Pre prints.org

Review Not peer-reviewed version

Advances in Modeling Approaches for
Oral Drug Delivery: Artificial Intelligence,
Physiologically Based Pharmacokinetic,
and First-Principle Models

Yehuda Arav *
Posted Date: 15 July 2024
doi: 10.20944/preprints202406.0471v2

Keywords: Mathematical models; Artificial intelligence; Machine learning; deep learning; QSAR; PBPK; CFD;
Molecular dynamics

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3610608

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 July 2024 d0i:10.20944/preprints202406.0471.v2

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Advances in Modeling Approaches for Oral Drug
Delivery: Artificial Intelligence, Physiologically Based
Pharmacokinetic, and First-Principles Models

Yehuda Arav 1120000-0002-6016-634X

Department of Applied Mathematics, Israeli Institute for Biological Research,PO Box 19, Ness-Ziona, 7410001 Israel;
yehuda.arav@gmail.com

Abstract: Oral drug absorption is the primary route for drug administration. However, this process hinges on
multiple factors, including the drug’s physicochemical properties, formulation characteristics, and gastrointestinal
physiology. Given its intricacy and the exorbitant costs associated with experimentation, the trial-and-error
method proves prohibitively expensive. Theoretical models have emerged as a cost-effective alternative by
assimilating data from diverse experiments and theoretical considerations. These models fall into three categories:
(i) Data-driven models, encompassing classical pharmacokinetics, quantitative-structure models (QSAR), and
machine/deep learning. (ii) Mechanism-based models include quasi-equilibrium, steady-state, and physiologically
based pharmacokinetics. (iii) First-principles models include molecular dynamics and continuum models. This
review provides an overview of recent modeling endeavors across these categories, evaluating their respective
advantages and limitations. Additionally, a primer on partial differential equations and their numerical solutions
is included in the supplementary materials, recognizing their utility in modeling physiological systems despite

their mathematical complexity limiting their widespread application in this field.
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1. Introduction

Oral drug delivery is the most comfortable and commonly utilized route for administering drugs,
with about 60% of all dosage forms in the worldwide market being oral [1,2]. It has attracted attention
due to its unique advantages, including sustained and controllable delivery, ease of administration,
feasibility for solid formulations, patient compliance, and an intensified immune response in the case
of vaccines [3].

However, the extent and rate of drug absorption from the gastrointestinal (GI) tract into the
bloodstream is a complex process that is influenced by various factors categorized into three main
classes [4] (Figure 1). The first class encompasses the physicochemical and biological properties of the
drug, including solubility, pKa, chemical and biological stability, and lipophilicity. The second class
involves the physiological and anatomical properties of the GI tract, such as pH levels, gastric emptying
rates, transit times through the small and large bowel, concentrations of micelles, active transport
mechanisms, efflux processes, and gut wall metabolism. The third class comprises formulation factors,
including dosage form, particle size distribution, and the properties of various delivery systems such
as solutions, tablets, capsules, suspensions, emulsions, gels, and modified-release formulations.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Factors influencing oral drug absorption. Created with BioRender.com

Given this complexity, designing an oral formulation capable of achieving an appropriate pharma-
cokinetic profile for new drugs or optimizing existing drug formulations necessitates a methodology to
estimate the extent and dynamics of absorption [5]. However, conducting extensive in vivo evaluations
in preclinical species can be both costly and time-consuming, as it provides information specific to the
conditions under which the experiments were conducted. Moreover, inter-species differences may
result in unreliable predictions of oral bioavailability in humans when relying solely on in vivo animal
data.

Mathematical models for oral drug absorption have increasingly influenced the development of
oral drug delivery products over the past two decades, reducing the failure rate of new drugs due
to poor drug-like properties from 30 — 40% during the 1990s to approximately 10 — 15% toady [6].
Over the years, various types of mathematical models have been developed, generally falling along
a spectrum between data-driven, mechanism-based, and first-principles models. In its purest form,
a data-driven model utilizes solely the observed data of the phenomena it represents. For example,
characterizing the distribution and statistical properties of a measured variable is a data-driven model.
Mechanism-based models describe the dynamics of the system by detailing the kinetics of the relevant
processes after simplifications. For example, the Michaelis-Menten approximation [7] is often used to
describe the metabolism rate of the hepatic enzyme CYP3A4, which is involved in the metabolism
of many drugs, rather than detailing its full set of reactions [8]. Conversely, first-principles models
rely solely on fundamental principles (such as thermodynamics, conservation of mass, energy and
momentum) to describe system dynamics and estimate parameters. For instance, the Einstein-Stokes
equation can be used to calculate the diffusion coefficient of a dye in still water [9]. Different model
types have advantages and disadvantages regarding the questions at hand. This work aims to review
the different types and provide insights into their strengths and weaknesses.
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2. Overview of The Physiology and Mechanisms of Human Oral Drug Absorption

Oral drug delivery commences with the administration of a drug formulation to the buccal cavity
(Figure 2). The buccal/sublingual is an attractive route of delivery for some highly water-soluble and
absorbable drugs[10], due to its high compliance, avoiding the hepatic first-pass metabolism, and quick
onset [11]. In the following, we will provide an overview of the absorption in the buccal/sublingual
route, for further details see [12-15].

Following the disintegration of the buccal/sublingual formulation, the drug has to dissolve in
the limited volume of human saliva (0.8 to 1.1mL, [11]) and permeate the epithelium. The buccal
epithelium has a surface area of approximately 50cm?[13], and it consists of 40 — 50 layers, only a few
of which are shown in the schematics that describe the Buccal/sublingual absorption route in Figure 2.

The permeation of drugs across the epithelium and into the bloodstream occurs through various
mechanisms, which involve either passive or active transport [16]. Passive transport is facilitated
by the concentration gradient across the membrane and can occur through either the cell membrane
(transcellular transport) or the paracellular pathway, where the drug traverses intercellular spaces.
The paracellular route primarily facilitates the absorption of hydrophilic drugs, while transcellular
transport is predominant for lipophilic compounds[15]. Additionally, active transport mechanisms,
such as carrier-mediated transport, contribute to the transportation of certain drugs across the oral
mucosa [13,17].

Several observations (See Vondracek et al. [18], and reference therein) support the presence of the
cytochrome P450 (CYP) family in the buccal epithelium. The CYP family of enzymes is responsible for
the oxidative metabolism of numerous endogenous and exogenous chemicals [18]. Consequently, some
drugs that permeate the epithelium via the transcellular route may undergo metabolism, potentially
reducing their bioavailability.

The buccal /sublingual route might be less preferable for poorly water-soluble drugs, which
comprise approximately 40% of the drugs in the market. This is because the low solubility of the drugs,
combined with the relatively small surface area, and short residence time, due to accidental swallowing
and dilution with saliva[19], might limit their absorption. To increase the relevancy of this route, there
is an effort to develop a novel delivery method that would increase drug solubility [11,20-23], or
increase the residence time by developing formulations based on bioadhesive polymers[19].
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Figure 2. Schematic overview of oral drug absorption. Created with BioRender.com

Hence, the majority of the formulations are intended for absorption in the gastrointestinal tract
(GIT), and reach the stomach after their ingestion (Figure 2). The stomach, resembling a bean-shaped
muscular bag, serves as both a reservoir and a regulator for transfer to the small intestine (SI) via the
pylorus sphincter [24]. Physiological conditions within the stomach vary depending on its contents
[25]. In fasted state, the stomach typically maintains a pH of approximately 1-3 [3,25], possesses a
surface area of roughly 3.5m? [1], and contains 200-250mL of luminal fluids [25,26] containing specific
enzymes crucial for food digestion [16]. Under these conditions, solid dosage forms such as tablets,
capsules, and pellets may remain in the stomach for up to 2 hours [27], while the emptying rate of
liquid solutions is proportional to the stomach content volume (e.g., first order), with a half-emptying
time (t; ;) typically ranging from 5 to 20 minutes [26,28].

