

1 Article

# 2 Grey relational analysis for hesitant fuzzy sets and 3 interval-valued hesitant fuzzy sets with applications 4 to MADM problems

5 Xin Guan, Guidong Sun\*, Xiao Yi\*, Jing Zhao

6 Department of Electronics and Information Engineering, Naval Aeronautical and Astronautical University,  
7 Yantai 264001, China; sdytsgd@163.com

8 \* Correspondence: sdwhsgd@163.com, yxgx-gxyx@163.com; Tel.: +86-13001603600

9 **Abstract:** Quantitative and qualitative fuzzy measures have been proposed to hesitant fuzzy sets  
10 (HFSs) from different points. However, few of the existing HFSs fuzzy measures refer to the grey  
11 relational analysis (GRA) theory. Actually, the GRA theory is very useful in the fuzzy measure  
12 domain, which has been developed for such the intuitionistic fuzzy sets. Therefore, in this paper,  
13 we apply the GRA theory to the HFSs and interval-valued hesitant fuzzy sets (IVHFS) domain. We  
14 propose the HFSs grey relational degree, HFSs slope grey relational degree, HFSs synthetic grey  
15 relational degree and IVHFSs grey relational degree, which describe the closeness, the variation  
16 tendency and both the closeness and variation tendency of HFSs and closeness of IVHFSs,  
17 respectively, greatly enriching the fuzzy measures of HFSs. Furthermore, with the help of the  
18 TOPSIS method, we develop the grey relational based MADM methodology to solve the HFSs and  
19 IVHFSs MADM problems. Finally, combined with two practical MADM examples about energy  
20 policy selection with HFSs information and emergency management evaluation with IVHFSs  
21 information, we obtain the most desirable decision results, and compared with the previous  
22 methods, the validity, effectiveness and accuracy of the proposed grey relational degree for HFSs  
23 and IVHFSs are demonstrated in detail.

24 **Keywords:** Grey relational analysis (GRA); Hesitant Fuzzy Sets (HFSs); Interval-valued hesitant  
25 fuzzy sets (IVHFS); grey relational degree; grey relational based MADM methodology

## 27 1. Introduction

28 The introduction should briefly place the study in a broad context and highlight why it is  
29 important. It should define the purpose of the work and its significance. The current state of the  
30 research field should be reviewed carefully and key publications cited. Please highlight  
31 controversial and diverging hypotheses when necessary. Finally, briefly mention the main aim of the  
32 work and highlight the principal conclusions. As far as possible, please keep the introduction  
33 comprehensible to scientists outside your particular field of research. References should be  
34 numbered in order of appearance and indicated by a numeral or numerals in square brackets, e.g.,  
35 [1] or [2,3], or [4–6]. See the end of the document for further details on references.

36 In 2009, Torra [1, 2] originally introduced the hesitant fuzzy sets (HFSs) and several basic  
37 operations for it. HFSs is one of the most efficient decision making techniques to deal with imprecise  
38 and vague information and a growing number of studies focus on not only the properties but also  
39 the applications of it.

40 Xia and Xu [3, 4], Liao and Xu [5, 6] first introduced some basic operations, aggregation  
41 operators, score function and variance for HFSs. Afterwards, Xu and Xia [7–9] proposed a variety of  
42 distance, similarity, entropy and correlation measures for hesitant fuzzy sets. Farhadinia [10] also  
43 investigated the relationship between the distance, similarity and entropy measure for HFSs and  
44 developed division and subtraction formulas for HFSs [11]. Li, Zeng and Zhao [12] introduced the  
45 concept of hesitance degree for HFE and presented some new distance measures between HFSs

46 which contained the hesitate degrees, later they applied these new distances to solve pattern  
47 recognition problems [13]. Zhao, Xu and Liu [14] proposed a new axiomatic framework of entropy  
48 measures for HFEs by taking fully into account two faces of uncertainty associated with an HFE.  
49 Chen, Xu and Xia [15], Liao, Xu and Zeng [16] proposed some novel correlation coefficients of  
50 hesitant fuzzy sets for clustering analysis and medical diagnosis.

51 Besides a variety of operations, properties and fuzzy measures on HFSs, the hesitant fuzzy sets  
52 has shown its advantages in such the real fields as decision-making [3, 4, 6, 9 16-21], feature selection  
53 [22], pattern recognition [13], cluster analysis [15, 16] and linguistic computing [23-25]. He et al [17]  
54 first introduced the expected value and the geometric average value of hesitant multiplicative  
55 element (HME) to group decision making problems. Xu and Zhang [18] developed a novel approach  
56 based on TOPSIS and the maximizing deviation method for solving MADM problems with hesitant  
57 fuzzy information. Qin, Liu and Pedrycz [19] investigated multiple attribute decision making  
58 (MADM) problems with hesitant fuzzy attribute based on Frank triangular norms. Zhang et al [20]  
59 proposed an interval programming method for solving MAGDM problems with hesitant fuzzy  
60 alternatives based on LINMAP. Ashtiani and Azgomi [21] proposed a hesitant fuzzy multi-criteria  
61 decision making based computational trust model capable of taking into account the fundamental  
62 building blocks corresponding to the concept of trust. Ebrahimpour and Eftekhari [22] proposed an  
63 innovative method to deal with feature subset selection with HFSs based on Maximum Relevancy  
64 and Minimum Redundancy approach. Rodríguez, Martínez and Herrera et al [23] introduced the  
65 concept of a hesitant fuzzy linguistic term set (HLFSs) to provide a linguistic and computational  
66 basis. Liao et al [24] developed a method to solve the MCDM problem within the context of HLFSs.  
67 Wang et al [25] developed a likelihood-based TODIM approach for the selection and evaluation with  
68 multi-hesitant fuzzy linguistic information.

