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Abstract: The mean-field model (MFM) is the workhorse of the statistical mechanics: one normally
accepts that it yields results which, despite differing numerically from the correct ones, are not “very
wrong”, in that they resemble the actual behavior of the system as eventually obtained by a more
advanced treatments. This, for example, turns out to be the case for the Casimir force under, say;,
Dirichlet-Dirichlet, (4, +) and (+, —) boundary conditions (BC) for which, according to the general
expectations the MFM delivers attractive for like BC—or repulsive for unlike BC—force, with the
principally correct position of the maximum strength of the force below, or above the critical point
T.. It turns out, however, that this is not the case with Dirichlet-Neumann (DN) BC. In this case,
the mean-field approach leads to an attractive Casimir force. This contradiction with the “boundary
condition rule” is cured in the case of the Gaussian model under DN BC. Our results, which are
mathematically exact, demonstrate that the Casimir force within the MFM is attractive as a function of
temperature T and external magnetic field &, while for the Gaussian model it is repulsive for 1 = 0, and
can be, surprisingly, both repulsive and attractive for & # 0. The treatment of the MFM is based on the
exact solution of one non-homogeneous nonlinear differential equation of second order. The Gaussian
model is analyzed both in its continuum and lattice realization. The obtained outcome teaches us that
the mean-field results should be accepted with caution in the case of fluctuation-induced forces and
ought to be checked against more precise treatment of the fluctuations within the envisaged system.

Keywords: finite-size effects; exact results; Casimir force; mean-field model; Gaussian model; phase
transitions; critical phenomena; phase diagrams

1. Introduction

Currently, the most prominent example of a fluctuation-induced force is the force due to quantum
or thermal fluctuations of the electromagnetic field, leading to the so-called QED Casimir effect [1-5],
named after the Dutch physicist H. B. Casimir who first realized that in the case of two perfectly-
conducting, uncharged, and smooth plates parallel to each other in vacuum, at T = 0 these fluctuations
lead to an attractive force between them [1]. Nowadays, investigations devoted to that effect are
performed on many fronts of research ranging from attempts to unify the four fundamental forces
of nature [2,4,6] to rather practical issues such as the design and the performance of MEMS and
NEMS [7-11].

Thirty years after Casimir, Fisher and De Gennes [12] showed that a very similar effect exists in
critical fluids, today known as critical Casimir effect. A summary of the results available for this effect
can be found in the recent reviews [13-16]. We note that the critical Casimir effect has been observed
experimentally [17-30].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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The description of the critical Casimir effect is based on finite-size scaling theory [31-34]. Let us
envisage a system with a film geometry 0?1 x L, L = L, , and with boundary conditions { imposed
along the spatial direction of finite extent L. Take Ft(ft) to be the total free energy of such a system
within the grand canonical ensemble (GCE). Then, if f(©)(T,k, L) = lim_,« ft(oét) / A is the free energy
per area A of the system, one can define the Casimir force for critical systems in the grand-canonical
(T — h)-ensemble, see, e.g., Refs. [14,34-36]::

BEGA(L, T, ) = —% L, T 0) )
where
FOL T h) = FO(LT,h) — Lfy(T, ) 2

is the so-called excess (over the bulk) free energy per area and per ! = kzT. Here we suppose a
system at temperature T is exposed to an external ordering field /, which couples linearly to its order
parameter—such as the number density, the concentration difference, the magnetization, etc. Actually,
the thermodynamic Casimir force Fégl(T, h, L) per area is the excess pressure over the bulk one due to

the finite size (L < c0) of that system:
FEUT, L) = PO(T, ) = Py(T, ). ©

Here P£O is the pressure in the finite system under boundary conditions J, while P, is the pressure
in the infinite, i.e., macroscopically large, system. The above definition is actually equivalent to Equa-
tion (1). Note that fe(f ) (L, T, k) is the excess grand potential per area, f(¢)(L, T, h) is the grand canonical
potential per area of the finite system, while f; (T, 1) has the meaning of the grand potential per volume
V for the macroscopically large system. The equivalence between the definitions in Equations (1) and
(3) stems from the observation that for the finite system one has P, = —af (%) (L, T, h)/dL, while for
the bulk one and f;, = —P.

When Fé?s(L, t,h) < 0 the excess pressure is inward towards the system, i.e., there is an attraction
of the surfaces of the system towards each other and a repulsion if Fégl(L, t,h) > 0.

In the remainder we will consider the behavior of the Casimir force under periodic and Neumann-
Dirichlet boundary conditions within the Gaussian and mean-field models. These are two of the
principal models of the statistical physics. We will show, however, that they might produce contradic-
tory predictions for the behavior of the Casimir force, including even if the force for given T and £ is
attractive, or repulsive. Before passing to the specific calculations, let us mention the Gaussian model
has been intensively used to study the behavior of the critical Casimir effect [34,37-43], as well as the
Ising mean-field model [41,44-52]; for a review — see Refs. [14].

We start by considering the behavior of the Casimir force within the Gaussian model - both for its
continuum, as well as lattice versions.

2. The Casimir Force Within the Continuum Gaussian Model

The continuum version of the Gaussian model with a scalar order parameter consists of the
linear and bilinear terms in the Ginzburg-Landau-Wilson formulation of a system in d dimensions
that undergoes a continuous symmetry-breaking phase transition at low temperatures. The partition
function of this system is the functional integral

Zo(t,h) = [ expl-F(y(7)] D{(7)} @

where

F®) = [[@? +199@P —hyp(@)] d'r ®
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In (5) t is the reduced temperature, proportional to T — T¢, and / is the spatially constant ordering
field. Because of the Gaussian nature of the free energy functional F(y(7)) the partition function

resolves into the product
Zg(th) = Z6,1(t) x Zeu(t, ) (6)

where Zg ;(t) is the partition function of the system with # = 0. The geometry of the system under
consideration is a slab of large—ultimately infinite—cross section and finite thickness L.

