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Abstract: This paper explores the oscillatory behavior of a class of third-order hybrid-type delay
differential equations. A novel approach involves transforming these complex trinomial equations into
a simpler binomial form by utilizing solutions from associated linear differential equations. Through
the application of comparison techniques and integral averaging methods, new criteria are established
that guarantee all solutions exhibit oscillatory behavior. These findings expand and complement
existing theories in the oscillation analysis of functional differential equations. An illustrative example
is provided to demonstrate the significance and originality of the results.
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1. Introduction
This paper is concerned with the third-order functional differential equation of the form(

µ2(t)
(
µ1(t)η′(t)

)′)′ − ξ1(t)η(t) + ξ2(t)ηα(τ(t)) = 0, t ⩾ t0 (1)

and assume the following conditions to hold:

(C1) µ2(t), µ1(t), ξ1(t), ξ2(t) ∈ C([t0, ∞)), µ2(t) > 0, µ1(t) > 0, ξ1(t) > 0 and ξ2(t) > 0,
(C2) τ(t) ∈ c′([t0, ∞)), τ′(t) > 0, τ(t) ≤ t, lim

t→∞
τ(t) = ∞,

(C3) α is a ratio of the old positive integers,
(C4) equation (1) is in canonical form, that is,

∫ ∞

t0

1
µ2(t)

dt =
∫ ∞

t0

1
µ1(t)

dt = ∞. (2)

With the given initial point t0 > 0, set t−1 = inf
t⩾t0

τ(t). By a solution of (1) , we mean a function

η(t) ∈ C([t−1, ∞),R) which has the property µ1η′, µ2(µ1η′)′ ∈ C′([t0, ∞),R) that satisfies (1) for t ⩾ t0

and satisfies (1) for t ≥ t0. Our attention is restricted to those solutions η(t) of (1) , which exist on
some half-line [t0, ∞) and satisfy sup {|η(t)| : t ⩾ T} > 0 for all T ⩾ t0. We tacitly assume that (1)
does possess such solutions.

The oscillatory nature of the solution is understood in the usual way, that is, a non trivial solution
is called oscillatory or nonoscillatory if it does or does not have infinitely many zeros.
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Letting either ξ1(t) = 0 or ξ2(t) = 0, equation (1) reduces to simpler binomial differential
equations with or without delay of the form(

µ2(t)
(
µ1(t)η′(t)

)′)′
+ ξ2(t)ηα(τ(t)) = 0 (3)

and (
µ2(t)

(
µ1(t)η′(t)

)′)′ − ξ1(t)η(t) = 0. (4)

So, in a sense, one may call (1) a hybrid type third-order differential equation.
Oscillatory and asymptotic properties of both equations (3) and (4) have been studied by many

authors, see, the papers [1–10], the monograph [11] and the references contained therein. This is due
to the fact that they have many applications in natural sciences and engineering, see, for instance, the
papers [12,13] for models from mathematical biology where the oscillation and/or delay actions may be
formulated by means of cross-diffusion terms. By the well known result of Kiguradze [14] (Lemma 1),
one can easily classify the possible nonoscillatory solutions of (3) and (4) that are completely different.
If we set by S the set of all non-oscillatory solutions of studied equations, then for (3) the set S has the
following decomposition

S = S0 ∪ S2,

where positive solution

η(t) ∈ S0 ⇔ µ1(t)η′(t) < 0, µ2(t)(µ1(t)η′(t))′ > 0,
(

µ2(t)(µ1(t)η′(t))′
)′

< 0,

η(t) ∈ S2 ⇔ µ1(t)η′(t) > 0, µ2(t)(µ1(t)η′(t)) > 0,
(

µ2(t)(µ1(t)η′(t))′
)′

< 0.

On the other hand, for (4) the set S has the following reduction

S = S1 ∪ S3,

with positive solution

η(t) ∈ S1 ⇔ µ1(t)η′(t) > 0, µ2(t)(µ1(t)η′(t))′ < 0,
(

µ2(t)(µ1(t)η′(t))′
)′

> 0,

η(t) ∈ S3 ⇔ µ1(t)η′(t) > 0, µ2(t)(µ1(t)η′(t))′ > 0,
(

µ2(t)(µ1(t)η′(t))′
)′

> 0.

Hence, from the above discussion the nonoscillatory solutions space of (1) with positive and
negative part is not clear.

