

Novel Circoviruses Detected in Feces of Sonoran Felids

Natalie Payne¹, Simona Kraberger², Rafaela S Fontenele², Kara Schmidlin², Melissa H Bergeman³, Ivonne Cassaigne⁴, Melanie Culver^{5,6,1}, Arvind Varsani^{2,7,*}, Koenraad Van Doorslaer^{1,38,*}

Affiliations:

¹ Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85719, USA

² The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA

³ School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ

85721, USA

⁴ Primero Conservation, Box 16106, Portal, AZ, 85632, USA

⁷ Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7701, South Africa

¹⁸ The BIO5 Institute; Department of Immunobiology; Cancer Biology Graduate Interdisciplinary
¹⁹ Program; UA Cancer Center, University of Arizona Tucson, AZ 85724, USA

²⁰ *Corresponding Author Email: arvind.varsani@asu.edu ; vandoorslaer@arizona.edu

21 **Keywords:** *Circoviridae*; circoviruses; Bobcat, *Lynx rufus*; Sonoran Desert; Sonoran felid
22 associated (Sonfela) circoviruses

23 **GenBank accession #s:** MT610105 - MT610107

24 Abstract

25 Sonoran felids are threatened by drought and habitat fragmentation. Vector range expansion and
26 anthropogenic factors such as habitat encroachment and climate change are altering viral
27 evolutionary dynamics and exposure. However, little is known about the diversity of viruses
28 present in these populations. Small felid populations with lower genetic diversity are likely to be
29 most threatened with extinction by emerging diseases, as with other selective pressures, due to
30 having less adaptive potential. We used a metagenomic approach to identify novel circoviruses,
31 which may have a negative impact on the population viability, from confirmed bobcat (*Lynx*
32 *rufus*) and puma (*Puma concolor*) scats collected in Sonora, Mexico. Given some circoviruses
33 are known to cause disease in their hosts, such as porcine and avian circoviruses, we took a non-
34 invasive approach using scat to identify circoviruses in free-roaming bobcats and puma. Three
35 circovirus genomes were determined, and, based on the current species demarcation, they
36 represent two novel species. Phylogenetic analyses reveal that one circovirus species is more
37 closely related to rodent associated circoviruses and the other to bat associated circoviruses,
38 sharing highest genome-wide pairwise identity of approximately 70% and 63%, respectively. At
39 this time, it is unknown whether these scat-derived circoviruses infect felids, their prey, or
40 another organism that might have had contact with the scat in the environment. Further studies
41 should be conducted to elucidate the host of these viruses and assess health impacts in felids.

42

43 Introduction

44 The Sonoran Desert is a unique ecosystem in which four species of felids are known to coexist:
45 pumas (*Puma concolor*), bobcats (*Lynx rufus*), ocelots (*Leopardus pardalis*), and jaguars
46 (*Panthera onca*) [1]. These felids play a crucial role in maintaining a functional ecosystem.
47 Pumas mainly regulate populations of ungulates, including deer, bighorn sheep, and javelina [2–
48 4], while bobcats and ocelots tend to prey upon small mammals, such as lagomorphs, rodents,
49 and reptiles [3, 5–7]. Ocelots and jaguars are recognized as endangered in the region [8–10],
50 however, the status of all four felid species are likely threatened by shared environmental
51 pressures, including drought [11], habitat fragmentation and encroachment (which can lead to
52 human-wildlife conflict), and emerging diseases. While antibodies to canine distemper virus
53 (CDV) have been detected in Sonoran jaguars [12] and antibodies to CDV, feline panleukopenia

54 virus, feline calcivirus, and feline enteric coronavirus have been detected in pumas from southern
55 Arizona [13], other viruses circulating in populations of Sonoran felids are largely unknown.
56 Cataloging the diversity of viruses present in these felids could reveal an abundance of both
57 known and novel viruses; although most viruses are not pathogenic, some may cause disease and
58 be relevant to conservation.

