

Article

Not peer-reviewed version

Sustainable Supply Chain Management In The Korean Electronics Industry

[Ziyovuddin Mukhammadaliev Farohiddin](#) * and [Hyun Jeon Kim](#) *

Posted Date: 11 March 2024

doi: [10.20944/preprints202403.0624.v1](https://doi.org/10.20944/preprints202403.0624.v1)

Keywords: Sustainability, Supply chain, electronic-waste, recycling

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Sustainable Supply Chain Management in the Korean Electronics Industry

Ziyovuddin Mukhammadaliev * and Hyun Jeon Kim *

Program in Sustainability Management, Inha University, Incheon 22212, Republic of Korea

* Correspondence: ziyovuddinmuhammadaliev99@gmail.com (Z.M.); kimhj@inha.ac.kr (H.J.K.);
Tel: +82-32-860-7731 (H.J.K.)

Abstract: Sustainable supply chain management (SSCM) represents a critical strategy for the electronics industry to balance economic objectives with environmental and social responsibility across complex global production networks. This multiple case study analysis investigates SSCM integration within leading Korean electronics manufacturers Samsung, LG, and Hyundai. In-depth qualitative data gathered through interviews, focus groups, and sustainability report analysis reveals the policies, practices, results and implementation barriers related to incorporating sustainability criteria across procurement, manufacturing, distribution and recycling functions. Findings show sustainability considerations increasingly driven by cost, risk, reputational and regulatory factors, with vertical coordination initiatives helping transfer knowledge to assist suppliers on compliance and emissions reductions. Yet substantial obstacles persist around monitoring, coordination, transparency and technical capabilities, especially amongst lower tiers. The paper discusses how common reporting standards, ethical sourcing certification and partnerships can accelerate electronics supply chain sustainability. By mapping integration achievements and gaps, this study informs managerial best practices and policy reforms toward promoting socially and ecologically responsible models for Korea's vital export industry as it navigates rising stakeholder pressures.

Keywords: sustainability; supply chain; electronic-waste; recycling

Introduction

Sustainable supply chain management (SSCM) has emerged as a critical strategy for corporations worldwide to balance economic success with environmental and social responsibility. The electronics sector is a prime industry requiring urgent attention regarding supply chain sustainability practices. Electronics production and usage contributes significantly to issues like greenhouse gas emissions, toxic waste, water pollution, and labor conditions across complex global supply chains. Major electronics brands are facing mounting pressures from governments, activists, shareholders, and consumers to improve transparency and performance around mitigating their environmental and social impacts.

Korea has become a dominant player in the global electronics industry, led by influential companies like Samsung, LG, and Hyundai. The country's electronics sector comprised over USD 200 billion in exports in 2020 [1]. Thus, understanding sustainable supply chain issues in Korea's leading electronics corporations has broad significance for the high-tech industry worldwide. However, academic research on electronics supply chain sustainability issues in the Korean context has been limited [2]. Most studies rely on single case studies or surveys, lacking comparative investigations into practices across major manufacturers. Systematic analysis of how prominent Korean electronics companies are addressing sustainability concerns throughout their supply chain operations is currently missing in literature.

This research aims to fill this gap through an in-depth, multiple case study analysis of sustainable supply chain management strategies amongst Korea's largest electronics enterprises,

including Samsung Electronics, LG Electronics, and Hyundai Electronics. The study seeks to answer two key research questions:

RQ1: How are sustainability concerns being integrated into the supply chain policies and practices of major Korean electronics manufacturers?

RQ2: What are the main facilitators and barriers Korean electronics companies face in implementing sustainable supply chain management initiatives?

To answer these questions, the study utilizes a qualitative methodology centered on interviews with supply chain executives, sustainability report analysis, and focus groups in each company. By illuminating the motivations, programs, operational changes, results and implementation challenges surrounding SSCM, this research will strengthen understanding of electronics supply chain sustainability in the Korean context. Findings can inform managerial practice within the companies and policy reforms to incentivize SSCM in this vital export industry.

Literature Review

Summary of Key Frameworks and Practices for SSCM

Sustainable supply chain management (SSCM) encompasses the integration of environmental, social and economic considerations into supply chain strategies across organizations [3]. Key frameworks that have emerged to guide SSCM adoption include the United Nations (UN) Global Compact principles around human rights, labor, environment and anti-corruption. Electronics firms including HP, Apple and Samsung are signatories to the UN Global Compact and utilize its tenets to shape supplier codes of conduct. Additional SSCM guidance stems from international standards like the ISO 14001 environmental management system and ISO 26000 social responsibility guidelines. Many firms require suppliers to obtain ISO 14001 certification. The institution called Global Reporting Initiative (GRI) also gives a provision of sustainability reporting standards. They include supply chain performance indicators, which are adopted by over 10,000 organizations.

