of
model performance in
simulating atmospheric
parameters.

**A measure of statistical significance, such as p-value (Mason, 2008), is also assessed for the correlations that
were evaluated in this study. Statistical significance was estimated using a two-tailed experiment at the p = 0.1
level, assuming uncorrelated Gaussian noise. ). denotes the summation formula.

3. Results
3.1. Seasonality (and Reliability)

Here, the ability of w@h2 model to replicate seasonality and its deviations from it are
investigated, bearing in mind that reliability of a probabilistic forecast is statistical consistency
between each class of forecasts and the corresponding distribution of observations that follows such
forecasts (Ebert et al., 2013). Statistical metrics used to support evaluation of reliability, in this paper,
are climatology, mean bias and the use of scatter diagrams. More details are depicted in Table 1.

3.1.1. Precipitation

The w@h2 model is able to capture the monthly mean distributions of rainfall spatially and
temporally (Figures 2 and S1). As the rain band transverses hundreds of kilometers from south inland
to north during the first half of the calendar year, w@h?2 is able to capture the maximum rainfall along
the coastal Guinea areas as well as the tropical aridity climates over the Sahel (Figures 2 and S2a-c).
The spatial correlations (r) between w@h2 simulations and CRU / ERAS observations range from 0.68
to 0.85 (Figure Sla). While the model is able to simulate reliably the zenith characteristic of rainfall in
August over both Savannah and Sahel, it is also able to capture the pause in rainfall intensities along
the coastal Guinea areas in August — the little dry season (LDS: Figures 2 and Sla-c). However, the
LDS as simulated by w@h2 extends from Sierra Leone to southern Cameroon (Figure S1a) contrary
to the Cote d’Ivoire to southeastern Nigeria extent as observed by CRU and ERA5 (Figure S1b, c).

Figure S2a shows that w@h?2 rainfall over Guinea is consistently too low from June to October.
Savannah rainfall is too high during March-May and too low during June-October (Figure S2b), while
Sahel rainfall is too high from April to September (Figure S2c). The bias ranges of £5mm day! (Figure
52d, e) are small in comparison to rainfall totals over most of the region.
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Figure 2. (Top panels) Aerial averages of monthly mean distributions of rainfall (mm day) for each
climatological zone: left) Guinea, middle) Savannah, and right) Sahel. (Bottom panels) Mean spatial
distributions of rainfall (shaded; mm day') over West Africa for the month of August: left) w@h2
ensemble mean simulation, middle) CRU-observation, right) ERA5-reanalysis. Stippling on the
bottom panels indicate areas, over West Africa, that usually experience the little dry season (LDS) in
August.

3.1.2. Temperature

The spatial correlations (r) of the monthly temperature climatology between w@h2 simulations
and CRU / ERA5 observations are generally greater than 0.9 (Figures S3a-c). w@h2 under-estimates
the temperature in all climatic zones by 0.5-2.0°C (Figure S4a-e), though with patches of inconsistent
over-estimations over the Sahel.

In addition, the w@h2 model captures the four main characteristics of the seasonal cycle of near
surface maximum temperature over West Africa. First, the model captures the two peaks of
maximum air temperature exhibited annually in all climatic zones, with the primary peak being in
March-May with the secondary peak being in October-November (Figures 3, S3a-c and S4a-c).
Second, the model also agrees with observations that the Sahel region is always warmer than both
the Savannah and coastal Guinea regions, except during the boreal winters. Third, the model agrees
that there is a dip in the annual maximum temperatures over all climatic zones during the peak of
the rainy season (i.e., in August: Figures 3 and S3a-c). Lastly, the annual north-south oscillation of the
thermal depression is also captured by the w@h2 model (Figure S3a-c); this being a large expanse of
areas where the lowest atmospheric pressure coincides with surface temperature maximum (Figure
3, Parker et al. (2005), Lavaysse et al. (2009 and 2010)).
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Figure 3. (Top panels) Aerial averages of monthly mean distributions of near surface maximum
temperature (°C) for each climatological zone: left) Guinea, middle) Savannah, and right) Sahel.
(Bottom panels) Mean spatial distributions of near surface maximum temperature (shaded; °C) over
West Africa for the month of August: left) w@h2 ensemble mean simulation, middle) CRU-
observation, right) ERA5-reanalysis.

