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24  Abstract

25  Sonoran felids are threatened by drought and habitat fragmentation. Vector range expansion and
26  anthropogenic factors such as habitat encroachment and climate change are altering viral

27  evolutionary dynamics and exposure. However, little is known about the diversity of viruses

28  present in these populations. Small felid populations with lower genetic diversity are likely to be
29  most threatened with extinction by emerging diseases, as with other selective pressures, due to
30 having less adaptive potential. We used a metagenomic approach to identify novel circoviruses,
31  which may have a negative impact on the population viability, from confirmed bobcat (Lynx

32 rufus) and puma (Puma concolor) scats collected in Sonora, Mexico. Given some circoviruses
33  are known to cause disease in their hosts, such as porcine and avian circoviruses, we took a non-
34  invasive approach using scat to identify circoviruses in free-roaming bobcats and puma. Three
35  circovirus genomes were determined, and, based on the current species demarcation, they

36  represent two novel species. Phylogenetic analyses reveal that one circovirus species is more

37  closely related to rodent associated circoviruses and the other to bat associated circoviruses,

38  sharing highest genome-wide pairwise identity of approximately 70% and 63%, respectively. At
39  this time, it is unknown whether these scat-derived circoviruses infect felids, their prey, or

40  another organism that might have had contact with the scat in the environment. Further studies

41  should be conducted to elucidate the host of these viruses and assess health impacts in felids.
42
43  Introduction

44  The Sonoran Desert is a unique ecosystem in which four species of felids are known to coexist:
45  pumas (Puma concolor), bobcats (Lynx rufus), ocelots (Leopardus pardalis), and jaguars

46  (Panthera onca) [1]. These felids play a crucial role in maintaining a functional ecosystem.

47  Pumas mainly regulate populations of ungulates, including deer, bighorn sheep, and javelina [2—
48 4], while bobcats and ocelots tend to prey upon small mammals, such as lagomorphs, rodents,
49  and reptiles [3, 5-7]. Ocelots and jaguars are recognized as endangered in the region [8—10],

50 however, the status of all four felids species are likely threatened by shared environmental

51  pressures, including drought [11], habitat fragmentation and encroachment (which can lead to
52  human-wildlife conflict), and emerging diseases. While antibodies to canine distemper virus

53  (CDV) have been detected in Sonoran jaguars [12] and antibodies to CDV, feline panleukopenia
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virus, feline calcivirus, and feline enteric coronavirus have been detected in pumas from southern
Arizona [13], other viruses circulating in populations of Sonoran felids are largely unknown.
Cataloging the diversity of viruses present in these felids could reveal an abundance of both
known and novel viruses; although most viruses are not pathogenic, some may cause disease and

be relevant to conservation.

High throughput sequencing technologies have allowed for unprecedented advances in
identifying known and novel viruses and characterizing viral communities through viral
metagenomics. Taking advantage of metagenomic approaches to monitor viral communities
associated with wildlife could be instrumental for conservation, however, this is not routinely
performed. Altered viral evolutionary dynamics (largely due to anthropogenic factors such as
facilitating viral movement around the world, spillover from domestic animals, increasingly
dense populations of wildlife due to habitat encroachment, and climate change) and altered
exposure of wildlife to viruses through vector range expansion create conditions for accelerated
emergence of viruses, some of which may cause new disease outbreaks in wildlife populations
[14, 15]; notable examples include the spillover of feline leukemia virus (FeLV) from domestic
cats into the endangered Florida panther [16] and spillover of CDV from domestic dogs into
wildlife populations within Serengeti National Park, Tanzania, affecting spotted hyenas, African
lions, and other species [17, 18]. This may be especially problematic for already threatened
populations, as small populations typically have lower genetic diversity (and possibly stress-
induced immunosuppression) and, therefore, decreased adaptive potential to assist survival of a

proportion of the population experiencing the effects of a novel viral disease [15, 19-21].

Genomes from several families of circular rep-encoding single-stranded DNA viruses (CRESS-
DNA viruses, which contain a gene for the rolling circle replication associated protein (Rep)) are
part of the phylum Cressdnaviricota [22] and have been identified in fecal viral metagenomic
studies of other mammals, including domestic cats [23, 24], bobcats, African lions [25],
capybaras [26], and Tasmanian devils [27]. Circoviridae is one of the families in the
Cressdnaviricota phylum and is composed of the genera Circovirus and Cyclovirus. Circoviruses

have ambisense genomes of approximately 1.7-2.1 kb in length and encode two proteins, Rep
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84  and the capsid protein (CP) [28]. Circoviruses have implications for wildlife management

85  because they are associated with disease in some vertebrates, including life-threatening

86  hemorrhagic gastroenteritis in dogs [29-31], psittacine beak and feather disease in parrots [32],
87  and postweaning multisystemic wasting syndrome in pigs [33, 34]. Importantly, several studies
88  suggest that these life-threatening diseases may be largely due to coinfection with porcine

89  parvovirus or porcine reproductive and respiratory syndrome virus [35, 36], or canine

90  coronavirus, canine parvovirus, or CDV [37-39], in pigs and dogs, respectively.