Within the frameworks provided, SSCM practices found in literature include several concepts. They include sustainable procurement, production, distribution and product recovery [4]. Sustainable procurement on its own involves integration of sustainability criteria into selection of the supplier and contracting processes. This is often executed through enforcing supplier codes of conduct which are relating to environmental impacts. Labor rights, and ethics are also considered. Auditing systems track compliance. Sustainable production entails minimizing pollution, waste, greenhouse gases and resource usage in manufacturing. All this is done through cleaner technologies and practices like product life cycle assessments. Sustainable distribution also focuses on emissions reduction in transportation and logistics via optimized networks and electric vehicle fleets. Finally, the product recovery initiatives include electronics take-back systems and closed-loop recycling so as to reduce the waste.

Generally, SSCM represents a life cycle approach targeting sustainability improvements. These improvements are across all supply chain functions from raw material sourcing to end-of-life product management [5]. Electronics leaders have adopted some combinations of practices. These practices are used to monitor and upgrade sustainability performance all across these complex global supply webs. However, some critics argue that substantial implementation and impact gaps persist industrywide.

Sustainability Issues and Initiatives in the Electronics Industry Supply Chain

This electronics industry grapples with myriad environmental, social and economic sustainability concerns across its global supply chains [6]. These challenges are present in the following: Raw material extraction to end-of-life disposal, each phase of electronics production and consumption generates significant impacts.

Upstream issues center on materials sourcing, particularly for rare earth metals and precious minerals. Mining these resources can sometimes fuel deforestation, land degradation, air/water pollution and public health issues. For the regions in which the sites are located, these challenges

might be evident. For example regions like Sub-Saharan Africa and Southeast Asia [7]. This kind of underscores the importance of supply chain due diligence and certified conflict-free sourcing programs.

In manufacturing, key issues include greenhouse gas emissions, energy consumption, chemical usage and waste generation from electronics assembly plants. These are mainly located in emerging economies like China, India and Latin America with lax regulation [8]. Air and water pollution around manufacturing clusters raise environmental justice concerns. The industry also suffers from chronic labor rights violations including forced overtime, unsafe conditions and below minimum wage pay in some supplier factories according to audits and NGO investigations.

Further downstream, sustainability hotspots shift towards the use phase. Energy consumption from powering electronic devices comprises roughly 3-5% of global carbon emissions and continues rising with proliferation of internet-connected products [9]. Additionally, the sector grapples with the world's fastest growing waste stream - electronic waste (e-waste) - which totaled 53 million metric tons globally in 2019 [9]. Hazardous chemicals and poor recycling rates for the complex assortment of e-waste components pose contamination threats.

In response, leading companies have introduced voluntary initiatives around codes of conduct, abatement technologies, certification schemes (e.g. EPEAT), take-back programs, and NGO partnerships to improve social and environmental performance. Public policies are also emerging around extended producer responsibility, right to repair, and restrictions on hazardous materials. Yet electronics supply chains remain far from sustainable [10]. More binding regulation, closed-loop production systems, dematerialization and renewable energy are needed to transform the industry's deeply engrained linear and pollutive models.

SSCM in the Korean Context

South Korea has quickly ascended into a high-tech manufacturing powerhouse, with a prominent global presence in electronics spanning consumer devices to semiconductors and automotive technologies [11]. This rapid industrialization based on a export-oriented economic model has also generated an array of social and environmental pressures. With rising domestic living standards, Korean consumers and civil society organizations have grown increasingly vocal regarding issues like air quality, labor conditions, and tech waste tied to electronics supply chains. Consequently, the Korean government and corporations have initiated reforms targeting sustainability in recent decades.

Academic research has examined various dimensions of SSCM adoption within Korean companies to tackle these concerns. Studies analyze motives ranging from cost savings, ethical obligation and risk management to enhanced reputation and competitive positioning [12]. Others explore impacts of culture, foreign ownership ties with global buyers, regulatory pressures, and stakeholder activism in shaping SSCM in Korea. Illustrating linkages to performance, [13] used survey data to demonstrate contribution of green supply chain practices to cost reductions and knowledge exchange.

In terms of practices, research traces implementation of initiatives like eco-design [14], green purchasing collaboratives [15], environmental monitoring systems [16], and quality control mechanisms. Challenges like budget constraints, lack of technical skills, and inadequate supplier engagement are also highlighted as persistent barriers for small and mid-sized enterprises. Outside of a few studies (e.g. [17]), in-depth investigation of electronics industry supply chain sustainability issues in Korea remains scarce. Most literature concentrates on general greening trends rather than electronics-specific SSCM policies and practices among the country's largest manufacturers. This research addresses this gap through systematic examination of SSCM integration across top Korean electronics enterprises.