59

60 High throughput sequencing technologies have allowed for unprecedented advances in
61 identifying known and novel viruses and characterizing viral communities through viral
62 metagenomics. Taking advantage of metagenomic approaches to monitor viral communities
63 associated with wildlife could be instrumental for conservation, however, this is not routinely
64 performed. Altered viral evolutionary dynamics (largely due to anthropogenic factors such as
65 facilitating viral movement around the world, spillover from domestic animals, increasingly
66 dense populations of wildlife due to habitat encroachment, and climate change) and altered
67 exposure of wildlife to viruses through vector range expansion create conditions for accelerated
68 emergence of viruses, some of which may cause new disease outbreaks in wildlife populations
69 [14, 15]; notable examples include the spillover of feline leukemia virus (FeLV) from domestic
70 cats into the endangered Florida panther [16] and spillover of CDV from domestic dogs into
71 wildlife populations within Serengeti National Park, Tanzania, affecting spotted hyenas, African
72 lions, and other species [17, 18]. This may be especially problematic for already threatened
73 populations, as small populations typically have lower genetic diversity (and possibly stress-
74 induced immunosuppression) and, therefore, decreased adaptive potential to assist survival of a
75 proportion of the population experiencing the effects of a novel viral disease [15, 19–21].

76

77 Genomes from several families of circular rep-encoding single-stranded DNA viruses (CRESS-
78 DNA viruses, which contain a gene for the rolling circle replication associated protein (Rep)) are
79 part of the phylum *Cressdnnaviricota* [22] and have been identified in fecal viral metagenomic
80 studies of other mammals, including domestic cats [23, 24], bobcats, African lions [25],
81 capybaras [26], and Tasmanian devils [27]. *Circoviridae* is one of the families in the
82 *Cressdnnaviricota* phylum and is composed of the genera *Circovirus* and *Cyclovirus*. Circoviruses
83 have ambisense genomes of approximately 1.7–2.1 kb in length and encode two proteins, Rep

84 and the capsid protein (CP) [28]. Circoviruses have implications for wildlife management
85 because they are associated with disease in some vertebrates, including life-threatening
86 hemorrhagic gastroenteritis in dogs [29–31], psittacine beak and feather disease in parrots [32],
87 and postweaning multisystemic wasting syndrome in pigs [33, 34]. Importantly, several studies
88 suggest that these life-threatening diseases may be largely due to coinfection with porcine
89 parvovirus or porcine reproductive and respiratory syndrome virus [35, 36], or canine
90 coronavirus, canine parvovirus, or CDV [37–39], in pigs and dogs, respectively.

91 No circoviruses are known to infect felids, although a cyclovirus (feline associated cyclovirus 1)
92 has been identified in the feces of domestic cats [23]. Additionally, a feline stool-associated
93 circular DNA CRESS-DNA virus has recently been identified from cats with diarrhea [24].
94 Endogenous fragments of circoviruses have also been detected in feline genomes, indicating the
95 susceptibility of the ancestors of modern felids to circovirus infection [40, 41].

96

97 Here we use a metagenomic approach to identify novel circoviruses in the feces of two species of
98 Sonoran felids, the puma and bobcat; although not endangered, knowledge of viral threats facing
99 these species could help prevent future population decline, as well as indicate potential threats to
100 the endangered ocelot and jaguar. For the two novel circoviruses identified, we sought to
101 determine relationships with known circoviruses and characterize their genomes. These novel
102 feline feces associated circoviruses may represent the first known feline circoviruses.

103

104 **Material and methods**

105 **Sample collection and source identification**

106 Scat samples from bobcats (n=9) and pumas (n=13) were collected from Sonora, Mexico,
107 between 2012 and 2014 and stored at -20°C. To determine the species, DNA was extracted by
108 swabbing the scat surfaces and using Qiagen's DNeasy Blood and Tissue kit as previously
109 described by Cassaigne et al. [4]. This DNA was used as template for PCR of the mitochondrial
110 cytochrome B gene [42] with confirmation by Sanger sequencing of the amplicon (~470bp
111 region) as previously described [43].