Recently in [15–18], the authors considered the equation relating to (1) of the form(
µ2(t)

(
µ1(t)η′(t)

)′)′ − ξ1(t) f (η(σ(t))) + ξ2(t)h(η(τ(t))) = 0 (5)

and studied the oscillatory and asymptotic behavior of solutions of (5) by assuming either f is bounded
or h is bounded with ∫ ∞

t0

1
µ1(t)

∫ ∞

t

1
µ2(s)

∫ ∞

s
ξ1(s1)ds1dsdt < ∞,

or ∫ ∞

t0

1
µ1(t)

∫ ∞

t

1
µ2(s)

∫ ∞

s
ξ2(s1)ds1dsdt < ∞.

Another method frequently used in the oscillation theory of trinomial differential equations is to omit
one term (see, [19–23]) and this method yield the following differential inequalities for (1){(

µ2(t)
(
µ1(t)η′(t)

)′)′
+ ξ2(t)ηα(τ(t))

}
sign η(t) ⩾ 0

and {(
µ2(t)

(
µ1(t)η′(t)

)′)′ − ξ1(t)η(t)
}

sign η(t) ⩽ 0.
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which are opposite to those that we need. Hence there is only a limited number of papers dealing
equation (1) with positive and negative parts.

Therefore, in this paper we use a novel method that overcomes those difficulties appearing due to
positive and negative parts of (1). An example is given to illustrate the importance and significance of
our main results.

2. Auxiliary Results
The main results are established via series of lemmas, which relate properties of solutions of (1) to

those of solutions of auxiliary differential equations(
µ2(t)(µ1(t)y′(t))′

)′
− ξ1(t)y(t) = 0 (6)

and (µ2(t)
y(t)

V′(t)
)′

+
µ2(t)(µ1(t)y′(t))′

µ1(t)y2(t)
V(t) = 0. (7)

We begin with our first result based on an equivalent representation for the linear differential operator

Lη(t) =
(

µ2(t)
(
µ1(t)η′(t)

)′)′ − ξ1(t)η(t) (8)

in terms of positive solutions y(t) and V(t), respectively of (6) and (7).

Lemma 1. Let y(t) be a positive solution of (6). Then the operator (8) can be written as

Lη(t) =

(
µ2(t)
y(t)

(
µ1(t)y2(t)

(η(t)
y(t)

)′)′)′

+ µ2(t)
(
µ1(t)y′(t)

)′(η(t)
y(t)

)′
. (9)

Proof. Direct calculation shows that the right hand side of (9) equals

(µ2(t)
y(t)

(
µ1(t)y(t)η′(t)− µ1(t)y′(t)η(t)

)′)′
+ µ2(t)

(
µ1(t)y′(t)

)′(η(t)
y(t)

)′
=
(
µ2(t)(µ1(t)η′(t))′

)′ − (µ2(t)(µ1(t)y′(t))′
)′ η(t)

y(t)

=
(
µ2(t)(µ1(t)η′(t))′

)′ − ξ1(t)η(t).

The proof of the lemma is complete.

Lemma 2. Let y(t) be a positive solution of (6) and let the equation(
µ2(t)
y(t)

V′(t)
)′

+
µ2(t)(µ1(t)y′(t))

′

µ1(t)y2(t)
V(t) = 0 (10)

possesses a positive solution. Then the operator (8) can be written as

Lη(t) =
1

V(t)

[
µ2(t)V2(t)

y(t)

(
µ1(t)y2(t)

V(t)

(
η(t)
y(t)

)′
)′]′

. (11)
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Proof. By a direct computation, we see that the right-hand side of (11) equals

1
V(t)

[
µ2(t)
y(t)

V(t)
(

µ1(t)y2(t)(η/y)′
)′

− µ2(t)
y(t)

V′(t)
(

µ1(t)y2(t)
(η(t)

y(t)

)′)]′

=

(
µ2(t)
y(t)

(
µ1(t)y2(t)

(
η(t)
y(t)

)′
)′)′

−

(
µ1(t)y2(t)

(
η(t)
y(t)

))
V(t)

(
µ2(t)V′(t)

y(t)

)′
. (12)

Using (9) in (12) yields

= Lη(t)− µ2(t)
(
µ1(t)y′(t)

)′(η(t)
y(t)

)
− 1

V(t)

(
µ1(t)y2(t)

(
η(t)
y(t)

))(
µ2(t)V′(t)

y(t)

)′

= Lη(t)−
µ1(t)y2(t)

V(t)

(
η(t)
y(t)

)[(
µ2(t)V′(t)

y(t)

)′
+

µ2(t)(µ1(t)y′(t))
′

µ1(t)y2(t)
V(t)

]
= Lη(t),

since V(t) is a solution of (10). The proof of the lemma is complete.