With regard to scaling considerations, there are two combinations of parameters that reflect the
predictions of finite size scaling. They are

x, = tLVV =112, )
x, = hL(dJer?])/Z:hL(dJrZ)/Z/ (8)

where v, the correlation length exponent, is equal to 1/2 in the Gaussian model, and as noted above 4
is the dimensionality of the system. Our end results for the Casimir forces acting upon the systems
will depend on the boundary conditions imposed. In all cases, the form of the Casimir force is

feas(t,h, L) = Lid(wCas,I(xt)+x%wCas,h(xt)> )

All results reported in this portion of the article rely on two results, which can be obtained with
the use of contour integration techniques; see also [53]. The two results are

i 1 7t coth(rt\/b/a)

n:Zw a2 +b Vab ! (10)
ad 1 _ mtanh(mr/2v/d/c)
ng) c2n+1)2+d 4v/cd ’ (11)

In order to carry out the evaluation of the free energy of the Gaussian model we turn to the basis
set of functions that will be used to construct the free energy with and without an ordering field.
These functions allow us to evaluate the partition function by integrating over the amplitudes of the
contributions of each member of the set to the order parameter. Here, we focus on the case of periodic
boundary conditions. Ignoring the dependence on position in the “plane” of the slab, the functions are
the orthonormal set

ch(n) (z) = +2/Lcos(2mtnz/L) (12)
¢s(”)(z) = /2/Lsin(2mnz/L) (13)
Po(z) = VI/L (14)
with n a positive integer. It is straightforward to show that this set is orthonormal as a function of z
in that
E o ()™
/0 e (2)Yc ' (z)dz = dmpn (15)
b ()™
[ @u" @z = b (16)
L
/0 Yo (Z)z dz = 1 (17)

The three function types are all mutually orthogonal. In the case of higher dimensions, we
construct a new basis set by multiplying the functions (12)-(14) by suitable functions of the orthogonal
position variables. Those functions can be taken to be of the form ¢'OR where R isa d — 1-dimensional
position vector in the plane of the slab and Q is in its reciprocal space.
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We then express the order parameter as follows
Pz, R) = Y elOR ( Y a9l (@) + Y al 9l (2) + aoyo (z)> (18)
le] n=1 n=1

The free energy for a given configuration of the Gaussian order parameter, in terms of the
amplitudes in the expansion of the order parameter in the basis set (15)—(17), is

3 Ln=1

) [ i (agf)2 + a,(f)z) (t + Q%+ (Znn/L)z) + a3t — haoﬁl (19)
Q

The last term in brackets above reflects the fact that the only basis function that the constant
external field couples to is the constant function in (14)

The next step is to exponentiate the expression in (19), multiply by either —1/8, or setting p =1,
by -1, and, after that, to perform the Gaussian integrals over the agf) ’s, the aff)’s, and ag. The resulting

partition function is given by

zZ
- 1 [ hLA A i S 1 (t+ Q%+ (27tn/L)?
= oolj (e [0 £ pn( ) )

n=-—oo

(20)

The coefficient A in (20) is the d — 1 dimensional area of the slab.

As our next step we evaluate the sum over n on the right hand side of the expression for the
partition function. To achieve this, we take the t-derivative of the logarithm of the summand, perform
the sum over n and then integrate the resulting expression with respect to t. Taking the derivative of
the summand in (20) with respect to t leaves us with the sum

1 B Lcoth(%L\/Qz—l—t)

1 e8]
2 n;@ t+Q?+ (2mn/L)2 202+t (21)

which follows from (10). This integrates up to

21n (sinh(L\/Qz Tt /2)) 22)
The large-L limit of (22) is
Lyt + Q2 (23)

To find the contribution to the Casimir force per unit area, we take the L-derivative of the
difference between (23) and (22) and then integrate over Q The derivative yields

e~ LV Q3+t
LV Q24 o= L/ Q2+t

V@1 - coth(LV@ 1) = @+t

(24)
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The sum over values of Q is expressible as an integral, which takes the form
Ki_ o e~ LV Q2+t
i fy, @V w10

(27) 0 oLV QI+t _ oL/ Q2+t
1 K —v/x(14w?)

= = dl d/z/w V1+u? ‘32 _ dw
L e\/xt(1+w ) e*\/xt(l+w )
1 3

_ ﬁX(Per )(Xt) (25)

where, to get to the last line of (25) we defined a new integration variable w = Q/+/t and then made
use of the definition (7) of x;. The implication of (25) is that we can express the i = 0 contribution to
the Casimir force as L~ times a function of the scaling temperature variable x;. The coefficient K in
the equations above is the geometric factor

a/2
Ki=2 6)
')
In the case of three dimensions, further processing of the result (25) is possible. We find
2¢*Lu + Liz(e 2V ) —2x;log(1 — e 2V*

8

where Li;(x) is the polylogarithm function; see [54]. A plot of the function Xgasl( t) is shown in
Figure 1.

(per 3)
Cas] ( t)

20 30 40

-0.01}
-0.02}
-0.03}

-0.04/

-0.05+

Figure 1. The function XCaS I (xt) plotted versus x;.

The first term in parentheses in Equation (20) gives us the h-dependent contribution to the free
energy: —h?LA/4t. This is to be compared to the corresponding free energy of a neighboring bulk
phase, which goes as —h?(Lo — L) A/4t, where Ly is an extent that will ultimately be taken to go to
infinity. If you add the two free energies, the dependence on L, the thickness of the slab, disappears.
This means that there is no h-dependent free energy when slab boundary conditions are periodic,
and hence no h-dependent contribution to the Casimir force.
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The calculations in the case of periodic boundary conditions point the way to evaluating the
partition function and the Casimir force of the case of Dirichlet-Neumann boundary conditions.
In this case the (unnormalized) basis functions are, exclusive of their dependence on the in-plane
coordinates,
sin((2n + 1)7tz/2L) (28)

Examples of these functions are shown in Figure 2.

sin((2n+1)rz/2L)
—_— n:O
n=1
| . n=2
. — n=3

Figure 2. The functions in (28).