112

113 **Fecal viral metagenomics**

114 5g of the fecal sample were homogenized in SM buffer and the homogenate was centrifuged at
115 6,000 × g for 10mins. The supernatant was sequentially filtered through 0.45µm and 0.2µm
116 syringe filters and viral particles in the filtrate were precipitated with 15% (w/v) PEG-8000 with
117 overnight incubation at 4°C followed by centrifugation at 10,000 × g as described in Fontenelle et
118 al. [26]. The pellet was resuspended in 500µl of SM Buffer and 200µl of this was used for viral
119 DNA extraction using the High Pure Viral Nucleic Acid Kit (Roche Diagnostics, Indianapolis,
120 IN, USA). Circular viral DNA was amplified by rolling circle amplification (RCA) using the
121 Illustra TemplPhi amplification kit (GE Healthcare, Chicago, IL, USA). Sequencing libraries
122 were prepared from the RCA products using the Nextera DNA Flex Library Prep Kit (Illumina)
123 and sequenced on an Illumina HiSeq 4000 (2 x 100 bp). The paired-end raw reads were trimmed
124 using Trimmomatic [44] and the trimmed reads were *de novo* assembled using metaSPAdes v
125 3.12.0 [45]. Contigs greater than 500 nucleotides were analyzed by BLASTx [46] against a local
126 viral protein database constructed from available NCBI RefSeq viral protein sequences.

127

128 **Recovery of circovirus genomes**

129 Based on the *de novo* assembled contigs that had BLASTx hits to circovirus sequences, two pairs
130 of abutting primers were designed to recover and verify the full genomes of circoviruses:
131 UoA14_16F 5'-CTATAGAACAGATATGCAAATTATGGCCGG-3' and UoA14_16R 5'-
132 ATATCTAAAAAGAGGAACCGAAACCTTGG-3' (complementarity to *cp* gene / stem loop
133 region) and UoA15F 5'-GACCGATAACCATTGAAAGTGGAGACTAAG-3' and UoA15R 5'-
134 CATCACTCGAACGCAGGTATCATAG-3' (complementary to the *rep* gene region). 0.5µl
135 RCA product was used as a template with KAPA HiFi HotStart DNA Polymerase (Kapa
136 Biosystems, Wilmington, MA, USA) and the specific primers were used for each of the fecal
137 samples to screen and recover the full genomes of the circoviruses using the manufacturer's
138 recommended thermal cycling conditions.

139

140 The PCR amplicons were resolved on a 0.7% agarose gel, recovered with gel purification, cloned
141 into the plasmid pJET1.2 (ThermoFisher, Waltham, MA, USA), and Sanger-sequenced at
142 Macrogen Inc. (Seoul, South Korea) by primer walking. The Sanger sequence contigs were
143 assembled using Geneious Prime [47].

144

145 **Sequence analyses**

146 Open reading frames in the genomes were identified using ORFFinder
147 (<https://www.ncbi.nlm.nih.gov/orffinder/>). The genomes and amino acid sequences of Rep and
148 CP of representative circoviruses and those identified in this study were aligned using MUSCLE
149 [48], and pairwise percent identities were obtained using SDT v1.2 [49] (Supplementary Data 1).
150 The optimal substitution model based on Akaike information criterion with correction for small
151 sample size (AICc) for the genome alignment was identified as GTR+I+G using jModelTest 2
152 [50, 51], and ProtTest 3 [52] identified LG+I+G as the optimal model for the Rep alignment and
153 VT+I+G+F as the optimal model for the CP alignment. Phylogenetic analyses for each alignment
154 were performed with PhyML 3.0 [53], and all trees were rooted with sequences from duck
155 associated cyclovirus 1 (GenBank: KY851116) and horse associated cyclovirus 1 (GenBank:
156 KR902499). Branches with SH-like aLRT support less than 0.8 [53, 54] were collapsed using ips
157 [55] and ape [56] packages in R [57].