3.2. Association

Association, a statistical measure of the strength of a linear relationship between a paired
simulation and observation / reanalysis data sets, is evaluated here by the use of spatio-temporal
Pearson’s Product-Moment Correlation Coefficient (r) (Table 1). To a low extent, we also utilize the
coefficient of determination (CoD) which is simply the square of r. CoD measures the level of skill
attainable when the biases are eliminated.

The inter-annual variability of Savannah rainfall and Sahel near surface maximum temperature,
respectively, for the months of August and May are shown in Figure 4 (see Figure S5 for other months
and zones). The observed (CRU/ERAS) values generally fall within the spread, notably during the
unusually wet August 1999 over the Savannah and hot May 1998, 2010, and 2016 over the Sahel.
There are some cases though when observed values are outside the spread of the ensemble members,
such as the cool May 1991 over the Sahel.
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Figure 4. Aerial averages of inter-annual variations of: top panel — precipitation anomalies (mm day-
1) over Savannah in August and, bottom panel — near surface maximum air temperature anomalies
(°C) Sahel in May. Values of synchronization (%) and the temporal correlation, r (in brackets), between
the w@h2 ensemble mean precipitation and temperature and CRU (left) and ERAS (right) are written
at the bottom of each panel.

The linear relationship between w@h2 model’s temperature simulations and observations are
strongly direct, while it is less strong for precipitation simulations. Correlations, 7, values as large as
0.78 and 0.89 were evaluated for precipitation and temperature respectively, however cases of weak
relationships, with r as low as = -0.4 are also present, for individual simulations (Figures 4, and, S5-
7). Cases of weak relationships are more noticeable in the inter-annual variabilities of monthly
precipitation simulations than in temperature (Figures S5-7). For both precipitation and temperature
simulations, the strength of linear associations diminishes as we move to the drier north towards the
Sahel (Figures 5 and S5-8).
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Figure 5. Monthly spreads of the correlation coefficient, r, between the w@h2 simulations and the
observed and reanalyzed a) area-averaged precipitation [ensemble mean (red circles) and ensemble
members (box and whisker plots)], and b) area-averaged near surface maximum air temperature
[ensemble mean (blue stars) and ensemble members (box and whisker plots)] over the climatological
zones. Months are on the horizontal axes, e.g., 2.0 represents February.

Irrespective of the magnitudes, the ability of the ensemble means of w@h2 model to capture the
anomaly sign of the observed precipitation and temperature is generally greater than 40%, and at
most 90% (Figure S5a-f). In other words, the model’s ensemble mean will adequately predict the sign
of 2 out of 5 observations correctly; and will, at most, simulate about 9 out of 10 observations correctly
(synchronization = 90%).

The normalized standard deviations (NSD) of the majority of the ensemble members are greater
than those of the ensemble means (Figures S6 and S7). This is because of the averaging that filters out
the simulated variabilities of the ensemble means (Lawal, 2015; Lawal et al., 2019). These imply that
the discrepancies between the ensemble means and observations, CRU/ERA5, are smaller than the
discrepancies between individual ensemble members and observations.

Furthermore, there are noticeable differences and similarities in the way w@h2 model’s
precipitation and near surface maximum temperature simulations associate with observations
(CRU/ERADS). Figure S8a-d shows that r between precipitation simulations and observations contain
both direct and weak linear relationships, while cases of strong direct linear relationships dominate
the r between the temperature simulations and observations. For instance, the correlations exhibited
by the precipitation ensemble means are -0.4 < r < 0.78 while those of temperature are 0 < r < 0.8
(Figure 5a, b). Some of the precipitation ensemble means and members exhibited weak linear
relationship with observations on monthly basis, except in July and August for CRU, and July,
August and September for ERA5 over coastal Guinea (Figure 5a). This is however different for
temperature simulations where all the ensemble means exhibited direct linear relationship, of various
strength, with observations on monthly basis (Figure 5b). The best performance here is over Guinea
where none of the temperature ensemble members had negative linear relationship with
observations, i.e., 0 <r<1.

