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Abstract: This paper explores the oscillatory behavior of a class of third-order hybrid-type delay
differential equations. A novel approach involves transforming these complex trinomial equations into
a simpler binomial form by utilizing solutions from associated linear differential equations. Through
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1. Introduction

This paper is concerned with the third-order functional differential equation of the form

(1a6) (a0’ (9)") = E1(B) () + a1y (x(1) = 0,8 >ty )

and assume the following conditions to hold:
(C1) pa(t), pa(t), 61 (t), E2(t) € C([to, 0)), pa(t) > 0, pua(t) > 0,81(t) > 0and &a(t) >0,
(C2) t(t) € '([tn,0)),T'(t) > 0,7(t) <t, tlim T(t) = oo,
— 00
(C3) a is a ratio of the old positive integers,
(C4) equation (1) is in canonical form, that is,

o o
/to mdt_/to = @)

With the given initial point {p > 0, set t_; = tiQth(t)' By a solution of (1) , we mean a function
]

5(t) € C([t_1,0),R) which has the property w11, 2 (4177’)" € C'([to, ), R) that satisfies (1) for t > tg
and satisfies (1) for t > ty. Our attention is restricted to those solutions 7(t) of (1) , which exist on
some half-line [ty, c0) and satisfy sup {|#(t)| : t > T} > O forall T > ty;. We tacitly assume that (1)
does possess such solutions.

The oscillatory nature of the solution is understood in the usual way, that is, a non trivial solution
is called oscillatory or nonoscillatory if it does or does not have infinitely many zeros.
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Letting either ¢1(t) = 0 or {»(t) = 0, equation (1) reduces to simpler binomial differential
equations with or without delay of the form

(G n'0)') + &0 (1) =0 @)

and
(r2(0) (1 (' (1)) =& (O (t) = . @

So, in a sense, one may call (1) a hybrid type third-order differential equation.

Oscillatory and asymptotic properties of both equations (3) and (4) have been studied by many
authors, see, the papers [1-10], the monograph [11] and the references contained therein. This is due
to the fact that they have many applications in natural sciences and engineering, see, for instance, the
papers [12,13] for models from mathematical biology where the oscillation and/or delay actions may be
formulated by means of cross-diffusion terms. By the well known result of Kiguradze [14] (Lemma 1),
one can easily classify the possible nonoscillatory solutions of (3) and (4) that are completely different.
If we set by S the set of all non-oscillatory solutions of studied equations, then for (3) the set S has the
following decomposition

S=5yUS,,

where positive solution
1) € So & (D' (£) < 0, pa(O) g (B (1) > 0, (alt) (s (D' (1)) <0,

/
1) € S & (D' (1) > 0,12 (D) (7' (1) > 0, (V) Gua (B’ (1))') < 0.
On the other hand, for (4) the set S has the following reduction

S5=51U8S;3,

with positive solution
1) € S1 & (B () > 0, (O) (D' (1) <0, (a(O) (D' (8))') >0,
1) € S5 & (' (8) > 0, pa() G (D' (1)) > 0, (jua(t) s (' (1)) > 0.

Hence, from the above discussion the nonoscillatory solutions space of (1) with positive and
negative part is not clear.
Recently in [15-18], the authors considered the equation relating to (1) of the form

(126) 1 (01 (6)') = @O () + Ea(Bh(n(x(1))) = 0 5)

and studied the oscillatory and asymptotic behavior of solutions of (5) by assuming either f is bounded

/fo m/f m/s ¢1(s1)ds1dsdt < oo,

/to m/t m/s &r(s1)ds1dsdt < oo.

Another method frequently used in the oscillation theory of trinomial differential equations is to omit

or h is bounded with

or

one term (see, [19-23]) and this method yield the following differential inequalities for (1)

{00000 0)') + Eatey (10 f signn(t) > 0

and

{ (0 ®)) = t26m(0) }signn(e) <o.
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which are opposite to those that we need. Hence there is only a limited number of papers dealing
equation (1) with positive and negative parts.

