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Abstract: The mean-field model (MFM) is the workhorse of the statistical mechanics: one normally
accepts that it yields results which, despite differing numerically from the correct ones, are not “very
wrong”, in that they resemble the actual behavior of the system as eventually obtained by a more
advanced treatments. This, for example, turns out to be the case for the Casimir force under, say,
Dirichlet-Dirichlet, (+,+) and (+,−) boundary conditions (BC) for which, according to the general
expectations the MFM delivers attractive for like BC—or repulsive for unlike BC—force, with the
principally correct position of the maximum strength of the force below, or above the critical point
Tc. It turns out, however, that this is not the case with Dirichlet-Neumann (DN) BC. In this case,
the mean-field approach leads to an attractive Casimir force. This contradiction with the “boundary
condition rule” is cured in the case of the Gaussian model under DN BC. Our results, which are
mathematically exact, demonstrate that the Casimir force within the MFM is attractive as a function of
temperature T and external magnetic field h, while for the Gaussian model it is repulsive for h = 0, and
can be, surprisingly, both repulsive and attractive for h ̸= 0. The treatment of the MFM is based on the
exact solution of one non-homogeneous nonlinear differential equation of second order. The Gaussian
model is analyzed both in its continuum and lattice realization. The obtained outcome teaches us that
the mean-field results should be accepted with caution in the case of fluctuation-induced forces and
ought to be checked against more precise treatment of the fluctuations within the envisaged system.

Keywords: finite-size effects; exact results; Casimir force; mean-field model; Gaussian model; phase
transitions; critical phenomena; phase diagrams

1. Introduction
Currently, the most prominent example of a fluctuation-induced force is the force due to quantum

or thermal fluctuations of the electromagnetic field, leading to the so-called QED Casimir effect [1–5],
named after the Dutch physicist H. B. Casimir who first realized that in the case of two perfectly-
conducting, uncharged, and smooth plates parallel to each other in vacuum, at T = 0 these fluctuations
lead to an attractive force between them [1]. Nowadays, investigations devoted to that effect are
performed on many fronts of research ranging from attempts to unify the four fundamental forces
of nature [2,4,6] to rather practical issues such as the design and the performance of MEMS and
NEMS [7–11].

Thirty years after Casimir, Fisher and De Gennes [12] showed that a very similar effect exists in
critical fluids, today known as critical Casimir effect. A summary of the results available for this effect
can be found in the recent reviews [13–16]. We note that the critical Casimir effect has been observed
experimentally [17–30].
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The description of the critical Casimir effect is based on finite-size scaling theory [31–34]. Let us
envisage a system with a film geometry ∞d−1 × L, L ≡ L⊥, and with boundary conditions ζ imposed
along the spatial direction of finite extent L. Take F (ζ)

tot to be the total free energy of such a system

within the grand canonical ensemble (GCE). Then, if f (ζ)(T, h, L) ≡ limA→∞ F (ζ)
tot /A is the free energy

per area A of the system, one can define the Casimir force for critical systems in the grand-canonical
(T − h)-ensemble, see, e.g., Refs. [14,34–36]::

βF(ζ)
Cas(L, T, h) ≡ − ∂

∂L
f (ζ)ex (L, T, h) (1)

where
f (ζ)ex (L, T, h) ≡ f (ζ)(L, T, h)− L fb(T, h) (2)

is the so-called excess (over the bulk) free energy per area and per β−1 = kBT. Here we suppose a
system at temperature T is exposed to an external ordering field h, which couples linearly to its order
parameter—such as the number density, the concentration difference, the magnetization, etc. Actually,
the thermodynamic Casimir force F(ζ)

Cas(T, h, L) per area is the excess pressure over the bulk one due to
the finite size (L < ∞) of that system:

F(ζ)
Cas(T, h, L) = P(ζ)

L (T, h)− Pb(T, h). (3)

Here P(ζ)
L is the pressure in the finite system under boundary conditions ζ, while Pb is the pressure

in the infinite, i.e., macroscopically large, system. The above definition is actually equivalent to Equa-
tion (1). Note that f (ζ)ex (L, T, h) is the excess grand potential per area, f (ζ)(L, T, h) is the grand canonical
potential per area of the finite system, while fb(T, h) has the meaning of the grand potential per volume
V for the macroscopically large system. The equivalence between the definitions in Equations (1) and
(3) stems from the observation that for the finite system one has PL = −∂ f (ζ)(L, T, h)/∂L, while for
the bulk one and fb = −Pb.

When F(ζ)
Cas(L, t, h) < 0 the excess pressure is inward towards the system, i.e., there is an attraction

of the surfaces of the system towards each other and a repulsion if F(ζ)
Cas(L, t, h) > 0.

In the remainder we will consider the behavior of the Casimir force under periodic and Neumann-
Dirichlet boundary conditions within the Gaussian and mean-field models. These are two of the
principal models of the statistical physics. We will show, however, that they might produce contradic-
tory predictions for the behavior of the Casimir force, including even if the force for given T and h is
attractive, or repulsive. Before passing to the specific calculations, let us mention the Gaussian model
has been intensively used to study the behavior of the critical Casimir effect [34,37–43], as well as the
Ising mean-field model [41,44–52]; for a review — see Refs. [14].

We start by considering the behavior of the Casimir force within the Gaussian model - both for its
continuum, as well as lattice versions.

2. The Casimir Force Within the Continuum Gaussian Model
The continuum version of the Gaussian model with a scalar order parameter consists of the

linear and bilinear terms in the Ginzburg-Landau-Wilson formulation of a system in d dimensions
that undergoes a continuous symmetry-breaking phase transition at low temperatures. The partition
function of this system is the functional integral

ZG(t, h) =
∫

exp[−F (ψ(⃗r))]D{ψ(⃗r)} (4)

where
F (ψ(⃗r)) =

∫ [
tψ(⃗r)2 + |∇⃗ψ(⃗r)|2 − hψ(⃗r)

]
ddr (5)
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In (5) t is the reduced temperature, proportional to T − Tc, and h is the spatially constant ordering
field. Because of the Gaussian nature of the free energy functional F (ψ(⃗r)) the partition function
resolves into the product

ZG(t, h) = ZG,I(t)×ZG,h(t, h) (6)

where ZG,I(t) is the partition function of the system with h = 0. The geometry of the system under
consideration is a slab of large—ultimately infinite—cross section and finite thickness L.

With regard to scaling considerations, there are two combinations of parameters that reflect the
predictions of finite size scaling. They are

xt = tL1/ν = tL2, (7)

xh = hL(d+2−η)/2 = hL(d+2)/2, (8)

where ν, the correlation length exponent, is equal to 1/2 in the Gaussian model, and as noted above d
is the dimensionality of the system. Our end results for the Casimir forces acting upon the systems
will depend on the boundary conditions imposed. In all cases, the form of the Casimir force is

fCas(t, h, L) = L−d
(

wCas,I(xt) + x2
hwCas,h(xt)

)
(9)

All results reported in this portion of the article rely on two results, which can be obtained with
the use of contour integration techniques; see also [53]. The two results are

∞

∑
n=−∞

1
an2 + b

=
π coth(π

√
b/a)√

ab
, (10)

∞

∑
n=0

1
c(2n + 1)2 + d

=
π tanh(π/2

√
d/c)

4
√

cd
. (11)

In order to carry out the evaluation of the free energy of the Gaussian model we turn to the basis
set of functions that will be used to construct the free energy with and without an ordering field.
These functions allow us to evaluate the partition function by integrating over the amplitudes of the
contributions of each member of the set to the order parameter. Here, we focus on the case of periodic
boundary conditions. Ignoring the dependence on position in the “plane” of the slab, the functions are
the orthonormal set

ψ
(n)
c (z) =

√
2/L cos(2πnz/L) (12)

ψ
(n)
s (z) =

√
2/L sin(2πnz/L) (13)

ψ0(z) =
√

1/L (14)

with n a positive integer. It is straightforward to show that this set is orthonormal as a function of z
in that

∫ L

0
ψ
(n)
c (z)ψ(m)

c (z) dz = δm,n (15)
∫ L

0
ψ
(n)
s (z)ψ(m)

s (z) dz = δm,n (16)
∫ L

0
ψ0(z)2 dz = 1 (17)

The three function types are all mutually orthogonal. In the case of higher dimensions, we
construct a new basis set by multiplying the functions (12)–(14) by suitable functions of the orthogonal
position variables. Those functions can be taken to be of the form eiQ⃗·R⃗, where R⃗ is a d − 1-dimensional
position vector in the plane of the slab and Q⃗ is in its reciprocal space.
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We then express the order parameter as follows

ψ(z, R⃗) = ∑
Q⃗

eiQ⃗·R⃗
(

∞

∑
n=1

a(c)n ψ
(n)
c (z) +

∞

∑
n=1

a(s)n ψ
(n)
c (z) + a0ψ0(z)

)
(18)

The free energy for a given configuration of the Gaussian order parameter, in terms of the
amplitudes in the expansion of the order parameter in the basis set (15)–(17), is

∑
Q⃗

[
∞

∑
n=1

(a(c) 2
n + a(s) 2

n )
(

t + Q2 + (2πn/L)2
)
+ a2

0t − ha0
√

L

]
(19)