After a meal, the pH of the stomach increases to between 1.88 and 4.98, and its volume increases to
500mL or higher [25]. Under these conditions, the residence time of solid dosage can be 3-5 hours[27],
while the emptying rate of fluids becomes constant (e.g. zero order), and may last approximately
120 minutes[26], depending on the caloric intake (low- and high-fat) of the meal[25,26]. For further
information on the stomach anatomy and physiology in the presence or the absence of food see Cheng
et al. [25]. The drug is emptied from the stomach to the small intestine (SI).

The Sl is a lengthy (280cm) and narrow tube (= 1 — 2cm diameter, [24]) that is primarily respon-
sible for drug and nutrient absorption [24,29]. It connects to the stomach via the pylorus sphincter
at one end and to the large intestine through the ileocecal sphincter at the other. Anatomically, the
Sl is segmented into three distinct regions: the Duodenum (20cm long), the Jejunum (104cm long),
and the Ileum (156cm long) [24]. Surface area amplification within the intestinal fluid contact occurs
through three structures: large folds, finger-like projections (villi), and smaller protrusions (microvilli)
[24,29]. Large folds are typically located between the mid-duodenum and mid-ileum, with their size
and density decreasing along the SI. Similarly, the amplification of villi and microvilli diminishes
along the length of the SI [24,30]. This results in a surface area of approximately 250 — 30012 [3,24].
The pH increases gradually along the SI from 5.5 in the Duodenum to 7-9 in the distal ileum [3,25].
The contents of the SI are propelled toward the ileocecal valve through the contraction of its walls.
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The transit time is 3-4 hours independent of the presence of food, and the form of the pharmaceutical
formulation (tablets, pellets, and liquids) [27].

The large intestine (LI) resembles an imperfect cylinder, approximately 1.5 meters long, with a
diameter ranging from 4 to 8 centimeters [3,31], and has a surface area of approximately 1.3m?[1]. Its
roles encompass the absorption of electrolytes and water, fermentation of unused energy substrates,
immune system priming, production and absorption of vitamins and hormones, fecal transport to
the rectum, and fecal storage until elimination [31]. Anatomically, the LI is segmented into four
major parts: the ascending colon or cecum (20-25cm), the transverse colon (40-45cm), the descending
colon (10-15cm), and the sigmoid colon (35-40cm) [31]. The pH within the colon varies slightly across
different regions: 6.2-7.4 in the cecum, 5-8 in the transverse colon, 6-8 in the descending colon, and
7-8 in the sigmoid colon [31]. Undigested food is transferred from the small intestine to the cecum,
resulting in initially liquid feces that gradually solidify as they traverse the LI [31]. Transit time through
the LI is highly variable, influenced by factors such as diet, stress, mobility, medication, illness, and
gender [32], estimated to range between 5 to 73 hours [33].

A solid formulation releases the drug as it progresses through the gastrointestinal tract (GIT).
The rate of drug release from a formulation and its dissolution along the GIT depends on several
factors, including the properties of the formulation itself, the physicochemical properties of the drug,
and the composition of the GIT fluids. Formulations are frequently categorized according to the
pattern of drug release from tablets, which commonly includes immediate-release, modified-release,
and delayed-release formulations [34]. Immediate-release formulations rapidly release the drug after
administration and represent the most prevalent type of tablet. Examples include disintegrating,
chewable, effervescent, sublingual, and buccal tablets [34]. Modified-release formulations are designed
to release the drug over time, and in delayed-release formulations the drug is liberated from the
tablet sometime after administration, often to protect the drug from the gastric environment[34]. See
Taylor and Aulton [34] and Algahtani et al. [1] for an extensive review on oral drug formulations, and
Homayun et al. [3] for a review on advances and upcoming technologies in oral administration.

When the drug that was released from the formulation is solid, it must dissolve in the GIT fluids
before it can permeate the intestinal epithelium and reach the blood. The dissolution rate of the drug
depends on the powder distribution size [30,35], the charge of the drug, and the pH of the environment
in which it dissolves[5]. Following food intake, bile secretions from the gall bladder aid the dissolution
and permeation of lipophilic compounds[36].

After dissolution, the drug becomes susceptible to chemical and biological degradation within
the lumen of the GIT (Figure 2, Gastrointestinal route). Chemical degradation can occur under fasted
conditions post-administration due to the harsh acidic environment within the stomach [3]. Biological
degradation may occur in the stomach through gastric enzymes such as pepsin and gelatinase, as well
as in the upper SI via digestive enzymes secreted by the pancreas, including lipases (fat degradation),
amylase (starch degradation), peptidases (peptide disintegration), and trypsin (protein decomposition)
[3]. Additionally, brush-border metabolism occurs on the surface of the SI by enzymes present within
the brush-border membrane, such as Isomaltase, alkaline phosphatase, sucrose, and other peptidases
[1]. Further degradation may arise from the intestinal flora of the colon, primarily located in the lower
portion of the GI tract [1].

The permeation of free drugs through the gastrointestinal (GIT) epithelium occurs through
mechanisms similar to those described for the buccal/sublingual absorption route. Specifically, drugs
are absorbed either passively (via transcellular or paracellular routes) or through active transporters
[3,4]. Unlike the buccal/sublingual epithelium, the GIT epithelium is arranged in a single-column
layer (monolayer), primarily composed of enterocytes [1]. These cells express efflux transporters from
the ATP-binding cassette (ABC) superfamily, along with cytochrome P450 (CYP) enzymes responsible
for intracellular metabolism.

ABC transporters, including P-glycoprotein (P-gp, MDR1, ABCB1), multi-drug resistance-associated
proteins (MRPs), and breast cancer resistance protein (BCRP, ABCG2), function to limit the intracellular
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accumulation of their substrates by facilitating efflux out of cells [37]. These efflux transporters, along
with CYP enzymes, exhibit overlapping substrate specificity. Their combined action prolongs drug
exposure to CYP enzymes while maintaining low concentrations, thereby preventing saturation [1,38].
This mechanism can limit the bioavailability of many drugs and may lead to drug-drug interactions,
as some drugs can inhibit either P-gp or CYP enzymes [1]. See Murakami et al. [37] for an extensive
review of efflux proteins in the intestine, and Alqahtani et al. [1] for further discussion on the metabolic
barriers to absorption.

Following absorption in the GIT, the drug reaches the portal vein and passes through the liver
before it reaches the systemic circulation [1,38—41]. As the drug passes through the liver, it might be
metabolized by the hepatocytes of the liver that expresses the CYP, as well as other enzymes (first-pass
metabolism). This first-pass metabolism represents a major metabolic barrier to drugs administrated
through the gastrointestinal route [1].

3. Approaches for Mathematical Modeling

Mathematical modeling and computer simulations have become increasingly valuable in facilitat-
ing different aspects of the development of oral delivery of drugs. Due to the complexity of the oral
absorption process, and its many aspects, different models were developed with various modeling
techniques.

Generally, these models can be categorized into three different approaches: data-driven models,
mechanism-based modeling, and first-principles modeling (see Figure 3).

Data-driven modeling Mechanism-based modeling First-principle modeling
Conventional Pharmacokinetic Quasiequilibrium Molecular modeling
Conventional Quantitative Structure-Activity Relationship Steady-state Continuum modeling
Atrtificial Intelligence Dynamic Physiologically based Pharmacokinetic

Figure 3. The types of models used to facilitate oral drug absorption.