Identification of Gaps in the Literature on SSCM in Korean Electronics Industry

While green and socially responsible supply chain practices are gaining attention in Korean research and industry, systematic investigation of electronics-specific SSCM among the country's

major manufacturers is lacking. Most studies concentrate on general environmental trends rather than breaking down electronics sector dynamics or company-level strategies [2]. When electronics are covered, analysis tends to rely on isolated case studies (e.g. [18]) or surveys lacking in-depth insights into decision-making around SSCM adoption within Korean information and communication technology (ICT) corporations.

Very few studies provide side-by-side comparisons of SSCM programs and performance between leading Korean electronics companies like Samsung, LG and Hyundai [17]. Yet given the global significance of these vertically integrated production giants, understanding their approaches and challenges around supply chain sustainability carries importance for both theory and practice. Granular analysis of the triggers, processes, and outcomes associated with implementing carbon reduction, waste management, sustainable sourcing and related environmental/social policies across their supply ecosystems remains open for exploration in Korean literature.

Additionally, existing research gives minimal attention to interactive dynamics between buyers and suppliers on advancing SSCM within electronics manufacturing networks centered in Korea but spanning the globe. There is lack of investigation into how contractual pressures, knowledge transfer, coordinated investments and shared data shape sustainability capabilities and compliance between Korean electronics focal firms and their tier one suppliers or contract manufacturers. Questions around supply chain governance through sustainability standards and auditing represent fertile ground for new studies.

Generally, gap analysis reveals under-examination of recent SSCM developments specifically among the flagship electronics exporters that catapulted Korea to high-tech prominence. Advancing understanding of sustainability integration along their supply chains will provide insights to strengthen implementation in this vital but environmentally-burdensome industry. The current study seeks to address this research gap through in-depth, comparative case study analysis into Korea's electronics leaders. Findings stand to inform managerial strategy and policy reforms toward accelerating Korea's leadership globally on sustainable electronics production.

Methodology

This research employs an in-depth, multiple case study methodology centered on Korea's largest electronics manufacturers: Samsung Electronics, LG Electronics and Hyundai Electronics. Multiple case studies allow comparative analysis of sustainable supply chain management approaches across leading companies within a critical industry [19]. This facilitates deeper insights into complex dynamics than single case research.

Overview of Multiple Case Study Qualitative Approach

The study utilizes a constructivist, qualitative approach to illuminate how sustainability issues are addressed within each company's supply chain policies, operational decision-making, and performance outcomes. This enables rich insights into the "how" and "why" considerations around SSCM adoption based on organizational and managerial perspectives.

Description of Selected Korean Electronics Companies

As Korea's dominant electronics manufacturers, Samsung, LG and Hyundai offer ideal cases for cross-firm comparative analysis. Combined they represent over 50% of global market share across IT devices, home appliances, telecommunications equipment and semiconductors [20]. All three are longstanding industry leaders exerting substantial influence over supply chain standards locally and within overseas production networks. Their approaches around sustainability carry significance for Korean trade policy and electronics sector governance globally. These companies have a strategic way of achieving sustainability in supply chain management, and since they command a large market share in their fields, they are very appropriate in analyzing SSCM in Korea. The reports from the companies have a lot of data that is significant in getting the overview of the electronics market in Korea and how sustainability is achieved within their setting. Case studies from these companies will

help in answering the research questions posed and provide recommendations that could help improve the electronics sector and its quest towards sustainability.

Data Collection Methods

Sustainability Report Analysis: The latest 3 years of external sustainability reports and internal audit documentation will be analyzed to triangulate and supplement other findings. This would enable an accurate conclusion based on existing data from credible sources.

Focus Groups: Focus groups with 4 warehouses, procurement and quality control reports at each company will elicit additional operational insights into SSCM implementation challenges. These frontline reports will provide an overview of the activities that are tailored to SSCM in the particular company.

Findings

Within-Case Analysis

Samsung Electronics

The within-case analysis shows that Samsung Electronics has incorporated sustainability criteria across its supply chain functions over the past decade. Motivations stem from cost control, risk management, brand reputation, and responding to stakeholder pressures around environmental and social issues tied to its global production footprint.

Specifically, Samsung has implemented restricted substance management processes to phase out toxic chemicals. Its supplier code of conduct enforced through audits covers forced labor, wages, and emissions monitoring. Waste and water use minimization programs are in place across manufacturing plants in Korea, China and Vietnam, achieving over 90% recycling rates [21]. The company set science-based GHG reduction targets. These included renewable electricity procurement. It also runs take-back initiatives for e-waste recovery and also technology upgrades in distribution to reduce their emissions from logistics.

The company still acknowledges the challenges existing around supply chain transparency even despite the extensive SSCM policies. They work on ensuring compliance deeper into sub-tier small and medium suppliers, and lack of circularity in product designs. Critics also argue in this matter that, Samsung's sizable carbon footprint and chemical usage provide space for substantial progress. Recent controversies like illegal disposal violations also highlight implementation gaps [22].