The last term in brackets above reflects the fact that the only basis function that the constant
external field couples to is the constant function in (14)

The next step is to exponentiate the expression in (19), multiply by either −1/β, or setting β = 1,
by -1, and, after that, to perform the Gaussian integrals over the a(c)n ’s, the a(s)n ’s, and a0. The resulting
partition function is given by

Z

= exp

[
1
β

(
h2LA

4t
+

A
(2π)d−1

∫
dd−1Q

∞

∑
n=−∞

1
2

ln
(

t + Q2 + (2πn/L)2

π

))]

(20)

The coefficient A in (20) is the d − 1 dimensional area of the slab.
As our next step we evaluate the sum over n on the right hand side of the expression for the

partition function. To achieve this, we take the t-derivative of the logarithm of the summand, perform
the sum over n and then integrate the resulting expression with respect to t. Taking the derivative of
the summand in (20) with respect to t leaves us with the sum

1
2

∞

∑
n=−∞

1
t + Q2 + (2πn/L)2 =

L coth
(

1
2 L
√

Q2 + t
)

2
√

Q2 + t
(21)

which follows from (10). This integrates up to

2 ln
(

sinh
(

L
√

Q2 + t/2
))

(22)

The large-L limit of (22) is
L
√

t + Q2 (23)

To find the contribution to the Casimir force per unit area, we take the L-derivative of the
difference between (23) and (22) and then integrate over Q⃗. The derivative yields

1
2

√
Q2 + t

(
1 − coth(L

√
Q2 + t)

)
= −

√
Q2 + t

e−L
√

Q2+t

eL
√

Q2+t − e−L
√

Q2+t
(24)
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The sum over values of Q⃗ is expressible as an integral, which takes the form

− Kd−1

(2π)d−1

∫ ∞

0
Qd−2

√
Q2 + t

e−L
√

Q2+t

eL
√

Q2+t − e−L
√

Q2+t
dQ

=
1
Ld

(
− Kd−1

(2π)d−1 xd/2
t

∫ ∞

0
wd−2

√
1 + w2 e−

√
xt(1+w2)

e
√

xt(1+w2) − e−
√

xt(1+w2)
dw

)

=
1
Ld X(per,3)

I (xt) (25)

where, to get to the last line of (25) we defined a new integration variable w = Q/
√

t and then made
use of the definition (7) of xt. The implication of (25) is that we can express the h = 0 contribution to
the Casimir force as L−d times a function of the scaling temperature variable xt. The coefficient Kd in
the equations above is the geometric factor

Kd =
2πd/2

Γ
(

d
2

) (26)

In the case of three dimensions, further processing of the result (25) is possible. We find

Xper,3
Cas,I(xt) = −

2
√

xtLi2
(

e−2
√

xt
)
+ Li3

(
e−2

√
xt
)
− 2xt log

(
1 − e−2

√
xt
)

8π
(27)

where Lij(x) is the polylogarithm function; see [54]. A plot of the function Xper,3
Cas,I(xt) is shown in

Figure 1.
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temperature variable xt. The coefficient Kd in the equations above is the geometric factor 119

Kd =
2πd/2

Γ
(

d
2

) (2.23)

In the case of three dimensions, further processing of the result (2.22) is possible. We 120

find 121

Xper,3
Cas,I(xt) = −

2
√

xtLi2
(

e−2
√

xt
)
+ Li3

(
e−2

√
xt
)
− 2xt log

(
1 − e−2

√
xt
)

8π
(2.24)
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10 20 30 40
xt

-0.05

-0.04

-0.03

-0.02

-0.01

XCas,I
(per,3)

(xt)

Figure 1. The function Xper,3
Cas,I(xt), plotted versus xt

123

The first term in parentheses in Eq. (2.17) gives us the h-dependent contribution to 124

the free energy: −h2LA/4t. This is to be compared to the corresponding free energy of a 125

neighboring bulk phase, which goes as −h2(L0 − L)A/4t, where L0 is an extent that will 126

ultimately be taken to go to infinity. If you add the two free energies, the dependence on L, 127

the thickness of the slab, disappears. This means that there is no h-dependent free energy 128

when slab boundary conditions are periodic, and hence no h-dependent contribution to the 129

Casimir force. 130

The calculations in the case of periodic boundary conditions point the way to evaluat- 131

ing the partition function and the Casimir force of the case of Dirichlet-Neumann boundary 132

conditions. 133

In this case the (unnormalized) basis functions are, exclusive of their dependence on 134

the in-plane coordinates, 135

sin((2n + 1)πz/2L) (2.25)

Examples of these functions are shown in Fig. 2. Focusing on the h-independent contribu- 136

tion to the partition function, the sum to perform in this case is (see (2.8)) 137

1
2

∞

∑
n=0

1
t + Q2 + ((2n + 1)π/2L)2 =

L tanh
(

L
√

t + Q2
)

4
√

t + Q2
(2.26)

Figure 1. The function Xper,3
Cas,I(xt), plotted versus xt.

The first term in parentheses in Equation (20) gives us the h-dependent contribution to the free
energy: −h2LA/4t. This is to be compared to the corresponding free energy of a neighboring bulk
phase, which goes as −h2(L0 − L)A/4t, where L0 is an extent that will ultimately be taken to go to
infinity. If you add the two free energies, the dependence on L, the thickness of the slab, disappears.
This means that there is no h-dependent free energy when slab boundary conditions are periodic,
and hence no h-dependent contribution to the Casimir force.
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The calculations in the case of periodic boundary conditions point the way to evaluating the
partition function and the Casimir force of the case of Dirichlet-Neumann boundary conditions.

In this case the (unnormalized) basis functions are, exclusive of their dependence on the in-plane
coordinates,

sin((2n + 1)πz/2L) (28)

Examples of these functions are shown in Figure 2.
Version April 8, 2025 submitted to Entropy 6 of 27

L

z

sin((2n+1) z/2L)

n=0

n=1

n=2

n=3

n=4

Figure 2. The functions in (2.25)

Note that in the limit of large L the right hand side goes to the expected asymptotic form. If 138

we subtract that limiting form, and integrate with respect to t, we are left with 139

1
2

(
log
(

cosh
(

L
√

t + Q2
))

− L
√

t + Q2
)

(2.27)

Finally, we take minus the derivative of this with respect to L, leaving us with 140

1
2

(
−
√

r + Q2 tanh
(

L
√

t + Q2
)
+
√

t + Q2
)
=
√

t + Q2 e−L
√

t+Q2

eL
√

t+Q2
+ e−L

√
t+Q2

(2.28)

Making use of the analysis of previous sections, this leaves us with the following result for 141

the Casimir force in the case of the d-dimensional Gaussian model with Dirichlet-Neumann 142

boundary conditions 143

Kd−1

(2π)d−1

∫ ∞

0
Qd−2

√
t + Q2 e−L

√
t+Q2

eL
√

t+Q2
+ e−L

√
t+Q2

dQ

=
Kd−1

(2π)d−1
1
Ld (xt)

d/2
∫ ∞

0
wd−2

√
1 + w2 e−

√
xt
√

1+w2

e
√

xt
√

1+w2
+ e−

√
xt
√

1+w2
dw

=
1
Ld X(d)

Cas,D/N(xt) (2.29)

When d = 3, we have 144

X(3)
Cas,D/N,I(xt) = −

2
√

xtLi2
(
−e−2

√
xt
)
+ Li3

(
−e−2

√
xt
)
− 2xt log

(
e−2

√
xt + 1

)

8π
(2.30)

Figure 3 shows what the function X(d)
Cas,D/N,I(xt) looks like when d = 3. 145

In order to find the h-dependent contribution to the Casimir force we turn to the 146

normalized the basis set in the case of Dirichlet-Neumann boundary conditions. Assuming 147

that the boundary conditions are Dirichlet at z = 0 and Neumann at z = L, this basis set is 148

ψ
(n)
DN(z) =

√
2/L sin((n + 1/2)πz/L) (2.31)

with n an integer and 149

0 ≤ n < ∞ (2.32)

Figure 2. The functions in (28).

Focusing on the h-independent contribution to the partition function, the sum to perform in this
case is (see (11))

1
2

∞

∑
n=0

1
t + Q2 + ((2n + 1)π/2L)2 =

L tanh
(

L
√

t + Q2
)

4
√

t + Q2
(29)

Note that in the limit of large L the right hand side goes to the expected asymptotic form. If we
subtract that limiting form, and integrate with respect to t, we are left with

1
2

(
log
(

cosh
(

L
√

t + Q2
))

− L
√

t + Q2
)

(30)

Finally, we take minus the derivative of this with respect to L, leaving us with

1
2

(
−
√

r + Q2 tanh
(

L
√

t + Q2
)
+
√

t + Q2
)
=
√

t + Q2 e−L
√

t+Q2

eL
√

t+Q2
+ e−L

√
t+Q2

(31)

Making use of the analysis of previous sections, this leaves us with the following result for the
Casimir force in the case of the d-dimensional Gaussian model with Dirichlet-Neumann boundary
conditions

Kd−1

(2π)d−1

∫ ∞

0
Qd−2

√
t + Q2 e−L

√
t+Q2

eL
√

t+Q2
+ e−L

√
t+Q2

dQ

=
Kd−1

(2π)d−1
1
Ld (xt)

d/2
∫ ∞

0
wd−2

√
1 + w2 e−

√
xt
√

1+w2

e
√

xt
√

1+w2
+ e−

√
xt
√

1+w2
dw

=
1
Ld X(d)

Cas,D/N(xt) (32)

When d = 3, we have

X(3)
Cas,D/N,I(xt) = −

2
√

xtLi2
(
−e−2

√
xt
)
+ Li3

(
−e−2

√
xt
)
− 2xt log

(
e−2

√
xt + 1

)

8π
(33)
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Figure 3 shows what the function X(d)
Cas,D/N,I(xt) looks like when d = 3.

