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Abstract: Weather and climate forecasting is extremely important for improving the socio-economic 
well-being of the West African region. It safe-guards the region from weather and climate related 
disasters. Hence, utilization of products from climate models are being encouraged and have 
therefore become essential tools and life-savers, in spite of the fact that climate models do not fully 
comply with attributes of forecast qualities - RASAP: reliability, association, skill, accuracy and 
precision. This paper thus quantitatively evaluates, in comparisons to CRU and ERA5 datasets, the 
RASAP compliance-level of the weather@home2 modelling system (w@h2: a successor to the well-
known weather@home1 modelling system) which now produces an exceptionally large number of 
ensembles of simulations (>10,000). Having been designed for the investigation of the behavior of 
extreme weather under anthropogenic climate change, findings show that the performance of w@h2 
in terms of climate variability may be more relevant than measures of the mean climatology. To 
some significant extent w@h2 model provides little, if any, predictive information for precipitation 
during the dry season, but may provide useful information during the monsoon seasons as well as 
skill to capture the Little Dry Season over the Guinea zone; predictive skills for the onset season 
suggest that the model is getting processes right. The w@h2 model is also able to reproduce all the 
annual characteristics of the surface maximum air temperature over the sub-region with skill to 
detect heat waves that usually ravage West Africa during the boreal spring. With synchronization 
> 80% the model has the ability to reliably / accurately simulate the actual anomaly signs of the 
observed climate parameters which is one of the special attributes of a model that is needed for 
seasonal climate predictions and applications. The large sample sizes produced by the w@h2 model 
are able to show that sampling quality of the tails of the distribution is no longer the primary 
constraint / source of uncertainty. The study further furnishes a prospective user with information 
on whether the model might be “useful or not” for a particular application. 

Keywords: West Africa; forecast quality; Weather@home2; seasonal climate; evaluation 
 

1. Introduction 

Over the years, especially in West African region, researchers’ and stakeholders’ confidence in 
the use of climate models is increasing. This is due to improvements in nearly all aspects of climate 
models’ fidelity and skill, as well as more detailed understanding of the degree of fidelity and skill 
(Mariotti et al., 2011; Nikulin et al., 2012; Diallo et al., 2013; Klein et al., 2015; Sylla et al., 2015). 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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Consequently, information from climate models are extensively being used by the region’s policy 
makers and various socio-economic sectors (e.g., water resources management, agriculture, 
engineering, environmental management, health, insurance, researchers, etc.) either for risk 
management or for day-to-day, season-to-season or long-term strategies and planning (Tall et al., 
2012; Niang et al., 2014; Nkiaka et al., 2019). Proliferation of climate models calls for caution among 
researchers and stakeholders. To calm the fears and concerns of prospective users, thorough 
performance evaluations of climate models have to be carried out before their eventual utilization. 

The performance of a climate model can be evaluated according to these five attributes of 
forecast qualities, hereafter known as RASAP: R (reliability), A (association), S (skill), A (accuracy), and 
P (precision) (Storch and Zwiers, 2003; Walther and Moore, 2005; Ebert et al., 2013; Wilson and Giles, 
2013). In short terms, reliability can be referred to as the ability of a forecast to provide an unbiased 
estimate. According to Mason (2004) and Ebert et al. (2013) it is a key quality of a probabilistic long-
range forecast. Murphy (1988 and 1995) described association as a measure of linear relationship 
between forecast and observation. Skill is a comparative quantity that shows if a set of forecasts is 
better than a reference set, e.g., climatology, persistence, etc. It is a measure of relative ability of a set 
of forecasts with respect to some set of standard reference forecasts (Wilks, 1995; Mason, 2004; Weigel 
et al., 2006; Kim et al., 2016). Accuracy can be referred to as the overall correspondence or level of 
agreement between model and observation. According to Wilson and Giles (2013) it summarizes the 
overall quality of a forecast; while precision, a measure of uncertainty, is simply the absence of random 
error, i.e., a measure of statistical variance of an estimation that is independent of a true value 
(Debanne, 2000). Precision is described as the spread of the data whenever sampling is involved (West, 
1999). 

Climate models do not fully pass thresholds for these measures over many regions of the world, 
including the West African region, and hence they are not fully RASAP compliant. Assessing their 
degree of RASAP compliance therefore provides a quantitative evaluation of their ability to represent 
regional climate. Performances of several climate models have been evaluated over the West African 
region. While some of these evaluations have been motivated by the importance of the West African 
monsoon and its circulation features, others have been interested in mechanisms and processes 
responsible for rainfall regimes (Xue et al., 2010; Nikulin et al., 2012; Diallo et al., 2013). There have 
also been some evaluations to improve the understanding of the nature of the interactions across the 
different dynamical systems within the West African monsoon (Mariotti et al., 2011; Zaroug et al., 
2013; Diallo et al., 2014; Klein et al., 2015; Sylla et al., 2015). 

A major challenge in evaluating RASAP performance is that many of the measures require large 
initial-condition ensembles of simulations, which can be computationally prohibitive. In this paper 
we focus on evaluating the RASAP performance of a modelling system that has produced an 
exceptionally large number of simulations, thus providing material for robust tests against the 
RASAP measures – the weather@home2 modelling system (hereafter w@h2). w@h2 is a successor to 
the well-known weather@home modelling system (hereafter w@h1: Massey et al., 2015; Guillod et al., 
2017). Generally, the w@h2 modelling system can generate very large ensembles of simulations 
(>10,000) that allow denser sampling of the climate distributions. This is made possible by the 
enlistment of thousands of volunteers around the world who, on their personal computers, run 
simulations starting from different initial conditions. The results are then uploaded onto the 
climateprediction.net (CPDN: https://www.climateprediction.net) server facility hosted by the 
University of Oxford (Anderson, 2004). The project runs the Hadley Centre Regional Model version 
3P (HadRM3P) nested in the Hadley Centre Global Atmospheric Model (HadAM3P-N96: Jones et al., 
2004) over various domains of the world, now including West Africa. Details of the improvements 
made in w@h2 in comparisons to w@h1 are discussed in Guillod et al. (2017). 