Therefore, in this paper we use a novel method that overcomes those difficulties appearing due to
positive and negative parts of (1). An example is given to illustrate the importance and significance of
our main results.

2. Auxiliary Results

The main results are established via series of lemmas, which relate properties of solutions of (1) to
those of solutions of auxiliary differential equations

()G (1)) — & By () = 0 ©)
e (1) (G 1)y (1)
p2(t) i) L H2B 0y () o
(y(t)v(t)) - m(t)y2(t) v =0 @

We begin with our first result based on an equivalent representation for the linear differential operator

£4(6) = (pa) (' () ) = G20y (1) ®
in terms of positive solutions y(t) and V (t), respectively of (6) and (7).

Lemma 1. Let y(t) be a positive solution of (6). Then the operator (8) can be written as

20 = (28 (e (1Y) )+ mte ) (53 ¥

Proof. Direct calculation shows that the right hand side of (9) equals

(ﬁ?wwmwwwmwww@W4WWWWW (y>
7

=wwwmwmwwax<wmn§§
= (2 (D) (1 (D' (1)) = & (t)y(t).

The proof of the lemma is complete. [

Lemma 2. Let y(t) be a positive solution of (6) and let the equation

wa(t) o\ L r2 Gy (1) o
(Srvo) =ty o= 1
possesses a positive solution. Then the operator (8) can be written as
1 [m@v2o) (s (10
L0 =557 yw <1wo @m))} an
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Proof. By a direct computation, we see that the right-hand side of (11) equals
1 ) N ), IO
v | VOO omy) -V o (moro () )]
(20 w20V - OFOER)) eviey
- (y(t) (WW (3o ) ) () (12
Using (9) in (12) yields
_ _ iy (1Y 1 2 (TN (2BV' (1))
= £y =120 G0/ ) (1) = 5 (mow o (43 ) (25
_ ) (O [ (r2OV ()N p20) By (1)
= o0 -0 (Vg l( ) R T GRAC
= Ly(t),
since V (t) is a solution of (10). The proof of the lemma is complete. [
From Lemmas 1 and 2, the equation (1) can be rewritten in a binomial form
(B2(8) (B1()w' (1)) + Q(H)w" (z(t)) =0, (13)
where
_ mOVA(H) _ mOyA()
Pa(t) = ZyT’ pi(t) = IVT’
Q) = VR (1), w(b) =1,

Following Trench [24], we say that (13) is in canonical form, if

midt:/m )y (14)

to Ba(t) o H2(H)V2(H)
and . ) V(t)
L m ), et (15)

For convenience, it is of important to find conditions that ensure the existence of positive solutions
of (6) and (7) such that conditions (14) and (15) are fulfilled so that (13) is in a canonical form.

Now, from the familiar Kiguradze lemma [14], the set S of all possible nonoscillatory, let us say
positive solutions of (6) has the following decomposition

S5=51U8S;,

where
y(t) € 15 y(t) > 0,y (1) > 0, (DY (1) <0, () (MY (1)) >0,
y(t) € S3 & y(t) >0,y (t) >0, (DY (1)) >0, (Vz(f>(m<t>y’<f))/>/ > 0.

Lemma 3. Assume that

Lim sup 771 (£) 7021 () 1 (£) 61 () 3 (16)

&I\J

where

m(t) = /t: y(ls)ds, o1 (t) = /t: Z;((gds.
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Then all solutions of (6) are nonoscillatory and moreover equation (6) has a couple of linearly independent
solutions belong to S1 and Ss.

Proof. The result follows from Lemma 2 of [26] and so the details are omitted. [

To obtain our main results, it is convenient to work with y(f) € S; and so we always assume
in the sequel that (16) holds. It is known (see,[14-24]) that if (6) has a solution y(t) € S;, then the
corresponding second-order differential equation (7) always possesses a couple of positive solutions

V(t) € So < V(t) >0,V'(t) <0, (W)l >0,

V(t) € Sy« V(t) >0,V'(t) >0, (W)l -0

For our purposes, exactly V(t) € Sy will be suited and we say that such solution V() is associated to

y(t).