Version April 8, 2025 submitted to Entropy 7 of 27
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(3)
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Figure 3. The function X(3)
Cas,D/N(xt), as given in (2.30).

It is straightforward to establish that 150

∫ L

0
ψ
(n)
DN(z)

2 dL = 1 (2.33)

while 151∫ L

0
ψ
(n)
DN(z) dL =

2
√

2L
(2n + 1)π

(2.34)

As it turns out there is no need to take into account any dependence of the basis set on 152

coordinates in the plane of the slab. This is because a constant ordering field couples only 153

to order parameter configurations that are independent of those coordinates. 154

With this in mind, we expand the order parameter as follows 155

Ψ(z) =
∞

∑
n=0

a(DN)
n ψ

(n)
DN(z) (2.35)

The Gaussian integrations over the a(DN)
n ’s leaves us with the summation over n for the 156

h-dependent contribution to the partition function 157

exp


h2

∞

∑
n=0

(
2
√

2L
(2n + 1)π

)2
1

4((π(n + 1/2)/L)2 + t)




= exp

[
h2

(
L
4t

− tanh(L
√

t)
4t3/2

)]

= exp
[

h2

4t3/2

(
L
√

t − tanh(L
√

t)
)]

(2.36)

where the evaluation of the sum over n in (2.36) is accomplished with the use of (2.8) and 158

a partial fraction decomposition of the summand. The first term in parentheses on the 159

last line of (2.36) gives us exactly the same expression as the h-dependent contribution to 160

Figure 3. The function X(3)
Cas,D/N(xt), as given in (33).

In order to find the h-dependent contribution to the Casimir force we turn to the normalized
the basis set in the case of Dirichlet-Neumann boundary conditions. Assuming that the boundary
conditions are Dirichlet at z = 0 and Neumann at z = L, this basis set is

ψ
(n)
DN(z) =

√
2/L sin((n + 1/2)πz/L) (34)

with n an integer and
0 ≤ n < ∞ (35)

It is straightforward to establish that

∫ L

0
ψ
(n)
DN(z)

2 dL = 1 (36)

while ∫ L

0
ψ
(n)
DN(z) dL =

2
√

2L
(2n + 1)π

(37)

As it turns out there is no need to take into account any dependence of the basis set on coordinates
in the plane of the slab. This is because a constant ordering field couples only to order parameter
configurations that are independent of those coordinates.

With this in mind, we expand the order parameter as follows

Ψ(z) =
∞

∑
n=0

a(DN)
n ψ

(n)
DN(z) (38)
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The Gaussian integrations over the a(DN)
n ’s leaves us with the summation over n for the h-

dependent contribution to the partition function

exp


h2

∞

∑
n=0

(
2
√

2L
(2n + 1)π

)2
1

4((π(n + 1/2)/L)2 + t)




= exp

[
h2

(
L
4t

− tanh(L
√

t)
4t3/2

)]

= exp
[

h2

4t3/2

(
L
√

t − tanh(L
√

t)
)]

(39)

where the evaluation of the sum over n in (39) is accomplished with the use of (11) and a partial
fraction decomposition of the summand. The first term in parentheses on the last line of (39) gives us
exactly the same expression as the h-dependent contribution to the partition function of the slab with
periodic boundary conditions. Its influence on the Casimir force is exactly canceled by the influence of
the bulk. What remains is

−h2 ∂

∂L
tanh(L

√
t)/4t3/2 = −h2

4t
sech2(L

√
t)

= −h2L2

4xt
sech2(

√
xt)

= − 1
Ld

x2
h

4xt
sech2(

√
xt) (40)

where we have made use of the definition of the scaling combination xh in (8). The scaling form of the
contribution to the Casimir force is, then

X(3)
D/N(xt, xh) =

−x2
h

4xt

2
sech(

√
xt) (41)

This function is shown in Figure 4. Note that this function is aways attractive.
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2
√

xtLi2
(
−e−2

√
xt
)
+ Li3

(
−e−2

√
xt
)
− 2xt log

(
e−2

√
xt + 1

)

8π
− x2

h
4xt

sech2(
√

xt). (2.39)
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The total scaling function X(3)
D/N(xt, xh) is given by

X(3)
D/N,h(xt, xh) = −

2
√

xtLi2
(
−e−2

√
xt
)
+ Li3

(
−e−2

√
xt
)
− 2xt log

(
e−2

√
xt + 1

)

8π
− x2

h
4xt

sech2(
√

xt). (42)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 April 2025 doi:10.20944/preprints202504.0448.v2

https://doi.org/10.20944/preprints202504.0448.v2


9 of 28

Figure 5 shows what this function looks like.
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three dimensional Gaussian model with a scalar order parameter,X(3)
D/N(xt, xh). Note that this function can be

both positive (repulsive) and negative (attractive).

Another depiction of the scaling contribution to the Casimir force for Dirichlet-Neumann bound-
ary conditions in the three dimensional Gaussian model with a scalar order paremeter, X(3)

D/N(xt, xh),
Figure 6, highlights the regions in which the function is attractive and repulsive.
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Figure 6. The total scaling contribution to the Casimir force for Dirichlet-Neumann boundary conditions in

the three dimensional Gaussian model with a scalar order parameter,X(3)
D/N(xt, xh). The red region in the figure

corresponds to a repulsive force, and the blue region corresponds to an attractive force.

3. The Casimir Force Within the Lattice Gaussian Model
We consider a ferromagnetic model with nearest-neighbor interactions on a fully finite d-

dimensional hypercubic lattice Λ ∈ Zd of |Λ| sites. Let us take Λ ∈ Zd to be the parallelepiped
Λ = L1 × · · · × Ld, where × denotes the direct (Cartesian) product of the finite sets Lν = {1, . . . , Lν}.

It is convenient to consider the configuration space ΩΛ = R|Λ| as an Euclidean vector space in
which each configuration is represented by a column-vector SΛ with components labeled according
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to the lexicographic order of the set {r = (r1, · · · , rd) ∈ Λ}. Let S†
Λ be the corresponding transposed

row-vector and let the dot (·) denote matrix multiplication. Then, for given boundary conditions
τ = (τ1, · · · , τd), specified for each pair of opposite faces of Λ by some τν takes the form

βH(τ)
Λ (SΛ|K) = −1

2
KS†

Λ · Q(τ)
Λ · SΛ. (43)

Here K = βJ, where J is the interaction constant (to be set to J = 1 in the remainder), and the
|Λ| × |Λ| interaction matrix Q(τ)

Λ can be written as

Q(τ)
Λ = (∆(τ1)

1 + 2 E1)× · · · × (∆(τd)
d + 2 Ed), (44)

where ∆(τν)
ν is the one-dimentional discrete Laplacian defined on the finite chain Lν under boundary

conditions τν, and Eν is the Lν × Lν unit matrix.
By using the results of [34] (Chapter 7), we can write down the eigenfunctions of the interaction

matrix (44) in the form

u(τ)
Λ (r, k) = u(τ1)

L1
(r1, k1) · · · u(τd)

Ld
(rd, kd), k = (k1, · · · , kd) ∈ Λ, (45)

and obtain the corresponding eigenvalues of it

µ
(τ)
Λ (k) = 2

d

∑
ν=1

cos φ(τν)
Lν

(kν), k ∈ Λ. (46)

Obviously, maxk∈Λ µ
(τ)
Λ (k) = 2d. Note that the interaction Hamiltonian (43) has negative eigen-

values, which makes necessary the inclusion of a positive-definite quadratic form in the Gibbs exponent,
to ensure the existence of the corresponding partition function. Thus, we consider the Hamiltonian

βH(τ)
Λ (SΛ|β, hΛ; s) = −1

2
βS†

Λ · Q(τ)
Λ · SΛ + s S†

Λ · SΛ − h†
Λ · SΛ. (47)

Here hΛ = {h(r), r ∈ Λ} is a column-vector representing (in units of kBT) the inhomogeneous
magnetic field configuration acting upon the system, and let h†

Λ be the transposed row-vector.