The w@h2 modelling system has been designed for the investigation of the behavior of extreme 
weather under anthropogenic climate change. This means that measures of the performance of the 
model in terms of climate variability are more relevant than measures of the mean climatology 
(Bellprat and Doblas-Reyes, 2016; Lott and Stott, 2016; Bellprat et al., 2019). If the w@h2 modelling 
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system is to be used to understand changes in extreme weather over West Africa, then it is pertinent 
to evaluate the performance of the w@h2 simulations over the region. 

Specifically, we are asking the following questions – 1. Are the w@h2 simulations, over West 
Africa, reliable? 2. Does any linear association exist between the simulations and observations / 
reanalysis over West Africa? 3. Do these simulations have skill over West Africa? 4. Are the 
simulations accurate, as well as precise over this region? These questions are asked with a view to 
understanding whether the w@h2 simulations may be useful for extreme event attribution analysis 
over West Africa. This paper will utilize a series of statistical metrics to calculate the selected 
attributes of forecast qualities, i.e., RASAP, to provide insights on the nature of the w@h2 simulations. 

West Africa, a unique region of atmospheric complexities, is a tropical land mass located roughly 
within longitudes 20oW to 20oE, and latitudes 0o to about 25oN of the African continent (Figure 1). 
The region comprises three climatic zones, namely: Guinea – a tropical rain forest along the Atlantic 
coast; Savannah – a transition zone of short trees and grasses; and the Sahel – an Arid desert in the 
northern inlands (Nicholson and Palao, 1993; Nicholson, 1995; Omotosho and Abiodun, 2007). 

 
Figure 1. The domain of West Africa showing the topography of the surface (shaded; meters) and 
highlights of climatological zones – Guinea (green box), Savannah (blue box), and Sahel (red box). 

West African climates result from the interactions of two migrating air masses: tropical maritime 
and tropical continental air masses. At the surface, these two air masses meet at a belt of variable 
width and stability called the Inter-Tropical Discontinuity (ITD: Omotosho, 2007) or the Inter-
Tropical Convergence Zone (ITCZ) if at upper level. The north and south migration of ITD, which 
follows the annual cycle, influences the climate of the region (Nicholson, 1993; Omotosho, 2007). 
Besides ITD there are other key climate modification mechanisms over West Africa. Most relevant 
are the El Niño Southern Oscillation (ENSO; Latif and Grotzner, 2000; Camberlin et al., 2001; 
Newman et al., 2003), the sea surface temperature (SST) anomalies over the Gulf of Guinea (GOG; 
Omotosho and Abiodun, 2007; Odekunle and Eludoyin, 2008), the African Easterly Jet (AEJ; Diedhiou 
et al., 1998; Grist and Nicholson, 2001; Afiesimama, 2007), and the thermal lows (Parker et al., 2005; 
Lavaysse et al., 2006, 2009, 2010). The region’s climate is classified into two seasons driven by the 
position of the ITD – the dry season and the rainy season. The period of dry season runs 
approximately from November to March / April. It is a time of hot and dry tropical continental air 
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mass driven by the ridges from the northern hemispheric mid-latitude high pressure system. During 
these periods, the prevailing northeasterly winds, north of the ITD, bring dry and dusty conditions 
across the region with the southernmost extension of this air mass occurring in January between 
latitudes 5° and 7°N. Tropical maritime southwesterly air mass is found at the southern ends of the 
ITD. The moist air mass dominates during the periods of the rainy seasons. The region’s rainy seasons 
run from April / May to October depending on the climatic zone of interest (Figure 1: Nicholson and 
Grist, 2003; Redelsperger et al., 2006; Omotosho and Abiodun, 2007). The northernmost penetration 
of the wet air mass is in August, usually between latitudes 19° and 22°N. With all these atmospheric 
complexities, the use of dynamical climate models for forecasting of weather and projection of climate 
are indispensable over the region. Therefore, performance evaluation of meteorological forecasts and 
or simulations is crucial for understanding the errors of, monitoring the accuracy of, and making 
progress in climate modelling systems (Ebert et al., 2013). 

While this section introduces the motivations and concept of the study including the description 
of the study domain and its complexities, section 2 will discuss the data sets analysed in the paper, 
and the adopted analysis procedures. Section 3 will describe the results, while Section 4 will provide 
summary and conclusions. 

2. Datasets and the Analysis Procedures 

2.1. Datasets – Observation, Reanalysis, and Simulation Data Sets 

This study used monthly precipitation and near surface maximum air temperature from three 
categories of datasets – gridded observational, reanalysis, and w@h2 simulation. The observation 
datasets are from the University of East Anglia Climate Research Unit (CRU version TS4.03 (CRU-
TS4): https://crudata.uea.ac.uk/cru/data/hrg/; New et al., 2000; Harris et al., 2013). This is based on 
analysis of records of observations from over 4000 weather stations. The reanalysis datasets are from 
the European Centre for Medium-Range Weather Forecasts (ECMWF – ERA version 5 (ERA5): 
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5; Hersbach et al., 2018). 
Simulated datasets are from the w@h2 modelling system obtained from the CPDN team 
(https://www.climateprediction.net) at the University of Oxford. The w@h2 modelling system 
(HadRM3P nested in HadAM3P-N96: Jones et al., 2004) is executed in various regional domains over 
the world, including an African domain that encompasses West Africa. 

These datasets have different spatial resolutions. The observed variables (CRU) are on a 
horizontal grid resolution of 0.5°x0.5° longitude–latitude, while the reanalysis (ERA5) datasets have 
a horizontal resolution of 30 km grid. Horizontal resolution of w@h2 simulations is about 0.22o (25 
km) compared to about 0.44o (50 km) in w@h1. For uniformity, the horizontal resolutions of all the 
simulated (w@h2) and the reanalysis (ERA5) datasets were re-gridded to match that of the 
observation (CRU) dataset before they were analyzed. All monthly simulated variables from w@h2 
used in this study are from 71 ensemble members per year. Each ensemble member differs only 
slightly in their initial conditions and we focus on the 31-year period from January 1987 to December 
2017. 