69 Chen, Xu and Xia [26] extended the HFSs and first introduced the interval-valued hesitant  
70 fuzzy set (IVHFS) to describe uncertain evaluation information in group decision making (GDM)  
71 processes, presented some operational laws and a score function for IVHFS and also proposed  
72 correlation coefficients for it [15]. Subsequently they [27] derived the properties and relationships of  
73 fundamental operations on IVHFSs for Algebraic t-norm and t-conorm and presented the operations  
74 based on Archimedean t-norm and t-conorm and investigated their properties. Farhadinia [28, 11]  
75 introduced the division and subtraction formulas for IVHFSs and discussed the distance, similarity  
76 and entropy measure of IVHFSs and applied into clustering analysis. Fernández, Alonso and  
77 Bustince et al [29, 30] introduced finite interval-valued hesitant fuzzy sets, defined a new order,  
78 entropy between them considering the fuzziness, lack of knowledge and hesitate and applied in  
79 the business selection. Verma [31] proposed four new operations on IVHFS and study their  
80 properties and relations in details. Gitinavard, Mousavi and Vahdani [32] introduced a novel  
81 multi-criteria weighting and ranking model with interval-valued hesitant fuzzy setting and applied  
82 to location and supplier selection problems. Zhang [33] developed two interval-valued hesitant  
83 fuzzy QUALIFLEX outranking methods to handle MCDM problems concerning the selection of  
84 green suppliers. Jin, Ni and Chen et al [34] developed two interval-valued hesitant fuzzy prioritized  
85 aggregation operators with the help of Einstein operations to investigate interval-valued hesitant  
86 fuzzy multi-attribute group decision-making problems. Zhang, Li and Mu et al [35] proposed a new  
87 rough set model that combines interval-valued hesitant fuzzy sets with multigranulation rough sets  
88 over two universes and applied to steam turbine fault diagnosis.

89 Despite of the qualitative and quantitative studies of HFSs and IVHFSs, the present work for  
90 them mainly focuses on such fuzzy measures as distance, similarity, entropy and correlation  
91 coefficients measure, few studies referred to the critical fuzzy measure over HFSs and IVHFSs: grey  
92 relational analysis. Meanwhile the correlation coefficients measure can only calculate the linear  
93 fashion of two HFSs and IVHFSs, they can not measure the closeness. Therefore, the applications of  
94 the HFSs and IVHFSs correlation coefficients are controversial, they are only one aspect of the real  
95 fuzzy measures. For the above reasons, it is essential to apply the grey relational analysis for HFSs  
96 and IVHFSs to measure the closeness of the sets.

97        Actually, the traditional grey relational analysis of the fuzzy set takes an important occupation  
 98        in the fuzzy measure field. It can measure the closeness of two fuzzy sets just like the distance and  
 99        similarity measure. Many researchers have focused on the grey relational analysis of fuzzy set and  
 100       proposed several approaches to solve decision making problems. Wei [36-39] established a series of  
 101       grey relational analysis (GRA) method to investigate the multiple attribute decision-making  
 102       problems with intuitionistic fuzzy information, 2-tuple linguistic information and the dynamic  
 103       hybrid multiple attribute decision information. Zhang, Liu and Zhai [40], Zhang, Jin and Liu [41],  
 104       Guo [42] also developed the grey relational analysis method for solving MCDM problems with  
 105       interval-valued triangular fuzzy numbers, intuitionistic trapezoidal fuzzy number and hybrid  
 106       multiple attribute information respectively. Kong, Wang and Wu [43] presented a new algorithm  
 107       based on grey relational analysis to discuss fuzzy soft set decision problems. Kuo and Liang [44]  
 108       combined the concepts of VIKOR and grey relational analysis to present an effective fuzzy MCDM  
 109       method. Tang [45], Li, Wen and Xie [46] proposed a novel fuzzy soft set approach in decision  
 110       making based on grey relational analysis and Dempster-Shafer theory of evidence respectively.  
 111       Unfortunately, only a few of these grey relational analyses referred to HFSs and IVHFSs, so grey  
 112       relational analysis for HFSs and IVHFSs is necessary and urgent. Wei and Li [47] establish an  
 113       optimization model based on GRA to get the weight vector of the HFSs criteria, Sun, Guan, Yi and  
 114       Zhou [48] defined the difference and slope of the HFSs to form a grey relational degree, which is  
 115       inspiring to be used in our this paper.