Focusing on the h-independent contribution to the partition function, the sum to perform in this

case is (see (11))
| @ 1 Ltanh(L\/t—f—QZ)
2 ; t4+ Q%+ ((2n+1)m/2L)? 4/t + Q2

Note that in the limit of large L the right hand side goes to the expected asymptotic form. If we

(29)

subtract that limiting form, and integrate with respect to t, we are left with

%(log (cosh(L\/ t+ Qz)) —L\t+ Qz) (30)

Finally, we take minus the derivative of this with respect to L, leaving us with

(31)

%(—\/r—f—taanh(L\/t—i—Qz) + \/t+Q2) = Vt+Q2 e VEY

eL,/t+Q2+e—L t+Q2

Making use of the analysis of previous sections, this leaves us with the following result for the
Casimir force in the case of the d-dimensional Gaussian model with Dirichlet-Neumann boundary
conditions

e~ LV/1+Q?
dQ
eLVHHQ? 4 oL/ H+Q?

Ky_q 1 d/z/w 1+2 e~ VEV1+uw?

2o T R

1
ﬁXgi)S,D/N (xr) (32)

L [T

(271—)0171

When d = 3, we have

2,/x¢Lip (—e’2ﬁ> + Lis (—e’2ﬁ> — 2x¢log (e’Z\/’Tf + 1)

8

(3 _
XCas,D/N,I (xt) -

(33)


https://doi.org/10.20944/preprints202504.0448.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2025 d0i:10.20944/preprints202504.0448.v2

7 of 28

Figure 3 shows what the function X, )

CasD/N,1(Xt) looks like when d = 3.

ngs DN 1(x
0.035
0.030
0.025
0.020
0.015
0.010

0.005

* 10 20 30 a0 Xt

Figure 3. The function X(C ;S p/n (1), as given in (33).

In order to find the h-dependent contribution to the Casimir force we turn to the normalized
the basis set in the case of Dirichlet-Neumann boundary conditions. Assuming that the boundary
conditions are Dirichlet at z = 0 and Neumann at z = L, this basis set is

g (2) = V2/Lsin((n +1/2)7z/L) (34)
with 7 an integer and
0<n<o (35)

It is straightforward to establish that

L
| vbr@raL=1 (36)

while

/ Pl (2)dL = 2v2L 37)

@n+1)m
As it turns out there is no need to take into account any dependence of the basis set on coordinates
in the plane of the slab. This is because a constant ordering field couples only to order parameter
configurations that are independent of those coordinates.
With this in mind, we expand the order parameter as follows

¥(z) = Y aPV oyl (2) (38)
n=0
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(DN)

The Gaussian integrations over the a4, ~’’s leaves us with the summation over n for the h-
dependent contribution to the partition function

) 2@ 2 .
exp [hz Z(Qn—i—l)?‘[) 4(m(n+1/2)/L)2 +1)

n=0

= exp [hz <4—Lt - —tani;gez\/f )>
= exp LZ’_Z/Z (L\/Z - tanh(L\/E))} (39)

where the evaluation of the sum over n in (39) is accomplished with the use of (11) and a partial
fraction decomposition of the summand. The first term in parentheses on the last line of (39) gives us
exactly the same expression as the h-dependent contribution to the partition function of the slab with
periodic boundary conditions. Its influence on the Casimir force is exactly canceled by the influence of
the bulk. What remains is

2
—hzitanh(L\/Z)/élt“”/2 = —h—sechz(L\/f)
oL 4t
Wiz,
= —4—thech (\/Xt)
R WV (40)
= T 4thec Xt

where we have made use of the definition of the scaling combination xj, in (8). The scaling form of the
contribution to the Casimir force is, then

2
—X, 2

Xg}N(xt, xp) = T sech(/x¢) (41)

This function is shown in Figure 4. Note that this function is aways attractive.

5

-5 -0.4
0.0,
3)
X5 4 (XX
DINWSOT_g g
10
0
5
Xt

10
Figure 4. The function XS} N (Xt xp), as given by (41).

The total scaling function XS’) ~ (xt,x3,) is given by

“ 2/%Li (—e—zx/’?ﬁ) 1 Li (—e-NxT) —2xlog (e—zx/ff + 1) 22

Xp a0 xn) = — o - Etsech%/xi). (42)
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0.02
3) 0.04 0
02
Xp/n(Xexp )y
~0.02 —0.02
~0.04

-0.04

both positive (repulsive) and negative (attractive).

Figure 5. The total scaling contribution to the Casimir force for Dirichlet-Neumann boundary conditions in the
three dimensional Gaussian model with a scalar order parameter,XD3 7 N(x,g, x1,). Note that this function can be

Another depiction of the scaling contribution to the Casimir force for Dirichlet-Neumann bound-
ary conditions in the three dimensional Gaussian model with a scalar order paremeter, X
Figure 6, highlights the regions in which the function is attractive and repulsive.

S’}N(xt, Xp),

5

-5
0.04
3 0.02
Xl()/)N(xt’xh) 0.00
-0.02

-0.04

5
Xt 10
Figure 6. The total scaling contribution to the Casimir force for Dirichlet-Neumann boundary conditions in
the three dimensional Gaussian model with a scalar order 1:)ararneter,XD3 N (Xt xy,). The red region in the figure
corresponds to a repulsive force, and the blue region corresponds to an attractive force.
3. The Casimir Force Within the Lattice Gaussian Model

We consider a ferromagnetic model with nearest-neighbor interactions on a fully finite d-
dimensional hypercubic lattice A € Z? of |A| sites. Let us take A € Z? to be the parallelepiped
A = Lq x---x L, where x denotes the direct (Cartesian) product of the finite sets £, = {1,..., L, }.

It is convenient to consider the configuration space (25 = RI*l as an Euclidean vector space in
which each configuration is represented by a column-vector S, with components labeled according


https://doi.org/10.20944/preprints202504.0448.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2025 d0i:10.20944/preprints202504.0448.v2

10 of 28

to the lexicographic order of the set {r = (r1,---,r;) € A}. Let S be the corresponding transposed
row-vector and let the dot (-) denote matrix multiplication. Then, for given boundary conditions
T= (7, - ,7y), specified for each pair of opposite faces of A by some T, takes the form

1
BHY (SAIK) = —3KSK - QY - S (43)

Here K = ], where ] is the interaction constant (to be set to | = 1 in the remainder), and the
|A| x |A] interaction matrix QE\T) can be written as

QW = (A 4 2Ey) x - x (A7 +2Ey), (44)
where A,(,TV) is the one-dimentional discrete Laplacian defined on the finite chain £, under boundary
conditions T, and E, is the L, x L, unit matrix.