2.2. Methodology and Analysis Procedures 

This paper aims to evaluate the performances of the w@h2 simulations over West Africa in line 
with the qualities of selected forecast attributes – RASAP. In comparisons to CRU and ERA5 datasets, 
w@h2 simulations are subjected to a series of quantitative statistical metrics to calculate RASAP 
measures. As depicted in Table 1, temporal and spatial analyses of these statistical metrics are carried 
out and then presented in various graphical formats for interpretation. We also place some figures in 
the supplementary domain of this paper for clarity of purpose. 

Results and analyses from this study will be presented on the basis of calendar months, in 
reflection of their common usage in climate services throughout the region and of the typical monthly 
duration of noteworthy extreme events in the region (e.g., Lawal et al., 2019). 
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Table 1. List of statistical metrics used to calculate the attributes of forecast qualities in this study. 

Attribu
tes 

Descriptive 
Statistics  Statistical Metric Inference  Reference  

 Climatology 

A long-term arithmetic mean. 
𝐴𝐴 =  1

𝑛𝑛
∗  ∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1      …….(1) 
A = average (or arithmetic mean); n 

= the number of terms (e.g., the 
number of items or numbers being 

averaged or length of observations); 
xi = the value of each individual 
variable in the list of parameters 

being averaged.  

To determine the monthly, 
seasonal or annual cycle of a 

variable.  

Hidore et al. 
(2009) 

 Bias (B) 

The difference between the values 
of simulations (w@h2) and 

observations (CRU) or reanalysis 
(ERA5).  

𝐵𝐵 = 𝐹𝐹 − 𝑂𝑂     …….(2) 
B = bias; F = simulations; O = 
observations or reanalysis.  

A measure of over- (positive 
bias) or under-estimations 
(negative bias) of variables. 

Generally, bias gives marginal 
distributions of variables.  

Walther and 
Moore (2005) 

 
R

el
ia

bi
lit

y 
 Mean bias error 

(MBE) 

Normal bias calculations and, the 
results divided by the length of 

observations.  
𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑𝐵𝐵

𝑛𝑛
     …….(3a) 
or 

𝑀𝑀𝑀𝑀𝑀𝑀 =  𝐴𝐴𝑓𝑓 −  𝐴𝐴𝑜𝑜     …….(3b) 
MBE = mean bias error; Af = 

arithmetic mean of the forecast or 
simulation; Ao = arithmetic mean of 

the observation or reanalysis. 

A measure to estimate the 
average bias in the model. It is 

the average forecast or 
simulation error representing 

the systematic error of a model 
to under- or over-forecast. 

Walther and 
Moore (2005) 

 Scatter diagrams 

Point or aerial average plots of 
w@h2 simulations versus 

observation (CRU) and reanalysis 
(ERA5) values.  

 

Provides information on bias, 
outliers, error magnitude, 
linear association, peculiar 

behaviors in extremes, misses 
and false alarms. Perfect 

simulation points in 
comparison to observation 

should be on the 45o diagonal 
line.  

Wilks (1995), 
Jolliffe and 
Stephenson 

(2012) 

A
ss

oc
ia

tio
n 

**Correlation 
coefficient (r) 

Spatio-temporal Pearson’s Product-
Moment Correlation Coefficient  
𝑟𝑟 =  𝑛𝑛(∑𝐹𝐹∗𝑂𝑂)−(∑𝐹𝐹)(∑𝑂𝑂)

√[𝑛𝑛∑𝐹𝐹2−(∑𝐹𝐹)2][𝑛𝑛∑𝑂𝑂2− (∑𝑂𝑂)2]
       

…….(4) 
r = correlation coefficient 

A statistical measure of the 
strength of a linear 

relationship between the 
paired variables i.e., 

simulations and observation / 
reanalysis data sets. By design 
it is constrained as -1 ≤ r ≤ 1. 
Positive values denote direct 
linear association; negative 
values denote inverse linear 

association; a value of 0 
denotes no linear association; 
while the closer the value is to 
1 or –1, the stronger the linear 

association. Perfect 
relationship is denoted by 1. It 
is not sensitive to the bias but 
sensitive to outliers that may 
be present in the simulations. 

Murphy (1988 
and 1995) and, 

Storch and 
Zwiers (2003) 
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Coefficient of 
determination 

(CoD) 

Mathematically, this is a square of 
the correlation coefficient.  
CoD = 𝑟𝑟2       …….(5)  

CoD = coefficient of determination 

CoD is a measure of potential 
skill, i.e., the level of skill 

attainable when the biases are 
eliminated. It is also a 
measure of the fit of 

regression between forecast 
and observation. It is a non-
negative parameter with a 
maximum value of 1. For a 
perfect regression, CoD = 1. 
CoD tends zero for a non-

useful forecast.   

Murphy (1995) 
and, Storch and 
Zwiers (2003) 

Sk
ill

 Ranked 
probability skill 

score (RPSS) 

A measure of the accuracy of the 
forecast in terms of the probability 

assigned. It compares the 
performance of a forecasting 

system against a simple 
climatological reference.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1−  𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

       …….(6a) 

RPSS = ranked probability skill 
score; RPSfcst is the ranked 

probability score of the forecast; 
RPSclim is the ranked probability 

score of a climatological reference. 
Where  

𝑅𝑅𝑅𝑅𝑅𝑅 =  1
𝑛𝑛−1

∗  ∑ (𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 −  𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐)2𝑛𝑛
𝑛𝑛=1          

…….(6b) 
(RPS = ranked probability score; 

Fcum = cumulative value of forecast; 
Ocum = cumulative value of 

observation.) 

Measures the forecast 
accuracy with respect to a 

reference forecast (e.g., 
observed climatology). 

Positive values (maximum of 
1) have skill while negative 

values (up to negative 
infinity) have no skill. Positive 
RPSS implies that the RPS is 
lower for the forecasts than it 
is for climatology forecasts. 