Lemma 4. Let y(t) € Sy be a positive solution of (6) and let V (t) be associated to y(t). Then (14) and (15) are
satisfied.

Proof. The condition (14) immediately follows from the monotonicity properties of y(t) and V(t)
along with (2). Further, by Lemma 4 of [25], we can show that condition (15) holds. This ends the
proof. O

Remark 1. If y;(t) and y,(t) are a couple of increasing solutions of (6), then to get the canonical form of (13),
we consider the solution y1 (t) such that

oyt
thjg m =0. (17)

Definition 1. Following Hartman [25], we say the solution y,(t) € Sy of (6) satisfying (17) is a principal
solution of (6).

Combining the results in Lemma 3, 4 and Remark 1, we obtain the following corollary.

Corollary 1. Let (16) hold, y(t) € Sy be a principal solution of (6) and V (t) its associated solution of (7).
Then, (1) has an equivalent of (13) which is in canonical form.

3. Oscillation Results

In this section, we study the oscillation properties of (1)with the aid of (13). Here after, without
loss of generality, we may consider only positive solutions of (1). In view of familiar Kiguradze’s
lemma [14], we have the structure of the nonosillatory solution of (13).

Lemma 5. Let (16) hold, y(t) € Sy be a principal solution of (6) and V (t) its associated solution of (7). If n(t)
is an eventually positive solution of (1), then the corresponding function w(t) satisfies either

w(t) € §o < w'(t) <0, (B1(Hw' (1)) >0, (/32(f)(ﬁ1(t)w,(t))/)/ <0

or

W) €86 @ (1) >0, (B (1) >0, (B (Br(e' (1)) <.

Consequently, the set S of all positive solutions of (13) (as well as (1)) has the following decomposition

S 270 ng.
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Now, we are prepared to present a criterion for the class Sy is empty.
Let us define

B | B | B £ By(s) B a
Bl(t)—/tl RO Bz(t)—/tl n Bt = ﬁj(s)ds, Q1 (F) = QDB ((t)),

where t; > t( sufficiently large.

Theorem 1. Let (16) hold, y(t) € Sy be a principal solution of (6) and V (t) its associated solution of (7). If
the first-order nonlinear delay differential equation

Z'(t) + M (H)z"(7(t)) = 0 (18)
is oscillatory, then the class S, is empty.

Proof. Assume the contrary that w(t) is a positive solution of equation (13) that belongs to the class S,
forall t > t; > ty. Setting z(t) = B2(t)(B1(t)w’(t))" > 0 is decreasing, we have

{ Bals) (B1(5) (5))
A e
> By(£)z(f).

Bi(t)w'(t)

S

Integrating from t; to t, we are led to

Hence,
w*(t(t)) = Bip(t(#))z"(z(t))

and using the last inequality in (13), we obtain
—Z'(£) = M (5)2" (x(1)).
Therefore, it is clear that z(t) is a positive solution of the differential inequality
Z(t) + Q1 ()2 (T(t)) < 0.

But, by Theorem 1 in [26] the corresponding differential equation (18) also has a positive solution,
which is a contradiction. The proof of the theorem is complete. O

In the following, we present explicit criteria for the class S, to be empty.

Corollary 2. Let (16) hold, y(t) € Sy be a principal solution of (6) and V (t) its associated solution of (7). If

a = 1and ,

. 1
tILTO inf " Q4 (s)ds > > (19)

T

then the class Sy is empty.

Corollary 3. Let (16) hold, y(t) € Sy be a principal solution of (6) and V (t) its associated solution of (7). If
0<a<land

/°° O (1)dt = oo, (20)

to

then the class Sy is empty.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Corollary 4. Let (16) hold, y(t) € Sy be a principal solution of (6) and V (t) its associated solution Of (7).
Suppose « > 1 and t(t) = 0t,0 € (0,1). If there exists A > In(a)/ In(0), such that

lim inf [Ql (t) exp (7,57\)] >0 (21)

t—o0

holds, then the class Sy is empty.