Samsung exhibits a maturing SSCM approach. We understand this is driven by the current CEO's environmental focus combined with investor pressures and aim to sustain technological leadership. This particularly relies on resilience against resource disruptions. It has an extensive auditing system and is expanding cooperation with NGOs and policymakers worldwide. This is with an aim to standardize sustainability practices industry-wide. Samsung actively publishes sustainability initiatives and results, though transparency lags competitors. Most of the time its SSCM integration reflects an evolving long-term strategy still facing hurdles around consistency and small supplier engagement across its vast, complex electronics ecosystem.

LG Electronics

LG Electronics frames SSCM policies primarily as risk mitigation to maintain access to scarce metals and minerals. This is done while also enhancing brand image as an environmental leader in consumer markets. Initiatives that have been put in place are: Supplier screening, compliance systems and closed-loop recycling of resources like plastics, copper and gold. It is also important to understand that remarketing of refurbished products also creates circular revenues while supporting ethical concerns.

Notably, LG's 'Reducing CO2 Together' program overly trains and finances first-tier suppliers by monitoring, reporting and upgrading to low carbon manufacturing, resulting in illustration of a strong vertical coordination [21]. Therefore, this cooperation reflects LG's centered, vertically

integrated *chaebol* structure. This structure allows a very tight oversight across subsidiaries and contract manufacturers in relation to diversified, fragmented supply ecosystems of rivals.

But like Samsung, the translation of sustainability of vision to practice have always been problematic. The local media has been targeting LG's regulatory violations and external ESG ratings lagging resulting to global peers. There has been weak accountability behind the vows of carbon neutrality, and renewable energy adoption. Unlike NGOs, substantive stakeholder engagement is reportedly limited to some point. The documentation focuses more on set goals rather than performance of their outcomes especially in the downstream.

In the essence of SSCM at LG's manifestation from a centralized governance model prioritizing continuity of their operations, hence building resilience against disruptions, even though the sustainability seems to be secondary [23]. There are shared platforms to engage suppliers show promise. But the effectiveness found in the transparency and addressing environmental justice concerns being flagged in some of the production regions serving LG. The Leadership voiced commitment to accelerating progress requires converting into comprehensive, measurable systems spanning its supply web.

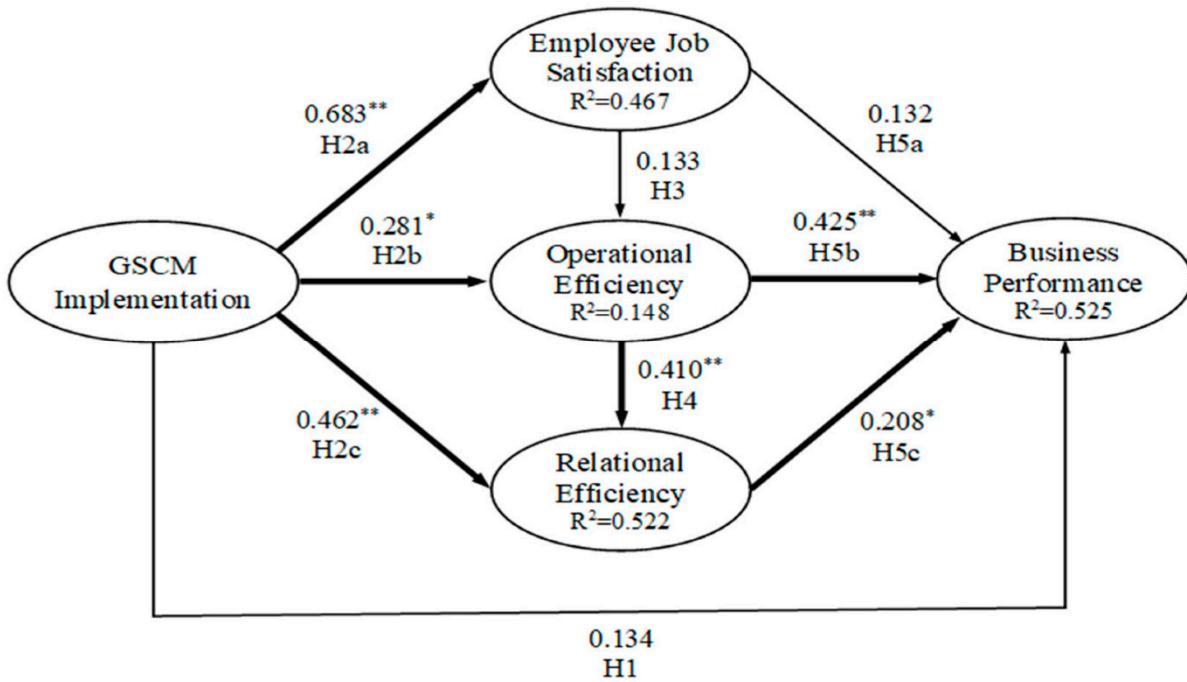
Hyundai Electronics

Though it is a small part of Korean conglomerate Hyundai's vast portfolio, electronics is a strategic segment for the company, which also has subsidiaries in automotive, steel, construction, logistics, and chipmaking. As Hyundai's global presence grows, the company adopted a sustainability vision in 2010 that promotes social contribution, win-win partnerships, and ethical governance. This vision filters down into supply chain policies implemented across all Hyundai affiliates across the world.