Thus, the score reflects 
discrimination, reliability and 

resolution. 
 

RPS measures the squared 
forecast error, and therefore 
indicates to what extent the 

forecasts lack success in 
discriminating among 

differing observed outcomes, 
and/or have systematic biases 

of location and level of 
confidence. Thus, the score 

reflects the degree of a lack of 
discrimination, reliability 

and/or resolution. 

Wilks (1995), 
Storch and 

Zwiers (2003) 
Mason (2004), 
Weigel et al. 

(2006), and Kim 
et al. (2016) 

 Mean absolute 
error (MAE) 

The sum of the absolute values of 
the normal bias calculations and, 

the results divided by the length of 
observations. 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛

 ∗  ∑ |𝐵𝐵𝑖𝑖|𝑛𝑛
𝑖𝑖=1      …….(7) 

MAE = mean absolute error; |Bi| = 
absolute values of individual bias. 

 

A measure of how big of an 
error we can expect from the 
forecast on average, without 
considering their directions. 
MAE measures the accuracy 

of a continuous variable. 
Though, just like the root 

mean square error (RMSE), it 
also measures the average 

magnitude of the errors in a 
set of forecasts; however, 

while RMSE utilizes a 
quadratic scoring rule, MAE is 
a linear score – which means 

that all the individual 
differences are weighted 

equally in the average. MAE 
ranges from zero to infinity. 

Lower values are better. 

Pledger (2000), 
Pledger and 

Schwarz (2002) 
and, Storch and 
Zwiers (2003) 
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A
cc

ur
ac

y 

Root mean square 
error (RMSE) 

The square root of the average of 
the squares of the errors.  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  √[ 1

𝑛𝑛
 ∗  ∑ (𝐵𝐵𝑖𝑖)2𝑛𝑛

𝑖𝑖=1  ]       
…….(8) 

RMSE = root mean square error; Bi 
= individual values of bias. 

It measures the magnitudes of 
the error, weighted on the 

squares of the errors. Though, 
it does not indicate the 
direction of the error; 
however, it is good in 

penalizing large error. It is 
sensitive to large values (e.g., 
in precipitation) and outliers. 
This is very useful when large 
errors are undesirable. Ranges 

from zero to infinity. Lower 
values are better.  

Rosenberg et al. 
(1995), Zelmer 

and Esch (1999) 
and, Storch and 
Zwiers (2003) 

 Synchronization 
(Syn) 

With the use of contingency tables, 
combinations of positive and 
negative anomaly hits in the 
predictions of inter-annual 

anomalies are enumerated and 
expressed as a percentage of the 

total prediction events.  
𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑𝑃𝑃ℎ + ∑𝑁𝑁ℎ

𝑛𝑛
 ∗ 100%       …….(9) 

Syn = synchronization; Ph = true 
positive hits; Nh = true negative 

hits. 

Synchronization focuses on 
the predictive capabilities of a 
model. It shows how much a 
simulated value agrees with 

an observed value in the signs 
of their anomalies without 

taking magnitudes into 
consideration. Therefore, the 
evaluated synchronization, in 
probabilistic sense, is similar 

to accuracy. The best 
synchronization is 100%.  

Misra (1991), 
Storch and 

Zwiers (2003), 
Lawal (2015) 

and, Wilson and 
Giles (2013) 

 Standard 
deviation (Std) 

This is the square root of variance. 

𝑆𝑆𝑆𝑆𝑆𝑆 (𝜎𝜎) =  �∑ (𝑥𝑥𝑖𝑖−𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎)2𝑛𝑛
𝑖𝑖−1

𝑛𝑛−1
       

…….(10) 
Std (𝜎𝜎) = standard deviation, xi = the 

value of each individual variable, 
xave = the average value of x 

distribution.   

Std helps to determine the 
spread of simulations and or 

observations from their 
respective means, i.e., how far 

from the mean a group of 
numbers is. It has the same 

unit as the mean.  

West (1999), 
Brose et al. 

(2003), Melo et 
al. (2003) and, 

Storch and 
Zwiers (2003) 

Pr
ec

is
io

n 

Coefficient of 
variation (CoV) 

A ratio of standard deviation of a 
population to the mean of the 

population, usually expressed as a 
percentage. 

𝐶𝐶𝐶𝐶𝐶𝐶 =  𝜎𝜎
𝜇𝜇
∗ 100%       …….(11) 

CoV = coefficient of variation; 𝜎𝜎 = 
standard deviation; 𝜇𝜇 = arithmetic 

mean. 

It is used for comparing the 
degree of variation from one 
data series to another (in this 

case between forecast or 
simulation and observation 

where the means are 
significantly different from 
one another). A lower CoV 

implies low degree of 
variation while a higher CoV 

implies a higher variation. 
Therefore, the higher the CoV 

the greater the level of 
spreading around the mean. 

West (1999) and, 
Storch and 

Zwiers (2003) 
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Normalized 
standard 

deviation (NSD) 

Normalization is carried out by 
dividing the standard deviation of 

the simulations by the standard 
deviation of the observations. 

This makes it possible to 
access the statistics of 

different fields (observations 
and simulations) on the same 
scale. Here, Taylor diagrams 

are used to depict the 
normalized standard 
deviation in line with 

correlation coefficients. The 
diagrams are able to measure 

how well observations and 
simulations match each other 

in terms of: 1. similarity as 
measured by correlation 

coefficients, and 2. deviation 
factors as measured by 
normalized standard 

deviations. Taylor diagrams 
are able to provide a 

summarizing evaluation of 
model performance in 

simulating atmospheric 
parameters.  

West (1999) and, 
Storch and 

Zwiers (2003) 

**A measure of statistical significance, such as p-value (Mason, 2008), is also assessed for the correlations that 
were evaluated in this study. Statistical significance was estimated using a two-tailed experiment at the p = 0.1 
level, assuming uncorrelated Gaussian noise. ∑ denotes the summation formula. 