By using the results of [34] (Chapter 7), we can write down the eigenfunctions of the interaction
matrix (44) in the form

) (e1) = u W (k) - u{P k), k= (ke k) €A, (45)

and obtain the corresponding eigenvalues of it

d
yg\r)(k) =2 cos qog”)(kv), keA. (46)

v=1

Obviously, maxyea yE\T) (k) = 2d. Note that the interaction Hamiltonian (43) has negative eigen-

values, which makes necessary the inclusion of a positive-definite quadratic form in the Gibbs exponent,
to ensure the existence of the corresponding partition function. Thus, we consider the Hamiltonian

1
BHY (SlB hnis) = —3BSh - Q- Sa +5SK-Sn —h} - S @)

Here hp = {h(r), r € A} is a column-vector representing (in units of kgT) the inhomogeneous
magnetic field configuration acting upon the system, and let i be the transposed row-vector.

In order to ensure the existence of the partition function, all the eigenvalues f% ‘B]/tE\T) (k) +s,
k € A, of the quadratic form in ﬁHE\T) (SalB,ha;s), ought to be positive. Hence, the field s(™) must
satisfy the inequality

E () (1) = L,
s> opmaxp,’ (k) = 7By’ (ko), (48)
with 1
Ber = Sy (o) (49)

defining the critical temperature of the finite system. Since, as stated above maxy yE\T) (k) =2d, itis
clear that for the infinite system

B =d. (50)
The free energy density of a finite system in a region A is
1
BT (B.1a) = 5 {In(p/2m) — 25+ U (B,5) — P (B hn,9) . (51)

In Equation (51) the first two terms do not depend on the size of the system, i.e., they are the same
in both finite and infinite systems. The other two terms do depend, however on the size of the system.
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The function Z/ll(\T) (B, s) is due to the spin-spin interaction (and will be called "interaction term"); it
depends on s, but does not depend on . It is equal to

U (Bs) = A Y ln[zg - u&”(k)], 52)
keA

and is obtained after performing the corresponding Gaussian integrals in the free energy of the finite
system. The dependence of the free energy on the field variables / is given by the "field term"

7 (1) 2

(1) o 1 hy (k)]
P Jhpss) = E . 53
A (:B A 5) /3|A| = 25/‘3 — l,[xr)(k) ( )

Here IZS\T) (k) denotes the projection of the magnetic field configuration 5 on the eigenfunction

{QS\T) (r, k), k € A} (by ii we denote the complex conjugate of u € C):

A0 = Y h@)ald (x k). (54)
reA
Defining B, so, that
2s Be
— =24, (55)
p p
the above expressions can be rewritten in the form
UD (B) = AT Y In|2d(Be/p—1) +2d — il (1), (56)
keA
and ()
1 NI

Ken 2d(Be/p— 1) +2d — i (k)
Using the notations of [34] (Chapter 7), below we give a list of the complete sets of orthonor-

mal eigenfunctions, {u(LT) (r,k),k =1,...,L}, of the one-dimensional discrete Laplacian under the
Neumann - Dirichlet (ND) boundary conditions:

e  periodic (p) boundary conditions
ul (r,k) = L2 exp[—irg(?) (k)]; (58)

e Neumann - Dirichlet (ND) boundary conditions

NP (r,k) = 2(2L + 1) cos(r — 1/2)p ") (k). 59

The quantities (p(LT), k=1,...,L, are defined as follows
oV (k) =27k/L, NP (k) = 7(2k — 1)/ (2L + 1). (60)

Now we are ready to find the finite-size behavior of the Gaussian model under the Dirichlet-
Neumann boundary conditions. According to Equation (59), S(0) = S(1), i.e., one has there realiza-
tion of Neumann boundary conditions, while L + 1 = 0, which corresponds to Dirichlet boundary
conditions. Thus, in the envisaged one-dimensional chain one has L independent spin variables
[5(1),5(2),- -+, S(L)}.

We start with the consideration of d = 3 dimensional system. Note that:
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e under fully periodic (p) boundary conditions, T = (p, p, p), one has kg = (L1, Ly, L3), hence

uPP? (1) = 6.
. under Neumann-Dirichlet boundary conditions along z direction, i.e., T = (p, p,ND), one has

ko = (L1,Ly,1), hence y(p’p’ND)(ko) =4+2cos[rt/(2L+1)].

3.1. The Gaussian Model on a Lattice for the Case d = 3
We recall that for this modela =1/2,v =1and v = 1/2 [34,55].

The Behavior of the Interaction Term U, (v )( B)

We set T = (p, p, ND) and use the short-hand notation T = ND for these boundary conditions.
Then, we perform in Equation (52) the limits L, L, — oo, keeping L3 = L fixed. For the interaction
term one then obtains

(ND) _ (p.p, ND _ 2k —1
Uz ()= lim Uy ZVZ[ (Be/B 1)+2<1 cosms— ), (6D)
where
1 7 7 d

Va(z) :zwlﬂdol---ﬁndﬂdln z+2£(1—cos€v) . 62)

The Behavior of the Interaction Term in the Bulk System

In accord with Equation (62), one has

Uco3(B) = V3[6(Bc/B—1)]. (63)

The Behavior of the Interaction Term in the Film System with Neumann-Dirichlet Boundary
Conditions

Explicitly, from Equation (61) one obtains

ZVZ{ ,36/,571)+2<17cosn§§11>} - (21?)2 /;del /:;(:192 S(ND) (B, L6y, 6,), (64)

with
SIND) (B 116y,6,) = Zl /B—1) il— 0,) 1—cosmk—1 (65)
B, L|61,02 n|6(B:./B P cos cos i)
This sum is of the form
SIND) (x, 1) = 1 lnL]_[i1 2| cosh(x) — cos 7121{;1 (66)
L s 2L+1]
where x = x(|61,62) is defined as
2
coshx =1+3(Bc/p—1)+ ) (1 —cosb,). (67)
v=1
The summations in Equation (66) can be performed using [53] the identity
cosh[(L+1/2)x] L 2k +1
=]]2|coshx— — .
cosh(x/2) 11 coshx —cos -+ 1 (68)
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With the help of the identity one derives