116       Consequently, the motivation of this paper is to extend the concept of grey relational analysis to  
 117       HFSs and IVHFSs and develop a methodology to solve MADM problems with HFSs and IVHFSs  
 118       information. The novelties of this paper concentrate on the five aspects: (1) Investigate the grey  
 119       relational analysis to HFSs and propose the grey relational coefficient and grey relational degree of  
 120       the HFSs for the first time. (2) Propose the slope grey relational coefficient and slope grey relational  
 121       degree of the HFSs. (3) Propose the synthetic grey relational coefficient and synthetic grey relational  
 122       degree of the HFSs. (4) Extend the grey relational analysis to IVHFSs and proposed the grey  
 123       relational coefficient and grey relational degree of the IVHFSs. (5) Develop a MADM methodology  
 124       with HFSs and IVHFSs information.

125       The rest of the paper is as follows: Section 2 briefly reviews the concepts of HFSs, IVHFSs and  
 126       grey relational analysis theory. In Section 3, we define the grey relational coefficient and grey  
 127       relational degree for HFSs for the first time and propose some extended HFSs grey relational  
 128       expression as the slope and synthetic grey relational degree. Furthermore, we extend the grey  
 129       relational analysis to IVHFSs. In Section 4, we develop a hesitant fuzzy MADM methodology based  
 130       on the grey relational analysis between HFSs and IVHFSs. In Section 5, we apply the proposed grey  
 131       relational hesitant fuzzy MADM methodology to the practical MADM problems. Finally, the paper  
 132       ends with some concluding remarks and future challenges in Section 6.

## 133       2. Preliminaries

134       In this section, we recall the HFSs, IVHFSs and grey relational analysis theory.

### 135       2.1. Hesitant fuzzy sets and interval-valued hesitant fuzzy sets

136       When an expert makes a decision, he may hesitate to choose the exact membership degree in [0,  
 137       1]. For such a circumstance where there are several membership degrees of one element to a set,  
 138       Torra [1, 2] developed the hesitant fuzzy set (HFS), which is a kind of generalized fuzzy set where  
 139       the membership degree of an element to a certain set can be illustrated as several different values  
 140       between 0 and 1. HFSs is good at dealing with the situations that people have disagreements or  
 141       hesitancy when deciding something.

142       **Definition 1.** [1, 2]. Suppose that  $X = \{x_1, x_2, \dots, x_n\}$  is a reference set, a hesitant fuzzy set (HFS)  
 143        $A$  on  $X$  is defined in terms of a function  $h_A(x)$  when applied to  $X$  returns a subset of [0, 1], i.e.

$$144 \quad A = \{\langle x, h_A(x) \rangle | x \in X\} \quad (1)$$

145 Where  $h_A(x)$  is a set of some different values in  $[0, 1]$ , representing the possible membership  
 146 degrees of the element  $x \in X$  to the set  $A$ . For convenience, Xia and Xu [5] call  $h_A(x)$  a hesitant  
 147 fuzzy element (HFE), which is a basic unit of HFS.

148 In many real problems, due to insufficiency in available information, it may be difficult to  
 149 exactly quantify the attribute with a crisp number, but can be represented by an interval number  
 150 within  $[0, 1]$ . Thus, Chen, Xu and Xia [26] introduced the concept of interval-valued hesitant fuzzy  
 151 sets (IVHFSs), which permit the membership degrees of an element to a given set to have a few  
 152 different interval values.

153 **Definition 2.** [26]. Suppose that  $X = \{x_1, x_2, \dots, x_n\}$  is a reference set,  $D[0,1]$  is the set of all closed  
 154 subintervals of  $[0, 1]$ . An interval-valued hesitant fuzzy sets (IVHFSs)  $\tilde{A}$  on  $X$  is defined as

155 
$$\tilde{A} = \{\langle x, \tilde{h}_{\tilde{A}}(x) \rangle \mid x \in X\} \quad (2)$$

156 Where  $\tilde{h}_{\tilde{A}}(x)$  denotes all possible interval-valued membership degrees of the element, is a set of  
 157 some different values in  $[0, 1]$ , represents the possible membership degrees of the element  $x \in X$  to  
 158 the set  $\tilde{A}$ . For convenience, they call  $\tilde{h}_{\tilde{A}}(x)$  an interval-valued hesitant fuzzy element (IVHFE),  
 159 which is a basic unit of IVHFS.

160 
$$\tilde{h}_{\tilde{A}}(x) = \{\tilde{\gamma} \mid \tilde{\gamma} \in \tilde{h}_{\tilde{A}}(x)\} \quad (3)$$

161 Where  $\tilde{\gamma}$  is an interval number,  $\tilde{\gamma} = [\tilde{\gamma}^L, \tilde{\gamma}^U]$ ,  $\tilde{\gamma}^L$  and  $\tilde{\gamma}^U$  represent the lower and upper limits of  $\tilde{\gamma}$ ,  
 162 respectively.