Data-driven models are developed based on empirical data and do not rely on explicit theoretical
principles. These models extract patterns and trends from observed data and are valuable for sum-
marizing and presenting data concisely. Additionally, they can make predictions within the range
of observed data, provided there is a sufficient amount of data available. Hence, the utility of these
models is limited to scenarios where ample empirical data is available. For example, Fagerholm et al.
integrated 14 different data-driven models to predict various pharmacokinetic parameters and used
them to forecast the oral bioavailability of drugs [42].

First-principles models leverage fundamental physics principles, including the conservation of
mass, momentum, and energy, as well as principles from thermodynamics, fluid dynamics, and other
relevant disciplines. These models describe system dynamics by considering factors such as geometry,
boundary conditions, and external forces. They provide detailed insights into phenomena and facilitate
the investigation of dynamics across a wide range of parameter values. For example, Palmada et al.
[43], used computational fluid dynamics (CFD) to investigate the effect of motility patterns on the flow
field in the Duodenum. However, due to their inherent complexity, first-principles models require a
wealth of detailed information, often limiting their applicability to relatively small physical domains.

Mechanism-based models integrate both approaches by representing system dynamics with sim-
plified versions of first principles while incorporating data-driven models to address the complexities
of the processes that were simplified. For instance, Physiologically Based Pharmacokinetic (PBPK)
models describe the pharmacokinetics of drugs in the body by treating each organ as a well-mixed
component. These models simplify Fick’s law of diffusion to account for drug uptake into organs, with
the rate constants derived from experiments on drug biodistribution [44,45].

In the following section, we will examine the application of models employing various approaches
for oral drug absorption.
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4. Data-Driven Models

Data-driven models, also known as empirical models, are utilized to quantitatively describe
empirical datasets and predict various properties. In the context of oral drug absorption, they can gen-
erally be categorized into three subcategories: Conventional Pharmacokinetic models, Conventional
Quantitative Structure-Activity Relationship (QSAR) models, and Artificial Intelligence (Al) models
that utilize Machine and Deep Learning models (ML and DL, respectively), and also referred to as
deep QSAR [46], or non-linear QSAR[46].

In the following sections, we review the advancements made in each subcategory regarding oral
drug absorption. For a comprehensive overview of classical Pharmacokinetic models, refer to [47]. To
explore QSAR models in detail, see [48,49]. Additionally, for insights into the applications of Al in
pharmacy, consult [50].

4.1. Conventional Pharmacokinetic

Conventional Pharmacokinetic models describe most commonly the kinetic of the drug in the
plasma following oral absorption by fitting the plasma concentration profile in time to a two-exponent
function [40,47], namely,

Cp= 71: Ka (I:DL . (67%')} — eik”'t) (1)
Vika —5)

Where C,, is the concentration in plasma, F is the bioavailability, k, is the absorption rate coefficient, D

is the administrated dose, V is the volume of distribution of the drug in the body, and CL represents

the clearance.

The parameters of Equation 1 usually cannot be estimated from the data of a single oral dose[40].
Hence, additional data is needed to estimate other parameters. The F, CL, and V are usually computed
from plasma concentrations following intravenous (IV) administration. Estimation of F can also
be achieved, under certain circumstances from urine data [40]. Due to the importance of these
pharmacokinetic parameters, several studies presented methods for assessing them using QSAR, and
ML and DL models will be reviewed in sections 4.2 and 4.3, respectively.

Equation 1 is derived by modeling the absorption from the gastrointestinal tract (GIT), as depicted
in Figure 2 (Gastrointestinal absorption route), as a first-order process with a rate constant k. In this
model, the body is treated as a well-mixed compartment, and elimination processes from the body
are assumed to be first-order as well. Therefore, Equation 1 represents the solution of the ordinary
differential equations (ODE) system [47],

dA,

7 = —kq- A1 2)
ac,
V——- = ko - Aq —CL-Cp 3)
dt S~——
Absorption rate
A1(0)=F-D ; Cy(0)=0 (4)

Where A; is the amount of drug in the GIT.

The value of k; is determined through fitting empirical data. Consequently, Equation 1 allows for
the quantitative comparison of two immediate-release formulations once the plasma concentration-
time series is acquired. However, the assumption of first-order absorption usually implies that the
rate-limiting process in absorption is the permeation through the intestinal epithelium and that the
absorption mechanism is passive. Therefore, this model is limited in its applicability to soluble drugs
administered in a fasted state within immediate-release formulations. Additionally, since k; is derived
from the plasma concentration-time series, estimating its value before experimentation data is available
is challenging. To address these limitations, more sophisticated models are needed, which incorporate
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additional details of the absorption mechanisms. These advanced models will be discussed in Section
5.

4.2. Conventional Quantitative Structure-Activity Relationship (QSAR)

Conventional QSAR models establish a linear relationship, using multivariate statistics, between
values of chemical descriptors computed from molecular structure and experimentally measured
chemical properties, such as charge, solubility, and partition coefficient, as well as bioactivities, such as
passive intestinal permeability and intrinsic hepatic clearance [48,51]. The assumption that underlies
the conventional (linear) QSAR modeling is that similar compounds exhibit similar biological effects,
and that gradual changes in compound structure are accompanied by gradual changes in potency, or
the so-called similarity-property principle (SPP) [48]. See [46,48] for a reviews on QSAR modeling.

Estimating the absorption, distribution, metabolism, and elimination (ADME) of a new compound
is an essential step in the screening process [16,49]. Over the past two decades, numerous QSAR
models have been developed to predict these properties. For a comprehensive review of QSAR models
for predicting ADME properties, refer to [49,52-54]. Here, we provide an short overview.

Estimating the oral absorption is a key step in screening new drug candidates. The drug solubility
and permeability in the GIT, together with the hepatic first-pass are considered to be the leading factors
that determine F[52]. Hence, QSAR models were developed to estimate to predict the permeability
[52,55-58], solubility[42,55,59], intrinsic hepatic clearance[42], and predict F either directly from
molecular descriptors [42,55,60—-64] or by using the output of other QSAR models [65]. Since efflux
transporters, such as P-gp, may play an important role in the absorption, QSAR models were developed
to estimate the affinity of the drugs to P-gp [66]. However, training a QSAR model to predict F directly
from the drug descriptors, without explicitly considering the properties of formulation (e.g particle size
that disintegration and dissolution rates), might lead to inconsistencies. For example, the bioavailability
of Griseofulvin is doubled following administration as a micronized formulation [30]. Hence, it is
important to perform rigorous quality checks on the database being used and ensure that all the
entries describe similar absorption conditions. QSAR models for estimating drug distribution include
the prediction of V [67] and its protein binding[42,68-70]. QSAR models that estimating the first-
pass metabolism and the elimination predict the intrinsic hepatic clearance [71-73], and the systemic
clearance [72,73]. QSAR models were also developed to estimate the buccal permeability[74] and
bioavailability[75].

QSAR modeling has been utilized in the design of formulations, as mixing the drug with various
excipients to create a formulation can enhance its solubility, efficacy, and stability. Therefore, the
selection of suitable excipients depends on both the physical and chemical properties of the drugs and
the type of formulation [76]. Specifically, QSAR models were developed for the selection of excipients
[77], Formulation Stability [78], and design controlled release formulations [79]. See Kulkarni et al.
[80] and Aguillar et al. [81] for a review on QSAR modeling in formulation design.

QSAR models that predict a numerical property value based on the molecular characteristics of a
drug are preferred as they allow for molecule selection based on arbitrary criteria. However, achieving
an adequately accurate regression model can often prove challenging, and classification may come in
handy. Classification models determine whether a molecule belongs to a specific property class (e.g.,
"high” or low’), sometimes providing the probability of class membership [60,82].

