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Abstract 24 

Sonoran felids are threatened by drought and habitat fragmentation. Vector range expansion and 25 

anthropogenic factors such as habitat encroachment and climate change are altering viral 26 

evolutionary dynamics and exposure. However, little is known about the diversity of viruses 27 

present in these populations. Small felid populations with lower genetic diversity are likely to be 28 

most threatened with extinction by emerging diseases, as with other selective pressures, due to 29 

having less adaptive potential. We used a metagenomic approach to identify novel circoviruses, 30 

which may have a negative impact on the population viability, from confirmed bobcat (Lynx 31 

rufus) and puma (Puma concolor) scats collected in Sonora, Mexico. Given some circoviruses 32 

are known to cause disease in their hosts, such as porcine and avian circoviruses, we took a non-33 

invasive approach using scat to identify circoviruses in free-roaming bobcats and puma. Three 34 

circovirus genomes were determined, and, based on the current species demarcation, they 35 

represent two novel species. Phylogenetic analyses reveal that one circovirus species is more 36 

closely related to rodent associated circoviruses and the other to bat associated circoviruses, 37 

sharing highest genome-wide pairwise identity of approximately 70% and 63%, respectively. At 38 

this time, it is unknown whether these scat-derived circoviruses infect felids, their prey, or 39 

another organism that might have had contact with the scat in the environment. Further studies 40 

should be conducted to elucidate the host of these viruses and assess health impacts in felids. 41 

 42 

Introduction 43 

The Sonoran Desert is a unique ecosystem in which four species of felids are known to coexist: 44 

pumas (Puma concolor), bobcats (Lynx rufus), ocelots (Leopardus pardalis), and jaguars 45 

(Panthera onca) [1]. These felids play a crucial role in maintaining a functional ecosystem. 46 

Pumas mainly regulate populations of ungulates, including deer, bighorn sheep, and javelina [2–47 

4], while bobcats and ocelots tend to prey upon small mammals, such as lagomorphs, rodents, 48 

and reptiles [3, 5–7]. Ocelots and jaguars are recognized as endangered in the region [8–10], 49 

however, the status of all four felids species are likely threatened by shared environmental 50 

pressures, including drought [11], habitat fragmentation and encroachment (which can lead to 51 

human-wildlife conflict), and emerging diseases. While antibodies to canine distemper virus 52 

(CDV) have been detected in Sonoran jaguars [12] and antibodies to CDV, feline panleukopenia 53 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 August 2020                   doi:10.20944/preprints202008.0501.v1

Peer-reviewed version available at Viruses 2020, 12, 1027; doi:10.3390/v12091027

https://doi.org/10.20944/preprints202008.0501.v1
https://doi.org/10.3390/v12091027


virus, feline calcivirus, and feline enteric coronavirus have been detected in pumas from southern 54 

Arizona [13], other viruses circulating in populations of Sonoran felids are largely unknown. 55 

Cataloging the diversity of viruses present in these felids could reveal an abundance of both 56 

known and novel viruses; although most viruses are not pathogenic, some may cause disease and 57 

be relevant to conservation. 58 

 59 

High throughput sequencing technologies have allowed for unprecedented advances in 60 

identifying known and novel viruses and characterizing viral communities through viral 61 

metagenomics. Taking advantage of metagenomic approaches to monitor viral communities 62 

associated with wildlife could be instrumental for conservation, however, this is not routinely 63 

performed. Altered viral evolutionary dynamics (largely due to anthropogenic factors such as 64 

facilitating viral movement around the world, spillover from domestic animals, increasingly 65 

dense populations of wildlife due to habitat encroachment, and climate change) and altered 66 

exposure of wildlife to viruses through vector range expansion create conditions for accelerated 67 

emergence of viruses, some of which may cause new disease outbreaks in wildlife populations 68 

[14, 15]; notable examples include the spillover of feline leukemia virus (FeLV) from domestic 69 

cats into the endangered Florida panther [16] and spillover of CDV from domestic dogs into 70 

wildlife populations within Serengeti National Park, Tanzania, affecting spotted hyenas, African 71 

lions, and other species [17, 18]. This may be especially problematic for already threatened 72 

populations, as small populations typically have lower genetic diversity (and possibly stress-73 

induced immunosuppression) and, therefore, decreased adaptive potential to assist survival of a 74 

proportion of the population experiencing the effects of a novel viral disease [15, 19–21].  75 