SIND) (3 1) — 1 In cosh[(L+1/2)x]

L cosh(x/2) 69)

Obviously lim; . SNP) (x, L) = x. Thus, the part of the excess free energy under Neumann —
Dirichlet boundary conditions that depends only on the interaction term is

A (B =0) = LU (B) ~ thos(p)]

L 7 T 1. cosh[(L+1/2)x]
T 8n2 lnd91 /7nd92 [L In cosh(x/2) x}

1 s T e—(2L+1)x 11
= g [0 [ He—xﬂ 70)
Thus, ﬁAfgj_,?) (B,h = 0) can be decomposed in the sum of ¢1 (L, ¢) and (L, ¢) where
1 s T
_ —(2L+1)x
$1(LB) = 5 /_nd91 /_ndez In e +1), 71)
and
Lg) = -1 /" de /n d6y In(e™* +1) 72)
82( ’ 87'[2 o 1 o 2 .
Let us consider the behavior of g1 and g in the scaling regime
xr =6(Bc/B—1)2L+1)2 = 0O(1). (73)

Let us first start with the function g1(L, ¢). Obviously, if x = O(1) then g; will be exponentially
small. Thus, we need to consider the regime (2L + 1)x = O(1). It follows that x < 1. From Equa-
tion (67) we obtain

1o _ Tro
1+ 537 =3(Be/p—1)+ 5 (63 +63). (74)
It follows that
2 _ _ 2 4 p2) _ _ 2
x°=6(Bc/p—1)+ (61 +67) =6(Bc/p—1)+17, (75)
where we have introduced polar coordinates. In terms of them g3 (L, ) becomes
1 /R
~ —(2L+1)x —(2L+1)x 2
(L, B) =~ 47r/0 ln( +1 dr? 47r/ G n(e +1)dx
1 ﬁLi2<—e_ﬁ) —I—L13(—e_\/7)
T Tan (2L +1)2 ’ 76)

where R can be defined from the constraint (277) x (277) = 47%> = 7R?,i.e., R = 2/
Next, we deal with g,(L, ¢). Taking into account that x; is small we derive

1 T T _x 1 T 7T 1
o(L ) = _W[ df)l/”dez In(e +1)g—ﬁ/ del/ d6, [an—zx]
1 24— [Tae, [ ao 1 2
ok [ e o [
BRIETT 2R At B " 6(Be/p—1)

3
_ 11n2+1{1<3< VX ) } 77)

2 12 2L +1

2



https://doi.org/10.20944/preprints202504.0448.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2025 d0i:10.20944/preprints202504.0448.v2

14 of 28

Note that for x; = O(1) one has that for the L-dependent part Ag> (L, B) of g» one has Ag> (L, ¢) o
L73,1i.e., Agy is one order of magnitude smaller that g;. Because of that, g, contributes only sub-leading
contributions to L-dependent part of the excess free energy and, therefore, to the Casimir force. Based
on the above, we will no longer be interested in the function g.

Summarizing the above, we conclude that the excess free energy can be written in a scaling form

1
B (B = 0) = [ Xexlapth ") 78)

where 4z is a non-universal constants, and Xex is an universal scaling function, t = (T — T.)/ T, where
T has the meaning of the temperature of the system, and T is its bulk temperature. From Equation (76),
taking into account that with v = 1/2 one has (2L +1)? ~ 412 ~ /¥, we identify that

Xex (x1) = 16% [\/xi LiZ(—e—Wf) +Lis (—e—ﬁ)]. (79)

The behavior of the field term P ( B, ha)

The dependence of the free energy on the field variable is given by the "field term", given by
Equation (57). For a homogeneous filed i and for (per) = (p, p,p) and ND = (p, p, ND) boundary
conditions, it is easy to obtain that

e for (p,p, p) boundary conditions

Per (k) =Y h(r Per (t,k) = \/L1LsLs 6k, 00k, 00ks0 h, (80)
reA
and
P (K ) = —— I (81)
6(Bc/p—1)
Obviously
h2
Po(B,h) = lim PP (K ;¢p) = ——o . 82
e for (p, p, ND) boundary conditions
j(ND (ND) _ LL (ND) D) 2k
A7) = L hal™ o =2 T Jkloékzohgcos[ r=1/2) o7 (ks)], 93" (ks) = 7 L33+1. (83)
Thus, setting k3 = k, 73 = r and L3 = L, for a film geometry we arrive at
2
(ND) 412 L ‘Zle cos [(r —-1/2) n%ﬁﬁ} ‘
P B = gran v k-1 (84)
PLEL+) S6(p/p—1) +2(1-cosmdizt)
It is easy to show that
: 2k—1
(2k—1) ) Sln(”2L+1 L)
2 cos( —-1/2) . (85)
Z (2L+1) Sin(%%’i%)
Thus, one has
L cof? (3351
PN (B, 1) = (1) (86)

" BL 2L+1 kz‘i6ﬁc/,3—1)+2(1—cosn§f+%)
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Let us consider the small k behavior of the above sum. One derives
2 L
(ND) h 1 1
P, (B ) ~ — Z
B L2L+1) = 2%-1)12 2%-1)72
k=1 [;T((ZL_H” 6(ﬁC/:B - 1) + [ngLJrl )]
4K (@2L+1) i 1
o B L = (2k—1)2[x; + 2(2k — 1)?]
W (2L+1)3 (1 tanh(/x;/2) 3
= 5L {fo{l_ Vxi/2 ]W(L )}' &7
In the limits x; — 0 and x; — oo for the behavior of the field term one obtains
1/24 + O(xy), xr —0;
h? (2L +1)3
PN (B ) = 5( 0l (88)
1/(2x¢) + Olexp(—v/x1)], x> 1.
When L — oo, then x; — oo, we obtain that
lim PP (8,1) = P (89)
e b P GpTB7p 1)
which indeed equals the bulk expression - see Equation (82).
From Equation (87) for the behavior of the susceptibility in the finite system we derive
(ND) _1QRL+1P° 1 [ tanh(y/%/2)
x. (B h)= R — 1 N (90)
According to the finite-size scaling theory [34,56]
X0 (8) = @, L7 X (agtLY), (1)

where a; and ag are non-universal constants, and X, is an universal scaling function, ¢t =
(T — T.)/T., where T has the meaning of the temperature of the system, and T, is its bulk
temperature. From Equation (90), taking into account that (2L + 1)3/L =~ 8L?, we identify that

y=2, v=1/2, and tL?=x,. (92)