4.3. Artificial Intelligence (Al)

Al models leverage ML and DL algorithms to augment traditional QSAR models and perform
large-scale dataset classification. These models are categorized into supervised and unsupervised
learning based on their learning processes (Figure 4). Supervised learning employs established input-
output relationships, where known features are utilized to predict output values, while unsupervised
learning focuses on discovering hidden structures within data, aiming to group similar instances
together based solely on their inherent characteristics [50,83].
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Figure 4. Different supervised and unsupervised Al learning models/tools for pharmaceutical applica-
tions. Taken from Vora et al. [50].

Supervised learning algorithms enhance traditional QSAR models by establishing non-linear
relationships between chemical descriptors, derived from molecular structures, and experimentally
measured chemical and biological activity properties [48,50]. The transition from linear to non-
linear relationships is pivotal, particularly as databases expand to include structurally diverse active
compounds with few or no common scaffolds. In such cases, the departure from the SPP assumption
becomes crucial. Structural differences among active compounds are often abrupt and non-gradual,
necessitating the adoption of non-linear modeling approaches to satisfactorily capture Structure-
Activity Relationships (SARs) [48]. See Muratov et al. [48] a review on different supervised learning
algorithms used in QSAR modeling, and Sarkar et al. [83] for a review on Al algorithms.

In recent years, non-linear QSAR models, based on ML and DL techniques, have become the
most popular strategy to develop QSAR models for the prediction of ADME properties of drug
candidates[84], and formulation design[85]. Similarly to conventional QSAR, non-linear QSAR models
were developed to estimate the permeability [49,82,86], physio-chemical properties [58,59], distribution
[49,82], affinity to P-gp[87,88], hepatic clearance [49,82], metabolism by the CYP family[89-92], and F
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in fasted [59] and fed states [93]. For reviews on using Al for ADME properties, and other usage in the
pharmaceutical industry see Refs. [46,49,50,53,94].

Unsupervised learning is a type of machine learning in which the algorithm is not provided
with labeled data. Instead, it is tasked with identifying patterns and relationships within the data
independently. Hence, unsupervised learning algorithms are used to develop clustering methods
that would help identifying groups, and thus increase the screening efficiency. Butina et al. [95]
developed an unsupervised clustering method for the generation of drug groups based on the standard
daylight’s fingerprints and Tanimoto similarity. Korolev et al. [96] used unsupervised learning to
assess the metabolism and toxicity of drugs using a a database of known human cytochrome P-450
substrates. Further applications of unsupervised models are dimensionality reduction of complex
high-dimensionality datasets [50,97]

5. Mechanism-Based Models

Mechanism-based models combine physiological and physiochemical principles with a simplified
representation of underlying mechanisms. Developing such models presents a challenge due to the
system’s complexity, involving decisions about which mechanisms to include and determining the
appropriate level of detail needed for their representation.

Building on the work of Yu et al. [98], we categorize Mechanism-based models into three sub-
categories: Quasi-equilibrium, Steady-state, and Dynamic or Physiologically based pharmacokinetic
(PBPK) models. These distinctions are based on their treatment of spatial and temporal variables[4].
Specifically, Quasiequalibrium models are independent of spatial or temporal variables, Steady-state
are independent of the temporal variables, but depend on the spatial variable, and dynamic models
depend on spatial and temporal variables.

5.1. Quasiequalibrium

One of the earliest theories devised to elucidate the oral absorption process is the pH-partition
hypothesis[98], rooted in the theoretical framework proposed by Jacobs [99], and extensive studies
conducted during the 1950s and 1960s [100-102]. According to this hypothesis, only the non-ionic
form of the drug can traverse the passive transcellular pathway.

The pH-partition hypothesis was subsequently incorporated into the Absorption Potential (AP)
concept, introduced by Dressman et al. [103]. This concept correlates qualitatively the extent of drug
absorption in the gastrointestinal tract (GIT) to physiological and physiochemical factors such as the
administered dose, solubility, lipophilicity, and charge. Mathematically, the AP is defined as:

AP = log ( Pé”" ) )

0

Here, AP represents the absorption potential, P denotes the partition coefficient, I, indicates the
fraction of the unionized form at pH 6.5, and Dj is the dose number, given by

D

Dy =
07 VG

(6)

In this expression, D signifies the dose, Cs denotes the drug solubility, and Vs; represents the volume
in the intestine, typically assumed to be 250 mL [103].

Macheras and Symillides [104] used the AP to provide quantitative estimation of F for drugs that
are not limited by the dissolution rate,

F= (10%")° @)
(104P)? 4 Ly (1 — L)

With the constraints that AP = 1000 when AP > 1000 and that Dy = 1 when Dy > 1[98].

d0i:10.20944/preprints202406.0471.v2
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At first glance, the AP absorption model presented in Equation 7 appears similar to a QSAR
model, utilizing the drug’s physicochemical properties, including charge, lipophilicity, solubility, and
administered dose, to predict oral absorption. However, it diverges from QSAR models by integrating
a deeper understanding of the physiological and chemical aspects of the absorption process. The
assumption that underlies the development of QSAR models is that these connections will emerge
from the data, given a sufficient amount of it.

5.2. Steady-State

The Steady-state models were developed to enhance the outcomes of the Quasi-equilibrium
models by adopting a more physiological approach and calculating F by considering both dissolution
and permeation rates along the small intestine (SI) [98].

Several studies [105-107] have employed the macroscopic mass balance approach to calculate F
[98]. In this approach, the Sl is described as a cylindrical tube whose radius is Rgj, and its length is Lg;.
The fraction that was absorbed is computed by assuming a steady state and integrating along the SI.
This approach has been extended to account for the effect of the drug maximal solubility [106], and
degradation along the SI[107].

The models developed using the macroscopic approach take into account the solubility limit
of the drug, but not its dissolution rate [108]. Oh et al. [109] employed a microscopic approach to
develop a model that takes into account the dissolution kinetics, albeit of monodisperse powder. This
model also conceptualized the SI as a straight cylinder, but assumed that the contents of the SI are
convected as a plug flow with a volume of 250 mL. That is, the model neglected the mixing along the
SI. Using non-dimensional analysis, three dimensionless groups were defined: the dose number (Dy),
the absorption number (An), and the dissolution number (Dn), expressed as follows:

Re/L

An = Py - % 8)

Dy — DG | nRZ,Lg; o)
pr3 Qs1

Here, Py is the effective permeability coefficient, Rg; and Lg represent the radius and length of the SI,
respectively, Qg; denotes the flow in the SI, p is the drug density, and r( stands for the initial particle
radius. When Dy is very high the drug is not expected to have dissolution problems. High An reflects
a drug with high permeability and high Dn reflects a drug with a high dissolution rate.

These 3 dimensionless groups were the basis for the definition of the well-known Biopharma-
ceutics Classification System (BCS), using the An and Dn, as the Dy was recognized as a factor with
lesser importance [28]. The drugs were divided into 4 classes: Class 1 with high An, and high Dn
(high permeability /high dissolution); Class 2 with high An and low Dn, provided that Dy is not too
large (high permeability /low dissolution); Class 3 with low An and high Dn (low permeability /high
dissolution); Class 4 with low An and low Dn (low permeability /low dissolution). The BCS has further
adapted to the Developability Classification System (DCS) and the refined Developability Classification
System (rDCS), which are tools for assessing the developability of new drug candidates [110]. Wu
and Bennet [111] extended the BCS to the Biopharmaceutics Drug Disposition Classification System
(BDDCS), which also takes into account the drug disposition, including routes of drug elimination and
the effects of efflux and absorptive transporters.

