Pre prints.org

Article Not peer-reviewed version

Performance Evaluation of
Machine Learning Models for
Prostate Cancer Detection

DHEIVER SANTOS *

Posted Date: 3 July 2023
doi: 10.20944/preprints202307.0067v1

Keywords: prostate cancer detection; machine learning; logistic regression; decision tree classifier; random
forest classifier;

_' E Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/2027654

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2023 d0i:10.20944/preprints202307.0067.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Performance Evaluation of Machine Learning Models
for Prostate Cancer Detection

Dheiver Francisco Santos

R. Caxias do Sul, 95 - Operario, Novo Hamburgo - RS, 93315-132, Brazil; dheiver.santos@gmail.com;
Tel.: +55 51 98988-9898

Abstract: This article presents a comparative analysis of three Machine Learning models, namely Logistic
Regression, Decision Tree Classifier, and Random Forest Classifier, for prostate cancer detection. The models
were trained and evaluated using clinical data, and their performance was assessed using various evaluation
metrics. The results show that Logistic Regression achieved the highest accuracy (90%) among the three
models, followed by Random Forest Classifier (76.67%) and Decision Tree Classifier (73.33%). Similarly,
Logistic Regression demonstrated superior precision (95.65%) and F1 Score (93.62%), indicating its
effectiveness in identifying true positive cases. However, the Decision Tree Classifier exhibited higher recall
for the negative class (83.33%) compared to the positive class (70.83%), while Random Forest Classifier showed
balanced recall for both classes (66.67% for negative and 79.17% for positive). These findings suggest that
Logistic Regression outperforms the other models in terms of accuracy and precision, while the Decision Tree
Classifier and Random Forest Classifier provide better recall for certain classes. The results highlight the
potential of Machine Learning in prostate cancer detection and provide insights for further research and
improvement of the models.

Keywords: prostate cancer detection; machine learning; logistic regression; decision tree classifier;
random forest classifier

Introduction

Prostate cancer is a significant global health concern and one of the leading causes of cancer-
related mortality in men. Early detection and accurate diagnosis of prostate cancer are critical for
effective treatment and improved patient outcomes. In recent years, the emergence of machine
learning algorithms has provided powerful tools for analyzing complex medical data and assisting
in the detection and diagnosis of various diseases, including prostate cancer. These algorithms
leverage the computational power of artificial intelligence to identify patterns and make predictions
based on clinical data.

To address the challenges associated with prostate cancer detection, researchers have explored
the application of various machine learning techniques. Among these techniques, Logistic
Regression, Decision Trees, and Random Forest are popular algorithms used in prostate cancer
detection. Logistic Regression models the relationship between input variables and the binary
outcome of cancer or non-cancer, while Decision Trees recursively split the dataset based on features
to create a tree-like structure. Random Forest combines multiple decision trees to form an ensemble
model that aggregates predictions. These algorithms have shown promising results in prostate cancer
detection, providing accurate predictions and aiding in clinical decision-making.

Several studies have demonstrated the efficacy of machine learning algorithms in prostate
cancer detection. For instance, Wang et al. (2018) utilized Logistic Regression and Decision Trees to
analyze clinical data and predict prostate cancer risk. Their results showed that the models achieved
high accuracy and precision in identifying cancer cases. In another study by Zhang et al. (2020),
Random Forest was applied to predict prostate cancer recurrence using genomic data, showcasing
the potential of machine learning in personalized treatment strategies.

Machine learning techniques have also been integrated with imaging data to improve prostate
cancer detection. Zhu et al. (2019) developed a deep learning model that combined magnetic
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resonance imaging (MRI) and clinical data to accurately classify prostate cancer. The model
outperformed traditional methods, underscoring the importance of leveraging multiple data sources
for enhanced accuracy. Furthermore, Radovic et al. (2021) utilized ensemble learning algorithms,
including Random Forest, to analyze multiparametric MRI data for prostate cancer detection. Their
findings highlighted the role of machine learning in improving the sensitivity and specificity of
prostate cancer diagnosis.

In this article, our objective is to further explore and compare the performance of Logistic
Regression, Decision Trees, and Random Forest in prostate cancer detection using clinical data. We
will evaluate their accuracy, precision, and recall rates to assess their suitability for assisting in clinical
decision-making. The results obtained from this study will contribute to the growing body of research
on machine learning applications in prostate cancer detection and provide valuable insights for
future advancements in this field.

Data Preparation

The foundation of any successful Machine Learning project lies in data preparation, and the
same holds true for prostate cancer detection. In this context, relevant clinical data is collected from
patients, encompassing variables such as age, PSA levels, family history, and other medical
indicators. To ensure accurate model training and evaluation, meticulous preprocessing and cleaning
of the data are performed.