158

159 **Results and discussion**

160 Based on the metagenomic analysis, we assembled a partial viral genome in two of the samples.
161 Based on this partial sequence data, we designed abutting primers to screen all the available scat
162 samples. Of the 22 samples screened with the two primer pairs, three circovirus genomes were
163 identified and recovered (Figure 1A) from three fecal samples of bobcats. Two of the genomes
164 (GenBank: MT610105 and MT610107) share greater than 97% pairwise identity (Supplementary
165 Data 1) and are 2181 nucleotides in length, having a Rep coding sequence (CDS) of 906
166 nucleotides (302 amino acids) on the virion-sense strand and CP CDS of 816 nucleotides (272
167 amino acids) on the complementary strand. Based on the species-demarcation threshold for
168 circoviruses which is 80% genome-wide identity [28], both of these belong to a new species and

169 we refer to as Sonfela (derived from Sonoran felid associated) circovirus 1. The third genome
170 (GenBank: MT610106) of 2151 nucleotides, referred to as Sonfela circovirus 2, is more distantly
171 related, sharing approximately 61% identity with the two Sonfela circovirus 1 genomes
172 (Supplementary Data 1), and contains a Rep CDS of 864 nucleotides (288 amino acids) on the
173 virion-sense strand and CP CDS of 975 nucleotides (325 amino acids) on the complementary
174 strand. The stem loop and nonanucleotide motif 'TAGTATTAC' were identified in the genomes
175 and correspond to the origin of replication. Conserved motifs within Rep (RC endonuclease
176 Motifs I, II, and III and SF3 helicase domains Walker A, Walker B, Motif C, and Arg finger)
177 [58] were all detected.

178

179 The genome (Figure 1A) and protein ML phylogenetic trees (Figure 1B and C) reveal a highly
180 supported clade including canine circovirus (GenBank: KC241982), rodent associated
181 circoviruses (RoACV 1,2,3,4, and 7) (GenBank: KY370034; KY370042; KY370039;
182 KY370029; MF497827), bat associated circovirus 10 (GenBank: KX756986), and the Sonfela
183 circoviruses with SH-like aLRT support between 0.902 – 0.997. Sonfela circovirus 1 is most
184 closely related to a group of three rodent-derived viruses (RoACV1-3; GenBank: KY370034,
185 KY370042, KY370039), sharing a maximum of approximately 70% genome-wide identity, 70%
186 Rep identity, and 60% CP identity with RoACV2 (GenBank: KY370042) (Supplementary Data
187 1). The phylogenetic trees reveal Sonfela circovirus 2 and bat associated circovirus 10
188 (GenBank: KX756986) to be sister taxa, sharing approximately 63% genome-wide identity, 64%
189 Rep identity, and 45% CP identity according to SDT; however, pairwise percent identity
190 calculations reveal maximum genome-wide identity with BatACV7 (GenBank: KJ641723)
191 (63.5%) and CP identity with RoACV1 (GenBank: KY370034) (46%) (Supplementary Data 1).
192 Sharing less than 80% genome-wide identity with known circoviruses, both Sonfela circoviruses
193 1 and 2 represent novel species (Supplementary Data 1).

194

195 **Concluding remarks**

196 Based on the circovirus species demarcation threshold of 80% identity [28], the circovirus
197 genomes identified and recovered in this study represent two new species. The recovery of

198 genomes of typical circovirus length containing both circovirus Rep and CP CDS (in appropriate
199 orientation) and the well-defined nonanucleotide sequence suggests the presence of functional
200 circoviruses within felid populations in Sonora, Mexico.

201

202 The health implications of these circoviruses for these populations are currently unclear given
203 the viruses' true hosts and pathogenicity are unknown. As the viral genomes were derived from
204 scat samples, the circoviruses could have infected the bobcat prey species or the felids
205 themselves, or be environmentally derived. The monophyletic grouping of Sonfela circovirus 1
206 and several rodent circoviruses suggests the virus may be rodent-derived; similarly, Sonfela
207 circovirus 2 may be bat-derived.