Four similarities are typical to the associations of w@h2 model’s precipitation and temperature
simulations with observations. Firstly, the CoD for both precipitation and temperature simulations
are generally less than 0.5 (Figures not shown). Higher values, 0.5 < CoD < 0.8, are recorded during
the peaks of the monsoon seasons. This corroborates the values of r, and implies that w@h2 model
may also be skillful when biases are absent. Secondly, the spatio-temporal linear associations seem
to strengthen with observations as rainfall seasons set in and stabilize. These are very obvious during
the months of July, August and September (Figure S8a-d). Thirdly, the strength of linear associations,
for both precipitation and temperature simulations, diminishes as we move north towards the Sahel.


https://doi.org/10.20944/preprints202411.0026.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 November 2024 d0i:10.20944/preprints202411.0026.v1

13

And lastly, all values of the associations of the ensemble means are enveloped by the spreads of the
ensemble members’ associations (Figure 5). However, while the values of associations are generally
greater than the 75th percentiles of the spreads in temperature simulations, they do not have any
agreeably defined positions in precipitation simulations. The implications here are that the w@h2
model exhibits more significant associations during the peak of the West African monsoon seasons
than the rest of the year. However, cautions are encouraged in terms of significant associations when
applying the simulations over the Sahel.

Summarily for temperature, the ensemble mean always has a stronger correlation with
observations than do most of the simulations; for precipitation, the rule seems to hold but maintain
the sign of the correlation, i.e., a stronger anti-correlation when most simulations have negative r. The
temperature’s positive correlation may be attributed to the strong warming trend over the
experimental period (Cook and Vizy, 2015) while the weak correlations for precipitation may
primarily reflect the inter-annual variability (Nicholson, 2001 and 2009).

3.3. Skill

The ranked probability skill score (RPSS) is here used to evaluate the ability of the w@h2 model
to reproduce the observed monthly inter-annual variations in precipitations and near surface
maximum temperature over West Africa (Table 1). RPSS measures the forecast accuracy with respect
to a reference observation (e.g., observed climatology) as the scores reflect discrimination, reliability
and resolution.

Positive skills, 0 < RPSS < 1, dominate Guinea and Savannah zones in all the months. However,
reverse is the case over Sahel in precipitation simulations (Figures 6 and S9). Nevertheless, all values
of RPSS from ensemble means are within the spreads of the ensemble members’ RPSS; though, the
spreads are of diverse thickness, the broadest being exhibited over Guinea zone. The ensemble means
of the w@h2 model, with reference to the two observations (CRU/ERA5), returned positive values of
RPSS for precipitation over Guinea throughout the year and positive values of RPSS for temperature
over all the climatological zones, also throughout the year (except in January with reference to ERA5
over Sahel: Figure 6). Generally, while the skills of the w@h2 model with respect to precipitation
simulations, over Sahel, may not be significantly impressive, the model may however have skills to
detect heat waves that usually ravage West Africa during the boreal springs as well as skills to capture

the LDS over Guinea zone.
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Figure 6. Monthly spreads of the ranked probability skill score (RPSS) for w@h2 simulations with
respect to observed and reanalyzed a) precipitation [ensemble mean (red circles) and ensemble
members (box and whisker plots)], and b) near surface maximum air temperature [ensemble mean
(blue stars) and ensemble members (box and whisker plots)] over the climatological zones. Months
are on the horizontal axes, e.g., 2.0 represents February. Missing red circles, blue stars and or error
bars (either in parts or wholly) indicate that RPSS < -1.0 for the month. Note the different vertical
scales for the precipitation and temperature panels.