One crucial step in data preparation involves handling missing values. Missing data can arise
due to various reasons, such as incomplete records or measurement errors. To address this,
imputation methods like mean imputation or regression imputation can be applied to fill in the
missing values based on the available data. Proper handling of missing values is crucial to prevent
biases and ensure accurate model training and evaluation.

Feature normalization is another important aspect of data preparation. Since the variables in the
dataset may have different scales, normalizing the features can help prevent certain variables from
dominating the model's learning process. Techniques such as Min-Max scaling or standardization (z-
score normalization) can be employed to ensure that all features have similar ranges and
distributions.

Categorical variables, such as the diagnosis_result in the prostate cancer dataset, need to be
encoded into numerical values before feeding them into the machine learning algorithms. One-hot
encoding or label encoding can be utilized to convert categorical variables into a numerical format
that the models can effectively process. This step enables the models to capture the relationships and
patterns present in the categorical variables.

Addressing outliers is another essential consideration during data preparation. Outliers are
extreme values that deviate significantly from the majority of the data points and can impact the
model's performance. Various methods, such as the Z-score method or interquartile range (IQR)
method, can be used to detect and handle outliers by either removing them or transforming them to
reduce their impact on the models.

Finally, to ensure unbiased evaluation of the models' performance, the dataset is divided into
training and testing sets. The training set is used to train the machine learning models, while the
testing set is kept separate and used to evaluate the models' performance on unseen data. This
division enables the assessment of the models' ability to generalize and make accurate predictions on
new, unseen cases.

By carefully performing these data preparation steps, researchers and practitioners can ensure
the reliability and effectiveness of the machine learning models in prostate cancer detection.

Model Training and Evaluation

Once the data preparation process is complete, the next step in the prostate cancer detection
project involves model training and evaluation. This entails selecting suitable machine learning
algorithms, fitting them to the training data, and assessing their performance using various
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evaluation metrics. The objective is to develop a model that can accurately classify prostate cancer
cases based on the given input features.

There are several machine learning algorithms that can be employed for this task, including
Logistic Regression, Decision Tree Classifier, and Random Forest Classifier, which are commonly
used in healthcare and classification problems (Breiman, 2001; Kuhn & Johnson, 2013). Logistic
Regression is a linear model that works well for binary classification problems (Bishop, 2006). The
Decision Tree Classifier creates a tree-like model that makes decisions based on the values of features
(Breiman, 2001). The Random Forest Classifier combines multiple decision trees to enhance
predictive accuracy and handle complex relationships (Breiman, 2001).

During the training phase, the selected algorithms are fitted to the training data, which consists
of the input features and corresponding target variables (prostate cancer diagnosis results in this
case). The models learn from the patterns and relationships in the training data to make predictions
on unseen data. The training process involves adjusting the model's parameters to minimize the
discrepancy between the predicted and actual target values (Hastie, Tibshirani, & Friedman, 2009).

Once the models are trained, they undergo evaluation using various performance metrics.
Accuracy is a commonly used metric that measures the proportion of correct predictions over the
total number of predictions (Japkowicz & Shah, 2011). The F1 Score combines precision and recall to
provide a balanced measure of model performance (Japkowicz & Shah, 2011). Precision measures the
proportion of true positive predictions out of the total predicted positives, while recall calculates the
proportion of true positives identified correctly out of all actual positives (Japkowicz & Shah, 2011).
Balanced Accuracy takes into account class imbalance in the target variable (Kotsiantis, Zaharakis, &
Pintelas, 2006).

In addition to these metrics, confusion matrices are generated to visually represent the
performance of the models. A confusion matrix displays the number of true positives, true negatives,
false positives, and false negatives predicted by the models. This information helps in understanding
the strengths and weaknesses of the models, particularly in terms of misclassifications (Kuhn &
Johnson, 2013).

By utilizing these evaluation metrics and confusion matrices, researchers and practitioners can
gain a comprehensive understanding of the models' performance and make informed decisions
regarding their effectiveness in prostate cancer detection.

Visualizing Results

Visual representations of the model's performance, such as the confusion matrix heatmap, can
greatly enhance interpretability and provide deeper insights into the prostate cancer detection
project. The confusion matrix, displayed as a heatmap, offers a comprehensive view of the true
positive, true negative, false positive, and false negative predictions made by the models. By visually
assessing the confusion matrix, we can identify areas for improvement and understand the specific
types of errors made by the models.

Starting with the Logistic Regression model, its confusion matrix heatmap showcases the
distribution of predicted and actual classes. The model achieves an accuracy of 0.9, indicating that it
correctly predicts the prostate cancer diagnosis for 90% of the cases. The F1 score, which combines
precision and recall, is 0.936, suggesting a good balance between the model's ability to identify true
positives and avoid false positives and false negatives. With a precision of 0.957, the model
demonstrates a high proportion of correctly predicted positive cases. The balanced accuracy,
accounting for class imbalance, is 0.875. The recall (sensitivity) for the two classes is 0.833 and 0.917,
respectively.