It is clear that the field term in the free energy of the finite system will be of the same order as the
field term, i.e., & L3 if h o« L=3/2. In order to achieve that, we define a field dependent scaling
variable

xp = B V2(2L +1)32L h. (93)

In terms of it, Equation (87) becomes

2
ND X 1 tanh(+/x¢/2
P£ )(xh, Xt) = L—gXX(xt), where X, (x¢) = T 1- \;?t/z) . (94)

The behavior of the scaling function X (x;) is given in Figure 7.
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Figure 7. The behavior of the scaling function X, (x;).
Then for the excess free energy related to the field term, see Equation (51), one derives
2
ND) ND x; tanh X /2
BASNY (5,1) =~ L [P (1) — P (1)) = Lz;xg;) ©95)
t

3.2. The Behavior of the Casimir Force

Let us determlne the contributions of the interaction term AFCaS ( B, h = 0) and of the field term
Cas (,B h # 0). Obviously, one has

AFRD) (B, 1) = AFSD) (B, = 0) + AR (B, # 0). (96)

We start with determining the behavior of AF, C as ( B, h = 0). By definition, it is equal to

d ND
AF((ias?:)( ,hIO) E_EIBAfe(x,?,)(:B'h:O)' (97)
From Equation (70) we derive the exact expression

1o 4 x

Here we did not make any assumption bout L. Naturally, we will obtain a scaling form of
/SAFS;ISDS) (B,h = 0) only for L > 1. Then Equation (74) is valid and, after performing the
integration, we arrive at

ARG (B =0) = fm%{m(fe—ﬁ) + \/th(,e—\/x*f) _ %xtlog<e—m+1>}

1

= mXCasﬁ (xt), (99)

where

Xeas3 () = —SiT{Lis(—e\/’Tf) + V/aLip (e V) — %xt log eV +1) } (100)
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The behavior of the scaling function Xc,s(x¢, i = 0) is given in Figure 8. Obviously, the function
is positive, which means that the Casimir force is repulsive when the external field is zero. For the
Casimir amplitude we obtain

AOP) = Xeass(xr = 0,1 =0)/2 = 2-7(3). (101)

0035
0.030
0.025
0.020
0.015
0.010
0.005
0.000 - :

0 20 40 60 80 100

Xt

Xcas(xy)

Figure 8. The behavior of the scaling function Xcas(x¢) when i = 0.

Obviously, Equation (101) coincides with the corresponding result for the Gaussian model ob-
tained via studying the O(n), n = 1,d = 3 ®* model — see [14] (Equation (6.99)). Analogically,
after proper renaming of the scaling variable the expression Equation (100) of the scaling function
of the force coinsides with the corresponding one for the O(n), n = 1,d = 3 ®* model — see [14]
(Equation (6.104)).

Let us now determine the h-dependent part of the Casimir force. By definition, one has

d
ARG (B/11) = =51 BAFSS (/). (102)

Then, from Equation (95) one obtains

2 2 2

(ND) 9 | x;tanh(y/x/2) B xj, sech?(/x;/2)

CasB(,B h) - oL | 12 zx?/z — 2L2(1+2L) X ) (103)
1
= mXCasB(xtl Xp), (104)
where
x? | sech? 2

Xcasa(xt, xp) = _Zh [Sec(;t/xT/) <0. (105)

A visualization of Xc,3(y, x),) as a function of y for x;, = 1 is shown in Figure 9.
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0

XCas,3 (x5 X1)

Xt
Figure 9. The behavior of the scaling function Xc,s(xt, X, = 1). We observe that the force is attractive.

The total Casimir force is a sum of Xcas3(x¢), see Equation (100), and Xcas3(x¢, xj) given by
Equation (105). The plot of the result as a function of x; for x;, = 0.05 is shown in Figure 10. As we
see, the force can be both positive and negative, i.e., repulsive and attractive.

0.03 ] 0.0 —— I 7
£ 0.02 L —02 LT e
S S5 K Lo’ x;,=0
IL 0.01} 2 —0.4F /' -~°
= g -v v 'o' xh=0.15
S 0.00 Z ; .
= ;é’ -0.6| S xp=0.25
*5‘ -0.01¢ J/ 0.35
[ - xp=0.
~0.02° ;08 !
L . . . . . 1.0 ." . . T xh=0'55
0 20 40 60 80 100 ) 0.1 0.2 0.3 0.4 0.5
Xt Xt

Figure 10. The behavior of the scaling function of the total Casimir force as a function of y for several values of
xj,. Left panel: We see that for x;, = 0.05 the force is attractive very near the critical temperature, then becomes
repulsive with increase of x; (i.e., of T). Right panel: It is clear, that for zero field the force is repulsive, then —
for small values of x;, — the force changes sign from attractive to repulsive with the increase of x; (i.e., of the
temperature), while for large values of x;, the force becomes attractive for all values of T (i.e., x;).

The overall 3D behavior of the force as a function both on x; and x;, is given in Figure 11.
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0.035
0.030
0.025
0.020
0.015

Figure 11. The behavior of the scaling function Xc,(x¢, xj,). Here x; € [0.1,0.5] and x;, € [—0.1,0.1].

4. The Casimir Force Within the Mean-Field Model

We start by defining the mean-field model used in the current study.