3.4. Accuracy

As suggested by Walther and Moore (2005), we utilized mean absolute error (MAE), root mean
square error (RMSE) and synchronization as measures to estimate accuracy in this paper. As tabulated
in Table 1, MAE is a measure of the average magnitude of largest error that can be expected from a
forecast without considering their directions. It is a linear score; meaning that all the individual
differences are weighted equally in the average. Similar to MAE, RMSE also does not indicate the
direction of the error, but it penalizes large errors. In contract, synchronization shows how much a
simulated value agrees with an observed value in the signs of their anomalies without taking
magnitudes into consideration.

The maximum average difference, as depicted by MAE, between the w@h2 model simulations
and the observed (CRU/ERAS) precipitation over West Africa is about 5 mm day' (Figure S10a, b).
The average differences grow in values as rainfall season is setting in. High values of MAE, like 3 to
5 mm day, are more vivid between the months of March to October and are more present in the
southern coast of Guinea. In line with annual characteristics of rainfall, these high values migrate
northward in a rainfall-like pattern and annual oscillation. Interestingly, they start to retreat
southward in August/September. The relatively low values of MAE from November to February does
not imply higher accuracy in rainfall estimation by the w@h2 model than the other months (Figure
S10a, b); these are months of relatively very low precipitation (Figures 2 and S1). The error
magnitudes in precipitation do not represent up to 50% of over- or under-estimations in most parts
of the sub-region. Therefore, w@h2 model cannot be labelled as a biased estimator of rainfall.
Nevertheless, as recommended by Olaniyan et al. (2017), we may need to apply caution when
utilizing +30% of rainfall estimations as an indicator of biasness and accuracy.

The maximum average difference between the w@h2 model simulations and the observed
(CRU/ERAS5) near surface maximum temperature over West Africa is about 4°C (Figure S10c, d).
Generally, these differences are less than 2.8°C. The higher values of MAE tend to occur in the early
monsoon months of May, June, July and August, predominantly, over northern Savannah and
southern parts of Sahel. The lower differences, MAE, that dominate the larger spatial expanse of West
Africa, in all months, presumably make w@h2 model an accurate estimator of near surface maximum
temperature.
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There are sharp differences in RMSE and MAE produced from the precipitation simulations of
w@h2 model. For example, the maximum RMSE in precipitation simulation is about 10 mm day"!
(Figure S11a, b), while the maximum MAE is about 5 mm day! (Figure S10a, b). This difference is,
though, not large enough to indicate the presence of very large error in the simulation; it,
nevertheless, signals that the precipitation simulations have large variance in the individual errors of
its samples due to the existence of extreme precipitation values (the outliers). It is the outliers that
introduces the random errors, i.e., the variability and or noise in the internal system of the
precipitation simulations.

All errors are possibly of the same magnitudes in the near surface maximum temperature
simulated by w@h2 model. This is because RMSE and MAE are almost equal in magnitudes (panels
c and d of Figures S10 and S11). In similarity to MAE, RMSE are generally < 2.8°C. This implies that
it is the bias errors that are predominant here; meaning that the deviations in the temperature
simulations, from observations, are not due to chance alone. They are rather systemic in nature.
Exception here is in October — December over Sahel (Figure S11d), where there are sharp
disagreements between CRU and ERA5 data sets (RMSE > 4°C). Investigating the causes of this
disagreements is outside the scope of this work.