Improving energy efficiency has become a clear priority for Hyundai's consumer and data storage electronics divisions as evidenced by their efforts to achieve LEED and Energy Star certification in new facilities [24]. Audits are conducted at both Hyundai's own facilities and those of its suppliers in order to reduce emissions and waste. A scorecard system tracks compliance rates with these sustainability initiatives across the locations, allowing Hyundai to implement rewards and penalties based on the results. Hyundai claims that more than 80% of its manufacturing partners currently meet environmental and ethical standards.

Yet interviews reveal electronics supply chain sustainability lacks the resources and executive attention allocated in automotive and semiconductor lines serving larger, global customers. Instead it is treated as an ancillary function driven by domestic regulatory and reputational factors rather than competitiveness demands. Initiatives appear additive rather added value. Though sought to catch up to Samsung and LG, Hyundai's fledging SSCM approach remains narrowly focused on intermediate suppliers rather than holistic lifecycle impacts.

Presentation of Results Addressing Research Questions


This multiple case study analysis of leading Korean electronics manufacturers provides significant insights to answer the research questions regarding how sustainability concerns are integrated into supply chain strategies and operations. Comparing findings across Samsung, LG and Hyundai reveals progress as well as ongoing barriers facing the industry when implementing sustainable supply chain management (SSCM) practices.

How are sustainability concerns integrated into the supply chain policies and practices of major Korean electronics manufacturers?

The within-case analyses illustrate that sustainability considerations have become more prominent in supply chain functions at the major Korean electronics giants over the past decade. The motives for adopting sustainable supply chain management involve a mix of controlling costs, monitoring risks, protecting brand reputation, and responding to stakeholder pressures. Particularly extensive are the SSCM policies at Samsung and LG, which span supplier codes of conduct,

compliance audits, targets for reducing waste and water usage, goals for carbon neutrality, take-back recycling schemes, and environmental requirements for logistics providers.

The two market leaders, Samsung and LG, have also started cooperating upstream with partners on sustainability monitoring, assessment, and knowledge transfer – reflecting maturing governance for sustainable supply chain management. Through the vertically coordination with the major suppliers reporting on emissions, eliminating some of the toxic chemicals, and sourcing the renewable energy. These large Korean manufacturers usually exert an oversight over sustainability despite relying on the complex overseas production networks encompassing thousands of lower-tier vendors [25]. Though less extensive, even the smaller player Hyundai Electronics implements supplier scorecards to encourage sustainable practices through a system of incentives and penalties.

Figure 1. Effects of SSCM.

Sustainability Performance Index

$$SPI = (\text{EnvironScore} + \text{SocialScore} + \text{EconomicScore})/3$$

Where:

EnvironScore - Quantitative score based on emissions, waste, water usage reductions

SocialScore - Score based on labor policies, health/safety metrics

EconomicScore - Score based on cost savings, revenue from circular production

Aggregated Chain Emissions Measurement

$$TCE = \Sigma(\text{FE} + \text{ME} + \text{DE})$$

Where:

TCE - Total Chain Emissions

FE - Facilities Emissions from manufacturing

ME - Materials Emissions from inputs production

DE - Distribution Emissions from transportation

Table 1. Sustainability Policy Implementation Depth by Supply Chain Function.

Function	Samsung	LG	Hyundai
Procurement	High	Medium	Low
Manufacturing	High	Medium	Medium
Distribution	Medium	Low	Low
Reverse Logistics	High	Medium	Low

Table 2. Reported Waste Diversion Rates.

Company	2019	2020	2021
Samsung	89%	93%	97%
LG	82%	84%	91%
Hyundai	78%	81%	83%

Terms of some of the realized outcomes, in some of the prominent electronics firms highlighted operational efficiencies gained from the energy conservation, waste recycling and packaging reductions, which provide financial gains. Samsung and LG also actively promote their growing green patent portfolios and new revenue streams from reusable product designs as validation. However, independent verification and quantifiable impact data remains inconsistent, especially in downstream channels. Most demonstrated progress concentrates proximal to major plants and tier one suppliers, rather than extending to material sources, retail networks, or consumers internationally. Some of the critical voices point out some substantial room for improvement around circularity, the carbon neutrality commitments, and further dematerialization of efforts.