163 *2.2. Grey relational analysis Theory*

164 Grey relational theory was originally introduced by Deng [49]. It has been widely applied to  
 165 decision making, pattern recognition and some other problems under uncertainty, particularly  
 166 under the discrete data and fuzzy information.

167 **Definition 3.** [47]. For reference set  $X_0 = (x_0(j), j = 1, 2, \dots, k)$  and  $X_i = (x_i(j), j = 1, 2, \dots, k)$ , the grey  
 168 relational coefficient is defined by

169 
$$r(x_0(j), x_i(j)) = \frac{\min_i \min_j |x_0(j) - x_i(j)| + \rho \cdot \max_i \max_j |x_0(j) - x_i(j)|}{|x_0(j) - x_i(j)| + \rho \cdot \max_i \max_j |x_0(j) - x_i(j)|} \quad (4)$$

170 Where  $\rho$  is the distinguished coefficient,  $\rho \in [0, 1]$ .

171 The grey relational degree is defined as:

172 
$$\gamma(X_0, X_i) = \frac{1}{k} \cdot \sum_{j=1}^k r(x_0(j), x_i(j)) \quad (5)$$

173 Take the weight into consideration, let the weight vector of  $X_i$  is  $w = \{w_1, w_2, \dots, w_k\}$ ,  $\sum_{j=1}^k w_j = 1$ ,  
 174  $j = 1, 2, \dots, k$ , the grey relational degree is extended to the weighted grey relational degree:

175 
$$\gamma(X_0, X_i) = \sum_{j=1}^k w_j \cdot r(x_0(j), x_i(j)) \quad (6)$$

176 The traditional grey relational theory describes the closeness of two variables, which is  
 177 necessary in the decision making and pattern recognition fields. In this paper, we will extend it to  
 178 the HFSs and IVHFSs domain.

179 *3. Grey relational analysis for HFSs and IVHFSs*

180 In this section, we apply grey relational theory to the HFSs and IVHFSs domain and define  
 181 some novel HFSs expressions based on grey relational theory.

182 *3.1. Grey relational definition of HFEs and HFSs*

183 **Definition 4.** For two hesitant fuzzy sets on the fixed set  $X = \{x_1, x_2, \dots, x_n\}$ ,  
 184  $A = \{\langle x_i, h_A(x_i) \rangle \mid x_i \in X, i = 1, 2, \dots, n\}$  and  $B_j = \{\langle x_i, h_{B_j}(x_i) \rangle \mid x_i \in X, i = 1, 2, \dots, n, j = 1, 2, \dots, m\}$  with  
 185  $h_A(x_i) = \{\gamma_{A,i1}, \gamma_{A,i2}, \dots, \gamma_{A,il_{Ai}}\}$ ,  $h_{B_j}(x_i) = \{\gamma_{B,j1}, \gamma_{B,j2}, \dots, \gamma_{B,jl_{Bj}}\}$ ,  $i = 1, 2, \dots, n$ ,  $j = 1, 2, \dots, m$ , then we define  
 186 the grey relational coefficient between HFEs  $h_A(x_i)$  and  $h_{B_j}(x_i)$  as:

$$187 r(h_A(x_i), h_{B_j}(x_i)) = \frac{\min_j \min_i \{d(h_A(x_i), h_{B_j}(x_i))\} + \rho \cdot \max_j \max_i \{d(h_A(x_i), h_{B_j}(x_i))\}}{d(h_A(x_i), h_{B_j}(x_i)) + \rho \cdot \max_j \max_i \{d(h_A(x_i), h_{B_j}(x_i))\}} \quad (7)$$

188 Where  $d(h_A(x_i), h_{B_j}(x_i))$  is the distance between HFEs  $h_A(x_i)$  and  $h_{B_j}(x_i)$ , which can be calculated  
 189 according to following equations:

$$190 d_{hne}(h_A(x_i), h_{B_j}(x_i)) = \left[ \left( \frac{1}{l_{Ai}} \sum_{k=1}^{l_{Ai}} |\gamma_{Aik} - \gamma_{B,jk}|^2 \right) \right]^{1/2} \quad (8)$$

191 Actually, there have been proposed a variety of distance measures for HFEs, for more detail, please  
 192 refer to reference [7, 8, 11-13].

193 Based on grey relational coefficient between HFEs, the grey relational degree between HFSs  $A$   
 194 and  $B_j$  is defined as:

$$195 \gamma(A, B_j) = \frac{1}{n} \cdot \sum_{i=1}^n r(h_A(x_i), h_{B_j}(x_i)) \quad (9)$$

196 In practical applications, the elements  $\{x_1, x_2, \dots, x_n\}$  in the universe  $X$  have different weights.

197 Take the weight into consideration, let the weight vector of  $X$  is  $w = \{w_1, w_2, \dots, w_n\}$ ,  $\sum_{i=1}^n w_i = 1$ ,  
 198  $i = 1, 2, \dots, n$ , we extend the HFSs grey relational degree to the weighted HFSs grey relational degree  
 199 as:

$$200 \gamma_w(A, B_j) = \sum_{i=1}^n w_i \cdot r(h_A(x_i), h_{B_j}(x_i)) \quad (10)$$

### 201 3.2. Slope grey relational definition for HFEs and HFSs

202 The HFSs grey relational degree in section 3.1 mainly focus on the closeness of the two HFSs,  
 203 here we extend a novel HFSs grey relational degree called HFSs slope grey relational degree to  
 204 represent the linear fashion of HFSs. As a departure, we introduce two new concepts of HFEs and  
 205 HFSs. Sun et al. [48] defined the difference and slope of the HFSs.