91  No circoviruses are known to infect felids, although a cyclovirus (feline associated cyclovirus 1)
92  has been identified in the feces of domestic cats [23]. Additionally, a feline stool-associated
93  circular DNA CRESS-DNA virus has recently been identified from cats with diarrhea [24].
94  Endogenous fragments of circoviruses have also been detected in feline genomes, indicating the

95  susceptibility of the ancestors of modern felids to circovirus infection [40, 41].
96

97  Here we use a metagenomic approach to identify novel circoviruses in the feces of two species of
98  Sonoran felids, the puma and bobcat; although not endangered, knowledge of viral threats facing
99 these species could help prevent future population decline, as well as indicate potential threats to
100 the endangered ocelot and jaguar. For the two novel circoviruses identified, we sought to
101  determine relationships with known circoviruses and characterize their genomes. These novel

102  feline feces associated circoviruses may represent the first known feline circoviruses.
103

104  Material and methods

105  Sample collection and source identification

106  Scat samples from bobcats (n=9) and pumas (n=13) were collected from Sonora, Mexico,

107  between 2012 and 2014 and stored at -20°C. To determine the species, DNA was extracted by
108  swabbing the scat surfaces and using Qiagen’s DNeasy Blood and Tissue kit as previously

109  described by Cassaigne et al. [4]. This DNA was used as template for PCR of the mitochondrial
110  cytochrome B gene [42] with confirmation by Sanger sequencing of the amplicon (~470bp

111  region) as previously described [43].
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Fecal viral metagenomics

5g of the fecal sample were homogenized in SM buffer and the homogenate was centrifuged at
6,000 x g for 10mins. The supernatant was sequentially filtered through 0.45um and 0.2pm
syringe filters and viral particles in the filtrate were precipitated with 15% (w/v) PEG-8000 with
overnight incubation at 4°C followed by centrifugation at 10,000 x g as described in Fontenele et
al. [26]. The pellet was resuspended in 500ul of SM Buffer and 200ul of this was used for viral
DNA extraction using the High Pure Viral Nucleic Acid Kit (Roche Diagnostics, Indianapolis,
IN, USA). Circular viral DNA was amplified by rolling circle amplification (RCA) using the
Ilustra TempliPhi amplification kit (GE Healthcare, Chicago, IL, USA). Sequencing libraries
were prepared from the RCA products using the Nextera DNA Flex Library Prep Kit (Illumina)
and sequenced on an Illumina HiSeq 4000 (2 x 100 bp). The paired-end raw reads were trimmed
using Trimmomatic [44] and the trimmed reads were de novo assembled using metaSPAdes v
3.12.0 [45]. Contigs greater than 500 nucleotides were analyzed by BLASTx [46] against a local

viral protein database constructed from available NCBI RefSeq viral protein sequences.

Recovery of circovirus genomes

Based on the de novo assembled contigs that had BLASTX hits to circovirus sequences, two pairs
of abutting primers were designed to recover and verify the full genomes of circoviruses:

UoA14 16F 5'-CTATAGAACAGATATGCAAATTATGGCCGG-3' and UoA14 16R 5'-
ATATCTCAAAAAGAGGAACCGAAACCTTGG-3' (complementarity to cp gene / stem loop
region) and UoA15F 5'-GACCGATACCCATTGAAAGTGGAGACTAAG-3" and UoA15R 5'-
CATCACTCGAAGCAGGTCATCATAG-3' (complementary to the rep gene region). 0.5ul
RCA product was used as a template with KAPA HiFi HotStart DNA Polymerase (Kapa
Biosystems, Wilmington, MA, USA) and the specific primers were used for each of the fecal
samples to screen and recover the full genomes of the circoviruses using the manufacturer’s

recommended thermal cycling conditions.
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The PCR amplicons were resolved on a 0.7% agarose gel, recovered with gel purification, cloned
into the plasmid pJET1.2 (ThermoFisher, Waltham, MA, USA), and Sanger-sequenced at
Macrogen Inc. (Seoul, South Korea) by primer walking. The Sanger sequence contigs were

assembled using Geneious Prime [47].

Sequence analyses

Open reading frames in the genomes were identified using ORFfinder
(https://www.ncbi.nlm.nih.gov/orffinder/). The genomes and amino acid sequences of Rep and
CP of representative circoviruses and those identified in this study were aligned using MUSCLE
[48], and pairwise percent identities were obtained using SDT v1.2 [49] (Supplementary Data 1).
The optimal substitution model based on Akaike information criterion with correction for small
sample size (AICc) for the genome alignment was identified as GTR+I+G using jModelTest 2
[50, 51], and ProtTest 3 [52] identified LG+I+G as the optimal model for the Rep alignment and
VT+I+G+F as the optimal model for the CP alignment. Phylogenetic analyses for each alignment
were performed with PhyML 3.0 [53], and all trees were rooted with sequences from duck
associated cyclovirus 1 (GenBank: KY851116) and horse associated cyclovirus 1(GenBank:
KR902499). Branches with SH-like aLRT support less than 0.8 [53, 54] were collapsed using ips
[55] and ape [56] packages in R [57].