While corroborating the depictions on Figure S5a-f, Figures 7 and S12 show that the abilities of
w@h2 model to simulate the actual anomaly signs of the observed precipitation and near surface
maximum temperature correctly is generally between 20 and 80% for precipitation ensemble
members; and between 25 and 95% for temperature ensemble members. These imply that any
ensemble member of w@h2 model, picked at random, will at worst / best simulate 1 out of 5
(synchronization = 20%) / 4 out of 5 (synchronization =~ 80%) actual signs of the anomalies correctly
for precipitation; while, also at random, they will simulate at least 1 out of 4 (synchronization = 25%)
actual signs of the anomalies and at most more than 9 out of 10 (synchronization = 95%) actual signs
of the anomalies correctly for temperature. When combined, the model’s ensemble means of
precipitation and temperature synchronize between 40% and 90% (Figures 7 and S12). This shows
that at worst they (i.e., the ensemble means) will simulate 2 out of 5 actual anomalies correctly, and
will, at best, simulate 9 out of 10 actual signs of the anomalies correctly. Conclusively, while the w@h2
model may not be accurate in terms of getting the magnitudes of climate parameters right due to
inherent presence of biases of different types, it may however be accurate in simulating the actual
anomaly signs of the climate parameters rightly, to some significant extent. This is good because
ability to reliably / accurately simulate the actual anomaly signs of observed climate parameters is
one of the special attributes of a model that is needed for seasonal climate predictions and

applications.
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Figure 7. Monthly spreads of synchronization (%) of w@h2 simulations with the observed and
reanalyzed a) precipitation [ensemble mean (red circles) and ensemble members (box and whisker
plots)], and b) near surface maximum air temperature [ensemble mean (blue stars) and ensemble
members (box and whisker plots)] over the climatological zones. Months are on the horizontal axes,
e.g., 2.0 represents February.

3.5. Precision

As shown on Table 1, precision is here evaluated with the use of coefficient of variation (CoV) and
the normalized standard deviations (NSD). CoV, the ratio of standard deviations as measures of
spreads to the mean of the sample populations, is used to determine the degrees of variability within
the simulated and the observed climate parameters. Specifically, we employed the bias produced by
CoV (i.e., CoVimoter minus CoVovservation) to really know which of the two (simulations or observations)
produces more spatio-temporal variabilities. NSD is used to measure the deviation factors between
the simulations and the observations.

The degrees of spatio-temporal variability within the simulated and the observed climate
parameters (precipitation and near surface maximum temperature) are depicted in Figure S13. The
w@h2 model produces largely lesser spatio-temporal variabilities in precipitation in comparison to

observations and almost normal deviations in spatio-temporal variabilities for temperature

simulations. The largely sub-zero (= -50%) spatio-temporal variabilities are clearly evident in
precipitation simulations as depicted by the biases of CoV (Figure S13a, b) over Savannah and Sahel
zones; except during the months of July-August (peaks of raining season) when the CoV biases do
not significantly deviate from zero (+10%), meaning that, during the monsoon seasons, the degrees
of spatio-temporal variabilities around the mean is almost the same for precipitation simulations and
observations.

Biases of CoV in temperature simulations range between +1% (Figure S13c, d). Exceptions here
are during the dry months of December-March, when largely negative CoV biases are visible over
Savannah and Sahel zones. The implications of CoV biases, here, are that the degrees of spatio-
temporal variabilities around the mean is almost the same for both temperature simulations and their
observations during the wet seasons. Therefore, generally speaking, the w@h2 model simulations
perform precisely well during monsoon seasons in terms of simulating precipitation and near surface
maximum temperature. Summarily, on the average, the inter-annual variabilities of simulated w@h2
precipitation and near surface maximum temperature do not significantly exceed those of
observations.

The discrepancies, as depicted by NSD, are majorly less than a factor of 1.0. As depicted on
Figures 8, S6 and S7, the discrepancies between the ensemble means and observations (i.e.,
CRU/ERAS), are smaller than the discrepancies between individual ensemble members and
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observations. For precipitation simulations, NSD is growing larger (> 1) as we move northwards
towards Sahel zone (Figure 8a). Meanwhile, NSD tends to a factor of 1.0 as monsoon seasons are
approached for temperature simulations (Figure 8b). This shows that there are little or negligible
deviations between simulated and observed temperatures during the monsoon seasons. Generally,
the majority of the ensemble means’ NSD values are outside the spreads of the ensemble members’
NSD; specifically, below the first percentiles (the minimum on the error bars). These behaviors on the
path of the ensemble means confirm the “precise nature” of the ensemble means over the members as
already documented (e.g., Ehrendorfer, 1997; Hamil and Colucci, 1997; Palmer, 2000; Stensrud et al.,
2000; Stensrud and Yussouf, 2003; Jankov et al., 2005).
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Figure 8. Monthly spreads of normalized standard deviations (NSD) of w@h2 simulations with
respect to observed and reanalyzed a) precipitation [ensemble mean (red circles) and ensemble
members (box and whisker plots)], and b) near surface maximum air temperature [ensemble mean
(blue stars) and ensemble members (box and whisker plots)] over the climatological zones. Months
are on the horizontal axes, e.g., 2.0 represents February. Missing red circles, blue stars and or error
bars (either in parts or wholly) indicate that NSD > 2.0 for the month.