 76 

Genomes from several families of circular rep-encoding single-stranded DNA viruses (CRESS-77 

DNA viruses, which contain a gene for the rolling circle replication associated protein (Rep)) are 78 

part of the phylum Cressdnaviricota [22] and have been identified in fecal viral metagenomic 79 

studies of other mammals, including domestic cats [23, 24], bobcats, African lions [25], 80 

capybaras [26], and Tasmanian devils [27]. Circoviridae is one of the families in the 81 

Cressdnaviricota phylum and is composed of the genera Circovirus and Cyclovirus. Circoviruses 82 

have ambisense genomes of approximately 1.7-2.1 kb in length and encode two proteins, Rep 83 
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and the capsid protein (CP) [28]. Circoviruses have implications for wildlife management 84 

because they are associated with disease in some vertebrates, including life-threatening 85 

hemorrhagic gastroenteritis in dogs [29–31], psittacine beak and feather disease in parrots [32], 86 

and postweaning multisystemic wasting syndrome in pigs [33, 34]. Importantly, several studies 87 

suggest that these life-threatening diseases may be largely due to coinfection with porcine 88 

parvovirus or porcine reproductive and respiratory syndrome virus [35, 36], or canine 89 

coronavirus, canine parvovirus, or CDV [37–39], in pigs and dogs, respectively.  90 

No circoviruses are known to infect felids, although a cyclovirus (feline associated cyclovirus 1) 91 

has been identified in the feces of domestic cats [23]. Additionally, a feline stool-associated 92 

circular DNA CRESS-DNA virus has recently been identified from cats with diarrhea [24]. 93 

Endogenous fragments of circoviruses have also been detected in feline genomes, indicating the 94 

susceptibility of the ancestors of modern felids to circovirus infection [40, 41]. 95 

 96 

Here we use a metagenomic approach to identify novel circoviruses in the feces of two species of 97 

Sonoran felids, the puma and bobcat; although not endangered, knowledge of viral threats facing 98 

these species could help prevent future population decline, as well as indicate potential threats to 99 

the endangered ocelot and jaguar. For the two novel circoviruses identified, we sought to 100 

determine relationships with known circoviruses and characterize their genomes. These novel 101 

feline feces associated circoviruses may represent the first known feline circoviruses. 102 

 103 

Material and methods 104 

Sample collection and source identification 105 

Scat samples from bobcats (n=9) and pumas (n=13) were collected from Sonora, Mexico, 106 

between 2012 and 2014 and stored at -20˚C. To determine the species, DNA was extracted by 107 

swabbing the scat surfaces and using Qiagen’s DNeasy Blood and Tissue kit as previously 108 

described by Cassaigne et al. [4]. This DNA was used as template for PCR of the mitochondrial 109 

cytochrome B gene [42] with confirmation by Sanger sequencing of the amplicon (~470bp 110 

region) as previously described [43]. 111 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 August 2020                   doi:10.20944/preprints202008.0501.v1

Peer-reviewed version available at Viruses 2020, 12, 1027; doi:10.3390/v12091027

https://doi.org/10.20944/preprints202008.0501.v1
https://doi.org/10.3390/v12091027


 112 

Fecal viral metagenomics 113 

5g of the fecal sample were homogenized in SM buffer and the homogenate was centrifuged at 114 

6,000 × g for 10mins. The supernatant was sequentially filtered through 0.45μm and 0.2μm 115 

syringe filters and viral particles in the filtrate were precipitated with 15% (w/v) PEG-8000 with 116 

overnight incubation at 4°C followed by centrifugation at 10,000 × g as described in Fontenele et 117 

al. [26]. The pellet was resuspended in 500μl of SM Buffer and 200μl of this was used for viral 118 

DNA extraction using the High Pure Viral Nucleic Acid Kit (Roche Diagnostics, Indianapolis, 119 

IN, USA). Circular viral DNA was amplified by rolling circle amplification (RCA) using the 120 