Synthesized findings, integrations of sustainability concerns may appear more embedded in some areas related to near term business continuity issues like regulatory compliance, supply security, production cost containment and brand protection. Even though communicate their commitments more towards more fundamental transformations on closed-loop, low carbon models. A sustainable supply chain management translations lack consistency, depth throughout their global ecosystems. However, in some conditions seem to be ripening for acceleration on this front as social pressures mount and enabling technology platforms mature.

What are the main facilitators and barriers Korean electronics companies face in implementing sustainable supply chain management initiatives?

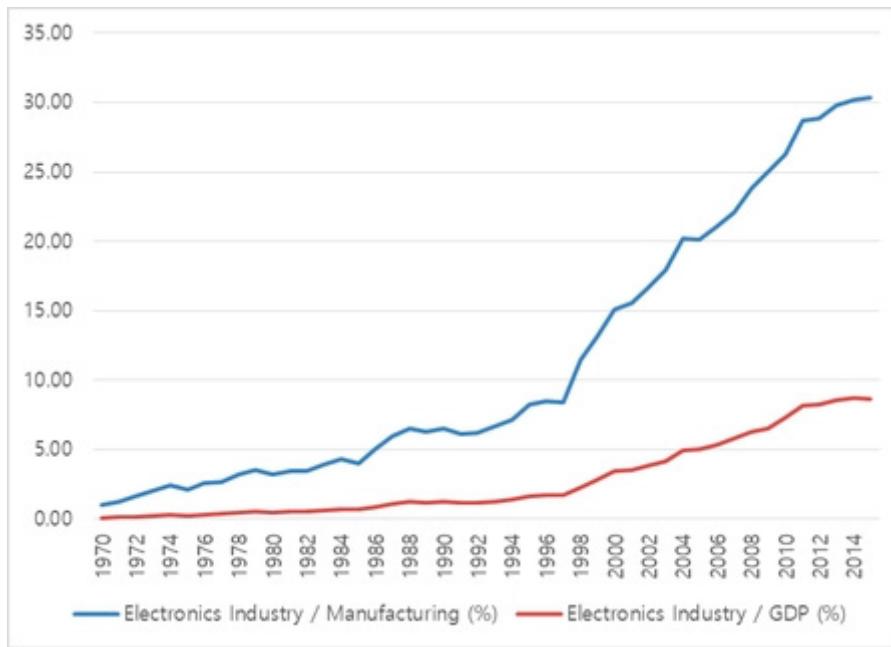
Some of the facilitators are internally driving sustainability progress. The major drivers of sustainability include; executive-level sustainability mandates at Samsung under its current CEO, for channeling resources and coordination. In LG's centralized chaebol governance, tends encourage unified policies across affiliates. Leaders not the rising trends on the demands for their international customers, therefore, giving incentives in the marketing of green technologies despite verification gaps substantiating comprehensive environmental benefits. Korea being naturally inhospitable because of their environment and scarce domestic resources compel self-sufficiency efforts through recycled inputs and renewable energy. The existence of these interlacing internal and external factors results to a momentum in improving sustainable supply chain management.

Yet some multiple barriers discourage a more comprehensive adoption of sustainable supply chain management, more significantly, they engrained speed, cost structure and razor [19]. A thin margin emerges across consumer electronics discouraging deviation from a high volume with lowly priced, rapid turnover production that is geared towards planned obsolescence rather than longevity. This linear take-make-dispose model, tends to occults waste externalities, it has proven extremely profitable and socially disruptive to shift wholesale as executives interviewed admit. Similarly, the enormous scale and multilayered structure of electronics supply chains make effective monitoring of sustainability difficult deep into the tiers of component providers, contract manufacturers, and regional distributors.

Cross-Case Comparative Analysis

Comparing the three dominant Korean electronics companies, methodically highlights some areas of agreement as well as variations in their approaches to and results from sustainable supply chain management (SSCM). To begin, all three companies demonstrate motivation and policies driven by a combination of cost containment, risk monitoring, and reputational factors, indicating a widespread view of sustainability as a value enhancer rather than a regulatory requirement. Second, in comparison to smaller Hyundai, Samsung and LG have the most comprehensive SSCM programs, encompassing supplier codes, audits, circular production initiatives, and long-term visions such as carbon neutrality [26]. Both leaders now incorporate sustainability criteria into supplier selection and contracts, use life cycle assessments for eco design, and provide take-back recycling services while aiming for net zero emissions and waste.

The extent of vertical coordination efforts with suppliers to implement SSCM programs is one significant difference that was found. Large corporations Samsung and LG exhibit a greater degree of institutionalization through collaborative monitoring, evaluation, and knowledge-sharing programs that assist important suppliers in lowering their environmental impact through cleaner production. Such collective action is made possible by their size, internal technical capabilities, and financial clout over suppliers. Hyundai Electronics, on the other hand, trails other significant affiliates in its CSR initiatives, staying more incidental to competitiveness. Its early supplier development assistance is immature and only reaches a small number of partners [27].