5.3. Dynamic Physiologically Based Pharmacokinetic (PBPK) Models

Dynamic Physiologically Based Pharmacokinetic (PBPK) models were developed to calculate
the absorption rate by incorporating the kinetics of physiological processes in oral drug absorption.
These models are often integrated with pharmacokinetic models to predict plasma concentration-time
profiles.
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Dynamic PBPK models for oral absorption consider both spatial and temporal variables. Generally,
these models are classified into compartmental and dispersion models. Both types of models treat the
temporal variable as continuous but differ in their treatment of the spatial variable. Compartmental
models represent the spatial variable as a series of one or more well-mixed compartments, whereas
dispersion models treat it as a continuous variable.

In the following section, we will review these two subtypes.

5.3.1. Compartmental Models

Compartmental models represent the GIT as a series of one or more well-mixed compartments,
where each compartment maintains a uniform concentration. The transfer kinetics between these
compartments are assumed to be linear. Representing the SI as a series of well-mixed components is a
rough approximation of the spatial variable, that has no physical basis[108]. As such, the number of
compartments varied between one and four compartments[26,112-118]. However, since the number
of compartments affected the simulation results, Yu et al. [108] set the number of compartments to
7 by fitting the model prediction of the SI intestinal transit to the mean measured time[108]. The
compartments were then correlated to the physiology based on transit times [98,108]. The first half of
the first compartment represents the duodenum, the second half of the first compartment, along with
the second and third compartments, does the jejunum, and the rest of the compartments do the ileum.

The 7-compartment intestinal transit model was later extended to account for the absorption of a
passive fully dissolved drug, the compartmental absorption and transit (CAT) model [119]. That is, the
intestinal transit and absorption are described with the following system of ODEs,

dYn
dt

= KiY, 1 — KiYy — kY, n=1.N (10)

Where N = 7 is the number of compartments, Y, is the fraction amount of drug in compartment n, K;
is the transfer rate constant.

The Advanced CAT (ACAT) [41], and the advanced dissolution, absorption, and metabolism
(ADAM) [120,121] extended the CAT model to include first-pass metabolism, absorption from the LI,
dissolution and solubility, release kinetics, intestinal metabolism, active transport, and food effects.
The two models differ in their modeling approach of the dissolution process. The ACAT model uses
the Noyes-Whitney approach that utilizes the film model[122], while the ADAM model corrects for
the spherical shape of the particle[123].

The commercially available version of the ACAT model, GastroPlus™, include several addi-
tional improvements that facilitated its usage. It has been used to justify a biowaiver for a selected
BCS 2 compounds[124] and determine the impact of different formulation factors such as solubility,
particle size, size distribution, and food on the absorption of drugs[125-131]. The ADAM model is
also available commercially, Symcyp®, and is used to predict the effect of drug release rate on the
absorption[120,132-134], to allow the optimization of paediatric drug[135,136], and to investigate
drug-drug interactions [137]. Additional compartmental models are reviewed in Huang et al. [4].

Compartmental models gain much popularity in estimating oral drug absorption due to their
mathematical simplicity, intuition, easy correlation with pharmacokinetic models, and the availability
of commercial software.
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Figure 5. Schematic representation of the intestinal transit of dissolved drug in compartmental and
continuous models. (a) Compartmental model: Mixing is implicitly determined by the number of
compartments and their assigned volumes. (b) Continuous model: The mixing process is explicitly
described by a ‘mixing’ term with a coefficient obtained from experiments.

However, correlating a compartment with a physiological segment of the SI lacks a physical
basis [108]. To delve deeper into this issue, we must consider that intestinal motility both propels and
spreads intestinal content along the SI [108]. Consequently, as each compartment is well-mixed, the
number of compartments N dictates the extent of 'spread’, while the kinetic transfer rate K; governs
the mean velocity (Figure 5a). Therefore, determining N based on the mean transit time of the SI, as
done in the procedure with the CAT model [108], does not guarantee that the model accurately reflects
the ‘mixing’ rate observed in the SI, as it fails to account for this factor. As N approaches infinity, the
model converges to the dispersion model with only the convection term, but without the ‘'mixing term’
(refer to section 5.3.2 and Appendix A for further details).

Consequently, the determination of the volume available for drug dissolution lacks a robust
physiological foundation, potentially leading to the underestimation or overestimation of the actual
surface area available for absorption and the concentration of the drug. Moreover, this discrepancy
may also result in the overestimation or underestimation of efflux transport and enzymatic metabolism,
as these processes are contingent upon the drug’s concentration.

Another implication of using the compartmental approach pertains to the description of the
dissolution rate. The dissolution rate of a drug from a powder particle (whether monodisperse or
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polydisperse) depends on both the amount of the drug and the particle radius [122,123]. However,
the kinetics of the undissolved drug in compartmental models are simplified and track only a single
variable. Consequently, to account for dissolution, the particle radius must remain fixed, as only the
amount of undissolved drug is computed. This could potentially lead to an underestimation of the
dissolution rate, as the dissolution rate increases with decreasing particle size due to the increase in
surface area [30].

As a result of these simplifications, compartmental models might overestimate or underestimate
absorption. Arav et al. [30] demonstrated that the non-commercial version of the ACAT model
overestimated the absorption of griseofulvin in both micronized and non-micronized formulations.
The continuous models that will be described next address some of these issues.

5.3.2. Continuous Models

The continuous model was first suggested by Ho et al. [138] and describes the SI as a straight tube
whose length is Lg; and its radius is Rgj. The concentration in the tube, C(x, t) is assumed to be well
mixed in the radial direction, and therefore the concentration depends only on the distance x from the
pylorus, and time. Intestinal motility is described as a convection in uniform velocity and dispersion
that accounts for the mixing (Figure 5b). The equation that describes the dynamics of intestinal motility,
and the passive absorption of a completely dissolved drug is the partial differential equation (PDE),

JoC o J _ 2-SAgr- Py
Convection —_—
Mixing Absorption
SI motility

Where u is the axial velocity, D,y is the mixing rate (dispersion) coefficient, Rg; is the intestinal radius,
SAgj is the surface area amplification, and P;,; is the intrinsic permeation coefficient of the drug[30,98].
The influx from the stomach and the outflux to the LI are given by the boundary conditions (See
appendix A for further details).

The continuous model provides a more physiologically accurate representation of the small
intestine (SI) [98], but its mathematical complexity has hindered its widespread adoption. Since its
introduction in 1983 by Ho et al. [138], only a few studies have employed it [24,30,139,140].

The mathematical complexity of Equation 11 entails two main challenges. Firstly, understanding
the interpretation of the equation, and secondly, devising methods to solve it. We provide a detailed
explanation of these two aspects in appendix A, and here we will provide a brief overview.

The left-hand side (LHS) of Equation 11 delineates SI motility, while the right-hand side (RHS)
denotes the alteration in concentration due to absorption. The crucial distinction lies in the fact that the
LHS terms merely redistribute the drug along the SI, thereby maintaining the total amount constant,
whereas the RHS describes a process that diminishes the total amount (e.g. a sink term). SI motility is
described as a combination of two processes. The uniform movement along the SI is delineated by a
convection term, while the mixing along the Sl is described as a dispersion term, similar to the transfer
of material by turbulence eddies in highly turbulent regimes [141]. The dispersion term describes
mixing since it corresponds to a flux proportional to the concentration gradient, moving from a region
of high concentration to a region of low concentration. It is worth noting that u, D, rf, SAgy and Py
can depend on the spatial or the temporal variable (or both).