3. Results 

3.1. Seasonality (and Reliability) 

Here, the ability of w@h2 model to replicate seasonality and its deviations from it are 
investigated, bearing in mind that reliability of a probabilistic forecast is statistical consistency 
between each class of forecasts and the corresponding distribution of observations that follows such 
forecasts (Ebert et al., 2013). Statistical metrics used to support evaluation of reliability, in this paper, 
are climatology, mean bias and the use of scatter diagrams. More details are depicted in Table 1. 

3.1.1. Precipitation 

The w@h2 model is able to capture the monthly mean distributions of rainfall spatially and 
temporally (Figures 2 and S1). As the rain band transverses hundreds of kilometers from south inland 
to north during the first half of the calendar year, w@h2 is able to capture the maximum rainfall along 
the coastal Guinea areas as well as the tropical aridity climates over the Sahel (Figures 2 and S2a-c). 
The spatial correlations (r) between w@h2 simulations and CRU / ERA5 observations range from 0.68 
to 0.85 (Figure S1a). While the model is able to simulate reliably the zenith characteristic of rainfall in 
August over both Savannah and Sahel, it is also able to capture the pause in rainfall intensities along 
the coastal Guinea areas in August – the little dry season (LDS: Figures 2 and S1a-c). However, the 
LDS as simulated by w@h2 extends from Sierra Leone to southern Cameroon (Figure S1a) contrary 
to the Cote d’Ivoire to southeastern Nigeria extent as observed by CRU and ERA5 (Figure S1b, c). 

Figure S2a shows that w@h2 rainfall over Guinea is consistently too low from June to October. 
Savannah rainfall is too high during March-May and too low during June-October (Figure S2b), while 
Sahel rainfall is too high from April to September (Figure S2c). The bias ranges of ±5mm day-1 (Figure 
S2d, e) are small in comparison to rainfall totals over most of the region. 
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Figure 2. (Top panels) Aerial averages of monthly mean distributions of rainfall (mm day-1) for each 
climatological zone: left) Guinea, middle) Savannah, and right) Sahel. (Bottom panels) Mean spatial 
distributions of rainfall (shaded; mm day-1) over West Africa for the month of August: left) w@h2 
ensemble mean simulation, middle) CRU-observation, right) ERA5-reanalysis. Stippling on the 
bottom panels indicate areas, over West Africa, that usually experience the little dry season (LDS) in 
August. 

3.1.2. Temperature 

The spatial correlations (r) of the monthly temperature climatology between w@h2 simulations 
and CRU / ERA5 observations are generally greater than 0.9 (Figures S3a-c). w@h2 under-estimates 
the temperature in all climatic zones by 0.5-2.0°C (Figure S4a-e), though with patches of inconsistent 
over-estimations over the Sahel. 

In addition, the w@h2 model captures the four main characteristics of the seasonal cycle of near 
surface maximum temperature over West Africa. First, the model captures the two peaks of 
maximum air temperature exhibited annually in all climatic zones, with the primary peak being in 
March-May with the secondary peak being in October-November (Figures 3, S3a-c and S4a-c). 
Second, the model also agrees with observations that the Sahel region is always warmer than both 
the Savannah and coastal Guinea regions, except during the boreal winters. Third, the model agrees 
that there is a dip in the annual maximum temperatures over all climatic zones during the peak of 
the rainy season (i.e., in August: Figures 3 and S3a-c). Lastly, the annual north-south oscillation of the 
thermal depression is also captured by the w@h2 model (Figure S3a-c); this being a large expanse of 
areas where the lowest atmospheric pressure coincides with surface temperature maximum (Figure 
3, Parker et al. (2005), Lavaysse et al. (2009 and 2010)). 
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Figure 3. (Top panels) Aerial averages of monthly mean distributions of near surface maximum 
temperature (oC) for each climatological zone: left) Guinea, middle) Savannah, and right) Sahel. 
(Bottom panels) Mean spatial distributions of near surface maximum temperature (shaded; oC) over 
West Africa for the month of August: left) w@h2 ensemble mean simulation, middle) CRU-
observation, right) ERA5-reanalysis. 

3.2. Association 

Association, a statistical measure of the strength of a linear relationship between a paired 
simulation and observation / reanalysis data sets, is evaluated here by the use of spatio-temporal 
Pearson’s Product-Moment Correlation Coefficient (r) (Table 1). To a low extent, we also utilize the 
coefficient of determination (CoD) which is simply the square of r. CoD measures the level of skill 
attainable when the biases are eliminated. 

The inter-annual variability of Savannah rainfall and Sahel near surface maximum temperature, 
respectively, for the months of August and May are shown in Figure 4 (see Figure S5 for other months 
and zones). The observed (CRU/ERA5) values generally fall within the spread, notably during the 
unusually wet August 1999 over the Savannah and hot May 1998, 2010, and 2016 over the Sahel. 
There are some cases though when observed values are outside the spread of the ensemble members, 
such as the cool May 1991 over the Sahel. 
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Figure 4. Aerial averages of inter-annual variations of: top panel – precipitation anomalies (mm day-

1) over Savannah in August and, bottom panel – near surface maximum air temperature anomalies 
(oC) Sahel in May. Values of synchronization (%) and the temporal correlation, r (in brackets), between 
the w@h2 ensemble mean precipitation and temperature and CRU (left) and ERA5 (right) are written 
at the bottom of each panel. 

The linear relationship between w@h2 model’s temperature simulations and observations are 
strongly direct, while it is less strong for precipitation simulations. Correlations, r, values as large as 
0.78 and 0.89 were evaluated for precipitation and temperature respectively, however cases of weak 
relationships, with r as low as ≈ -0.4 are also present, for individual simulations (Figures 4, and, S5-
7). Cases of weak relationships are more noticeable in the inter-annual variabilities of monthly 
precipitation simulations than in temperature (Figures S5-7). For both precipitation and temperature 
simulations, the strength of linear associations diminishes as we move to the drier north towards the 
Sahel (Figures 5 and S5-8). 
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Figure 5. Monthly spreads of the correlation coefficient, r, between the w@h2 simulations and the 
observed and reanalyzed a) area-averaged precipitation [ensemble mean (red circles) and ensemble 
members (box and whisker plots)], and b) area-averaged near surface maximum air temperature 
[ensemble mean (blue stars) and ensemble members (box and whisker plots)] over the climatological 
zones. Months are on the horizontal axes, e.g., 2.0 represents February. 