Corollary 5. Let (16) hold, y(t) € Sy be a principal solution of (6) and V (t) its associated solution of (7).
Suppose w > 1and T(t) = 9,0 € (0,1). If there exists A > In(«)/ In(6) such that

lim inf O () exp(—In* (1)) | > 0 (22)

t—o0

holds, then the class S, is Empty.

The proof of the Corollaries 10 - 13 follows from oscillation of equation (18) for &« = 1, see, [28],
a € (0,1), see, [29] and for & > 1, see, [30], respectively.
Next, we obtain conditions for the class §0 to be empty. Define

O(s1)dsqds.

o(s)
s

1 o) 1
20 =55 Rl

Theorem 2. Let (16) hold, y(t) € Sy be a principal solution of (6) and V(t) its associated solution of (7).
Assume that there exists a function o(t) € C'([tg, o), R) such that

d'(t) = 0,0(t) > t,6(t) = t(c(o(t))) < t. (23)
If the first-order delay differential equation

X' (5) +Qa(H)x"(8(t)) = 0 (24)
is oscillatory, then the class Sy is empty.

Proof. Assume the contrary that w(t) is an eventually positive solution of (13) belongs to the class Sy
for all t > t;. Integrating (13) from ¢ to o(t), we have

/ o(t)
B D) > [ 0w (r(e)ds

>w”‘(r(0(t)))/0 O(s)ds.

t

Dividing the last inequality by B>(t) and then integrate from t to o (), we get

o(t) o(s)
B (B (1) >w"‘((5(t))/t ,le(s)/ O(sy)ds1 ds,

Finally integrating from ¢ to co, we get

w(t) > /too w‘"((S(s))/S‘T(S) ,32(151) /S:T(Sl) Q(sp)dsydsds.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Let us denote the right hand side of the above inequality by x (). Then w(t) > x(t) > 0 and it is easy

to find that .
0= ( 0 / ﬁz / (sl)dslds) W (8(1))
> X'(t) + Qo (t)x*(5(t)).

Consequently, Theorem 1 of [26] implies that the corresponding differential equation (24) has also a

positive solution x(t), which contradicts to our assumption. Hence, we conclude that Sy is empty. The
proof of the theorem is complete. [

Corollary 6. Let (16) hold, y(t) € Sy be a principal solution of (6) and V (t) its associated solution of (7).
Assume that there exists a function o(t) € C'([to, 00),R) such that (23) holds. If & = 1 and

t
lim inf Oy (s)ds > %, (25)

t—o0 5(t)
then the class Sy is empty.

Corollary 7. Let (16) hold, y(t) € Sy be a principal solution of (6) and V (t) its associated solution of (7).
Assume that there exists a function o (t) € C'([tg, 00),R) such that (23) holds. If x € (0,1) and

/ " (1)dt = o, (26)

to
then the class Sy is empty.
Corollary 8. Let (16) hold, y(t) € Sy, be a principal solution of (6) and V (t) its associated solution of (7).

Assume that there exz'sts a function o(t) € C'([tg,00), R) such that (23) holds. If « > 1,6(t) = 6t,6 € (0,1)
and there exists A > E g such that

.. A
tlgglo inf {Qz(t) exp(—t )] >0 (27)
holds, then the class Sy is empty.

Corollary 9. Let (16) hold, y(t) € Sy be a principal solution of (6) and V (t) its associated solution of (7).
Assume that there exists a function o (t) € C'([tg,00),R) such that (23) holds. of & > 1,5(t) = t,0 € (0,1)
and there exists A > E ; such that

lim in () exp(—(n(t)*) ] > 0 (28)
holds, then the class Sy is empty.

The sufficient conditions for the oscillation of (24) fora = 1,0 < @ < 1 and a > 1 in previous
Corollaries can be recalled from [28], [29] and [30] respectively.

Combining the criteria obtained for the classes Sy and S, to be empty, we are able to present the
following criteria for the oscillation of equation (1).