From Lemmas 1 and 2, the equation (1) can be rewritten in a binomial form

(
β2(t)

(
β1(t)ω′(t))′)′ + Ω(t)ωα(τ(t)) = 0, (13)

where

β2(t) =
µ2(t)V2(t)

y(t)
, β1(t) =

µ1(t)y2(t)
V(t)

,

Ω(t) = V(t)ξ2(t)yα(τ(t)), ω(t) =
η(t)
y(t)

.

Following Trench [24], we say that (13) is in canonical form, if

∫ ∞

t0

1
β2(t)

dt =
∫ ∞

t0

y(t)
µ2(t)V2(t)

dt = ∞ (14)

and ∫ ∞

t0

1
β1(t)

dt =
∫ ∞

t0

V(t)
µ1(t)y2(t)

dt = ∞. (15)

For convenience, it is of important to find conditions that ensure the existence of positive solutions
of (6) and (7) such that conditions (14) and (15) are fulfilled so that (13) is in a canonical form.

Now, from the familiar Kiguradze lemma [14], the set S of all possible nonoscillatory, let us say
positive solutions of (6) has the following decomposition

S = S1 ∪ S3,

where
y(t) ∈ S1 ⇔ y(t) > 0, y′(t) > 0,

(
µ1(t)y′(t)

)′
< 0,

(
µ2(t)

(
µ1(t)y′(t)

)′)′
> 0,

y(t) ∈ S3 ⇔ y(t) > 0, y′(t) > 0,
(
µ1(t)y′(t)

)′
> 0,

(
µ2(t)

(
µ1(t)y′(t)

)′)′
> 0.

Lemma 3. Assume that
lim
t→∞

sup π1(t)π21(t)µ1(t)ξ1(t) <
2

3
√

3
(16)

where

π1(t) =
∫ t

t0

1
µ(s)

ds, π21(t) =
∫ t

t0

π1(s)
µ2(s)

ds.
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Then all solutions of (6) are nonoscillatory and moreover equation (6) has a couple of linearly independent
solutions belong to S1 and S3.

Proof. The result follows from Lemma 2 of [26] and so the details are omitted.

To obtain our main results, it is convenient to work with y(t) ∈ S1 and so we always assume
in the sequel that (16) holds. It is known (see,[14–24]) that if (6) has a solution y(t) ∈ S1 , then the
corresponding second-order differential equation (7) always possesses a couple of positive solutions

V(t) ∈ S0 ⇔ V(t) > 0, V′(t) < 0,
(

µ2(t)V′(t)
y(t)

)′
> 0,

V(t) ∈ S2 ⇔ V(t) > 0, V′(t) > 0,
(

µ2(t)V′(t)
y(t)

)′
> 0.

For our purposes, exactly V(t) ∈ S0 will be suited and we say that such solution V(t) is associated to
y(t).

Lemma 4. Let y(t) ∈ S1 be a positive solution of (6) and let V(t) be associated to y(t). Then (14) and (15) are
satisfied.

Proof. The condition (14) immediately follows from the monotonicity properties of y(t) and V(t)
along with (2). Further, by Lemma 4 of [25], we can show that condition (15) holds. This ends the
proof.

Remark 1. If y1(t) and y2(t) are a couple of increasing solutions of (6), then to get the canonical form of (13),
we consider the solution y1(t) such that

lim
t→∞

y1(t)
y2(t)

= 0. (17)

Definition 1. Following Hartman [25], we say the solution y1(t) ∈ S1 of (6) satisfying (17) is a principal
solution of (6).

Combining the results in Lemma 3, 4 and Remark 1, we obtain the following corollary.

Corollary 1. Let (16) hold, y(t) ∈ S1 be a principal solution of (6) and V(t) its associated solution of (7).
Then, (1) has an equivalent of (13) which is in canonical form.

3. Oscillation Results
In this section, we study the oscillation properties of (1)with the aid of (13). Here after, without

loss of generality, we may consider only positive solutions of (1). In view of familiar Kiguradze’s
lemma [14], we have the structure of the nonosillatory solution of (13).