In order to ensure the existence of the partition function, all the eigenvalues − 1
2 βµ

(τ)
Λ (k) + s,

k ∈ Λ, of the quadratic form in βH(τ)
Λ (SΛ|β, hΛ; s), ought to be positive. Hence, the field s(τ) must

satisfy the inequality

s >
1
2

β max
k∈Λ

µ
(τ)
Λ (k) ≡ 1

2
βµ

(τ)
Λ (k0), (48)

with
βc,L =

1
2

µ
(τ)
Λ (k0) (49)

defining the critical temperature of the finite system. Since, as stated above maxk∈Λ µ
(τ)
Λ (k) = 2d, it is

clear that for the infinite system
βc = d. (50)

The free energy density of a finite system in a region Λ is

β f (τ)Λ (β, hΛ) =
1
2

{
ln(β/2π)− 2s + U (τ)

Λ (β, s)− P(τ)
Λ (β, hΛ, s)

}
. (51)

In Equation (51) the first two terms do not depend on the size of the system, i.e., they are the same
in both finite and infinite systems. The other two terms do depend, however on the size of the system.
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The function U (τ)
Λ (β, s) is due to the spin-spin interaction (and will be called "interaction term"); it

depends on s, but does not depend on h. It is equal to

U (τ)
Λ (β, s) = |Λ|−1 ∑

k∈Λ
ln
[

2s
β

− µ
(τ)
Λ (k)

]
, (52)

and is obtained after performing the corresponding Gaussian integrals in the free energy of the finite
system. The dependence of the free energy on the field variables h is given by the "field term"

P(τ)
Λ (β, hΛ; s) =

1
β|Λ| ∑

k∈Λ

|ĥ(τ)Λ (k)|2

2s/β − µ
(τ)
Λ (k)

. (53)

Here ĥ(τ)Λ (k) denotes the projection of the magnetic field configuration hΛ on the eigenfunction

{ū(τ)
Λ (r, k), k ∈ Λ} ( by ū we denote the complex conjugate of u ∈ C):

ĥ(τ)Λ (k) = ∑
r∈Λ

h(r)ū(τ)
Λ (r, k). (54)

Defining βc so, that
2s
β

= 2d
βc

β
, (55)

the above expressions can be rewritten in the form

U (τ)
Λ (β) = |Λ|−1 ∑

k∈Λ
ln
[
2d(βc/β − 1) + 2d − µ

(τ)
Λ (k)

]
, (56)

and

P(τ)
Λ (β, hΛ) =

1
β|Λ| ∑

k∈Λ

|ĥ(τ)Λ (k)|2

2d(βc/β − 1) + 2d − µ
(τ)
Λ (k)

. (57)

Using the notations of [34] (Chapter 7), below we give a list of the complete sets of orthonor-
mal eigenfunctions, {u(τ)

L (r, k), k = 1, . . . , L}, of the one-dimensional discrete Laplacian under the
Neumann - Dirichlet (ND) boundary conditions:

• periodic (p) boundary conditions

u(p)
L (r, k) = L−1/2 exp[−irφ(p)

L
(k)]; (58)

• Neumann - Dirichlet (ND) boundary conditions

u(ND)
L (r, k) = 2(2L + 1)−1/2 cos(r − 1/2)φ

(ND)
L (k). (59)

The quantities φ
(τ)
L , k = 1, . . . , L, are defined as follows

φ
(p)
L (k) = 2πk/L, φ

(ND)
L (k) = π(2k − 1)/(2L + 1). (60)

Now we are ready to find the finite-size behavior of the Gaussian model under the Dirichlet-
Neumann boundary conditions. According to Equation (59), S(0) = S(1), i.e., one has there realiza-
tion of Neumann boundary conditions, while L + 1 = 0, which corresponds to Dirichlet boundary
conditions. Thus, in the envisaged one-dimensional chain one has L independent spin variables
{S(1), S(2), · · · , S(L)}.

We start with the consideration of d = 3 dimensional system. Note that:
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• under fully periodic (p) boundary conditions, τ = (p, p, p), one has k0 = (L1, L2, L3), hence

µ
(p,p,p)
Λ (k0) = 6.

• under Neumann-Dirichlet boundary conditions along z direction, i.e., τ = (p, p, ND), one has

k0 = (L1, L2, 1), hence µ
(p,p,ND)
Λ (k0) = 4 + 2 cos[π/(2L + 1)].

3.1. The Gaussian Model on a Lattice for the Case d = 3

We recall that for this model α = 1/2, γ = 1 and ν = 1/2 [34,55].

The Behavior of the Interaction Term U (τ)
Λ (β)

We set τ = (p, p, ND) and use the short-hand notation τ = ND for these boundary conditions.
Then, we perform in Equation (52) the limits L1, L2 → ∞, keeping L3 = L fixed. For the interaction
term one then obtains

U (ND)
L,3 (β) = lim

L1,L2→∞
U (p,p,ND)

Λ (β) =
1
L

L

∑
k=1

V2

[
6(βc/β − 1) + 2

(
1 − cos π

2k − 1
2L + 1

)]
, (61)

where

Vd(z) :=
1

(2π)d

∫ π

−π
dθ1 · · ·

∫ π

−π
dθd ln

[
z + 2

d

∑
ν=1

(1 − cos θν)

]
. (62)

The Behavior of the Interaction Term in the Bulk System

In accord with Equation (62), one has

U∞,3(β) = V3[6(βc/β − 1)]. (63)

The Behavior of the Interaction Term in the Film System with Neumann-Dirichlet Boundary
Conditions

Explicitly, from Equation (61) one obtains

U (ND)
L,3 (β) =

1
L

L

∑
k=1

V2

[
6(βc/β − 1) + 2

(
1 − cos π

2k − 1
2L + 1

)]
=

1
(2π)2

∫ π

−π
dθ1

∫ π

−π
dθ2 S(ND)(β, L|θ1, θ2), (64)

with

S(ND)(β, L|θ1, θ2) =
1
L

L

∑
k=1

ln

[
6(βc/β − 1) + 2

2

∑
ν=1

(1 − cos θν) + 2
(

1 − cos π
2k − 1
2L + 1

)]
. (65)

This sum is of the form

S(ND)(x, L) =
1
L

ln
L−1

∏
k=0

2
[

cosh(x)− cos π
2k + 1
2L + 1

]
, (66)

where x = x(β|θ1, θ2) is defined as

cosh x = 1 + 3(βc/β − 1) +
2

∑
ν=1

(1 − cos θν). (67)

The summations in Equation (66) can be performed using [53] the identity

cosh[(L + 1/2)x]
cosh(x/2)

=
L−1

∏
k=0

2
[

cosh x − cos π
2k + 1
2L + 1

]
. (68)
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With the help of the identity one derives

S(ND)(x, L) =
1
L

ln
cosh[(L + 1/2)x]

cosh(x/2)
. (69)

Obviously limL→∞ S(ND)(x, L) = x. Thus, the part of the excess free energy under Neumann –
Dirichlet boundary conditions that depends only on the interaction term is

β∆ f (ND)
ex,3 (β, h = 0) =

1
2

L
[
U (ND)

L,3 (β)−U∞,3(β)
]

=
L

8π2

∫ π

−π
dθ1

∫ π

−π
dθ2

[
1
L

ln
cosh[(L + 1/2)x]

cosh(x/2)
− x
]

=
1

8π2

∫ π

−π
dθ1

∫ π

−π
dθ2

[
ln

(
e−(2L+1)x + 1

e−x + 1

)]
. (70)

Thus, β∆ f (ND)
ex,3 (β, h = 0) can be decomposed in the sum of g1(L, ϕ) and g2(L, ϕ) where

g1(L, β) =
1

8π2

∫ π

−π
dθ1

∫ π

−π
dθ2 ln

(
e−(2L+1)x + 1

)
, (71)

and
g2(L, β) = − 1

8π2

∫ π

−π
dθ1

∫ π

−π
dθ2 ln

(
e−x + 1

)
. (72)

Let us consider the behavior of g1 and g2 in the scaling regime

xt = 6(βc/β − 1)(2L + 1)2 = O(1). (73)

Let us first start with the function g1(L, ϕ). Obviously, if x = O(1) then g1 will be exponentially
small. Thus, we need to consider the regime (2L + 1)x = O(1). It follows that x ≪ 1. From Equa-
tion (67) we obtain

1 +
1
2

x2 = 3(βc/β − 1) +
1
2

(
θ2

1 + θ2
2

)
. (74)

It follows that
x2 = 6(βc/β − 1) +

(
θ2

1 + θ2
2

)
= 6(βc/β − 1) + r2, (75)

where we have introduced polar coordinates. In terms of them g1(L, β) becomes

g1(L, β) ≃ 1
4π

∫ R

0
ln
(

e−(2L+1)x + 1
)

dr2 ≃ 1
4π

∫ ∞
√

6(βc/β−1)
ln
(

e−(2L+1)x + 1
)

dx2

= − 1
4π

√
xt Li2

(
−e−

√
xt
)
+ Li3

(
−e−

√
xt
)

(2L + 1)2 , (76)

where R can be defined from the constraint (2π)× (2π) = 4π2 = πR2, i.e., R = 2
√

π.
Next, we deal with g2(L, ϕ). Taking into account that xL is small we derive

g2(L, β) = − 1
8π2

∫ π

−π
dθ1

∫ π

−π
dθ2 ln

(
e−x + 1

)
≃ − 1

8π2

∫ π

−π
dθ1

∫ π

−π
dθ2

[
ln 2 − 1

2
x
]

= −1
2

ln 2 +
1

16π2

∫ π

−π
dθ1

∫ π

−π
dθ2 x ≃ −1

2
ln 2 +

1
8π

∫ R
√

6(βc/β−1)
xdx2

= −1
2

ln 2 +
1

12π

{
R3 −

( √
xt

2L + 1

)3
}

. (77)
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Note that for xt = O(1) one has that for the L-dependent part ∆g2(L, β) of g2 one has ∆g2(L, ϕ) ∝
L−3, i.e., ∆g2 is one order of magnitude smaller that g1. Because of that, g2 contributes only sub-leading
contributions to L-dependent part of the excess free energy and, therefore, to the Casimir force. Based
on the above, we will no longer be interested in the function g2.