Solving the model of Equation 11 can be achieved with an analytical solution for simplistic cases.
Ho et al. [138] used it for the case of the stomach as an infinite reservoir and took into account the
passive absorption of completely soluble drug. Wilmann et al. [24,139] extended this model to account
for stomach emptying, and took into account the limited solubility of the drug, assuming a rapid
dissolution rate.
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However, for more detailed equations, the models have to be solved numerically. Arav et al. [30]
extended the model to account for the dissolution rate of polydisperse powders in the stomach and the
SI, and developed computer software to solve this non-linear set of PDEs. The model of Arav et al. [30]
addresses two key limitations of the compartmental model: firstly, it provides a more physiologically
accurate representation of mixing, and secondly, it considers changes in particle size distribution
resulting from dissolution. The model was then used to find the optimal particle size distribution
(mean and geometric standard deviation) that would ensure that dissolution is not the rate-limiting
step in absorption. However, the mathematical aspects of this model are somewhat intricate and are
further elucidated in Appendix B.

Recently, the dispersion model was further developed to elucidate the absorption kinetics of
levodopa following controlled-release administration [140]. Their findings refute the previous hy-
pothesis of an “absorption window’ in the upper small intestine for levodopa [142], demonstrating
instead that levodopa is uniformly absorbed along the entire small intestine. Subsequently, the model
was leveraged to optimize the properties of the controlled-release formulation to prolong therapeutic
efficacy.

6. First-Principles Models

First-principles models utilize fundamental physical and chemical principles to elucidate phenom-
ena in great detail. Compared to Mechanism-based models, they provide a more intricate description
of the system, enabling exploration of aspects where experimental data may be lacking or difficult
to obtain. For instance, Lee et al. [143] investigated the impact of posture and gastroparesis on drug
dissolution and distribution within the stomach using a biomimetic in silico simulator based on realistic
stomach anatomy and morphology. However, owing to their heightened complexity, the application
of these models is typically constrained to specific temporal and spatial domains, focusing solely on
particular aspects of the overall oral drug absorption process.

In the context of oral drug absorption, we can distinguish between Molecular modeling that
simulates biomolecular dynamics at an atomistic level, and continuum models that describe the
movement and behavior of drug substances within the gastrointestinal (GI) tract as continuous entities,
without considering individual particles or molecules.

6.1. Molecular Modeling

Molecular models simulate biomolecular dynamics at an atomistic level [144,145]. This field
encompasses various applications, with molecular docking and Molecular dynamics (MD) simulation
being widely utilized components within the pharmaceutical domain. These computational approaches
play a crucial role in identifying potential leads for subsequent experimental testing, both in vitro and
in vivo [146].

MD simulation predicts the dynamics of the atoms’ position at a molecular level. Similarly to
docking simulations, MD simulation is also based on the structure of the biomolecules. In traditional
"all-atom" MD simulations the model includes all the interacting atoms in the system, including the
solutes. Due to its high level of detail, the simulations are limited both in length and time scale.
Currently, simulations include 108 — 10” atoms and run to a ys scale[145]. In the context of oral drug
absorption, MD is applied to estimate drug permeability and solubility. Unlike data-driven models, it
provides some mechanistic understanding that can be used for optimization[147]. Other uses include
optimization of nanoparticles design and function, as well as drug loading had release profile[147].
For recent reviews on the application of MD in drug discovery see [145,148-154]. Some recent reviews
can be found on drug formulation and drug delivery aspects[147,155-157].

6.2. Continuum Models

Continuum models encompass various phenomena, such as mass transfer, fluid flow, and elastic
deformations, as continuous fields. This implies that the model’s variables are typically functions
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of spatial and temporal variables, akin to the continuous models represented in Equation 11. The
distinction between mechanism-based models and first-principle continuum models lies in the level of
simplification employed. For instance, the mechanism-based dispersion model encapsulates funda-
mental mechanisms of intestinal motility, such as convection and longitudinal spreading, as uniform
flow and longitudinal mixing, with parameters derived from experimentation [30]. In contrast, Fullard
et al. [158] devised a first-principle continuum model that delineates intestinal motility by computing
the elastic deformation of intestinal walls coupled with the incompressible Navier-Stokes equations to
predict the flow patterns in a rabbit intestine as a result of the contractions.

Hence, continuum models prove to be particularly valuable in tackling problems for which
acquiring adequate experimental data is challenging, but where a thorough comprehension of the
physical system is available. Several studies have recently addressed gastric and intestinal motility
[43,143,158], dissolution [159], drug permeation [160], and the design of controlled release formulations
[161].

7. Discussion

Oral drug delivery is favored as a route for administering drugs due to its non-invasive nature,
convenience, and high patient compliance[1,2]. However, the physiological, physical, and chemical
intricacies of the oral route pose challenges in developing new formulations and ensuring the acceptable
bioavailability of new drug candidates. Since the experimental trial-and-error approach is expensive,
mathematical models were developed over the past few decades as valuable tools for integrating
experimental data, thus reducing the number of required experiments [162].

A Mathematical model is designed to address a certain problem, by taking as input the data
that the modeler deemed as relevant and producing the desired output. Over the years, different
approaches were taken to develop model, namely data-driven, mechanism-based, and first-principles
models (Table 1). Each approach address a different problem domain.

Table 1. The usage and limitations of the different modeling approach .

Modeling Ap- Usage/Properties Limitations
proach
Data-Driven
. Hi§h throughput screening ® Requires large datasets
e Extract patterns from large e Harder to provide a physical interpretation
datasets
Mechanism-based
¢ Focuses on physiological pro- ® Requires physiological understandin
cesses ¢ Results depend on the simplification method-
* Misprediction enhances com- ology
prehension.
First-Principles
* Focuses on physical-chemical ¢ High complexity limits spatial and temporal
ﬁpcesse.s. ) scales )
¢ Misprediction enhances com- ¢ Complex mathematics
prehension ¢ Intensive computational resources

Data-driven models, including conventional PK, QSAR, ML, and DL models, are essentially
‘black-box’ systems that correlate specific inputs to outputs. Consequently, these models require a
substantial dataset, operating on the assumption that the information within the data is sufficient for
classifying or predicting new data. Essentially, they interpolate data from the provided dataset, making
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them suitable for high-throughput screening. However, due to their ‘black-box’ nature, understanding
the reasons for mispredictions—and therefore finding ways to correct them—can be challenging.

Mechanism-based models, including quasi-equilibrium, steady-state, and PBPK models, incor-
porate physical and chemical principles while simplifying the dynamics of various physiological
processes. Developing a mechanism-based model involves the modeler’s decision on the importance
of different processes and their mathematical description, often relying on in vivo or in vitro experimen-
tal data, as well as other mathematical models. When model predictions deviate from experimental
data, the modeler is prompted to explore new hypotheses or increase the detail in process descriptions,
thus guiding the selection and conducting of new experiments. Consequently, the development process
is iterative, as new processes are introduced into the model and hypotheses are examined. For example,
Arav and Zohar [140] recently developed a PBPK dispersion model for the absorption of levodopa
following its administration in a controlled release formulation. The presence of dissolved levodopa in
the stomach induces a 'lag’ in gastric emptying. Incorporating this feature in the model was essential to
obtain the erratic plasma concentrations reported during the first hours after administration. Moreover,
using the model, it was possible to dispute the common hypothesis of an "absorption window” in the
upper SI and to show that levodopa is equally absorbed along the entire SI. These results were then
used to optimize the release rate of controlled release formulations. Thus, as models developed under
this approach require more details, they are less suited for high-volume screening.

First-principles models, such as molecular dynamics and continuum models, offer highly de-
tailed physicochemical representations that address processes governed by physical and chemical
phenomena. These models are employed to tackle various challenges, such as comprehending the
flow field induced by the contraction of the small intestine (SI) walls, or optimizing the structure of
nanoparticles. Due to their high complexity, both mathematically and numerically, these models are
typically constrained by spatial and temporal scales. Consequently, the primary distinction between
Mechanism-based models and First-principles models lies in their focus: Mechanism-based models
primarily operate on an organ scale or larger (e.g., multiple organs or the body scale), whereas First-
principles models concentrate on an organ scale or smaller (e.g., flow in an organ, tissue, cellular, or
atomic level).