Illustra TempliPhi amplification kit (GE Healthcare, Chicago, IL, USA). Sequencing libraries 121 

were prepared from the RCA products using the Nextera DNA Flex Library Prep Kit (Illumina) 122 

and sequenced on an Illumina HiSeq 4000 (2 x 100 bp). The paired-end raw reads were trimmed 123 

using Trimmomatic [44] and the trimmed reads were de novo assembled using metaSPAdes v 124 

3.12.0 [45]. Contigs greater than 500 nucleotides were analyzed by BLASTx [46] against a local 125 

viral protein database constructed from available NCBI RefSeq viral protein sequences.  126 

 127 

Recovery of circovirus genomes 128 

Based on the de novo assembled contigs that had BLASTx hits to circovirus sequences, two pairs 129 

of abutting primers were designed to recover and verify the full genomes of circoviruses: 130 

UoA14_16F 5'-CTATAGAACAGATATGCAAATTATGGCCGG-3' and UoA14_16R 5'-131 

ATATCTCAAAAAGAGGAACCGAAACCTTGG-3' (complementarity to cp gene /  stem loop 132 

region) and UoA15F 5'-GACCGATACCCATTGAAAGTGGAGACTAAG-3' and UoA15R 5'-133 

CATCACTCGAAGCAGGTCATCATAG-3' (complementary to the rep gene region). 0.5μl 134 

RCA product was used as a template with KAPA HiFi HotStart DNA Polymerase (Kapa 135 

Biosystems, Wilmington, MA, USA) and the specific primers were used for each of the fecal 136 

samples to screen and recover the full genomes of the circoviruses using the manufacturer’s 137 

recommended thermal cycling conditions. 138 

 139 
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The PCR amplicons were resolved on a 0.7% agarose gel, recovered with gel purification, cloned 140 

into the plasmid pJET1.2 (ThermoFisher, Waltham, MA, USA), and Sanger-sequenced at 141 

Macrogen Inc. (Seoul, South Korea) by primer walking. The Sanger sequence contigs were 142 

assembled using Geneious Prime [47].  143 

 144 

Sequence analyses 145 

Open reading frames in the genomes were identified using ORFfinder 146 

(https://www.ncbi.nlm.nih.gov/orffinder/). The genomes and amino acid sequences of Rep and 147 

CP of representative circoviruses and those identified in this study were aligned using MUSCLE 148 

[48], and pairwise percent identities were obtained using SDT v1.2 [49] (Supplementary Data 1). 149 

The optimal substitution model based on Akaike information criterion with correction for small 150 

sample size (AICc) for the genome alignment was identified as GTR+I+G using jModelTest 2 151 

[50, 51], and ProtTest 3 [52] identified LG+I+G as the optimal model for the Rep alignment and 152 

VT+I+G+F as the optimal model for the CP alignment. Phylogenetic analyses for each alignment 153 

were performed with PhyML 3.0 [53], and all trees were rooted with sequences from  duck 154 

associated cyclovirus 1 (GenBank: KY851116) and horse associated cyclovirus 1(GenBank: 155 

KR902499). Branches with SH-like aLRT support less than 0.8 [53, 54] were collapsed using ips 156 

[55] and ape [56] packages in R [57]. 157 

 158 

Results and discussion 159 

Based on the metagenomic analysis, we assembled a partial viral genome in two of the samples. 160 

Based on this partial sequence data, we designed abutting primers to screen all the available scat 161 

samples. Of the 22 samples screened with the two primer pairs, three circovirus genomes were 162 

identified and recovered (Figure 1A) from three fecal samples of bobcats. Two of the genomes 163 

(GenBank: MT610105 and MT610107) share greater than 97% pairwise identity (Supplementary 164 

Data 1) and are 2181 nucleotides in length, having a Rep coding sequence (CDS) of 906 165 

nucleotides (302 amino acids) on the virion-sense strand and CP CDS of 816 nucleotides (272 166 

amino acids) on the complementary strand. Based on the species-demarcation threshold for 167 

circoviruses which is 80% genome-wide identity [28], both of these belong to a new species and 168 
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we refer to as Sonfela (derived from Sonoran felid associated) circovirus 1. The third genome 169 

(GenBank: MT610106) of 2151 nucleotides, referred to as Sonfela circovirus 2, is more distantly 170 

related, sharing approximately 61% identity with the two Sonfela circovirus 1 genomes 171 