Summarizing the above, we conclude that the excess free energy can be written in a scaling form

β∆ f (ND)
ex,3 (β, h = 0) = − 1

L2 Xex(aβtL1/ν) (78)

where aβ is a non-universal constants, and Xex is an universal scaling function, t = (T − Tc)/Tc, where
T has the meaning of the temperature of the system, and Tc is its bulk temperature. From Equation (76),
taking into account that with ν = 1/2 one has (2L + 1)2 ≃ 4L2 ≃ L1/ν, we identify that

Xex(xt) =
1

16π

[√
xt Li2

(
−e−

√
xt
)
+ Li3

(
−e−

√
xt
)]

. (79)

The behavior of the field term P(τ)
Λ (β, hΛ)

The dependence of the free energy on the field variable is given by the "field term", given by
Equation (57). For a homogeneous filed h and for (per) ≡ (p, p, p) and ND ≡ (p, p, ND) boundary
conditions, it is easy to obtain that

• for (p, p, p) boundary conditions

ĥ(per)
Λ (k) = ∑

r∈Λ
h(r)ū((per))

Λ (r, k) =
√

L1L2L3 δk1,0δk2,0δk3,0 h, (80)

and

P(per)
L (K, h; ϕ) =

h2

6β(βc/β − 1)
. (81)

Obviously

P∞(β, h) = lim
L→∞

P(per)
L (K, h; ϕ) =

h2

6β(βc/β − 1)
. (82)

• for (p, p, ND) boundary conditions

ĥ(ND)
Λ (k) = ∑

r∈Λ
h(r)ū(ND)

Λ (r, k) = 2

√
L1L2

2L3 + 1
δk1 ,0δk2 ,0 h

L3

∑
r=1

cos
[
(r − 1/2) φ

(ND)
L3

(k3)
]
, φ

(ND)
L3

(k3) = π
2k3 − 1
2L3 + 1

. (83)

Thus, setting k3 = k, r3 = r and L3 = L, for a film geometry we arrive at

P(ND)
L (β, h) =

4h2

βL(2L + 1)

L

∑
k=1

∣∣∣∑L
r=1 cos

[
(r − 1/2) π 2k−1

2L+1

]∣∣∣
2

6(βc/β − 1) + 2
(

1 − cos π 2k−1
2L+1

) . (84)

It is easy to show that

2
L

∑
r=1

cos
(

π(r − 1/2)
(2k − 1)
(2L + 1)

)
=

sin
(

π 2k−1
2L+1 L

)

sin
(

π
2

2k−1
2L+1

) . (85)

Thus, one has

P(ND)
L (β, h) =

h2

βL(2L + 1)

L

∑
k=1

cot2
(

π
2

2k−1
2L+1

)

6(βc/β − 1) + 2
(

1 − cos π 2k−1
2L+1

) . (86)
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Let us consider the small k behavior of the above sum. One derives

P(ND)
L (β, h) ≃ h2

β

1
L(2L + 1)

L

∑
k=1

1
[

π(2k−1)
2(2L+1)

]2
{

6(βc/β − 1) +
[

π(2k−1)
2L+1

]2
}

≃ 4
π2

h2

β

(2L + 1)3

L

L

∑
k=1

1
(2k − 1)2[xt + π2(2k − 1)2]

=
h2

β

(2L + 1)3

L

{
1

2xt

[
1 − tanh(

√
xt/2)√

xt/2

]
+O(L−3)

}
. (87)

In the limits xt → 0 and xt → ∞ for the behavior of the field term one obtains

P(ND)
L (β, h) ≃ h2

β

(2L + 1)3

L





1/24 +O(xt), xt → 0;

1/(2xt) +O[exp(−√
xt)], xt ≫ 1.

(88)

When L → ∞, then xt → ∞, we obtain that

lim
L→∞

P(ND)
L (β, h) =

h2

6β(βc/β − 1)
, (89)

which indeed equals the bulk expression - see Equation (82).
From Equation (87) for the behavior of the susceptibility in the finite system we derive

χ
(ND)
L (β, h) =

1
β

(2L + 1)3

L
1
xt

[
1 − tanh(

√
xt/2)√

xt/2

]
. (90)

According to the finite-size scaling theory [34,56]

χ
(ζ)
L (t) = ahLγXχ(aβtL1/ν), (91)

where ah and aβ are non-universal constants, and Xχ is an universal scaling function, t =

(T − Tc)/Tc, where T has the meaning of the temperature of the system, and Tc is its bulk
temperature. From Equation (90), taking into account that (2L + 1)3/L ≃ 8L2, we identify that

γ = 2, ν = 1/2, and tL2 = xt. (92)

It is clear that the field term in the free energy of the finite system will be of the same order as the
field term, i.e., ∝ L−3 if h ∝ L−5/2. In order to achieve that, we define a field dependent scaling
variable

xh = β−1/2(2L + 1)3/2L h. (93)

In terms of it, Equation (87) becomes

P(ND)
L (xh, xt) =

x2
h

L3 Xχ(xt), where Xχ(xt) =
1

2xt

[
1 − tanh(

√
xt/2)√

xt/2

]
. (94)

The behavior of the scaling function Xχ(xt) is given in Figure 7.
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Figure 7. The behavior of the scaling function Xχ(xt).

Then for the excess free energy related to the field term, see Eq. (3.9), one derives 298

β∆ f (ND)
ex,3 (β, h) = −1

2
L
[

P(ND)
L (h; β)− P∞(h; β)

]
=

x2
h

L2
tanh(

√
xt/2)

2x3/2
t

. (3.53)

3.2. The behavior of the Casimir force 299

Let us determine the contributions of the interaction term ∆F(ND)
Cas (β, h = 0) and of the 300

field term ∆F(ND)
Cas (β, h ̸= 0). Obviously, one has 301

∆F(ND)
Cas,3 (β, h) = ∆F(ND)

Cas,3 (β, h = 0) + ∆F(ND)
Cas,3 (β, h ̸= 0). (3.54)

We start with determining the behavior of ∆F(ND)
Cas (β, h = 0). By definition, it is equal 302

to 303

∆F(ND)
Cas,3 (β, h = 0) ≡ − ∂

∂L
β∆ f (ND)

ex,3 (β, h = 0). (3.55)

From Eq. (3.28) we derive the exact expression 304

β∆F(ND)
Cas,3 (β, h = 0) =

1
4π2

∫ π

−π
dθ1

∫ π

−π
dθ2

x
e(2L+1)x + 1

. (3.56)

Here we did not make any assumption bout L. Naturally, we will obtain a scaling form 305

of β∆F(ND)
Cas,3 (β, h = 0) only for L ≫ 1. Then Eq. (3.32) is valid and, after performing 306

the integration, we arrive at 307

β∆F(ND)
Cas,3 (β, h = 0) = − 1

(2(L + 1)3
1
π

{
Li3
(
−e−

√
xt
)
+
√

xtLi2
(
−e−

√
xt
)
− 1

2
xt log

(
e−

√
xt + 1

)}

=
1

(L + 1/2)3 XCas,3(xt), (3.57)

Figure 7. The behavior of the scaling function Xχ(xt).