Theorem 3. Let (16) hold, y(t) € Sy be a principal solution of (6) and V(t) its associated solution of (7).
Assume that there exists a function o(t) € C'([to, 00), R) such that (23) holds. Let &« = 1(a < 1) holds. If (19)
((20)) and (25) ((26)) hold, then the equation (1) is oscillatory.

Proof. Let 7(t) be an eventually positive solution of (1) such that (7(t)) > 0 for all t > t;, for some
t; > to. Then by Corollary 1, the corresponding function w(t) = % is also a positive solution of

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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(13) and by Lemma 1, w(t) € Sy or w(t) € Sy for all t > t;. In view of Corollary 2 (Corollary 3) we
conclude that the class S, is empty and by Corollary 6 (Corollary 7) we can see that the class Sy is empty.
Therefore, by oscillation preserving transformation, 7 (t) = w(t)y(t), we conclude that equation (1) is
oscillatory. The proof of the theorem is complete. O

Theorem 4. Let (16) hold, y(t) € Sy be a principal solution of (6) and V (t) its associated solution of (7).
Assume that there exists a function o(t) € C'([tg,0),R) such that (23) holds. Suppose & > 1,7T(t) =
01£(1%1),6(t) = 02t (1%) where 01,0, € (0,1). If there exists A > 11;1((;‘1)) ()\ > 11:((5‘2))) such that (21)((22))
and (27) ((28)) hold, then equation (1) is oscillatory.

Proof. The proof is similar to Theorem 3 and so the details are omitted. [

We conclude this section with an example whose oscillatory character cannot be determined by
any known results in [15-23].

4. Example
Consider the hybrid third-order delay differential equation
" 36 1 b
= — = =

whereb > 0and A € (0,1).
For the equation (29), the auxiliary equation (6) takes the form

36
Moy
v~ e

y(t) =0,

with a couple of positive solutions y1 (#) = £1/5 and y,(t) = +7~V13)/5 belong to S;. By Remark 1, we
consider y(t) = t5 for which the equation (7) is reduced to

15000\ 4 115 _
(t V(t)) =t V() =0

and possesses a positive solution V(t) = #3-V13)/5 associates to y(t). Further calculations show that

B1(t) = tVI3=D/5 and B, (t) = t5-2V13)/5

and hence the conditions (14) and (15) hold. The condition (16) obviously satisfied. Furthermore, we

see that
25 t6+g/ﬁ

BNE
25\ (7+V13)/5 1

2v/13 t

Bia(t)

O4(t)

The condition (19) becomes
25pA7+V13)/5 1 1

2v/13

Q|-

that is, the class S, is empty if

b> 2v13 . (30)
250 (7+V13) /50 1n 1/ A

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Set o(t) = A1t, A1 > 1, such that Ay < % so that condition (23) holds. Also
<1 _ A(6+\/ﬁ)/5) <1 o A(6\/ﬁ)/5>
1 1 1
Q 2 5 —.
z(t) 5bA5 3 ;
The condition (25) becomes
1 (1 B A1(6+\/ﬁ)/5> (1 B /\1(6@)/5> :
25bA5 R ln/\%—/\ >1/e,
that is, the class Sy is empty if
b> 23 . (31)
25)1/5 (1 - /\1(6”@/5) <1 - Al(“/ﬁ)“) eln -1,
1

Hence, by Theorem 3, the equation (29) is oscillatory if b satisfies the conditions (30) and (31) simulta-
neously.

In particular, if we take A = % and A = 2, we see that b> 2.0241 and b>10.0063. Therefore,
equation (29) is oscillatory if b > 10.0063.

5. Conclusion

In this paper, we studied the oscillatory properties of equation (1). This is achieved by transform-
ing the studied trinomial equation into a binomial form using the positive solutions of the auxiliary
equations. By comparison and integral averaging techniques we are able to obtain new oscillation
criteria for the equation (1). Hence the oscillation criteria derived in this paper are new and significant
contribution to the oscillation theory of third- order delay differential equations.

Further, it is an interesting problem to obtain oscillation criteria for the studied equation (1)
without using the explicit solutions of the related auxiliary differential equations.
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