Lemma 5. Let (16) hold, y(t) ∈ S1 be a principal solution of (6) and V(t) its associated solution of (7). If η(t)
is an eventually positive solution of (1), then the corresponding function ω(t) satisfies either

w(t) ∈ S̄0 ⇔ w′(t) < 0,
(

β1(t)w′(t)
)′

> 0,
(

β2(t)
(

β1(t)w′(t)
)′)′

< 0,

or
ω(t) ∈ S̄2 ⇔ ω′(t) > 0,

(
β1(t)ω′(t)

)′
> 0,

(
β2(t)

(
β1(t)ω′(t)

)′)′
< 0.

Consequently, the set S̄ of all positive solutions of (13) (as well as (1)) has the following decomposition

S̄ = S0 ∪ S2.
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Now, we are prepared to present a criterion for the class S2 is empty.
Let us define

B1(t) =
∫ t

t1

1
β1(s)

ds, B2(t) =
∫ t

t1

1
β2(s)

ds, B12(t) =
∫ t

t1

B2(s)
β1(s)

ds, Ω1(t) = Ω(t)Ba
12(τ(t)),

where t1 ≥ t0 sufficiently large.

Theorem 1. Let (16) hold, y(t) ∈ S1 be a principal solution of (6) and V(t) its associated solution of (7). If
the first-order nonlinear delay differential equation

z′(t) + Ω1(t)zα(τ(t)) = 0 (18)

is oscillatory, then the class S2 is empty.

Proof. Assume the contrary that ω(t) is a positive solution of equation (13) that belongs to the class S2

for all t ⩾ t1 ⩾ t0. Setting z(t) = β2(t)(β1(t)ω′(t))′ > 0 is decreasing, we have

β1(t)ω′(t) ⩾
∫ t

t1

β2(s)(β1(s)ω′(s))′

β2(s)
ds

⩾ B2(t)z(t).

Integrating from t1 to t, we are led to

w(t) ⩾
∫ t

t1

B2(s)
B1(s)

z(s)ds ⩾ B12(t)z(t).

Hence,
ωα(τ(t)) ⩾ Bα

12(τ(t))z
α(τ(t))

and using the last inequality in (13), we obtain

−z′(t) ⩾ Ω1(t)zα(τ(t)).

Therefore, it is clear that z(t) is a positive solution of the differential inequality

z′(t) + Ω1(t)zα(τ(t)) ≤ 0.

But, by Theorem 1 in [26] the corresponding differential equation (18) also has a positive solution,
which is a contradiction. The proof of the theorem is complete.

In the following, we present explicit criteria for the class S2 to be empty.

Corollary 2. Let (16) hold, y(t) ∈ S1 be a principal solution of (6) and V(t) its associated solution of (7). If
α = 1 and

lim
t→∞

inf
∫ t

τ(t)
Ω1(s)ds >

1
e

, (19)

then the class S2 is empty.

Corollary 3. Let (16) hold, y(t) ∈ S1 be a principal solution of (6) and V(t) its associated solution of (7). If
0 < α < 1 and ∫ ∞

t0

Ω1(t)dt = ∞, (20)

then the class S2 is empty.
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Corollary 4. Let (16) hold, y(t) ∈ S1 be a principal solution of (6) and V(t) its associated solution 0f (7).
Suppose α > 1 and τ(t) = θt, θ ∈ (0, 1). If there exists λ > ln(α)/ ln(θ), such that

lim
t→∞

inf
[
Ω1(t) exp

(
−tλ

)]
> 0 (21)

holds, then the class S2 is empty.

Corollary 5. Let (16) hold, y(t) ∈ S1 be a principal solution of (6) and V(t) its associated solution of (7).
Suppose α > 1 and τ(t) = tθ , θ ∈ (0, 1). If there exists λ > ln(α)/ ln(θ) such that

lim
t→∞

inf
[
Ω1(t) exp

(
− lnλ(t)

)]
> 0 (22)

holds, then the class S2 is Empty.

The proof of the Corollaries 10 - 13 follows from oscillation of equation (18) for α = 1, see, [28],
α ∈ (0, 1), see, [29] and for α > 1, see, [30], respectively.

Next, we obtain conditions for the class S0 to be empty. Define

Ω2(t) =
1

β1(t)

∫ σ(t)

t

1
β2(s)

∫ σ(s)

s
Ω(s1)ds1ds.