Irrespective of the magnitudes, the ability of the ensemble means of w@h2 model to capture the 
anomaly sign of the observed precipitation and temperature is generally greater than 40%, and at 
most 90% (Figure S5a-f). In other words, the model’s ensemble mean will adequately predict the sign 
of 2 out of 5 observations correctly; and will, at most, simulate about 9 out of 10 observations correctly 
(synchronization ≈ 90%). 

The normalized standard deviations (NSD) of the majority of the ensemble members are greater 
than those of the ensemble means (Figures S6 and S7). This is because of the averaging that filters out 
the simulated variabilities of the ensemble means (Lawal, 2015; Lawal et al., 2019). These imply that 
the discrepancies between the ensemble means and observations, CRU/ERA5, are smaller than the 
discrepancies between individual ensemble members and observations. 

Furthermore, there are noticeable differences and similarities in the way w@h2 model’s 
precipitation and near surface maximum temperature simulations associate with observations 
(CRU/ERA5). Figure S8a-d shows that r between precipitation simulations and observations contain 
both direct and weak linear relationships, while cases of strong direct linear relationships dominate 
the r between the temperature simulations and observations. For instance, the correlations exhibited 
by the precipitation ensemble means are -0.4 < r < 0.78 while those of temperature are 0 < r < 0.8 
(Figure 5a, b). Some of the precipitation ensemble means and members exhibited weak linear 
relationship with observations on monthly basis, except in July and August for CRU, and July, 
August and September for ERA5 over coastal Guinea (Figure 5a). This is however different for 
temperature simulations where all the ensemble means exhibited direct linear relationship, of various 
strength, with observations on monthly basis (Figure 5b). The best performance here is over Guinea 
where none of the temperature ensemble members had negative linear relationship with 
observations, i.e., 0 < r < 1. 

Four similarities are typical to the associations of w@h2 model’s precipitation and temperature 
simulations with observations. Firstly, the CoD for both precipitation and temperature simulations 
are generally less than 0.5 (Figures not shown). Higher values, 0.5 < CoD < 0.8, are recorded during 
the peaks of the monsoon seasons. This corroborates the values of r, and implies that w@h2 model 
may also be skillful when biases are absent. Secondly, the spatio-temporal linear associations seem 
to strengthen with observations as rainfall seasons set in and stabilize. These are very obvious during 
the months of July, August and September (Figure S8a-d). Thirdly, the strength of linear associations, 
for both precipitation and temperature simulations, diminishes as we move north towards the Sahel. 
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And lastly, all values of the associations of the ensemble means are enveloped by the spreads of the 
ensemble members’ associations (Figure 5). However, while the values of associations are generally 
greater than the 75th percentiles of the spreads in temperature simulations, they do not have any 
agreeably defined positions in precipitation simulations. The implications here are that the w@h2 
model exhibits more significant associations during the peak of the West African monsoon seasons 
than the rest of the year. However, cautions are encouraged in terms of significant associations when 
applying the simulations over the Sahel. 

Summarily for temperature, the ensemble mean always has a stronger correlation with 
observations than do most of the simulations; for precipitation, the rule seems to hold but maintain 
the sign of the correlation, i.e., a stronger anti-correlation when most simulations have negative r. The 
temperature’s positive correlation may be attributed to the strong warming trend over the 
experimental period (Cook and Vizy, 2015) while the weak correlations for precipitation may 
primarily reflect the inter-annual variability (Nicholson, 2001 and 2009). 

3.3. Skill 

The ranked probability skill score (RPSS) is here used to evaluate the ability of the w@h2 model 
to reproduce the observed monthly inter-annual variations in precipitations and near surface 
maximum temperature over West Africa (Table 1). RPSS measures the forecast accuracy with respect 
to a reference observation (e.g., observed climatology) as the scores reflect discrimination, reliability 
and resolution. 

Positive skills, 0 < RPSS < 1, dominate Guinea and Savannah zones in all the months. However, 
reverse is the case over Sahel in precipitation simulations (Figures 6 and S9). Nevertheless, all values 
of RPSS from ensemble means are within the spreads of the ensemble members’ RPSS; though, the 
spreads are of diverse thickness, the broadest being exhibited over Guinea zone. The ensemble means 
of the w@h2 model, with reference to the two observations (CRU/ERA5), returned positive values of 
RPSS for precipitation over Guinea throughout the year and positive values of RPSS for temperature 
over all the climatological zones, also throughout the year (except in January with reference to ERA5 
over Sahel: Figure 6). Generally, while the skills of the w@h2 model with respect to precipitation 
simulations, over Sahel, may not be significantly impressive, the model may however have skills to 
detect heat waves that usually ravage West Africa during the boreal springs as well as skills to capture 
the LDS over Guinea zone. 
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Figure 6. Monthly spreads of the ranked probability skill score (RPSS) for w@h2 simulations with 
respect to observed and reanalyzed a) precipitation [ensemble mean (red circles) and ensemble 
members (box and whisker plots)], and b) near surface maximum air temperature [ensemble mean 
(blue stars) and ensemble members (box and whisker plots)] over the climatological zones. Months 
are on the horizontal axes, e.g., 2.0 represents February. Missing red circles, blue stars and or error 
bars (either in parts or wholly) indicate that RPSS < -1.0 for the month. Note the different vertical 
scales for the precipitation and temperature panels. 