8. Conclusions

In this review, we have examined the advancements in mathematical modeling of oral drug
absorption. The allure of oral delivery systems, coupled with the challenges and high costs asso-
ciated with developing new drugs and formulations, underscores the imperative for sophisticated
mathematical models aimed at reducing both costs and development time.

Over the years, three primary approaches have emerged: data-driven models, mechanism-based
models, and first-principles models. These approaches differ in the problem domains they address
and the mathematical tools they employ, although some overlap may occur. Specifically, data-driven
models are geared towards high-throughput screening and predicting scalar values, while mechanism-
based models focus on physiological problems, concentrating on dynamics at an organ scale or larger
(e.g., multiple organs or the entire body). First-principles models target physicochemical problems and
zoom in on an organ scale or smaller (e.g., flow in an organ, tissue, cellular, or atomic level).

In conclusion, all three approaches play crucial roles in enhancing oral drug delivery. A promising
course of action involves integrating these approaches to leverage their respective strengths and
enhance overall effectiveness.
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Abbreviations and Symbols

The following abbreviations and symbols are used in this manuscript:

Ay
ACAT
ADAM
ADME

DCS
Defs

GIT
Tun
v
ke

LHS
LI
Lt
MD
ML
ODE

PBPK
PDE
Perf
P int
PK
Qsi
QSAR
rDCS
10
RHS
Rsp
SAR
SAsi

SI
SPP

=

The amount of drug in the GIT

Advanced CAT

The advanced dissolution, absorption, and metabolism
Absorption, Distribution, Metabolism and Elimination
The absorption number

Absorption Potential

Biopharmaceutics Classification System
Biopharmaceutics Drug Disposition Classification System
Concentration along the SI

The compartmental absorption and transit
Clearance from the body

Plasma blood concentration

Cytochrome P450

The dose

The Dissolution number

Deep learning

Dose number

Developability Classification System

The along SI dispersion (mixing) coefficient
Oral Bioavailability (fraction absorbed)
Gastrointestinal tract

The fraction of the unionized form at pH 6.5
Intra-venous

Absorption coefficient

The rate transfer coefficient

Equation left hand side

Large Intestine

The length of the SI

Molecular dynamics

Machine learning

Ordinary differential equations

Partition coefficient

Physiologically based pharmacokinetic
Partial differential equations

The effective drug permeability

The intrinsic permeability of the SI
Pharmacokinetics

The flow flux in the SI

Quantitative structure-activity relationship
Refined Developability Classification System
Initial particle radius

Equation right hand side

The radius of the SI

Structure-Activity Relationships

The surface area factor of the SI

Solubility

Small Intestine

Similarity-property principle

The velocity along the SI

Volume of distribution
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Vs Water content of the SI
Y; The fraction of the amount of the drug in compartment i
0 The drug density

Appendix A. Partial Differential Equations (PDE)

Appendix A.1. Interpratation

A partial differential equation (PDE) describes the dynamics of a variable that extends across
multiple dimensions. This differs from an ordinary differential equation (ODE), which describes the
dynamics of a variable dependent on only one dimension, typically the time in a pharmaceutical
context. Hence, the equation describes the concomitant change of the variables in the different
dimensions.

For example, consider a variable that describes the dynamics of the concentration in a tube that is
well mixed in the radial direction. Hence, the concentration is a function of x, the distance from the
beginning of the tube (a spatial variable), and time ¢ (a temporal dimension). That is, the concentration
can be described as C(x, t).

We further assume that there is only a process that convects the contents of the tube at a uniform
velocity u toward its end. The dynamics of the system are obtained by inspecting an arbitrary region
along the tube between xy and x¢ + dx, and assuming that the concentration is constant in this
section. That is C(x + %", t) is the concentration between x and xq + dx at time . Consequently,
C(xo + %, f)dx is the amount of material in time ¢. The amount of material at time ¢ + dt is obtained
by adding the flux into the region and subtracting the flux out of the region from the amount that is
currently in the cell. Since the material is convected at velocity u, the amount of material that flows
into the region during dt is uC(xo, t)dt. Hence,

C(xo + d2—x, t+dt)dx = C(xg + dix’ t)dx + uC(xo, t)dt — uC(xg + dx, t)dt (A1)

Rearranging the terms in Equation A1, we obtain,

Clxo+ %, t+dt) —Clxo+%5,t)  uC(xg+dx,t) — uC(xp, 1)

dt - dx 52
Taking dx and dt to be infinitesimal in Equation A2, we obtain,
aC )
T auC (A3)

Where %, and % are the partial derivatives with respect to the temporal and spatial dimensions,
respectively. As can be seen, Equation A3 is PDE as it involves derivatives in two different dimensions,
in contrast to an ODE that involves a derivative only in one dimension. We note that Equation A3 is
the convection process in the dispersion process (Equation 11).

To complete the description of Equation A3, it is necessary to state the initial conditions and the
boundary conditions. The initial conditions state the value of the variable at the beginning of the
simulation, that is,

Clax,to) = £(x) (Ad)

Where f(x) is some known function.

The boundary conditions state the value of the variable at the beginning and end of the tube
over time. Generally, there are 3 different types of boundary conditions: Dirichlet, Neumann, and
mixed (or Robin). The Dirichlet condition determines the value of the variable over time, the Neumann
conditions determine the value of the derivative of the variable over time, and the mixed condition
determines the mixture of the boundary conditions over time. The Neumann and mixed conditions
are used to determine the flux out of the domain.
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For example, a Dirichlet boundary condition at the beginning of the tube and Neumann boundary
condition at its end (assuming that its length is L),

C(0,t) = g() (A5)
aC
3., — " (A6)

Determine that the concentration at the beginning of the tube is g(t) and that the flow out of the tube
is h(t). Using h(t) = uC(L,t) will denote an open-ended tube.

Selecting the type of boundary condition depends on the model. For further details on various
boundary conditions see [164-166].

It is noteworthy that Equation A2 also describes the compartmental model without the absorption
term (Equation 10). To illustrate this, we define C;(t) = C(i - dx + dz—x, t) as the concentration in
compartment i. Setting K; = - as the transfer rate, and Y; = ng as the dose fraction with D as the
administrated dose, Equation A2 can be expressed by considering dt as infinitesimal,

dy;
7; = KiY;1 — KY; (A7)
The derivation of Equation A7 shows that the compartmental model is equivalent to the coarse
discretization of the constant convection velocity along the SI. Hence, the mixing along the SI is

determined by the number of compartments, and not from physiological considerations.

@ cxordn2.t)

F(Xo,t) F(Xo+dx,t)

C |
R I

Xo Xo+dx
X

(b)

C(xo+dx/2,yo+dy/2,t)

a: F(Xo+dx/2,yo,t)

b: F(Xo,yot+dy/2,t)

c: F(Xot+dx/2,yot+dy/2 1)
d: F(Xo+dx,yo+dy/2,t)

Figure A1. Schematic representation of the flux into a cell in (a) 1D and (b) 2D
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Equation A3 represents a specific case of a uniform flow along the tube. However, this presentation
can be generalized by considering a flux function F into and out of each cell (Figure Ala). Then,
Equation Al can be written as,

C(xo + dz—x, t+dt)dx = C(xg + dz—x, t +dt)dx + F(xo, t)dt — F(xo + dx, t)dt (A8)
Where F is the flux function. Rearranging the terms and taking dx and dt as infinitesimal values, we
obtain,
oC ]
T —gF (A9)

Armed with this understanding, we can now interpret the SI motility term in the dispersion

model (Equation 11),
aC

F=uC— fofﬁ (AlO)
The flux is governed by the constant convection term, while the spread is characterized by a "Fick’-like
diffusion term. This diffusion term represents a flux from areas of high to low concentrations, propor-
tional to the concentration gradient. Consequently, in well-mixed regions, where the concentration
remains constant, the flux equals zero.