206 **Definition 5.** [48] For hesitant fuzzy sets  $A = \{\langle x_i, h_A(x_i) \rangle \mid x_i \in X, i = 1, 2, \dots, n\}$  with  
 207  $h_A(x_i) = \{\gamma_{A,i1}, \gamma_{A,i2}, \dots, \gamma_{A,il_{Ai}}\}$  on the fixed set  $X = \{x_1, x_2, \dots, x_n\}$ , we define the difference of the HFSs as

$$208 \Delta A = \{\langle x_i, \Delta h_A(x_i) \rangle \mid x_i \in X, i = 1, 2, \dots, n\} \quad (11)$$

209 Where  $\Delta h_A(x_i)$  denotes the difference of the HFEs.

$$210 \Delta h_A(x_i) = \{\Delta \gamma_{A,i1}, \Delta \gamma_{A,i2}, \dots, \Delta \gamma_{A,ik}, \dots, \Delta \gamma_{A,il_{Ai}-1}\} \quad (12)$$

211 Where

$$212 \Delta \gamma_{Aik} = \gamma_{Aik+1} - \gamma_{Aik}, k = 1, 2, \dots, l_{Ai} - 1 \quad (13)$$

213 **Definition 6.** [48] For hesitant fuzzy sets  $A = \{\langle x_i, h_A(x_i) \rangle \mid x_i \in X, i = 1, 2, \dots, n\}$  with  
 214  $h_A(x_i) = \{\gamma_{A,i1}, \gamma_{A,i2}, \dots, \gamma_{A,il_{Ai}}\}$  on the fixed set  $X = \{x_1, x_2, \dots, x_n\}$ , the difference of  $A$  is  
 215  $\Delta A = \{\langle x_i, \Delta h_A(x_i) \rangle \mid x_i \in X, i = 1, 2, \dots, n\}$  with  $\Delta h_A(x_i) = \{\Delta \gamma_{A,i1}, \Delta \gamma_{A,i2}, \dots, \Delta \gamma_{A,ik}, \dots, \Delta \gamma_{A,il_{Ai}-1}\}$ , we define the  
 216 slope of the HFSs as

$$217 A' = \{\langle x_i, h_{A'}(x_i) \rangle \mid x_i \in X, i = 1, 2, \dots, n\} \quad (14)$$

218 Where  $h_{A'}(x_i)$  denotes the slope of the HFEs.

219  $h_A(x_i) = \{\gamma_{A_{i1}}, \gamma_{A_{i2}}, \dots, \gamma_{A_{ik}}, \dots, \gamma_{A_{il_{Ai}-1}}\}$  (15)

220 Where

221  $\gamma_{A_{ik}} = \frac{\Delta\gamma_{A_{ik}}}{\bar{h}_A(x_i)} = \frac{\gamma_{A_{ik+1}} - \gamma_{A_{ik}}}{\bar{h}_A(x_i)}, k = 1, 2, \dots, l_{Ai} - 1$  (16)

222 Where  $\bar{h}_A(x_i)$  is the mean of the HFE  $h_A(x_i)$

223  $\bar{h}_A(x_i) = \frac{1}{l_{Ai}} \sum_{k=1}^{l_{Ai}} \gamma_{A_{ik}}, i = 1, 2, \dots, n$  (17)

224 The difference and slope of the HFSs can denote the linear fashion of the HFSs clearly, which is  
225 useful in practice. Based on the two concepts, we give the a novelHFSs slope grey relational  
226 coefficient, which extends Sun et al.'s definition [48].