Then for the excess free energy related to the field term, see Equation (51), one derives

β∆ f (ND)
ex,3 (β, h) = −1

2
L
[

P(ND)
L (h; β)− P∞(h; β)

]
=

x2
h

L2
tanh(

√
xt/2)

2x3/2
t

. (95)

3.2. The Behavior of the Casimir Force

Let us determine the contributions of the interaction term ∆F(ND)
Cas (β, h = 0) and of the field term

∆F(ND)
Cas (β, h ̸= 0). Obviously, one has

∆F(ND)
Cas,3 (β, h) = ∆F(ND)

Cas,3 (β, h = 0) + ∆F(ND)
Cas,3 (β, h ̸= 0). (96)

We start with determining the behavior of ∆F(ND)
Cas (β, h = 0). By definition, it is equal to

∆F(ND)
Cas,3 (β, h = 0) ≡ − ∂

∂L
β∆ f (ND)

ex,3 (β, h = 0). (97)

From Equation (70) we derive the exact expression

β∆F(ND)
Cas,3 (β, h = 0) =

1
4π2

∫ π

−π
dθ1

∫ π

−π
dθ2

x
e(2L+1)x + 1

. (98)

Here we did not make any assumption bout L. Naturally, we will obtain a scaling form of
β∆F(ND)

Cas,3 (β, h = 0) only for L ≫ 1. Then Equation (74) is valid and, after performing the
integration, we arrive at

β∆F(ND)
Cas,3 (β, h = 0) = − 1

(2(L + 1)3
1
π

{
Li3
(
−e−

√
xt
)
+
√

xtLi2
(
−e−

√
xt
)
− 1

2
xt log

(
e−

√
xt + 1

)}

=
1

(L + 1/2)3 XCas,3(xt), (99)

where

XCas,3(y) = − 1
8π

{
Li3
(
−e−

√
xt
)
+
√

xtLi2
(
−e−

√
xt
)
− 1

2
xt log

(
e−

√
xt + 1

)}
. (100)
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The behavior of the scaling function XCas(xt, h = 0) is given in Figure 8. Obviously, the function
is positive, which means that the Casimir force is repulsive when the external field is zero. For the
Casimir amplitude we obtain

∆(ND)
Cas,3 ≡ XCas,3(xt = 0, h = 0)/2 =

3
64π

ζ(3). (101)
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where 308

XCas,3(y) = − 1
8π

{
Li3
(
−e−

√
xt
)
+
√

xtLi2
(
−e−

√
xt
)
− 1

2
xt log

(
e−

√
xt + 1

)}
.

(3.58)
The behavior of the scaling function XCas(xt, h = 0) is given in Fig. 8. Obviously, the
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Figure 8. The behavior of the scaling function XCas(xt) when h = 0.
309

function is positive, which means that the Casimir force is repulsive when the external 310

field is zero. For the Casimir amplitude we obtain 311

∆(ND)
Cas,3 ≡ XCas,3(xt = 0, h = 0)/2 =

3
64π

ζ(3). (3.59)

Obviously, Eq. (3.59) coincides with the corresponding result for the Gaussian model 312

obtained via studying the O(n), n = 1, d = 3 Φ4 model — see [14, Eq. (6.99)]. 313

Analogically, after proper renaming of the scaling variable the expression Eq. (3.58) of 314

the scaling function of the force coinsides with the corresponding one for the O(n), 315

n = 1, d = 3 Φ4 model — see [14, Eq. (6.104)]. 316

Let us now determine the h-dependent part of the Casimir force. By definition, one 317

has 318

∆F(ND)
Cas,3 (β, h) ≡ − ∂

∂L
β∆ f (ND)

ex,3 (β, h). (3.60)

Then, from Eq. (3.53) one obtains 319

∆F(ND)
Cas,3 (β, h) = − ∂

∂L

[
x2

h
L2

tanh(
√

xt/2)

2x3/2
t

]
≃ − x2

h
2L2(1 + 2L)

[
sech2(

√
xt/2)

xt
)

]
(3.61)

=
1

L2(L + 1/2)
XCas,3(xt, xh), (3.62)

where 320

XCas,3(xt, xh) = − x2
h

4

[
sech2(

√
xt/2)

xt

]
< 0. (3.63)

A visualization of XCas,3(y, xh) as a function of y for xh = 1 is shown in Fig. 9. 321

Figure 8. The behavior of the scaling function XCas(xt) when h = 0.

Obviously, Equation (101) coincides with the corresponding result for the Gaussian model ob-
tained via studying the O(n), n = 1, d = 3 Φ4 model — see [14] (Equation (6.99)). Analogically,
after proper renaming of the scaling variable the expression Equation (100) of the scaling function
of the force coinsides with the corresponding one for the O(n), n = 1, d = 3 Φ4 model — see [14]
(Equation (6.104)).
Let us now determine the h-dependent part of the Casimir force. By definition, one has

∆F(ND)
Cas,3 (β, h) ≡ − ∂

∂L
β∆ f (ND)

ex,3 (β, h). (102)

Then, from Equation (95) one obtains

∆F(ND)
Cas,3 (β, h) = − ∂

∂L

[
x2

h
L2

tanh(
√

xt/2)

2x3/2
t

]
≃ − x2

h
2L2(1 + 2L)

[
sech2(

√
xt/2)

xt
)

]
(103)

=
1

L2(L + 1/2)
XCas,3(xt, xh), (104)

where

XCas,3(xt, xh) = − x2
h

4

[
sech2(

√
xt/2)

xt

]
< 0. (105)

A visualization of XCas,3(y, xh) as a function of y for xh = 1 is shown in Figure 9.
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Figure 9. The behavior of the scaling function XCas(xt, xh = 1). We observe that the force is attractive.

The total Casimir force is a sum of XCas,3(xt), see Eq. (3.58), and XCas,3(xt, xh) given 322

by Eq. (3.63). The plot of the result as a function of xt for xh = 0.05 is shown in Fig. 10. 323

As we see, the force can be both positive and negative, i.e., repulsive and attractive.
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Figure 10. The behavior of the scaling function of the total Casimir force as a function of y for several values of xh. Left panel: We see
that for xh = 0.05 the force is attractive very near the critical temperature, then becomes repulsive with increase of xt (i.e., of T). Right
panel: It is clear, that for zero field the force is repulsive, then — for small values of xh — the force changes sign from attractive to
repulsive with the increase of xt (i.e., of the temperature), while for large values of xh the force becomes attractive for all values of T
(i.e., xt).

324

The overall 3D behavior of the force as a function both on xt and xh is given in Fig. 11. 325

326

4. The Casimir force within the mean-field model 327

We start by defining the mean-field model used in the current study. 328

Figure 9. The behavior of the scaling function XCas(xt, xh = 1). We observe that the force is attractive.

The total Casimir force is a sum of XCas,3(xt), see Equation (100), and XCas,3(xt, xh) given by
Equation (105). The plot of the result as a function of xt for xh = 0.05 is shown in Figure 10. As we
see, the force can be both positive and negative, i.e., repulsive and attractive.

Version April 8, 2025 submitted to Entropy 18 of 27

0 1 2 3 4
-5

-4

-3

-2

-1

0

xt

X
C
as
,3
(x
t,
x h
)

Figure 9. The behavior of the scaling function XCas(xt, xh = 1). We observe that the force is attractive.

The total Casimir force is a sum of XCas,3(xt), see Eq. (3.58), and XCas,3(xt, xh) given 322

by Eq. (3.63). The plot of the result as a function of xt for xh = 0.05 is shown in Fig. 10. 323

As we see, the force can be both positive and negative, i.e., repulsive and attractive.
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that for xh = 0.05 the force is attractive very near the critical temperature, then becomes repulsive with increase of xt (i.e., of T). Right
panel: It is clear, that for zero field the force is repulsive, then — for small values of xh — the force changes sign from attractive to
repulsive with the increase of xt (i.e., of the temperature), while for large values of xh the force becomes attractive for all values of T
(i.e., xt).
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326

4. The Casimir force within the mean-field model 327

We start by defining the mean-field model used in the current study. 328

Figure 10. The behavior of the scaling function of the total Casimir force as a function of y for several values of
xh. Left panel: We see that for xh = 0.05 the force is attractive very near the critical temperature, then becomes
repulsive with increase of xt (i.e., of T). Right panel: It is clear, that for zero field the force is repulsive, then —
for small values of xh — the force changes sign from attractive to repulsive with the increase of xt (i.e., of the
temperature), while for large values of xh the force becomes attractive for all values of T (i.e., xt).

The overall 3D behavior of the force as a function both on xt and xh is given in Figure 11.
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Figure 11. The behavior of the scaling function XCas(xt, xh). Here xt ∈ [0.1, 0.5] and xh ∈ [−0.1, 0.1].

4.1. The Ginzburg-Landau functional 329

In the present work we consider the standard ϕ4 Ginzburg–Landau functional 330

F [ϕ|τ, h, L] =
∫ L

0
L(ϕ, ϕ′|τ, h)dz (4.1)

with 331

L(ϕ, ϕ′|τ, h) =
1
2

ϕ′2 +
1
2

τϕ2 +
1
4

gϕ4 − hϕ. (4.2)

Here L, g ∈ R+, while τ, h ∈ R, z ∈ (0, L) and ϕ = ϕ(z) are the independent and 332

dependent variables, respectively, and the prime indicates differentiation with respect 333

to the variable z. 334

The functional (4.1) describes a critical system of Ising type in a film geometry ∞2 × L, 335

where the film thickness L is supposed to be along the z axis. In Equation (4.1), 336

ϕ(z|τ, h, L) is the order parameter of the system, which is assumed to depend on 337

the perpendicular position z ∈ (0, L) only, g is the bare coupling constant, and τ = 338

(T − Tc)/Tc is the bare reduced temperature, and h is the external ordering field. Given 339

τ, h and L, the physical state of the regarded system is described by the minimizer of 340

the respective Ginzburg–Landau functional F [ϕ; τ, h, L] given above whose extremals 341

are determined by the solutions of the corresponding Euler-Lagrange equation 342

d
dz

∂L
∂ϕ′ −

∂L
∂ϕ

= 0. (4.3)

In case the Lagrangian density L is defined by Equation (4.2), Equation (4.3) reads 343

ϕ′′ − ϕ
[
τ + g ϕ2

]
+ h = 0. (4.4)

Multiplying Equation (4.4) by ϕ′ and integrating once over z one obtains that 344

P[ϕ] ≡ 1
2

ϕ′2 − 1
2

τϕ2 − 1
4

gϕ4 + hϕ (4.5)

is a first integral of Equation (4.4), cf., e.g., [14]. This means that P is a constant on any 345

smooth solution ϕ(z|τ, h, L) of the Euler-Lagrange equation (4.4). 346

Figure 11. The behavior of the scaling function XCas(xt, xh). Here xt ∈ [0.1, 0.5] and xh ∈ [−0.1, 0.1].