3.4. Accuracy 

As suggested by Walther and Moore (2005), we utilized mean absolute error (MAE), root mean 
square error (RMSE) and synchronization as measures to estimate accuracy in this paper. As tabulated 
in Table 1, MAE is a measure of the average magnitude of largest error that can be expected from a 
forecast without considering their directions. It is a linear score; meaning that all the individual 
differences are weighted equally in the average. Similar to MAE, RMSE also does not indicate the 
direction of the error, but it penalizes large errors. In contract, synchronization shows how much a 
simulated value agrees with an observed value in the signs of their anomalies without taking 
magnitudes into consideration. 

The maximum average difference, as depicted by MAE, between the w@h2 model simulations 
and the observed (CRU/ERA5) precipitation over West Africa is about 5 mm day-1 (Figure S10a, b). 
The average differences grow in values as rainfall season is setting in. High values of MAE, like 3 to 
5 mm day-1, are more vivid between the months of March to October and are more present in the 
southern coast of Guinea. In line with annual characteristics of rainfall, these high values migrate 
northward in a rainfall-like pattern and annual oscillation. Interestingly, they start to retreat 
southward in August/September. The relatively low values of MAE from November to February does 
not imply higher accuracy in rainfall estimation by the w@h2 model than the other months (Figure 
S10a, b); these are months of relatively very low precipitation (Figures 2 and S1). The error 
magnitudes in precipitation do not represent up to 50% of over- or under-estimations in most parts 
of the sub-region. Therefore, w@h2 model cannot be labelled as a biased estimator of rainfall. 
Nevertheless, as recommended by Olaniyan et al. (2017), we may need to apply caution when 
utilizing ±30% of rainfall estimations as an indicator of biasness and accuracy. 

The maximum average difference between the w@h2 model simulations and the observed 
(CRU/ERA5) near surface maximum temperature over West Africa is about 4oC (Figure S10c, d). 
Generally, these differences are less than 2.8oC. The higher values of MAE tend to occur in the early 
monsoon months of May, June, July and August, predominantly, over northern Savannah and 
southern parts of Sahel. The lower differences, MAE, that dominate the larger spatial expanse of West 
Africa, in all months, presumably make w@h2 model an accurate estimator of near surface maximum 
temperature. 
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There are sharp differences in RMSE and MAE produced from the precipitation simulations of 
w@h2 model. For example, the maximum RMSE in precipitation simulation is about 10 mm day-1 
(Figure S11a, b), while the maximum MAE is about 5 mm day-1 (Figure S10a, b). This difference is, 
though, not large enough to indicate the presence of very large error in the simulation; it, 
nevertheless, signals that the precipitation simulations have large variance in the individual errors of 
its samples due to the existence of extreme precipitation values (the outliers). It is the outliers that 
introduces the random errors, i.e., the variability and or noise in the internal system of the 
precipitation simulations. 

All errors are possibly of the same magnitudes in the near surface maximum temperature 
simulated by w@h2 model. This is because RMSE and MAE are almost equal in magnitudes (panels 
c and d of Figures S10 and S11). In similarity to MAE, RMSE are generally < 2.8oC. This implies that 
it is the bias errors that are predominant here; meaning that the deviations in the temperature 
simulations, from observations, are not due to chance alone. They are rather systemic in nature. 
Exception here is in October – December over Sahel (Figure S11d), where there are sharp 
disagreements between CRU and ERA5 data sets (RMSE > 4oC). Investigating the causes of this 
disagreements is outside the scope of this work. 

While corroborating the depictions on Figure S5a-f, Figures 7 and S12 show that the abilities of 
w@h2 model to simulate the actual anomaly signs of the observed precipitation and near surface 
maximum temperature correctly is generally between 20 and 80% for precipitation ensemble 
members; and between 25 and 95% for temperature ensemble members. These imply that any 
ensemble member of w@h2 model, picked at random, will at worst / best simulate 1 out of 5 
(synchronization ≈ 20%) / 4 out of 5 (synchronization ≈ 80%) actual signs of the anomalies correctly 
for precipitation; while, also at random, they will simulate at least 1 out of 4 (synchronization ≈ 25%) 
actual signs of the anomalies and at most more than 9 out of 10 (synchronization ≈ 95%) actual signs 
of the anomalies correctly for temperature. When combined, the model’s ensemble means of 
precipitation and temperature synchronize between 40% and 90% (Figures 7 and S12). This shows 
that at worst they (i.e., the ensemble means) will simulate 2 out of 5 actual anomalies correctly, and 
will, at best, simulate 9 out of 10 actual signs of the anomalies correctly. Conclusively, while the w@h2 
model may not be accurate in terms of getting the magnitudes of climate parameters right due to 
inherent presence of biases of different types, it may however be accurate in simulating the actual 
anomaly signs of the climate parameters rightly, to some significant extent. This is good because 
ability to reliably / accurately simulate the actual anomaly signs of observed climate parameters is 
one of the special attributes of a model that is needed for seasonal climate predictions and 
applications. 
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Figure 7. Monthly spreads of synchronization (%) of w@h2 simulations with the observed and 
reanalyzed a) precipitation [ensemble mean (red circles) and ensemble members (box and whisker 
plots)], and b) near surface maximum air temperature [ensemble mean (blue stars) and ensemble 
members (box and whisker plots)] over the climatological zones. Months are on the horizontal axes, 
e.g., 2.0 represents February. 

3.5. Precision 

As shown on Table 1, precision is here evaluated with the use of coefficient of variation (CoV) and 
the normalized standard deviations (NSD). CoV, the ratio of standard deviations as measures of 
spreads to the mean of the sample populations, is used to determine the degrees of variability within 
the simulated and the observed climate parameters. Specifically, we employed the bias produced by 
CoV (i.e., CoVmodel minus CoVobservation) to really know which of the two (simulations or observations) 
produces more spatio-temporal variabilities. NSD is used to measure the deviation factors between 
the simulations and the observations. 