227 **Definition 7.** For two hesitant fuzzy sets on the fixed set  $X = \{x_1, x_2, \dots, x_n\}$ ,  
228  $A = \{\langle x_i, h_A(x_i) \rangle | x_i \in X, i = 1, 2, \dots, n\}$  and  $B_j = \{\langle x_i, h_{B_j}(x_i) \rangle | x_i \in X, i = 1, 2, \dots, n, j = 1, 2, \dots, m\}$  with  
229  $h_A(x_i) = \{\gamma_{A_{i1}}, \gamma_{A_{i2}}, \dots, \gamma_{A_{il_{Ai}}}\}$ ,  $h_{B_j}(x_i) = \{\gamma_{B_{j1}}, \gamma_{B_{j2}}, \dots, \gamma_{B_{jl_{B_j}}}\}$ ,  $i = 1, 2, \dots, n$ ,  $j = 1, 2, \dots, m$ , the difference of  
230 them are  $\Delta A = \{\langle x_i, \Delta h_A(x_i) \rangle | x_i \in X, i = 1, 2, \dots, n\}$ ,  $\Delta h_A(x_i) = \{\Delta\gamma_{A_{i1}}, \Delta\gamma_{A_{i2}}, \dots, \Delta\gamma_{A_{il_{Ai}-1}}\}$ ,  
231  $\Delta\gamma_{A_{ik}} = \gamma_{A_{ik+1}} - \gamma_{A_{ik}}$ ,  $k = 1, 2, \dots, l_{Ai} - 1$  and  $\Delta B_j = \{\langle x_i, \Delta h_{B_j}(x_i) \rangle | x_i \in X, i = 1, 2, \dots, n, j = 1, 2, \dots, m\}$ ,  
232  $\Delta h_{B_j}(x_i) = \{\Delta\gamma_{B_{j1}}, \Delta\gamma_{B_{j2}}, \dots, \Delta\gamma_{B_{jl_{B_j}}}\}$ ,  $\Delta\gamma_{B_{jk}} = \gamma_{B_{jk+1}} - \gamma_{B_{jk}}$ ,  $k = 1, 2, \dots, l_{B_j} - 1$ , the slope of  
233 them are  $A' = \{\langle x_i, h_{A'}(x_i) \rangle | x_i \in X, i = 1, 2, \dots, n\}$  with  $h_{A'}(x_i) = \{\gamma_{A_{i1}}, \gamma_{A_{i2}}, \dots, \gamma_{A_{il_{Ai}-1}}\}$  and  
234  $B_j' = \{\langle x_i, h_{B_j'}(x_i) \rangle | x_i \in X, i = 1, 2, \dots, n\}$  with  $h_{B_j'}(x_i) = \{\gamma_{B_{j1}}, \gamma_{B_{j2}}, \dots, \gamma_{B_{jl_{B_j}-1}}\}$ , we define the HFSs  
235 slope grey relational coefficient between the HFEs  $h_A(x_i)$  and  $h_{B_j}(x_i)$  as:

236  $r_s(h_A(x_i), h_{B_j}(x_i)) = \frac{1}{l_{Ai}-1} \sum_{k=1}^{l_{Ai}-1} \xi_s(\Delta h_A(x_i), \Delta h_{B_j}(x_i))$  (18)

237 Where

238  $\xi_s(\Delta h_A(x_i), \Delta h_{B_j}(x_i)) = \frac{1 + |\gamma_{A_{ik}}|}{1 + |\gamma_{A_{ik}}| + |\gamma_{A_{ik}} - \gamma_{B_{jk}}|} = \frac{1 + \left| \frac{\gamma_{A_{ik+1}} - \gamma_{A_{ik}}}{\bar{h}_A(x_i)} \right|}{1 + \left| \frac{\gamma_{A_{ik+1}} - \gamma_{A_{ik}}}{\bar{h}_A(x_i)} \right| + \left| \frac{\gamma_{A_{ik+1}} - \gamma_{A_{ik}}}{\bar{h}_A(x_i)} - \frac{\gamma_{B_{jk+1}} - \gamma_{B_{jk}}}{\bar{h}_{B_j}(x_i)} \right|}$  (19)

239 Based on HFSs slope grey relational coefficient, the HFSs slope grey relational degree is defined as:

240  $\gamma_s(A, B_j) = \frac{1}{n} \cdot \sum_{i=1}^n r_s(h_A(x_i), h_{B_j}(x_i))$  (20)

241 Take the weight into consideration, let the weight vector of  $X$  is  $w = \{w_1, w_2, \dots, w_n\}$ ,  $\sum_{i=1}^n w_i = 1$ ,  
242  $i = 1, 2, \dots, n$ , we extend the HFSs slope grey relational degree to the weighted HFSs slope grey  
243 relational degree as:

244  $\gamma_{sw}(A, B_j) = \sum_{i=1}^n w_i \cdot r_s(h_A(x_i), h_{B_j}(x_i))$  (21)

245 3.3. Synthetic grey relational definition for HFSs

246 **Definition 8.** For two hesitant fuzzy sets on the fixed set  $X = \{x_1, x_2, \dots, x_n\}$ ,  
247  $A = \{\langle x_i, h_A(x_i) \rangle | x_i \in X, i = 1, 2, \dots, n\}$  and  $B_j = \{\langle x_i, h_{B_j}(x_i) \rangle | x_i \in X, i = 1, 2, \dots, n, j = 1, 2, \dots, m\}$  with  
248  $h_A(x_i) = \{\gamma_{A_{i1}}, \gamma_{A_{i2}}, \dots, \gamma_{A_{il_{Ai}}}\}$ ,  $h_{B_j}(x_i) = \{\gamma_{B_{j1}}, \gamma_{B_{j2}}, \dots, \gamma_{B_{jl_{B_j}}}\}$ , the slope of them are  
249  $A' = \{\langle x_i, h_{A'}(x_i) \rangle | x_i \in X, i = 1, 2, \dots, n\}$  with  $h_{A'}(x_i) = \{\gamma_{A_{i1}}, \gamma_{A_{i2}}, \dots, \gamma_{A_{il_{Ai}-1}}\}$  and