4. The Casimir Force Within the Mean-Field Model
We start by defining the mean-field model used in the current study.

4.1. The Ginzburg-Landau Functional

In the present work we consider the standard ϕ4 Ginzburg–Landau functional

F [ϕ|τ, h, L] =
∫ L

0
L(ϕ, ϕ′|τ, h)dz (106)

with
L(ϕ, ϕ′|τ, h) =

1
2

ϕ′2 +
1
2

τϕ2 +
1
4

gϕ4 − hϕ. (107)

Here L, g ∈ R+, while τ, h ∈ R, z ∈ (0, L) and ϕ = ϕ(z) are the independent and dependent
variables, respectively, and the prime indicates differentiation with respect to the variable z.
The functional (106) describes a critical system of Ising type in a film geometry ∞2 × L, where
the film thickness L is supposed to be along the z axis. In Equation (106), ϕ(z|τ, h, L) is the order
parameter of the system, which is assumed to depend on the perpendicular position z ∈ (0, L)
only, g is the bare coupling constant, and τ = (T −Tc)/Tc is the bare reduced temperature, and h is
the external ordering field. Given τ, h and L, the physical state of the regarded system is described
by the minimizer of the respective Ginzburg–Landau functional F [ϕ; τ, h, L] given above whose
extremals are determined by the solutions of the corresponding Euler-Lagrange equation

d
dz

∂L
∂ϕ′ −

∂L
∂ϕ

= 0. (108)

In case the Lagrangian density L is defined by Equation (107), Equation (108) reads

ϕ′′ − ϕ
[
τ + g ϕ2

]
+ h = 0. (109)

Multiplying Equation (109) by ϕ′ and integrating once over z one obtains that

P[ϕ] ≡ 1
2

ϕ′2 − 1
2

τϕ2 − 1
4

gϕ4 + hϕ (110)

is a first integral of Equation (109), cf., e.g., [14]. This means that P is a constant on any smooth
solution ϕ(z|τ, h, L) of the Euler-Lagrange Equation (109).
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Figure 12. Phase diagrams. Left panel: The phase diagram of the bulk system. Right panel: The
phase diagram of the finite system with Dirichlet-Neumann boundary conditions. In the bulk system
a phase transition of first order happens when crossing the phase coexistence line that is at x̄h = 0
and spans for T ∈ (0, T = Tc). At T = Tc the system exhibits a second order phase transition. In the
finite system the coexistence line is at x̄h = 0 and spans for T ∈ (0, T = Tc,L). The second order phase
transition happens at T = Tc,L ≡ (−π2/4, 0). Note the change with Dirichlet-Dirichlet boundary
conditions where the critical point is at Tc,L = (−π2, 0).

In general, the thermodynamic Casimir force FCas(τ, h, L) in such a system is the excess 347

pressure, over the bulk one, acting on the boundaries of the finite system, which is due 348

to the finite size of that system, i.e., 349

FCas(τ, h, L) = PL(τ, h)− Pb(τ, h). (4.6)

Here PL is the pressure in the finite system, while Pb is that one in the infinite system. 350

Now, assuming that the thickness L of the film is free to move, the variation δF of the 351

free energy F [ϕ|τ, h, L] of the finite system is given as follows 352

δF =
∫ L

0

(
∂L
∂ϕ

− d
dz

∂L
∂ϕ′

)
δϕdz + Lϕ′δϕ

∣∣∣
L

0
−
(

ϕ′Lϕ′ −L
)

δz
∣∣∣
L

0
(4.7)

(see, e.g., [57, p. 54], [58, p. 260] and [59]), where δz and δϕ are the variations of the 353

independent and dependent variables, while 354

Tzz = ϕ′Lϕ′ −L (4.8)

is the one-dimensional counterpart of the stress tensor (see, e.g., [60,61]). Relation (4.7) 355

estimates the change of the finite-size contribution to the free energy of the system 356

corresponding to a small variation of the variables including the variation of the film 357

thickness L. In this sense, Tzz|L can be interpreted (see, e.g., [51,62]) as the pressure in 358

the finite system, that is 359

PL = Tzz|L. (4.9)

On the other hand, taking into account Equations (4.2) and (4.8), one can see that 360

Tzz = P[ϕ] (4.10)

and hence Tzz is a constant on any smooth solution ϕ(z|τ, h, L) of the Euler-Lagrange 361

equation (4.4) including the minimizer of the Ginzburg–Landau functional (4.1). Thus, 362

the pressure in the finite system is 363

PL(τ, h) =
1
2

ϕ′
min

2 − 1
4

gϕ4
min −

1
2

τϕ2
min + hϕmin (4.11)

Figure 12. Phase diagrams. Left panel: The phase diagram of the bulk system. Right panel: The phase diagram
of the finite system with Dirichlet-Neumann boundary conditions. In the bulk system a phase transition of first
order happens when crossing the phase coexistence line that is at x̄h = 0 and spans for T ∈ (0, T = Tc). At T = Tc

the system exhibits a second order phase transition. In the finite system the coexistence line is at x̄h = 0 and spans
for T ∈ (0, T = Tc,L). The second order phase transition happens at T = Tc,L ≡ (−π2/4, 0). Note the change with
Dirichlet-Dirichlet boundary conditions where the critical point is at Tc,L = (−π2, 0).

In general, the thermodynamic Casimir force FCas(τ, h, L) in such a system is the excess pressure,
over the bulk one, acting on the boundaries of the finite system, which is due to the finite size of
that system, i.e.,

FCas(τ, h, L) = PL(τ, h)− Pb(τ, h). (111)

Here PL is the pressure in the finite system, while Pb is that one in the infinite system.
Now, assuming that the thickness L of the film is free to move, the variation δF of the free energy
F [ϕ|τ, h, L] of the finite system is given as follows

δF =
∫ L

0

(
∂L
∂ϕ

− d
dz

∂L
∂ϕ′

)
δϕdz + Lϕ′δϕ

∣∣∣
L

0
−
(

ϕ′Lϕ′ −L
)

δz
∣∣∣
L

0
(112)

(see, e.g., [57] (p. 54), [58] (p. 260) and [59]), where δz and δϕ are the variations of the independent
and dependent variables, while

Tzz = ϕ′Lϕ′ −L (113)

is the one-dimensional counterpart of the stress tensor (see, e.g., [60,61]). Relation (112) estimates
the change of the finite-size contribution to the free energy of the system corresponding to a small
variation of the variables including the variation of the film thickness L. In this sense, Tzz|L can
be interpreted (see, e.g., [51,62]) as the pressure in the finite system, that is

PL = Tzz|L. (114)

On the other hand, taking into account Equations (107) and (113), one can see that

Tzz = P[ϕ] (115)

and hence Tzz is a constant on any smooth solution ϕ(z|τ, h, L) of the Euler-Lagrange Equa-
tion (109) including the minimizer of the Ginzburg–Landau functional (106). Thus, the pressure
in the finite system is

PL(τ, h) =
1
2

ϕ′
min

2 − 1
4

gϕ4
min −

1
2

τϕ2
min + hϕmin (116)
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where ϕmin is the foregoing minimizer.
As for the bulk system, it is easy to see following the same way of reasoning that the corresponding
pressure is

Pb(τ, h) = −1
4

gϕ4
b −

1
2

τϕ2
b + hϕb. (117)

Here, the value ϕb of the order parameter of the bulk system is determined as the constant solution
of Equation (109), i.e., as the root of the cubic equation

−ϕb

[
τ + g ϕ2

b

]
+ h = 0, (118)

that minimizes
Lb =

1
2

τϕ2
b +

1
4

gϕ4
b − hϕb. (119)

Of course, ϕb does not depend on the boundary conditions at all. Let us note that Pb = −Lb,
i.e., Pb has its maximum over the solution ϕb of the cubic equation for (118).
Obviously, the relation (116) does not depend on the boundary conditions applied on the finite
system too. This dependence arises solely from the dependency of the order parameter profile
that minimizes the particular boundary value problem considered.
In the light of the above it is evident that once the order parameter profile ϕmin and its bulk value
ϕb are known in analytic form for given values of the parameters τ and h, then the respective
Casimir force is determined in an exact manner by Equation (111).
In the current article we consider the Dirichlet-Neumann boundary conditions meaning that

ϕ(z = 0|τ, h, L) = 0 and
∂

∂z
ϕ(z|τ, h, L)∣∣

z=1

= 0. (120)