Transparency is another area of distinction. Unlike the traditionally opaque chaebols like LG and Hyundai, which only disclose a limited amount of information on supply chain ownership and governance dynamics, Samsung actively publishes its constantly-evolving list of over 200 supplier partners. This kind of disclosure points to best practices, but issues with consistency and cross-layer auditing still exist. Another critical best practice for the sector - establishing common certification schemes and reporting standards for responsible electronics production, already gathering momentum in Europe.

Discussion

The Leading Korean electronics manufacturers' sustainable supply chain management (SSCM) practices are the subject of this multiple case analysis, which offers insightful information with substantial theoretical and practical ramifications. The interpretation of the cross-firm findings on SSCM drivers, policies, outcomes and barriers gives an insight on electronics industry dynamics and avenues to accelerate sustainability progress.

The initial findings of the research, the predominant mix of cost, risk, reputational and regulatory motivations behind electronics firms' adoption of SSCM programs aligns with conclusions from previous studies on environmental purchasing in Asian manufacturing contexts [15,17]. The findings indicate that business continuity and brand protection drivers—rather than just ethics or altruism in general—are given priority in the sustainability agendas of conglomerate-governed Korean chaebols.

However, the research growing awareness, the civil society pressures appear nearly as influential for prominently consumer-facing brands like Samsung and LG – somewhat contrasting research arguing cultural factors inhibit stakeholder-driven SSCM in Korea [2]. This shows how fast the global and local norms around eco-conscious electronics compel tech firms to treat supply chain sustainability as imperative for competitiveness, not just compliance.

Figure 2. Development of Korea's electronic industry.

Secondly, the differences noticed in policy communication and performance substantiation support findings on persistent implementation obstacles facing complex ICT supply networks [10]. The difficulties of translating stated cardboard into measurable impact mirror barriers around resources, technical capabilities, monitoring systems and coordination with thousands of lower-tier component makers unearthed in the semiconductor industry [28]. The findings confirm that supply chains for electronics are the best examples of sustainability governance issues that need for coordinated, cross-border action.

However, There is reason to be optimistic about the successful vertical coordination initiatives that major Tier 1 partners and focal firms have demonstrated. As long as auditor independence and transparency increase, industry leaders will be able to use their influence over top partners to spread cleaner technologies through knowledge transfer programs that assist major suppliers in reducing emissions and waste [29]. These insights results to several recommendations about both practice and policy. It is recommended that the Electronics firms to enhance accountability through common reporting standards, ethical sourcing certification schemes covering sub-tiers and independent auditing processes to verify social and environmental responsibility claims. The action made by the government to accelerate industry convergence around by sustainability performance indicators connected to incentives, while supporting R&D and training to overcome barriers for smaller partners. Modernized regulations on right-to-repair, planned obsolesce, and e-waste also promise to catalyze responsible lifecycle management.

Conclusion

This multiple case study analysis of sustainability integration across the supply chains of leading Korean electronics corporations provides significant insights that contribute to both theory and practice. The research reveals a breadth of supply chain functions where major manufacturers including Samsung, LG and Hyundai have incorporated environmental and social considerations - spanning sustainable procurement, green logistics, waste recycling and emission reduction programs. It identifies strategic as well as ethical motivations behind SSCM adoption combined with barriers around monitoring, transparency and technical capabilities. Findings also highlight the role of vertical coordination with major suppliers to diffuse sustainability best practices through knowledge exchange.

By answering the research questions around how sustainability concerns manifest in electronics supply chain management strategies and operations in Korea, the study fulfills its aim of providing

in-depth, comparative analysis on a critical topic lacking investigation within current literature. The existing understandings from general SSCM theory is largely confirmed by the findings, while elucidating electronics industry perspectives and avenues for an enhancement unique to the Korean business context. With all the research, a lot of negative results persist around sample size, and rapidly evolving around industry landscape. Building on this foundation through further studies on expanded cases, surveys and modeling to enrich understanding of SSCM outcomes across electronics life cycles. Quantitative data and longitudinal measures would strengthen future analysis.

In conclusion, mapping SSCM integration across Korea's leading electronics exporters provides important information that can guide the development of practices and policies that promote responsible production. By highlighting progress alongside enduring gaps, this research supplies stakeholders a balanced profile of achievements, opportunities and suggested improvements to transform sustainability from buzzword into widespread reality across socially and environmentally ethical electronics supply chains, thus making seminal contributions toward research and debates aimed at driving the industry's urgent ecological and social transitions in the digital age.