4.1. The Ginzburg-Landau Functional

In the present work we consider the standard ¢* Ginzburg-Landau functional

L
Fllt,h, L] = /0 L(¢,¢'|7,h) dz (106)

with / 1p 1 o, 1 4
L, ¢t h) =3¢+ 519" + 1 8¢" — ho. (107)

Here L, ¢ € RY, while 7,h € R, z € (0,L) and ¢ = ¢(z) are the independent and dependent
variables, respectively, and the prime indicates differentiation with respect to the variable z.
The functional (106) describes a critical system of Ising type in a film geometry oo? x L, where
the film thickness L is supposed to be along the z axis. In Equation (106), ¢(z|7,h, L) is the order
parameter of the system, which is assumed to depend on the perpendicular position z € (0, L)
only, g is the bare coupling constant, and T = (T — T, ) / T is the bare reduced temperature, and / is
the external ordering field. Given 7, h and L, the physical state of the regarded system is described
by the minimizer of the respective Ginzburg-Landau functional F[¢; T, 1, L] given above whose
extremals are determined by the solutions of the corresponding Euler-Lagrange equation
d oL oL

In case the Lagrangian density £ is defined by Equation (107), Equation (108) reads
0" —¢[r+gcp2] +h=0. (109)
Multiplying Equation (109) by ¢’ and integrating once over z one obtains that
Ly Lo Lo
Plp] = 5 — 574> — 184" + g (110)

is a first integral of Equation (109), cf., e.g., [14]. This means that P is a constant on any smooth
solution ¢(z|7,h, L) of the Euler-Lagrange Equation (109).
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16_(h Xp
the phase diagram of the bulk system phase diagram of the finite system
o Dirichlet- Neumann bc o
5- _g film geometry 5 _g
phase A 5 S
(+) phase (0,0) g phase A (+) phase (- 11:2/4,0) g
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Figure 12. Phase diagrams. Left panel: The phase diagram of the bulk system. Right panel: The phase diagram
of the finite system with Dirichlet-Neumann boundary conditions. In the bulk system a phase transition of first
order happens when crossing the phase coexistence line that is at ¥, = 0 and spansfor T € (0,T =T;). At T =T
the system exhibits a second order phase transition. In the finite system the coexistence line is at X;, = 0 and spans
for T € (0,T = T, ). The second order phase transition happens at T = T, = (—7%>/4,0). Note the change with
Dirichlet-Dirichlet boundary conditions where the critical point is at T, ; = (—72,0).

In general, the thermodynamic Casimir force Fc,s(T, 1, L) in such a system is the excess pressure,
over the bulk one, acting on the boundaries of the finite system, which is due to the finite size of

that system, i.e.,
Fcas(T,h, L) = PL(T,h) — Py(T, h). (111)

Here Py, is the pressure in the finite system, while P, is that one in the infinite system.
Now, assuming that the thickness L of the film is free to move, the variation 6 F of the free energy
Fl¢|t, h, L] of the finite system is given as follows

L
. (112)

LraL d oL L ,
5F = /O <8¢> - dzaq),)mdz + L(p,(sq)‘o —(9'Ly - E)(Sz‘
(see, e.g., [57] (p. 54), [58] (p. 260) and [59]), where 6z and J¢ are the variations of the independent

and dependent variables, while
T =¢'Ly — L (113)

is the one-dimensional counterpart of the stress tensor (see, e.g., [60,61]). Relation (112) estimates
the change of the finite-size contribution to the free energy of the system corresponding to a small
variation of the variables including the variation of the film thickness L. In this sense, T.|; can
be interpreted (see, e.g., [51,62]) as the pressure in the finite system, that is

Pr = Ty|;. (114)
On the other hand, taking into account Equations (107) and (113), one can see that
I, = P[¢] (115)

and hence T, is a constant on any smooth solution ¢(z|7,h,L) of the Euler-Lagrange Equa-
tion (109) including the minimizer of the Ginzburg-Landau functional (106). Thus, the pressure
in the finite system is

1 2 1 1
PL(T 1) = 5@in” — 38Pmin = 5™ Pmin + hmin (116)


https://doi.org/10.20944/preprints202504.0448.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2025 d0i:10.20944/preprints202504.0448.v2

21 of 28

where ¢,,;,, is the foregoing minimizer.
As for the bulk system, it is easy to see following the same way of reasoning that the corresponding
pressure is

1 1
Py(T,h) = =186, — 5T¢; + oy (117)

Here, the value ¢, of the order parameter of the bulk system is determined as the constant solution
of Equation (109), i.e., as the root of the cubic equation

—Pp [T+g¢ﬂ +h =0, (118)
that minimizes
1 -, 1 4
Ly = 57¢), + ;180 — . (119)
Of course, ¢, does not depend on the boundary conditions at all. Let us note that P, = —L,,

i.e., P, has its maximum over the solution ¢, of the cubic equation for (118).

Obviously, the relation (116) does not depend on the boundary conditions applied on the finite
system too. This dependence arises solely from the dependency of the order parameter profile
that minimizes the particular boundary value problem considered.

In the light of the above it is evident that once the order parameter profile ¢,,;, and its bulk value
¢y are known in analytic form for given values of the parameters T and #, then the respective
Casimir force is determined in an exact manner by Equation (111).

In the current article we consider the Dirichlet-Neumann boundary conditions meaning that

oz =0t 1) =0 and Ei¢(z|T,h,L)| 0. (120)
z=1

In addition, v is a critical exponent characterizing the behavior of the correlation length, while A
is another exponent related to the behavior of, say, order parameter as a function of the external

field h.
It is convenient to introduce new parameters
TV /2ghLAY
Xt = T i/’ Xp = giA/V (121)
[ [So,1]
and variables
2
=z/L,  ¢(z)= \[gLﬁ/VXm(élxt, Xp), (122)

where B = v = 1/2 and A = 3/2, while ¢ and &, are the respective amplitudes of the
correlation length along the T and & axes (see, e.g., [14]). In terms of these new parameters and
variables, Equations (106), (107), (109) and (110) becomes

1 1
Flnlxt ol = o [0 Xl 30142, (123)
L[ X, Xy, 23] = X2(2) + X4(D) + 1X(0) — 14X (0), (124)
X (©) = Xu(@) [+ 2520)] - 2, (125)

and
P[Xu ()] = X (3) — X (2) — x:X3,(0) + 23X (2), (126)
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respectively. The primes here and hereafter indicate differentiation with respect to the variable
¢ € [0,1]. Then, according to Equations (111), (116) and (117), the expression for the Casimir force
Xcas(xt, x,) written by means of the new parameters (121) and variables (122) reads

Xeas(t,3) = X2 = (R = Xp) =% (X3 = X3) + 20 (R = X0), (127)

where X, and X, are the minimizers of the functional (123) and its “bulk counterpart” corre-
sponding to x; and x;,.