Results and discussion

Based on the metagenomic analysis, we assembled a partial viral genome in two of the samples.
Based on this partial sequence data, we designed abutting primers to screen all the available scat
samples. Of the 22 samples screened with the two primer pairs, three circovirus genomes were
identified and recovered (Figure 1A) from three fecal samples of bobcats. Two of the genomes
(GenBank: MT610105 and MT610107) share greater than 97% pairwise identity (Supplementary
Data 1) and are 2181 nucleotides in length, having a Rep coding sequence (CDS) of 906
nucleotides (302 amino acids) on the virion-sense strand and CP CDS of 816 nucleotides (272
amino acids) on the complementary strand. Based on the species-demarcation threshold for

circoviruses which is 80% genome-wide identity [28], both of these belong to a new species and

d0i:10.20944/preprints202008.0501.v1
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we refer to as Sonfela (derived from Sonoran felid associated) circovirus 1. The third genome
(GenBank: MT610106) of 2151 nucleotides, referred to as Sonfela circovirus 2, is more distantly
related, sharing approximately 61% identity with the two Sonfela circovirus 1 genomes
(Supplementary Data 1), and contains a Rep CDS of 864 nucleotides (288 amino acids) on the
virion-sense strand and CP CDS of 975 nucleotides (325 amino acids) on the complementary
strand. The stem loop and nonanucleotide motif ‘“TAGTATTAC’ were identified in the genomes
and correspond to the origin of replication. Conserved motifs within Rep (RC endonuclease
Motifs I, II, and III and SF3 helicase domains Walker A, Walker B, Motif C, and Arg finger)
[58] were all detected.

The genome (Figure 1A) and protein ML phylogenetic trees (Figure 1B and C) reveal a highly
supported clade including canine circovirus (GenBank: KC241982), rodent associated
circoviruses (RoACV 1,2,3,4, and 7) (GenBank: KY370034; KY370042; KY370039;
KY370029; MF497827), bat associated circovirus 10 (GenBank: KX756986), and the Sonfela
circoviruses with SH-like aLRT support between 0.902 — 0.997. Sonfela circovirus 1 is most
closely related to a group of three rodent-derived viruses (RoACV1-3; GenBank: KY370034,
KY370042, KY370039), sharing a maximum of approximately 70% genome-wide identity, 70%
Rep identity, and 60% CP identity with ROACV2 (GenBank: KY370042) (Supplementary Data
1). The phylogenetic trees reveal Sonfela circovirus 2 and bat associated circovirus 10
(GenBank: KX756986) to be sister taxa, sharing approximately 63% genome-wide identity, 64%
Rep identity, and 45% CP identity according to SDT; however, pairwise percent identity
calculations reveal maximum genome-wide identity with BatACV7 (GenBank: KJ641723)
(63.5%) and CP identity with ROACV1 (GenBank: KY370034) (46%) (Supplementary Data 1).
Sharing less than 80% genome-wide identity with known circoviruses, both Sonfela circoviruses

1 and 2 represent novel species (Supplementary Data 1).

Concluding remarks

Based on the circovirus species demarcation threshold of 80% identity [28], the circovirus

genomes identified and recovered in this study represent two new species. The recovery of

d0i:10.20944/preprints202008.0501.v1
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genomes of typical circovirus length containing both circovirus Rep and CP CDS (in appropriate
orientation) and the well-defined nonanucleotide sequence suggests the presence of functional

circoviruses within felid populations in Sonora, Mexico.

The health implications of these circoviruses for these populations are currently unclear given
the viruses’ true hosts and pathogenicity are unknown. As the viral genomes were derived from
scat samples, the circoviruses could have infected the bobcat prey species or the felids
themselves, or be environmentally derived. The monophyletic grouping of Sonfela circovirus 1
and several rodent circoviruses suggests the virus may be rodent-derived; similarly, Sonfela

circovirus 2 may be bat-derived.

To our knowledge, the circoviruses described here may represent the first known feline
associated circoviruses. Detection, or lack thereof, of the circoviruses in other tissues within
felids could help discern the virus’ true hosts. Screening for the viruses in sympatric populations
of rodents, bats, and other prey species could also be utilized to rule out or confirm the sources of
these viruses. If felids are the host for these viruses, affected individuals should be monitored for
possible symptoms of disease, however further investigations regarding host are needed as well
as prevalence of the viruses within felid populations in the Sonoran Desert and across the

Americas.
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Figure and data legends

Figure 1. (A) Maximum likelihood phylogenetic tree of genome sequences of three Sonoran

felid associated (Sonfela) circovirus (SonCV) genomes (red font with clade highlighted in blue)

and other representative circoviruses and genome organizations of the two novel SonCVs. (B)

Maximum likelihood tree of Rep amino acid sequences of the circoviruses including those of

SonSVs. (C) Maximum likelihood tree of CP amino acid sequences of the circoviruses including

those of SonSVs.

Supplementary Data 1: Pairwise identity matrices of the genome, and Rep and CP amino acid

sequences of circoviruses.
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