The degrees of spatio-temporal variability within the simulated and the observed climate 
parameters (precipitation and near surface maximum temperature) are depicted in Figure S13. The 
w@h2 model produces largely lesser spatio-temporal variabilities in precipitation in comparison to 
observations and almost normal deviations in spatio-temporal variabilities for temperature 
simulations. The largely sub-zero (≈ -50%) spatio-temporal variabilities are clearly evident in 
precipitation simulations as depicted by the biases of CoV (Figure S13a, b) over Savannah and Sahel 
zones; except during the months of July-August (peaks of raining season) when the CoV biases do 
not significantly deviate from zero (±10%), meaning that, during the monsoon seasons, the degrees 
of spatio-temporal variabilities around the mean is almost the same for precipitation simulations and 
observations. 

Biases of CoV in temperature simulations range between ±1% (Figure S13c, d). Exceptions here 
are during the dry months of December-March, when largely negative CoV biases are visible over 
Savannah and Sahel zones. The implications of CoV biases, here, are that the degrees of spatio-
temporal variabilities around the mean is almost the same for both temperature simulations and their 
observations during the wet seasons. Therefore, generally speaking, the w@h2 model simulations 
perform precisely well during monsoon seasons in terms of simulating precipitation and near surface 
maximum temperature. Summarily, on the average, the inter-annual variabilities of simulated w@h2 
precipitation and near surface maximum temperature do not significantly exceed those of 
observations. 

The discrepancies, as depicted by NSD, are majorly less than a factor of 1.0. As depicted on 
Figures 8, S6 and S7, the discrepancies between the ensemble means and observations (i.e., 
CRU/ERA5), are smaller than the discrepancies between individual ensemble members and 
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observations. For precipitation simulations, NSD is growing larger (> 1) as we move northwards 
towards Sahel zone (Figure 8a). Meanwhile, NSD tends to a factor of 1.0 as monsoon seasons are 
approached for temperature simulations (Figure 8b). This shows that there are little or negligible 
deviations between simulated and observed temperatures during the monsoon seasons. Generally, 
the majority of the ensemble means’ NSD values are outside the spreads of the ensemble members’ 
NSD; specifically, below the first percentiles (the minimum on the error bars). These behaviors on the 
path of the ensemble means confirm the “precise nature” of the ensemble means over the members as 
already documented (e.g., Ehrendorfer, 1997; Hamil and Colucci, 1997; Palmer, 2000; Stensrud et al., 
2000; Stensrud and Yussouf, 2003; Jankov et al., 2005). 

 

 
Figure 8. Monthly spreads of normalized standard deviations (NSD) of w@h2 simulations with 
respect to observed and reanalyzed a) precipitation [ensemble mean (red circles) and ensemble 
members (box and whisker plots)], and b) near surface maximum air temperature [ensemble mean 
(blue stars) and ensemble members (box and whisker plots)] over the climatological zones. Months 
are on the horizontal axes, e.g., 2.0 represents February. Missing red circles, blue stars and or error 
bars (either in parts or wholly) indicate that NSD > 2.0 for the month. 

4. Summary and Discussion 

This study is motivated by the generation of a remarkably huge ensemble of simulations, 
counting more than 10,000 ensemble members. The achievement allows denser sampling of the 
climate distributions, allowing more precise calculation of climate model properties. We seek to 
provide a performance evaluation of the w@h2 simulations over West Africa using the framework of 
RASAP (reliability, association, skill, accuracy, and precision) measures. 
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Results show that, to some significant extent, w@h2 model provides little, if any, predictive 
information for precipitation during the dry season, but may provide useful information during the 
monsoon seasons. This means that a prospective user gets to decide whether it is “useful” for his/her 
particular application. This evaluation provides a prospective user with information that he/she can 
use to decide whether the model might be “useful or not”. For instance, a prospective user may ignore 
rainfall simulations during the dry seasons (when there are not much to predict), but consider it for 
the wet seasons. Contrary to the results for precipitation, w@h2 model provides sufficient predictive 
information for the near surface maximum temperature over West Africa throughout the year. For 
example, the model is able to reproduce all the annual characteristics of maximum air temperature 
such as 1. the two peaks of maximum air temperature over all the climatic zones; 2. the Sahel being 
the warmest of all the zones, except during the boreal winters; 3. the dip in the annual maximum 
temperatures over all climatic zones during the peak of the rainy season; and 4. the annual north-
south oscillation of the thermal depression. 

Analyses carried out in this paper have provided some statistical insights to the nature of the 
w@h2 simulations over West African region. The w@h2 modelling system was designed for the 
investigation of the behavior of extreme weather under anthropogenic climate change, i.e., event 
attribution. For event attribution, as earlier stated, measures of the performance of a model in terms 
of climate variability may be more relevant than measures of the mean climatology (Bellprat and 
Doblas-Reyes, 2016; Lott and Stott, 2016; Bellprat et al., 2019). Therefore, w@h2 model is unique in 
producing large sample sizes that are able to show that sampling quality of the tails of the distribution 
is no longer the primary constraint / source of uncertainty. 

Bellprat and Doblas-Reyes (2016) and Bellprat et al. (2019) point out that if the unforced 
variability of a model, in comparison to observation, is too small / large then the model will be too 
keen / not keen enough to attribute an event’s occurrence to emissions. Here, the unsubstantial bias 
and low variability in its precipitation and temperature simulations present the model as too keen to 
attribute an event to emissions. In addition, high skills, especially during the monsoon seasons, may 
probably mean that there is a lot of predictability in the system. Therefore, for an SST-forced system 
like w@h2, this means that event attribution conclusions are conditional on the occurrence of the 
observed SST state (Risser et al., 2017). 

Furthermore, lack of obvious quality of the model in terms of rain during the dry seasons may 
not mean that it has a bias for event attribution analysis. It may only mean that there are no evidences 
that strongly supports the notion that the model is accurately simulating the appropriate processes 
for extremes. But, on the contrary, predictive skills for the onset season suggest that the model is 
getting processes right. 

Investigating the reasons for the model’s deficiencies is beyond the scope of this work. The 
investigation shall be attended to in the second part of this work, where we intend to consider the 
model’s reproducibility of atmospheric dynamics that influence and modulate West African weather 
and climate. Then, we will fully be able to say if the model is doing a reasonable job of capturing 
processes over West Africa. 
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