As mentioned above, in the present article we assume that the system is subject to Dirichlet-
Neumann boundary conditions, that is

Xm(Z =0|xt,x,) =0 and X7, (C = 1|x, xp,) = 0. (128)

In other words, we are interested in the solution of Equation (125) that meet the conditions (128).
It should be remarked that exact results associated with the Casimir effect have been derived in
the cases of (+,+), (+, —) and Dirichlet-Dirichlet boundary conditions - see Ref. [14] for a review.

4.2. The Casimir Force for Zero External Field

In Ref. [63] it has been shown that for x; € (—oco, — 7% /4] there are tow order parameter profiles
that minimize the functional (123) in the case of Dirichlet-Neumann boundary conditions and
zero external field. They can be expressed using an auxiliary parameter k € [0,1] as follows

Xn(7) = £kK(k)sn(ZK(k)|k) (129)
at
Xt = — (k2 + 1)1<(k)2, (130)

where K(-) is the complete elliptic integral of the first kind and sn(-|-) is the sine Jacobi elliptic
function. Simultaneously, it is easy to see that in this case

X, = \2 (k2 + 1)K (k)>. (131)

Now, substituting Equations (129) and (131) into Equation (127) one obtains

XCas(xtr Xp = O) - (k2 - 1)2K(k)4/ (132)

1
4
for the Casimir force at x; € (—oo, —712/4] given by Equation (130).

If x;, € (—7%/4,0], then Xm = 0, X, = —v/—x;/2 and hence, according to Equation (127),
the expression for the Casimir force reads

2
Xt

Xcas<xt, Xp = 0) = — 4 (133)

Finally, if x; € (0, 00), then Xcas(xt, x;, = 0) = 0. Combining these results one can write down

LIRS, xe (—oo —”ﬂ/

Xcas (%1, % = 0) = —x2/4, xe (-39, (134)
O, Xt € (0, OO)

The behavior of the scaling function Xc,s(x¢, x5, = 0) for x; € [—30,30] is depicted in Figure 13.
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Figure 13. The behavior of the scaling function Xc,s(xt, x;, = 0) for x; € [—30,20]. We observe that the force is
attractive, contrary to the corresponding result for the Gaussian model.

4.3. The Casimir Force for Nonzero External Field

In Ref. [63] it has been shown, following [64] (p. 454), that each solution of Equation (125) that
meets Dirichlet-Neumann boundary conditions can be written in the form

6Xm,r (x¢ +2X2,,) — 3xy,

X x¢, X5, X = Xmr+
mEle X Xonr) = Xons 120(8 — 1;82,83) — (xt + 6X3,,)

, (135)

where Xy, » = Xynr(xt, xp,) is a real number that depends only on the values of the parameters x;
and x;. Here p(v; g2, 3) is the Weierstrass elliptic function corresponding to the invariants g, and
g3 given as follows

1
& = Ex% — Xy (X?n,r 4+ x: Xy — xh)/

1
%=1 [27x§ 4223 + 722, X s (X,%” X Xy — xh)] . (136)

It is easy to see that X, is the value of the order parameter at the right end of the sys-
tem since p(v;¢n,g3) tents to infinity when v tends to zero. It is also easy to see that
X, (0 = 1|xt, %, Xmy) = 0, ie., each function of the form (135) meets the boundary con-
dition imposed on the right end of the system. The only remaining requirement that
Xm(C — 0]x¢, xp, Xim,r) = 0 leads to an transcendental equation from where we have to determine
X,r. Usually, one obtains several solution of this equation. However, the one that corresponds
to the physical reality is the one that minimizes the energy given by Equations (123) and (124).
In this way we find the order parameter profile X, as a function of the parameters x; and x;,. We
also obtain X}, as a function of x; and x;,.

Finally, using Equation (127) we obtain the Casimir force Xc,s(x¢, xj).
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Figure 14. The behavior of the scaling function Xc,s(x¢, xp,), x¢ € [—30,20] for several values of xj,. We observe
that the force is attractive.

0.
-0.5
0.0,
XCas(xt’ xh) -0.5\ 20 -1.0
-1.0\
~-1.5| L5

0

Figure 15. The behavior of the scaling function Xcas(xt, x1,), x¢ € [—30,20], x;, € [—30,0]. We observe that the
force is attractive.

5. Conclusions

As reported above, we have obtained exact results for the Casimir force in two basic statistical
mechanical models: the Gaussian and the mean field model. In the case of the Gaussian model we
performed the calculations for two realizations: a continuum version, see Section 2, and a lattice
version — see Section 3 realizations. The mean-field model is considered in Section 4. The models
are considered under Neumann-Dirichlet boundary conditions in the presence of an external
magnetic field /.
We summarize our main results as follows:
D We derived exact closed form expression for the free energy of the Gaussian model in
both the continuum version (CGM) and the lattice formulation of the model (LGM).
The results for the Casimir force can be written as a sum of
i) expressions pertinent to the i = 0 case - see Equation (33) for CGM and Equa-
tion (100) for the LGM.
ii) equations for the field-dependent parts of the force — see Equation (41) for the
CGM, and Equation (105) for the LGM.
We observe that these expression are identical, as is to be expected on the ground of the
universality hypothesis, provided proper definitions of the scaling variables are used.
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(1D The behavior of the Casimir force in the CGM is shown in Figures 3 and 5, and the
behavior for the LGM - in Figures 8-11. We observe that for & = 0 the force is repulsive
and, depending on magnitude of F, it can be both repulsive or attractive for 1 # 0.
Contrary to this behavior, we observe that the force in the MFM is always attractive -
both for I = 0, see Figure 13, as well as for /1 # 0 — see Figures 14 and 15.

From all of the above one can, at the very least, conclude the following:

(*) The sign of the Casimir force for the GM is not necessarily the same for i = 0, for which case
they are very well known - see, e.g., [14,34,37,65], as it is for h # 0.

(**) The predictions of the “workhorse" of statistical mechanics — the mean-field approach
sometimes—in particular in the studies of the Casimir force—can be wrong even with respect
to the predicted sign of the force.

The results presented in the current article are based on exact analytical expressions for both the
Gaussian and mean-field model.
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