250  $B_j' = \left\{ \left\langle x_i, h_{B_j'}(x_i) \right\rangle \mid x_i \in X, i = 1, 2, \dots, n \right\}$  with  $h_{B_j'}(x_i) = \left\{ \gamma_{B_j'i1}, \gamma_{B_j'i2}, \dots, \gamma_{B_j'iL_{Ai}-1} \right\}$ ,  $i = 1, 2, \dots, n$ ,  
 251  $j = 1, 2, \dots, m$ , then we define the HFEs synthetic grey relational coefficient between HFEs  $h_A(x_i)$   
 252 and  $h_{B_j'}(x_i)$  as:

$$253 r_c(h_A(x_i), h_{B_j'}(x_i)) = \frac{1 + \xi \cdot \max_j \max_i \{d(h_A(x_i), h_{B_j'}(x_i))\} + \eta \cdot \max_j \max_i \{d(h_A(x_i), h_{B_j'}(x_i))\}}{1 + \lambda_1 \cdot d(h_A(x_i), h_{B_j'}(x_i)) + \lambda_2 \cdot d(h_A(x_i), h_{B_j'}(x_i)) + \xi \cdot \max_j \max_i \{d(h_A(x_i), h_{B_j'}(x_i))\} + \eta \cdot \max_j \max_i \{d(h_A(x_i), h_{B_j'}(x_i))\}} \quad (22)$$

254 Where  $\lambda_1, \lambda_2 > 0$ , which indicate the importance of the closeness and linear fashion of HFSs,  
 255 respectively, which satisfied  $\lambda_1 + \lambda_2 = 1$ ,  $\xi$  and  $\eta$  denote the distinguished coefficient of the  
 256 closeness and linear fashion,  $d(h_A(x_i), h_{B_j'}(x_i))$  and  $d(h_A(x_i), h_{B_j'}(x_i))$  are the distance between HFEs  
 257  $h_A(x_i)$  and  $h_{B_j'}(x_i)$  and the distance between the slope of HFEs  $h_A(x_i)$  and  $h_{B_j'}(x_i)$ , respectively,  
 258  $d(h_A(x_i), h_{B_j'}(x_i))$  can be calculated by  
 259

$$260 d_{hne}(h_A(x_i), h_{B_j'}(x_i)) = \left[ \left( \frac{1}{L_{Ai}-1} \sum_{k=1}^{L_{Ai}-1} \left| \gamma_{Aik} - \gamma_{B_j'ik} \right|^2 \right) \right]^{1/2} \quad (23)$$

261 If the numbers of values in different HFEs of HFSs are different, we have to extend the shorter one  
 262 until both of them have the same length when we compare them. We can extend them according to  
 263 the optimistic or the pessimistic methods in [7,8].

264 Based on HFEs synthetic grey relational coefficient, the HFSs synthetic grey relational degree is  
 265 defined as:

$$266 \gamma_c(A, B_j) = \frac{1}{n} \cdot \sum_{i=1}^n r_c(h_A(x_i), h_{B_j'}(x_i)) \quad (24)$$

267 Take the weight into consideration, let the weight vector of  $X$  is  $w = \{w_1, w_2, \dots, w_n\}$ ,  $\sum_{i=1}^n w_i = 1$ ,  
 268  $i = 1, 2, \dots, n$ , we extend the HFSs synthetic grey relational degree to the weighted HFEs synthetic  
 269 grey relational degree as:

$$270 \gamma_{cw}(A, B_j) = \sum_{i=1}^n w_i \cdot r_c(h_A(x_i), h_{B_j'}(x_i)) \quad (25)$$

271 The HFSs synthetic grey relational degree takes the considerations of both the closeness and  
 272 linear fashion of HFSs together, which can better represent the fuzzy measure between the HFSs.

### 273 3.4. Grey relational definition of IVHFEs and IVHFSs

274 An interval-valued hesitant fuzzy sets (IVHFSs)  $\tilde{A}$  on  $X$  is defined as

$$275 \tilde{A} = \left\{ \left\langle x, \tilde{h}_{\tilde{A}}(x) \right\rangle \mid x \in X \right\} \quad (26)$$

276 Where  $\tilde{h}_{\tilde{A}}(x)$  denotes all possible interval-valued membership degrees of the element  $x$  is a set of  
 277 some different values in  $[0, 1]$ , representing the possible membership degrees of the element  $x \in X$   
 278 to the set  $\tilde{A}$ . For convenience, they call  $\tilde{h}_{\tilde{A}}(x)$  an interval-valued hesitant fuzzy element (IVHFE),  
 279 which is a basic unit of IVHFS.

$$280 \tilde{h}_{\tilde{A}}(x) = \{\tilde{\gamma} \mid \tilde{\gamma} \in \tilde{h}_{\tilde{A}}(x)\} \quad (27)$$

281 Here  $\tilde{\gamma}$  is an interval number,  $\tilde{\gamma} = [\tilde{\gamma}^L, \tilde{\gamma}^U]$ ,  $\tilde{\gamma}^L$  and  $\tilde{\gamma}^U$  represent the lower and upper limits of  $\tilde{\gamma}$ ,  
 282 respectively.