(Supplementary Data 1), and contains a Rep CDS of 864 nucleotides (288 amino acids) on the 172 

virion-sense strand and CP CDS of 975 nucleotides (325 amino acids) on the complementary 173 

strand. The stem loop and nonanucleotide motif ‘TAGTATTAC’ were identified in the genomes 174 

and correspond to the origin of replication. Conserved motifs within Rep (RC endonuclease 175 

Motifs I, II, and III and SF3 helicase domains Walker A, Walker B, Motif C, and Arg finger) 176 

[58] were all detected.  177 

 178 

The genome (Figure 1A) and protein ML phylogenetic trees (Figure 1B and C) reveal a highly 179 

supported clade including canine circovirus (GenBank: KC241982), rodent associated 180 

circoviruses (RoACV 1,2,3,4, and 7) (GenBank: KY370034; KY370042; KY370039; 181 

KY370029; MF497827), bat associated circovirus 10 (GenBank: KX756986), and the Sonfela 182 

circoviruses with SH-like aLRT support between 0.902 – 0.997.  Sonfela circovirus 1 is most 183 

closely related to a group of three rodent-derived viruses (RoACV1-3; GenBank: KY370034, 184 

KY370042, KY370039), sharing a maximum of approximately 70% genome-wide identity, 70% 185 

Rep identity, and 60% CP identity with RoACV2 (GenBank: KY370042) (Supplementary Data 186 

1). The phylogenetic trees reveal Sonfela circovirus 2 and bat associated circovirus 10 187 

(GenBank: KX756986) to be sister taxa, sharing approximately 63% genome-wide identity, 64% 188 

Rep identity, and 45% CP identity according to SDT; however, pairwise percent identity 189 

calculations reveal maximum genome-wide identity with BatACV7 (GenBank: KJ641723) 190 

(63.5%) and CP identity with RoACV1 (GenBank: KY370034) (46%) (Supplementary Data 1). 191 

Sharing less than 80% genome-wide identity with known circoviruses, both Sonfela circoviruses 192 

1 and 2 represent novel species (Supplementary Data 1). 193 

 194 

Concluding remarks 195 

Based on the circovirus species demarcation threshold of 80% identity [28], the circovirus 196 

genomes identified and recovered in this study represent two new species. The recovery of 197 
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genomes of typical circovirus length containing both circovirus Rep and CP CDS (in appropriate 198 

orientation) and the well-defined nonanucleotide sequence suggests the presence of functional 199 

circoviruses within felid populations in Sonora, Mexico.  200 

 201 

The health implications of these circoviruses for these populations are currently unclear given 202 

the viruses’ true hosts and pathogenicity are unknown. As the viral genomes were derived from 203 

scat samples, the circoviruses could have infected the bobcat prey species or the felids 204 

themselves, or be environmentally derived. The monophyletic grouping of Sonfela circovirus 1 205 

and several rodent circoviruses suggests the virus may be rodent-derived; similarly, Sonfela 206 

circovirus 2 may be bat-derived.  207 

 208 

To our knowledge, the circoviruses described here may represent the first known feline 209 

associated circoviruses. Detection, or lack thereof, of the circoviruses in other tissues within 210 

felids could help discern the virus’ true hosts. Screening for the viruses in sympatric populations 211 

of rodents, bats, and other prey species could also be utilized to rule out or confirm the sources of 212 

these viruses. If felids are the host for these viruses, affected individuals should be monitored for 213 

possible symptoms of disease, however further investigations regarding host are needed as well 214 

as prevalence of the viruses within felid populations in the Sonoran Desert and across the 215 

Americas. 216 
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 393 

Figure and data legends 394 

Figure 1. (A) Maximum likelihood phylogenetic tree of genome sequences of three Sonoran 395 

felid associated (Sonfela) circovirus (SonCV) genomes (red font with clade highlighted in blue) 396 

and other representative circoviruses and genome organizations of the two novel SonCVs. (B) 397 

Maximum likelihood tree of Rep amino acid sequences of the circoviruses including those of 398 

SonSVs. (C) Maximum likelihood tree of CP amino acid sequences of the circoviruses including 399 

those of SonSVs.  400 

Supplementary Data 1: Pairwise identity matrices of the genome, and Rep and CP amino acid 401 

sequences of circoviruses.  402 
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