Theorem 2. Let (16) hold, y(t) ∈ S1 be a principal solution of (6) and V(t) its associated solution of (7).
Assume that there exists a function σ(t) ∈ C′([t0, ∞),R) such that

σ′(t) ⩾ 0, σ(t) > t, δ(t) = τ(σ(σ(t))) < t. (23)

If the first-order delay differential equation

χ′(t) + Ω2(t)χα(δ(t)) = 0 (24)

is oscillatory, then the class S0 is empty.

Proof. Assume the contrary that ω(t) is an eventually positive solution of (13) belongs to the class S0

for all t ⩾ t1. Integrating (13) from t to σ(t), we have

β2(t)
(

β1(t)ω′(t)
)′ ⩾ ∫ σ(t)

t
Ω(s)ωα(τ(s))ds

⩾ ωα(τ(σ(t)))
∫ σ(t)

t
Ω(s)ds.

Dividing the last inequality by β2(t) and then integrate from t to σ(t), we get

−β1(t)ω′(t) ⩾ ωα(δ(t))
∫ σ(t)

t

1
β2(s)

∫ σ(s)

s
Ω(s1)ds1ds.

Finally integrating from t to ∞, we get

ω(t) ⩾
∫ ∞

t

ωα(δ(s))
β1(s)

∫ σ(s)

s

1
β2(s1)

∫ σ(s1)

s1

Ω(s2)ds2ds1ds.
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Let us denote the right hand side of the above inequality by χ(t). Then ω(t) ⩾ χ(t) > 0 and it is easy
to find that

0 = χ′(t) +
(

1
β1(t)

∫ σ(t)

t

1
β2(s)

∫ σ(s)

s
Ω(s1)ds1ds

)
ωa(δ(t))

⩾ χ̇′(t) + Ω2(t)xα(δ(t)).

Consequently, Theorem 1 of [26] implies that the corresponding differential equation (24) has also a
positive solution χ(t), which contradicts to our assumption. Hence, we conclude that S0 is empty. The
proof of the theorem is complete.

Corollary 6. Let (16) hold, y(t) ∈ S1 be a principal solution of (6) and V(t) its associated solution of (7).
Assume that there exists a function σ(t) ∈ C′([t0, ∞),R) such that (23) holds. If α = 1 and

lim
t→∞

inf
∫ t

δ(t)
Ω2(s)ds >

1
e

, (25)

then the class S0 is empty.

Corollary 7. Let (16) hold, y(t) ∈ S1 be a principal solution of (6) and V(t) its associated solution of (7).
Assume that there exists a function σ(t) ∈ C′([t0, ∞),R) such that (23) holds. If α ∈ (0, 1) and∫ ∞

t0

Ω2(t)dt = ∞, (26)

then the class S0 is empty.

Corollary 8. Let (16) hold, y(t) ∈ S1, be a principal solution of (6) and V(t) its associated solution of (7).
Assume that there exists a function σ(t) ∈ C′([t0, ∞),R) such that (23) holds. If α > 1, δ(t) = θt, θ ∈ (0, 1)
and there exists λ > ln(α)

ln(θ) such that

lim
t→∞

inf
[
Ω2(t) exp

(
−tλ

)]
> 0 (27)

holds, then the class S0 is empty.

Corollary 9. Let (16) hold, y(t) ∈ S1 be a principal solution of (6) and V(t) its associated solution of (7).
Assume that there exists a function σ(t) ∈ C′([t0, ∞),R) such that (23) holds. of α > 1, δ(t) = tθ , θ ∈ (0, 1)
and there exists λ > ln(α)

ln(θ) such that

lim
t→∞

inf
[
Ω2(t) exp

(
−(ln(t))λ

)]
> 0 (28)

holds, then the class S0 is empty.

The sufficient conditions for the oscillation of (24) for α = 1, 0 < α < 1 and α > 1 in previous
Corollaries can be recalled from [28], [29] and [30] respectively.

Combining the criteria obtained for the classes S0 and S2 to be empty, we are able to present the
following criteria for the oscillation of equation (1).

Theorem 3. Let (16) hold, y(t) ∈ S1 be a principal solution of (6) and V(t) its associated solution of (7).
Assume that there exists a function σ(t) ∈ C′([t0, ∞),R) such that (23) holds. Let α = 1(α < 1) holds. If (19)
((20)) and (25) ((26)) hold, then the equation (1) is oscillatory.