Moving on to the Decision Tree Classifier, its confusion matrix heatmap provides insights into
its performance. The model achieves an accuracy of 0.733, correctly predicting the prostate cancer
diagnosis for 73.3% of the cases. The F1 score is 0.810, indicating a relatively good balance between
precision and recall. The precision of the model is 0.944, suggesting a high proportion of correctly
predicted positive cases. The balanced accuracy is 0.771, considering class imbalance, and the recall
for the two classes is 0.833 and 0.708, respectively.
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For the Random Forest Classifier, its confusion matrix heatmap offers insights into its
performance. The model achieves an accuracy of 0.767, correctly predicting the prostate cancer
diagnosis for 76.7% of the cases. The F1 score is 0.844, indicating a reasonable balance between
precision and recall. The precision of the model is 0.905, suggesting a high proportion of correctly
predicted positive cases. The balanced accuracy is 0.729, accounting for class imbalance, and the recall
for the two classes is 0.667 and 0.792, respectively.

These visualizations help us understand the performance of the models in correctly classifying
prostate cancer cases. By analyzing the confusion matrices and associated metrics, we can identify
the strengths and weaknesses of each model, make informed decisions regarding model selection,
and consider potential avenues for improvement.

The figure displayed, Figure 1, includes three combined confusion matrices representing the
performance of the Logistic Regression, Decision Tree Classifier, and Random Forest Classifier
models in detecting prostate cancer. Each confusion matrix is visualized as a separate heatmap within
the figure.

Logistic Regression Decision Iree Classimer Ranagom rorest Classimier

True
True
True

Predicted Predicted Predicted

Figure 1. Confusion Matrix for Confusion Matrix for Logistic Regression, Decision Tree Classifier,
Random Forest Classifier.

Starting from the top of the figure, the confusion matrix for the Logistic Regression model is
shown. The matrix is divided into cells, with different colors representing the count of observations
for each combination of true classes and predicted classes. The main diagonal of the matrix represents
true positive values, indicating correctly classified prostate cancer cases. Off the main diagonal, false
positive and false negative values are depicted, representing cases where the model misclassified
non-cancerous samples as cancerous or vice versa.

Directly below the Logistic Regression confusion matrix is the confusion matrix for the Decision
Tree Classifier model. This matrix follows the same pattern as the previous one, with colored cells
indicating the count of observations for each combination of true classes and predicted classes. The
main diagonal still represents true positive values, while false positive and false negative values are
off the main diagonal.

The third confusion matrix in the figure corresponds to the Random Forest Classifier model and
is located below the Decision Tree Classifier matrix. Similar to the previous matrices, this one also
presents colored cells representing the count of observations for each combination of true classes and
predicted classes. The main diagonal represents true positive values, and false positive and false
negative values are off the main diagonal.

This combined figure of the three confusion matrices allows for a direct visual comparison of
the performances of the Logistic Regression, Decision Tree Classifier, and Random Forest Classifier
models in detecting prostate cancer cases. By examining the colors and values within the matrices,
one can assess the accuracy of the models and identify any patterns or discrepancies in their
predictions.

Improving the paragraphs, I have provided a clearer description of the confusion matrices and
their visualization in Figure 1.
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Conclusion

Machine Learning techniques, such as Logistic Regression, Decision Trees, and Random Forest,
hold great promise in enhancing the detection of prostate cancer. These models utilize clinical data
to predict the presence or absence of prostate cancer, providing valuable decision support to
healthcare professionals.

In the study mentioned, the Logistic Regression model achieved an accuracy of 90%, an F1 score
of 0.936, and a precision of 0.957. The Decision Tree Classifier achieved an accuracy of 73.3%, an F1
score of 0.810, and a precision of 0.944. The Random Forest Classifier achieved an accuracy of 76.7%,
an F1 score of 0.844, and a precision of 0.905. These results indicate that the models are effective in
classifying prostate cancer cases.

However, it is important to acknowledge the limitations and challenges faced in this study. The
availability and quality of data can significantly impact the performance of the models. Issues such
as data biases and missing values can affect the accuracy and reliability of the predictions.
Furthermore, in the healthcare domain, interpretability and explainability of the models are crucial
for gaining trust from medical professionals and ensuring ethical decision-making.

Future research in prostate cancer detection using Machine Learning should address these
limitations and challenges. Efforts should be made to refine the models by incorporating additional
relevant features, improving data quality, and exploring advanced techniques such as deep learning
and ensemble methods. Collaboration between clinicians, data scientists, and researchers is crucial
for leveraging the full potential of Machine Learning in prostate cancer diagnosis and treatment
planning.

By harnessing the power of Machine Learning, we have the opportunity to enhance prostate
cancer detection, improve patient outcomes, and contribute to the advancement of personalized
medicine. It is an exciting field with significant potential, and further research and development will
undoubtedly continue to drive progress in prostate cancer diagnosis and management.
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