4. Summary and Discussion

This study is motivated by the generation of a remarkably huge ensemble of simulations,
counting more than 10,000 ensemble members. The achievement allows denser sampling of the
climate distributions, allowing more precise calculation of climate model properties. We seek to
provide a performance evaluation of the w@h?2 simulations over West Africa using the framework of
RASAP (reliability, association, skill, accuracy, and precision) measures.
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Results show that, to some significant extent, w@h2 model provides little, if any, predictive
information for precipitation during the dry season, but may provide useful information during the
monsoon seasons. This means that a prospective user gets to decide whether it is “useful” for his/her
particular application. This evaluation provides a prospective user with information that he/she can
use to decide whether the model might be “useful or not”. For instance, a prospective user may ignore
rainfall simulations during the dry seasons (when there are not much to predict), but consider it for
the wet seasons. Contrary to the results for precipitation, w@h2 model provides sufficient predictive
information for the near surface maximum temperature over West Africa throughout the year. For
example, the model is able to reproduce all the annual characteristics of maximum air temperature
such as 1. the two peaks of maximum air temperature over all the climatic zones; 2. the Sahel being
the warmest of all the zones, except during the boreal winters; 3. the dip in the annual maximum
temperatures over all climatic zones during the peak of the rainy season; and 4. the annual north-
south oscillation of the thermal depression.

Analyses carried out in this paper have provided some statistical insights to the nature of the
w@h2 simulations over West African region. The w@h2 modelling system was designed for the
investigation of the behavior of extreme weather under anthropogenic climate change, i.e., event
attribution. For event attribution, as earlier stated, measures of the performance of a model in terms
of climate variability may be more relevant than measures of the mean climatology (Bellprat and
Doblas-Reyes, 2016; Lott and Stott, 2016; Bellprat et al., 2019). Therefore, w@h2 model is unique in
producing large sample sizes that are able to show that sampling quality of the tails of the distribution
is no longer the primary constraint / source of uncertainty.

Bellprat and Doblas-Reyes (2016) and Bellprat et al. (2019) point out that if the unforced
variability of a model, in comparison to observation, is too small / large then the model will be too
keen / not keen enough to attribute an event’s occurrence to emissions. Here, the unsubstantial bias
and low variability in its precipitation and temperature simulations present the model as too keen to
attribute an event to emissions. In addition, high skills, especially during the monsoon seasons, may
probably mean that there is a lot of predictability in the system. Therefore, for an SST-forced system
like w@h2, this means that event attribution conclusions are conditional on the occurrence of the
observed SST state (Risser et al., 2017).

Furthermore, lack of obvious quality of the model in terms of rain during the dry seasons may
not mean that it has a bias for event attribution analysis. It may only mean that there are no evidences
that strongly supports the notion that the model is accurately simulating the appropriate processes
for extremes. But, on the contrary, predictive skills for the onset season suggest that the model is
getting processes right.

Investigating the reasons for the model’s deficiencies is beyond the scope of this work. The
investigation shall be attended to in the second part of this work, where we intend to consider the
model’s reproducibility of atmospheric dynamics that influence and modulate West African weather
and climate. Then, we will fully be able to say if the model is doing a reasonable job of capturing
processes over West Africa.
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