208

209 To our knowledge, the circoviruses described here may represent the first known feline
210 associated circoviruses. Detection, or lack thereof, of the circoviruses in other tissues within
211 felids could help discern the virus' true hosts. Screening for the viruses in sympatric populations
212 of rodents, bats, and other prey species could also be utilized to rule out or confirm the sources of
213 these viruses. If felids are the host for these viruses, affected individuals should be monitored for
214 possible symptoms of disease, however further investigations regarding host are needed as well
215 as prevalence of the viruses within felid populations in the Sonoran Desert and across the
216 Americas.

217

218 **Author Contributions**

219 Conceptualization, N.P., M.C., A.V., K.V.D; methodology, N.P., S.K., R.S.F., K.S., I.C., M.C.,
220 A.V., K.V.D; formal analysis, N.P., S.K., R.S.F., K.S., M.H.B., I.C., M.C., A.V., K.V.D;
221 investigation, N.P., S.K., R.S.F., K.S., M.H.B., I.C., M.C., A.V., K.V.D; resources, M.C., A.V.,
222 K.V.D; data curation, N.P., S.K., R.S.F., K.S., I.C., M.C., A.V., K.V.D; writing—original draft
223 preparation, N.P., A.V., K.V.D; writing—review and editing, N.P., S.K., R.S.F., K.S., M.H.B.,
224 I.C., M.C., A.V., K.V.D; visualization, N.P.; supervision, M.C., A.V., K.V.D; project
225 administration, M.C., A.V., K.V.D; funding acquisition, M.C., A.V., K.V.D

226 Conflicts of Interest

227 The authors declare that there are no conflicts of interest.

228 Funding

229 NP was supported by funds from the Genetics Graduate Interdisciplinary Program and The
230 Technology and Research Initiative Fund at University of Arizona. The high throughput
231 sequencing work and viral molecular work was supported by a startup grant awarded to AV by
232 Arizona State University. Sample collection of bobcat and puma scat was supported by Primero
233 Conservation, a Nonprofit Wildlife Conservation Organization.

234

235 Acknowledgements

236 We would like to thank interns Meagan Bethel and Anna Kegan Scott and work study student
237 Emma Froelich for help with DNA extraction of bobcat and puma scat samples. We
238 acknowledge Dr. Jana Jandova for her assistance with extracting viral DNA. We also thank Alex
239 Erwin, Eldridge Wisely, Karla Vargas, Conor Handley, and Hans-Werner Herrmann for
240 feedback during the early stages of manuscript preparation and Robert Jackson for critical review
241 of this manuscript.

242

243

244

245

246 References

- 247 1. **Avila-Villegas S, Lamberton-Moreno J.** Wildlife Survey and Monitoring in the Sky
248 Island Region with an Emphasis on Neotropical Felids. *USDA For Serv Proc RMRS-P-67*
249 2013;441–447.
- 250 2. **Rosas-Rosas OC, Valdez R, Bender LC, Daniel D.** Food Habits of Pumas in
251 Northwestern Sonora, Mexico. *Wildl Soc Bull* 2003;31:528–535.

252 3. **Luna-Soria H, López González CA.** Abundance and food habits of cougars and bobcats
253 in the Sierra San Luis, Sonora, Mexico. *USDA For Serv Proc RMRS-P-36* 2005;416–420.

254 4. **Cassaigne I, Medellín RA, Thompson RW, Culver M, Ochoa A, et al.** Diet of Pumas
255 (Puma concolor) in Sonora, Mexico, as Determined by GPS Kill Sites and Molecular
256 Identified Scat, with Comments on Jaguar (Panthera onca) Diet. *Southwest Nat*
257 2016;61:125–132.

258 5. **de Villa Meza A, Martinez Meyer E, López González CA.** Ocelot (Leopardus pardalis)
259 Food Habits in a Tropical Deciduous Forest of Jalisco, Mexico. *Am Midl Nat*
260 2002;148:146–154.

261 6. **McKinney T, Smith TW.** Diets of Sympatric Bobcats and Coyotes During Years of
262 Varying Rainfall in Central Arizona. *West North Am Nat* 2007;67:8–15.