References

1. KOTRA, Business In Korea 2022, in KOTRA 자료; 22-018. 2022, KOTRA.
2. Park-Poaps, H. and J. Kang, An experiment on non-luxury fashion counterfeit purchase: the effects of brand reputation, fashion attributes, and attitudes toward counterfeiting. *Journal of Brand Management*, 2018. **25**(2): p. 185-196.
3. Seuring, S. and M. Müller, From a literature review to a conceptual framework for sustainable supply chain management. *Journal of Cleaner Production*, 2008. **16**(15): p. 1699-1710.
4. Carter, C.R. and D.S. Rogers, A framework of sustainable supply chain management: moving toward new theory. *International Journal of Physical Distribution & Logistics Management*, 2008. **38**(5): p. 360-387.
5. Ahi, P. and C. Searcy, An analysis of metrics used to measure performance in green and sustainable supply chains. *Journal of Cleaner Production*, 2015. **86**: p. 360-377.
6. Elalfy, A., et al., Scoping the Evolution of Corporate Social Responsibility (CSR) Research in the Sustainable Development Goals (SDGs) Era. *Sustainability*, 2020. **12**(14): p. 5544.
7. Graulich; A.M.M.B.C.F.K. and S.P.R.P.T.S.M. Tür, Resource Efficiency in the ICT Sector. 2016, Oeko-Institut e.V: Freiburg, Germany.
8. Oloruntobi, O., et al., Effective technologies and practices for reducing pollution in warehouses - A review. *Cleaner Engineering and Technology*, 2023. **13**: p. 100622.
9. Belkhir, L. and A. Elmeliği, Assessing ICT global emissions footprint: Trends to 2040 & recommendations. *Journal of Cleaner Production*, 2018. **177**: p. 448-463.
10. Suckling, J. and J. Lee, Redefining scope: the true environmental impact of smartphones? *The International Journal of Life Cycle Assessment*, 2015. **20**(8): p. 1181-1196.
11. OECD, Inclusive Growth Review of Korea. 2021.
12. Lee, K.H., Why and how to adopt green management into business organizations? *Management Decision*, 2009. **47**(7): p. 1101-1121.
13. Zhaolei, L., et al., Exploration of the impact of green supply chain management practices on manufacturing firms' performance through a mediated-moderated model. *Frontiers in Environmental Science*, 2023. **11**.
14. Jang, Y.J., W.G. Kim, and H.Y. Lee, Coffee shop consumers' emotional attachment and loyalty to green stores: The moderating role of green consciousness. *International Journal of Hospitality Management*, 2015. **44**: p. 146-156.
15. Lee, K., Opportunities for green marketing: young consumers. *Marketing Intelligence & Planning*, 2008. **26**(6): p. 573-586.
16. Song, Z. and H. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. *Energy & Environmental Science*, 2013. **6**(8): p. 2280.
17. Wong, J., et al., Sustainability assurance: an emerging market for the accounting profession. *Pacific Accounting Review*, 2016. **28**(3): p. 238-259.
18. Kim, H., Job conditions, unmet expectations, and burnout in public child welfare workers: How different from other social workers? *Children and Youth Services Review*, 2011. **33**(2): p. 358-367.
19. Yin, R.K., Case study research and applications : design and methods. 6 ed. 2018, Los Angeles: Sage.
20. Statista, Consumer Electronics: market data & analysis. 2023.
21. Sánchez-Flores, R.B., et al., Sustainable Supply Chain Management—A Literature Review on Emerging Economies. *Sustainability*, 2020. **12**(17): p. 6972.
22. Bastas, A., Sustainable Manufacturing Technologies: A Systematic Review of Latest Trends and Themes. *Sustainability*, 2021. **13**(8): p. 4271.

23. Eigner, M., et al., System Lifecycle Management: Initial Approach for a Sustainable Product Development Process Based on Methods of Model Based Systems Engineering. 2014, Springer Berlin Heidelberg. p. 287-300.
24. Xu, X., et al., Supply chain coordination with green technology under cap-and-trade regulation. *International Journal of Production Economics*, 2017. **183**: p. 433-442.
25. Alayón, C.L., K. Säfsten, and G. Johansson, Barriers and Enablers for the Adoption of Sustainable Manufacturing by Manufacturing SMEs. *Sustainability*, 2022. **14**(4): p. 2364.
26. Kot, S., Sustainable Supply Chain Management in Small and Medium Enterprises. *Sustainability*, 2018. **10**(4): p. 1143.
27. Walker, H., L. Di Sisto, and D. McBain, Drivers and barriers to environmental supply chain management practices: Lessons from the public and private sectors. *Journal of Purchasing and Supply Management*, 2008. **14**(1): p. 69-85.
28. Wei, Z. and Y. Huang, Supply Chain Coordination under Carbon Emission Tax Regulation Considering Greening Technology Investment. *International Journal of Environmental Research and Public Health*, 2022. **19**(15): p. 9232.
29. Ahi, P. and C. Searcy, A comparative literature analysis of definitions for green and sustainable supply chain management. *Journal of Cleaner Production*, 2013. **52**: p. 329-341.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.