The right-hand side (RHS) of Equation A9 illustrates the redistribution of concentration along the
tube while maintaining a constant total material quantity. Terms that either increase or decrease the
variable’s value are referred to as sink and source terms, respectively. Incorporating the sink/source
term ss(x, t) into Equation A9 yields:

= ——F+ss (A11)

Here, ss is greater than 0 for source terms and less than 0 for sink terms. It's worth noting that ss
can be time-dependent and can be greater than 0 for certain x values and less than or equal to O for
others at a certain time.

To complete the description, we will now describe the PDE that describes the dynamics of the
concentration in a 2D domain (Figure A1b). The derivation of the equation is similar to the 1D case,
and we obtain,

aC 0 d

g:_ap_@F:—v-F (A12)

Appendix A.2. Solving PDE

PDE:s typically cannot be solved analytically, except for very simple cases. However, physiological
modeling often yields systems of equations, which may be nonlinear, necessitating a numerical solution.
Methods and techniques for numerically solving PDEs are discussed in detail in [164-166]. Here, we
provide a brief overview.

Numerical solutions of PDEs involve discretizing both spatial and temporal dimensions. For
simplicity, we consider a 1D case, where the spatial and temporal dimensions are discretized into
uniform intervals of At and Ax, respectively.

Let, C}f denotes the i-th time step in the j-th position in space, that is,

c;ﬁ = C(j- Ax,i-At) (A13)
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Hence, the solution in time step i is the vector,
G
=
Ci=|" (Al4)
Cy
Where N is the number of points in the spatial dimension.
Discretizing Equation A12 yields the system,
MiICH! =6/l + F (A15)

Where M and §' are the matrices for time step i and E is the forces vector in time i. Hence, computing
the next time step is obtained by solving the linear

The value of the components of M!, S, and F! are determined by the spatial and temporal
discretization scheme that was used. The most common temporal schemes include the explicit and
implicit Euler, and Crank-Nicolson methods [165]. The spatial terms are discretized according to the
finite-difference, finite-element, finite-volume, or spectral methods[164-166]. The finite differences
method is usually easier to implement and used for problems with simpler geometry. The finite element
and finite volume methods are used for more complex problems, with the finite element methods
employed more often to solve elliptic and parabolic PDEs (e.g. where information is transmitted
instantaneously, or by gradual diffusion over time), and finite volume employed for problems where
the information evolves at a finite-speed wave-like propagation[164-166]. In spectral methods, the
system is represented in a different base (such as Fourier or wavelet bases). The advantage of spectral
methods is that they require a smaller number of grid points. However, they are usually limited to
rectangular domains, and treating non-cyclic boundaries may require special treatment [167].

A software that assembles matrices M, S’, and F! and solves Equation A15 varies between a
complete off-the-shelf solution to a low-level solution. An off-the-shelf solution like Comsol[168], or
Fluent[169] includes software for meshing (constructing the geometric model), setting up boundary
conditions, solving the model, and analyzing the results. Off-the-shelf solutions are used in engineering
and therefore can be utilized to solve first-principles models. However, these solutions are usually
expensive and limited to a certain set of equations.

Solving an arbitrary set of equations typically requires specialized software and often involves
coding the model equations. Given the CPU-intensive nature of numerical computations, it is impera-
tive to develop optimized code to ensure the model is solved within a reasonable timeframe. However,
developing such optimized code demands high expertise and is time-consuming. Consequently, third-
party numerical software libraries are frequently utilized for various components. Linear equation
solvers such as PETSc [170], Hypre [171], and Trilinos [172] are commonly used to solve Equation
A15 after assembling the matrices M?, S, and F!. Assembling the matrices involves implementing
discretization schemes to describe different operators and boundary conditions while considering the
geometry.

OpenFOAM [173] is an open-source library that extends C++ by incorporating tensor algebra.
It employs the finite volume method for discretizing and solving the governing equations, using a
math-like flavor of C++. OpenFOAM also includes tools for mesh creation, solution, and analysis.
Utilizing third-party libraries enables programmers to employ higher-level programming languages
like Java and Python, further accelerating the development process.


https://doi.org/10.20944/preprints202406.0471.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 July 2024 d0i:10.20944/preprints202406.0471.v2

23 of 33

Appendix B. Dispersion Model with Dissolution

Arav et al. [30] introduced the extension of the continuous dispersion model to include the
dissolution dynamics. However, it was explained there very briefly, and as such it was difficult to
comprehend it. Here we reiterate the essentials of the model and provide a more detailed explanation.

We describe first the dissolution kinetics of a single powder particle, and then extend it to the
dissolution of polydisperse in the GIT.

The mass of a powder particle with a radius r is given by,

m(t) = 2 A0 (A16)

Where p is the drug density and r(t) is the radius of the particle at time t. Hence, the dissolution rate
of the particle can be written as,

dm = 5 dr(t)
W — (1) (A17)
The dissolution flux is computed from d;(tt) , the change rate of particle radius[174],
dr(t
p- M — (A18)

Where ] is the dissolution rate. Hence, the rate of mass loss of a single particle due to dissolution
(Equation A17) is its surface area multiplied by the dissolution flux.
The dissolution rate | is described by the Noyes-Whitney equation [123]:

_ Du(G=0C)
I==0

where Dy, represents the molecular diffusion coefficient, Cs; denotes the saturation concentration in
water, and { stands for the thickness of the hydrodynamic diffusion layer [30]. In Arav et al. [30], {(r)
is defined as r for particles smaller than 30um and 30um otherwise.

Pharmaceutical powder is typically polydisperse [115], and thus the collective dissolution rate of
all particles depends on their distribution. If we denote the number of particles with radius r at time ¢
as n(r, t)dr, then its change over time due to dissolution is given by:

(A19)

n(r,t +dt)dr = n(r, t)dr +x - n(r, t)dt — x - n(r + dr, t)dt (A20)

where x = d;(tt) = —% represents the rate at which the powder particle radius changes.

Reordering the terms we obtain the PDE equation for the dissolution of a polydisperse powder,

on  okn

Hence, the dissolution process “shifts’ the particle size distribution to the left (Figure A2).
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Number of particles

Particle radius

Figure A2. The change in the particle distribution due to dissolution. The Green line is ty and the
brown line is 1 > ty

The total amount that dissolved is computed by integrating the mass loss rate of all the powder
particles. Hence, we obtain the integrodifferential equation,

%‘ _ / 4 - p-x(r) - ndr (A22)

Where A is the total amount that dissolved.

In the dispersion model, the powder is dispersed and mixed along the SI and dissolves simultane-
ously. Hence, ng; (x, r, t)dxdr is the number of powder particles between x and x + dx with a radius
between r and d 4 dr. The convection, mixing, and dissolution along the SI are described with the PDE

(Figure A3),
ong; 5 P} K - ngy
ang D | ) _ A2
5 Toag | Lmst effaetsl| T+ or 0 42
Convection Mixing Dissolution
SI motility

Differing from compartmental models, Equation A23 utilizes experimental data to determine the
mixing rate along the SI, while also considering variations in dissolution rate due to changes in particle
size distribution. The equation for the dissolved drug along the Sl is given in Arav et al. [30].
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Figure A3. The change in the particle distribution due to intestinal convection and dissolution. The
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