263 7. **Booth-Binczik SD, Bradley RD, Thompson CW, Bender LC, Huntley JW, et al.** Food
264 Habits of Ocelots and Potential for Competition with Bobcats in Southern Texas.
265 *Southwest Nat* 2013;58:403–410.

266 8. **Fish and Wildlife Service, Interior.** Endangered and Threatened Wildlife and Plants;
267 Final Rule To Extend Endangered Status for the Jaguar in the United States. *Federal
268 Register* 1997;62.

269 9. **SEMARNAT.** NORMA Oficial Mexicana NOM-059-SEMARNAT-2010, Protección
270 ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y
271 especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. *Diario
272 Oficial* 2010.

273 10. **US Fish and Wildlife Service Southwest Region.** *Recovery Plan for the Ocelot
274 (Leopardus pardalis) First Revision.* 2016.

275 11. **Hallack-Alegria M, Watkins DW.** Annual and warm season drought intensity-duration-
276 frequency analysis for Sonora, Mexico. *J Clim* 2007;20:1897–1909.

277 12. **Thompson R.** Personal Communication.

278 13. **Nicholson KL, Noon TH, Krausman PR.** Serosurvey of mountain lions in southern

279 Arizona. *Wildl Soc Bull* 2012;36:615–620.

280 14. **Rogalski MA, Gowler CD, Shaw CL, Hufbauer RA, Duffy MA.** Human drivers of
281 ecological and evolutionary dynamics in emerging and disappearing infectious disease
282 systems. *Philos Trans R Soc B Biol Sci*;372. Epub ahead of print 2017. DOI:
283 10.1098/rstb.2016.0043.

284 15. **Aguirre AA, Tabor GM.** Global Factors Driving Emerging Infectious Diseases. *Ann N Y
285 Acad Sci* 2008;1149:1–3.

286 16. **Chiu ES, Krabberger S, Cunningham M, Cusack L, Roelke M, et al.** Multiple
287 introductions of domestic cat feline leukemia virus in endangered Florida Panthers. *Emerg
288 Infect Dis* 2019;25:92–101.

289 17. **Roelke-Parker ME, Munson L, Packer C, Kock R, Cleaveland S, et al.** A canine
290 distemper virus epidemic in Serengeti lions (*Panthera leo*). *Nature* 1996;379:441–445.

291 18. **Weckworth JK, Davis BW, Dubovi E, Fountain-Jones N, Packer C, et al.** Cross-
292 species transmission and evolutionary dynamics of canine distemper virus during a
293 spillover in African lions of Serengeti National Park. *Mol Ecol* 2020;mec.15449.

294 19. **O'Brien SJ, Evermann JF.** Interactive influence of infectious disease and genetic
295 diversity in natural populations. *Trends in Ecology and Evolution* 1988;3:254–259.

296 20. **Lacy RC.** Importance of Genetic Variation to the Viability of Mammalian Populations. *J
297 Mammal* 1997;78:320–335.

298 21. **Heard MJ, Smith KF, Ripp KJ, Berger M, Chen J, et al.** The Threat of Disease
299 Increases as Species Move Toward Extinction. *Conserv Biol.* Epub ahead of print 2013.
300 DOI: 10.1111/cobi.12143.

301 22. **Krupovic M, Varsani A, Kazlauskas D, Breitbart M, Delwart E, et al.**
302 Cressdnaviricota: a virus phylum unifying 7 families of Rep-encoding viruses with single-
303 stranded, circular DNA genomes . *J Virol*;94. Epub ahead of print 8 April 2020. DOI:
304 10.1128/jvi.00582-20.

305 23. **Zhang W, Li L, Deng X, Kapusinszky B, Pesavento PA, et al.** Faecal virome of cats in

306 an animal shelter. *J Gen Virol* 2014;95:2553–2564.

307 24. **Takano T, Yanai Y, Hiramatsu K, Doki T, Hohdatsu T.** Novel single-stranded, circular
308 DNA virus identified in cats in Japan. *Arch Virol* 2018;163:3389–3393.