Proof. Let η(t) be an eventually positive solution of (1) such that η(τ(t)) > 0 for all t ⩾ t1, for some
t1 ⩾ t0. Then by Corollary 1, the corresponding function ω(t) = η(t)

y(t) is also a positive solution of
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(13) and by Lemma 1, ω(t) ∈ S0 or ω(t) ∈ S2 for all t ⩾ t1. In view of Corollary 2 (Corollary 3) we
conclude that the class S2 is empty and by Corollary 6 (Corollary 7) we can see that the class S0 is empty.
Therefore, by oscillation preserving transformation, η(t) = ω(t)y(t), we conclude that equation (1) is
oscillatory. The proof of the theorem is complete.

Theorem 4. Let (16) hold, y(t) ∈ S1 be a principal solution of (6) and V(t) its associated solution of (7).
Assume that there exists a function σ(t) ∈ C′([t0, ∞),R) such that (23) holds. Suppose α > 1, τ(t) =

θ1t
(
tθ1
)
, δ(t) = θ2t

(
tθ2
)

where θ1, θ2 ∈ (0, 1). If there exists λ > ln(α)
ln(θ1)

(
λ > ln(α)

ln(θ2)

)
such that (21)((22))

and (27) ((28)) hold, then equation (1) is oscillatory.

Proof. The proof is similar to Theorem 3 and so the details are omitted.

We conclude this section with an example whose oscillatory character cannot be determined by
any known results in [15–23].

4. Example
Consider the hybrid third-order delay differential equation

η′′′(t)− 36
125

1
t3 η(t) +

b
t3 η(λt) = 0, t ⩾ 1, (29)

where b > 0 and λ ∈ (0, 1).
For the equation (29), the auxiliary equation (6) takes the form

y′′′(t)− 36
125t3 y(t) = 0,

with a couple of positive solutions y1(t) = t1/5 and y2(t) = t(7−
√

13)/5 belong to S1. By Remark 1, we
consider y(t) = t

1
5 for which the equation (7) is reduced to(

t−1/5V′(t)
)′

− 4
25

t−11/5V(t) = 0

and possesses a positive solution V(t) = t(3−
√

13)/5 associates to y(t). Further calculations show that

β1(t) = t(
√

13−1)/5 and β2(t) = t(5−2
√

13)/5

and hence the conditions (14) and (15) hold. The condition (16) obviously satisfied. Furthermore, we
see that

B12(t) =
25

2
√

13
t

6+
√

13
5

Ω1(t) =
25bλ(7+

√
13)/5

2
√

13
1
t

.

The condition (19) becomes
25bλ(7+

√
13)/5 ln 1

λ

2
√

13
>

1
e

,

that is, the class S2 is empty if

b >
2
√

13

25λ(7+
√

13)/5e ln 1/λ
. (30)
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Set σ(t) = λ1t, λ1 > 1, such that λ1 < 1√
λ

so that condition (23) holds. Also

Ω2(t) = 25bλ
1
5

(
1 − λ

−(6+
√

13)/5
1

)(
1 − λ

−(6−
√

13)/5
1

)
23

1
t

.

The condition (25) becomes

25bλ
1
5

(
1 − λ

−(6+
√

13)/5
1

)(
1 − λ

−(6−
√

13)/5
1

)
23

ln
1

λ2
1λ

> 1/e,

that is, the class S0 is empty if

b >
23

25λ1/5
(

1 − λ
−(6+

√
13)/5

1

)(
1 − λ

−(6−
√

13)/5
1

)
e ln 1

λλ2
1

. (31)

Hence, by Theorem 3, the equation (29) is oscillatory if b satisfies the conditions (30) and (31) simulta-
neously.

In particular, if we take λ = 1
5 and λ1 = 2, we see that b> 2.0241 and b>10.0063. Therefore,

equation (29) is oscillatory if b > 10.0063.

5. Conclusion
In this paper, we studied the oscillatory properties of equation (1). This is achieved by transform-

ing the studied trinomial equation into a binomial form using the positive solutions of the auxiliary
equations. By comparison and integral averaging techniques we are able to obtain new oscillation
criteria for the equation (1). Hence the oscillation criteria derived in this paper are new and significant
contribution to the oscillation theory of third- order delay differential equations.

Further, it is an interesting problem to obtain oscillation criteria for the studied equation (1)
without using the explicit solutions of the related auxiliary differential equations.
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