In addition, ν is a critical exponent characterizing the behavior of the correlation length, while ∆
is another exponent related to the behavior of, say, order parameter as a function of the external
field h.
It is convenient to introduce new parameters

xt =
τL1/ν

[
ξ+0
]1/ν

, xh =

√
2ghL∆/ν

[ξ0,h]
∆/ν

(121)

and variables

ζ = z/L, ϕ(z) =

√
2
g

L−β/νXm(ζ|xt, xh), (122)

where β = ν = 1/2 and ∆ = 3/2, while ξ+0 and ξ0,h are the respective amplitudes of the
correlation length along the τ and h axes (see, e.g., [14]). In terms of these new parameters and
variables, Equations (106), (107), (109) and (110) becomes

F [Xm|xt, xh] =
1

gL4

∫ 1

0
L[Xm, X′

m|xt, xh]dζ, (123)

L[Xm, X′
m|xt, xh] = X′2

m(ζ) + X4
m(ζ) + xtX2

m(ζ)− xhXm(ζ), (124)

X′′
m(ζ) = Xm(ζ)

[
xt + 2X2

m(ζ)
]
− xh

2
, (125)

and
P[Xm(ζ)] = X′2

m(ζ)− X4
m(ζ)− xtX2

m(ζ) + xhXm(ζ), (126)
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respectively. The primes here and hereafter indicate differentiation with respect to the variable
ζ ∈ [0, 1]. Then, according to Equations (111), (116) and (117), the expression for the Casimir force
XCas(xt, xh) written by means of the new parameters (121) and variables (122) reads

XCas(xt, xh) = X̂′2
m −

(
X̂4

m − X4
b

)
− xt

(
X̂2

m − X2
b

)
+ xh

(
X̂m − Xb

)
, (127)

where X̂m and Xb are the minimizers of the functional (123) and its “bulk counterpart” corre-
sponding to xt and xh.
As mentioned above, in the present article we assume that the system is subject to Dirichlet-
Neumann boundary conditions, that is

Xm(ζ = 0|xt, xh) = 0 and X′
m(ζ = 1|xt, xh) = 0. (128)

In other words, we are interested in the solution of Equation (125) that meet the conditions (128).
It should be remarked that exact results associated with the Casimir effect have been derived in
the cases of (+,+), (+,−) and Dirichlet-Dirichlet boundary conditions - see Ref. [14] for a review.

4.2. The Casimir Force for Zero External Field

In Ref. [63] it has been shown that for xt ∈
(
−∞,−π2/4

]
there are tow order parameter profiles

that minimize the functional (123) in the case of Dirichlet-Neumann boundary conditions and
zero external field. They can be expressed using an auxiliary parameter k ∈ [0, 1] as follows

X̂m(ζ) = ± k K(k)sn
(
ζK(k)

∣∣k
)

(129)

at
xt = −

(
k2 + 1

)
K(k)2, (130)

where K(·) is the complete elliptic integral of the first kind and sn(·|·) is the sine Jacobi elliptic
function. Simultaneously, it is easy to see that in this case

Xb =
1√
2

√
(k2 + 1)K(k)2. (131)

Now, substituting Equations (129) and (131) into Equation (127) one obtains

XCas(xt, xh = 0) = −1
4

(
k2 − 1

)2
K(k)4, (132)

for the Casimir force at xt ∈
(
−∞,−π2/4

]
given by Equation (130).

If xt ∈
(
−π2/4, 0

]
, then X̂m = 0, Xb = −

√
−xt/2 and hence, according to Equation (127),

the expression for the Casimir force reads

XCas(xt, xh = 0) = − x2
t

4
. (133)

Finally, if xt ∈ (0, ∞), then XCas(xt, xh = 0) = 0. Combining these results one can write down

XCas(xt, xh = 0) =





− 1
4
(
k2 − 1

)2K(k)4, xt ∈
(
−∞,−π2

4

]
,

−x2
t /4, xt ∈

(
−π2

4 , 0
]
,

0, xt ∈ (0, ∞).

(134)

The behavior of the scaling function XCas(xt, xh = 0) for xt ∈ [−30, 30] is depicted in Figure 13.
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Figure 13. The behavior of the scaling function XCas(xt, xh = 0) for xt ∈ [−30, 20]. We observe that
the force is attractive, contrary to the corresponding result for the Gaussian model.

for the Casimir force XCas(xt, xh) written by means of the new parameters (4.16) and 393

variables (4.17) reads 394

XCas(xt, xh) = X̂′2
m −

(
X̂4

m − X4
b

)
− xt

(
X̂2

m − X2
b

)
+ xh

(
X̂m − Xb

)
, (4.22)

where X̂m and Xb are the minimizers of the functional (4.18) and its “bulk counterpart” 395

corresponding to xt and xh. 396

As mentioned above, in the present article we assume that the system is subject to 397

Dirichlet-Neumann boundary conditions, that is 398

Xm(ζ = 0|xt, xh) = 0 and X′
m(ζ = 1|xt, xh) = 0. (4.23)
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4.2. The Casimir force for zero external field 403
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Figure 13. The behavior of the scaling function XCas(xt, xh = 0) for xt ∈ [−30, 20]. We observe that the force is
attractive, contrary to the corresponding result for the Gaussian model.

4.3. The Casimir Force for Nonzero External Field

In Ref. [63] it has been shown, following [64] (p. 454), that each solution of Equation (125) that
meets Dirichlet-Neumann boundary conditions can be written in the form

Xm(ζ|xt, xh, Xm,r) = Xm,r +
6Xm,r

(
xt + 2X2

m,r
)
− 3xh

12℘(ζ − 1; g2, g3)−
(
xt + 6X2

m,r
) , (135)

where Xm,r = Xm,r(xt, xh) is a real number that depends only on the values of the parameters xt

and xt. Here ℘(ν; g2, g3) is the Weierstrass elliptic function corresponding to the invariants g2 and
g3 given as follows

g2 =
1

12
x2

t − Xm,r

(
X3

m,r + xtXm,r − xh

)
,

g3 = − 1
432

[
27x2

h + 2x3
t + 72xtXm,r

(
X3

m,r + xtXm,r − xh

)]
. (136)

It is easy to see that Xm,r is the value of the order parameter at the right end of the sys-
tem since ℘(ν; g2, g3) tents to infinity when ν tends to zero. It is also easy to see that
X′

m(ζ → 1|xt, x̄h, Xm,r) = 0, i.e., each function of the form (135) meets the boundary con-
dition imposed on the right end of the system. The only remaining requirement that
Xm(ζ → 0|xt, xh, Xm,r) = 0 leads to an transcendental equation from where we have to determine
Xm,r. Usually, one obtains several solution of this equation. However, the one that corresponds
to the physical reality is the one that minimizes the energy given by Equations (123) and (124).
In this way we find the order parameter profile X̂m as a function of the parameters xt and xh. We
also obtain Xb as a function of xt and xh.
Finally, using Equation (127) we obtain the Casimir force XCas(xt, xh).
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Figure 14. The behavior of the scaling function XCas(xt, xh), xt ∈ [−30, 20] for several values of xh.
We observe that the force is attractive.

Figure 15. The behavior of the scaling function XCas(xt, xh), xt ∈ [−30, 20], xh ∈ [−30, 0]. We observe
that the force is attractive.
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i) expressions pertinent to the h = 0 case - see Eq. (2.30) for CGM and 447

Eq. (3.58) for the LGM. 448
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5. Conclusions
As reported above, we have obtained exact results for the Casimir force in two basic statistical
mechanical models: the Gaussian and the mean field model. In the case of the Gaussian model we
performed the calculations for two realizations: a continuum version, see Section 2, and a lattice
version — see Section 3 realizations. The mean-field model is considered in Section 4. The models
are considered under Neumann-Dirichlet boundary conditions in the presence of an external
magnetic field h.
We summarize our main results as follows:

(I) We derived exact closed form expression for the free energy of the Gaussian model in
both the continuum version (CGM) and the lattice formulation of the model (LGM).
The results for the Casimir force can be written as a sum of

i) expressions pertinent to the h = 0 case - see Equation (33) for CGM and Equa-
tion (100) for the LGM.

ii) equations for the field-dependent parts of the force — see Equation (41) for the
CGM, and Equation (105) for the LGM.

We observe that these expression are identical, as is to be expected on the ground of the
universality hypothesis, provided proper definitions of the scaling variables are used.
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(II) The behavior of the Casimir force in the CGM is shown in Figures 3 and 5, and the
behavior for the LGM - in Figures 8–11. We observe that for h = 0 the force is repulsive
and, depending on magnitude of h, it can be both repulsive or attractive for h ̸= 0.
Contrary to this behavior, we observe that the force in the MFM is always attractive -
both for h = 0, see Figure 13, as well as for h ̸= 0 – see Figures 14 and 15.

From all of the above one can, at the very least, conclude the following:

(*) The sign of the Casimir force for the GM is not necessarily the same for h = 0, for which case
they are very well known - see, e.g., [14,34,37,65], as it is for h ̸= 0.

(**) The predictions of the “workhorse" of statistical mechanics — the mean-field approach
sometimes—in particular in the studies of the Casimir force—can be wrong even with respect
to the predicted sign of the force.

The results presented in the current article are based on exact analytical expressions for both the
Gaussian and mean-field model.
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