309 25. **Kraberger S, Serieys L, Fountain-Jones N, Packer C, Riley S, et al.** Novel
310 smacoviruses identified in the faeces of two wild felids: North American bobcat and
311 African lion. *Arch Virol* 2019;164:2395–2399.

312 26. **Fontenele RS, Lacorte C, Lamas NS, Schmidlin K, Varsani A, et al.** Single stranded
313 dna viruses associated with capybara faeces sampled in brazil. *Viruses* 2019;11:1–17.

314 27. **Chong R, Shi M, Grueber CE, Holmes EC, Hogg CJ, et al.** Fecal Viral Diversity of
315 Captive and Wild Tasmanian Devils Characterized Using Virion-Enriched Metagenomics
316 and Metatranscriptomics. *J Virol* 2019;93:1–18.

317 28. **Rosario K, Breitbart M, Harrach B, Segalés J, Delwart E, et al.** Revisiting the
318 taxonomy of the family Circoviridae: establishment of the genus Cyclovirus and removal
319 of the genus Gyrovirus. *Arch Virol* 2017;162:1447–1463.

320 29. **Li L, McGraw S, Zhu K, Leutenegger CM, Marks SL, et al.** Circovirus in tissues of
321 dogs with vasculitis and hemorrhage. *Emerg Infect Dis* 2013;19:534–541.

322 30. **Decaro N, Martella V, Desario C, Lanave G, Circella E, et al.** Genomic
323 characterization of a circovirus associated with fatal hemorrhagic enteritis in dog, Italy.
324 *PLoS One*;9. Epub ahead of print 22 August 2014. DOI: 10.1371/journal.pone.0105909.

325 31. **Kotsias F, Bucafusco D, Nuñez DA, Lago Borisovsky LA, Rodriguez M, et al.**
326 Genomic characterization of canine circovirus associated with fatal disease in dogs in
327 South America. *PLoS One*;14. Epub ahead of print 2019. DOI:
328 10.1371/journal.pone.0218735.

329 32. **Ritchie BW, Niagro FD, Lukert PD, Steffens WL, Latimer KS.** Characterization of a
330 new virus from cockatoos with psittacine beak and feather disease. *Virology* 1989;171:83–
331 88.

332 33. **Chae C.** A review of porcine circovirus 2-associated syndromes and diseases. *Vet J*

333 2005;169:326–336.

334 34. **Segalés J, Allan GM, Domingo M.** Porcine circovirus diseases. *Anim Heal Res Rev*
335 2005;6:119–142.

336 35. **Allan GM, Kennedy S, McNeilly F, Foster JC, Ellis JA, et al.** Experimental
337 reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and
338 porcine parvovirus. *J Comp Pathol* 1999;121:1–11.

339 36. **Opriessnig T, Halbur PG.** Concurrent infections are important for expression of porcine
340 circovirus associated disease. *Virus Research* 2012;164:20–32.

341 37. **Zaccaria G, Malatesta D, Scipioni G, Di Felice E, Campolo M, et al.** Circovirus in
342 domestic and wild carnivores: An important opportunistic agent? *Virology* 2016;490:69–
343 74.

344 38. **Anderson A, Hartmann K, Leutenegger CM, Proksch AL, Mueller RS, et al.** Role of
345 canine circovirus in dogs with acute haemorrhagic diarrhoea. *Vet Rec* 2017;180:542–542.

346 39. **Dowgier G, Lorusso E, Decaro N, Desario C, Mari V, et al.** A molecular survey for
347 selected viral enteropathogens revealed a limited role of Canine circovirus in the
348 development of canine acute gastroenteritis. *Vet Microbiol* 2017;204:54–58.

349 40. **Katzourakis A, Gifford RJ.** Endogenous viral elements in animal genomes. *PLoS
350 Genet*;6. Epub ahead of print November 2010. DOI: 10.1371/journal.pgen.1001191.

351 41. **Dennis TPW, de Souza WM, Marsile-Medun S, Singer JB, Wilson SJ, et al.** The
352 evolution, distribution and diversity of endogenous circoviral elements in vertebrate
353 genomes. *Virus Res* 2019;262:15–23.

354 42. **Verma SK, Singh L.** Novel universal primers establish identity of an enormous number
355 of animal species for forensic application. *Mol Ecol Notes* 2002;3:28–31.

356 43. **Naidu A, Smythe LA, Thompson RW, Culver M.** Genetic analysis of scats reveals
357 minimum number and sex of recently documented mountain lions. *Journal of Fish and
358 Wildlife Management* 2011;2:106–111.

359 44. **Bolger AM, Lohse M, Usadel B.** Trimmomatic: a flexible trimmer for Illumina sequence

360 data. *Bioinformatics* 2014;30:2114–2120.

361 45. **Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, et al.** SPAdes: A new
362 genome assembly algorithm and its applications to single-cell sequencing. *J Comput Biol*
363 2012;19:455–477.

364 46. **Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.** Basic local alignment search
365 tool. *J Mol Biol* 1990;215:403–410.

366 47. **Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, et al.** Geneious Basic: An
367 integrated and extendable desktop software platform for the organization and analysis of
368 sequence data. *Bioinforma Appl Note* 2012;28:1647–1649.

369 48. **Edgar RC.** MUSCLE: multiple sequence alignment with high accuracy and high
370 throughput. *Nucleic Acids Res* 2004;32:1792–1797.

371 49. **Muhire BM, Varsani A, Martin DP.** SDT: A Virus Classification Tool Based on
372 Pairwise Sequence Alignment and Identity Calculation. *PLoS One* 2014;9:e108277.

373 50. **Guindon S, Gascuel O.** A Simple, Fast, and Accurate Algorithm to Estimate Large
374 Phylogenies by Maximum Likelihood. *Syst Biol* 2003;52:696–704.

375 51. **Darriba D, Taboada GL, Doallo R, Posada D.** JModelTest 2: More models, new
376 heuristics and parallel computing. *Nature Methods* 2012;9:772.

377 52. **Darriba D, Taboada GL, Doallo R, Posada D.** ProtTest 3: fast selection of best-fit
378 models of protein evolution. *Bioinformatics* 2011;27:1164–1165.

379 53. **Guindon S, Dufayard J-FO, Lefort V, Anisimova M, Hordijk W, et al.** New
380 Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the
381 Performance of PhyML 3.0. *Syst Biol* 2010;59:307–321.

382 54. **Anisimova M, Gascuel O.** Approximate likelihood-ratio test for branches: A fast,
383 accurate, and powerful alternative. *Syst Biol* 2006;55:539–552.

384 55. **Heibl C.** PHYLOCH: R language tree plotting tools and interfaces to diverse phylogenetic
385 software packages. <http://www.christophheibl.de/Rpackages.html> (2008).

386 56. **Paradis E, Schliep K.** ape 5.0: an environment for modern phylogenetics and

387 evolutionary analyses in R. *Bioinformatics* 2018;35:526–528.

388 57. **R Core Team.** R: A language and environment for statistical computing. <https://www.r-project.org/> (2019).

390 58. **Rosario K, Duffy S, Breitbart M.** A field guide to eukaryotic circular single-stranded
391 DNA viruses: Insights gained from metagenomics. *Archives of Virology* 2012;157:1851–
392 1871.

393

394 **Figure and data legends**

395 **Figure 1.** (A) Maximum likelihood phylogenetic tree of genome sequences of three Sonoran
396 felid associated (Sonfela) circovirus (SonCV) genomes (red font with clade highlighted in blue)
397 and other representative circoviruses and genome organizations of the two novel SonCVs. (B)
398 Maximum likelihood tree of Rep amino acid sequences of the circoviruses including those of
399 SonSVs. (C) Maximum likelihood tree of CP amino acid sequences of the circoviruses including
400 those of SonSVs.

401 **Supplementary Data 1:** Pairwise identity matrices of the genome, and Rep and CP amino acid
402 sequences of circoviruses.

403