283 **Definition 9.** For two interval-valued hesitant fuzzy sets on the fixed set  $X = \{x_1, x_2, \dots, x_n\}$ ,  
 284  $\tilde{A} = \{\langle x, \tilde{h}_{\tilde{A}}(x_i) \rangle \mid x_i \in X, i = 1, 2, \dots, n\}$  and  $\tilde{B}_j = \{\langle x_i, \tilde{h}_{\tilde{B}_j}(x_i) \rangle \mid x_i \in X, i = 1, 2, \dots, n, j = 1, 2, \dots, m\}$  with  
 285  $\tilde{h}_{\tilde{A}}(x_i) = \{\tilde{\gamma}_{\tilde{A}i1}, \tilde{\gamma}_{\tilde{A}i2}, \dots, \tilde{\gamma}_{\tilde{A}il_{\tilde{A}i}}\}$ ,  $\tilde{h}_{\tilde{B}_j}(x_i) = \{\tilde{\gamma}_{\tilde{B}_j1}, \tilde{\gamma}_{\tilde{B}_j2}, \dots, \tilde{\gamma}_{\tilde{B}_jl_{\tilde{B}_j}}\}$ ,  $i = 1, 2, \dots, n$ ,  $j = 1, 2, \dots, m$ , then we define  
 286 the grey relational coefficient between HFEs  $\tilde{h}_{\tilde{A}}(x_i)$  and  $\tilde{h}_{\tilde{B}_j}(x_i)$  as:

$$287 r(\tilde{h}_{\tilde{A}}(x_i), \tilde{h}_{\tilde{B}_j}(x_i)) = \frac{\min_j \min_i \{d(\tilde{h}_{\tilde{A}}(x_i), \tilde{h}_{\tilde{B}_j}(x_i))\} + \rho \cdot \max_j \max_i \{d(\tilde{h}_{\tilde{A}}(x_i), \tilde{h}_{\tilde{B}_j}(x_i))\}}{d(\tilde{h}_{\tilde{A}}(x_i), \tilde{h}_{\tilde{B}_j}(x_i)) + \rho \cdot \max_j \max_i \{d(\tilde{h}_{\tilde{A}}(x_i), \tilde{h}_{\tilde{B}_j}(x_i))\}} \quad (28)$$

288 Where  $d(\tilde{h}_{\tilde{A}}(x_i), \tilde{h}_{\tilde{B}_j}(x_i))$  is the distance between IVHFEs  $\tilde{h}_{\tilde{A}}(x_i)$  and  $\tilde{h}_{\tilde{B}_j}(x_i)$ , which can be  
 289 calculated according by

$$290 d_{hme}(\tilde{h}_{\tilde{A}}(x_i), \tilde{h}_{\tilde{B}_j}(x_i)) = \left[ \left( \frac{1}{2l_{\tilde{A}i}} \sum_{k=1}^{l_{\tilde{A}i}} \left( \left| \tilde{\gamma}_{\tilde{A}ik}^L - \tilde{\gamma}_{\tilde{B}_jik}^L \right|^2 + \left| \tilde{\gamma}_{\tilde{A}ik}^U - \tilde{\gamma}_{\tilde{B}_jik}^U \right|^2 \right) \right)^{1/2} \right] \quad (29)$$

291 For more distance between IVHFEs, please refer to Ref. [11, 26-31].

292 Based on grey relational coefficient between IVHFEs, the grey relational degree between  
 293 IVHFSs  $\tilde{A}$  and  $\tilde{B}_j$  is defined as:

$$294 \gamma(\tilde{A}, \tilde{B}_j) = \frac{1}{n} \cdot \sum_{i=1}^n r(\tilde{h}_{\tilde{A}}(x_i), \tilde{h}_{\tilde{B}_j}(x_i)) \quad (30)$$

295 Take the weight into consideration, let the weight vector of  $X$  is  $\mathbf{w} = \{w_1, w_2, \dots, w_n\}$ ,  $\sum_{i=1}^n w_i = 1$ ,  
 296  $i = 1, 2, \dots, n$ , we extend the IVHFSs grey relational degree to the weighted IVHFSs grey relational  
 297 degree as:

$$298 \gamma_w(\tilde{A}, \tilde{B}_j) = \sum_{i=1}^n w_i \cdot r(\tilde{h}_{\tilde{A}}(x_i), \tilde{h}_{\tilde{B}_j}(x_i)) \quad (31)$$

#### 299 4. The grey relational based MADM methodology with HFSs and IVHFSs information

300 In this section, we investigate the grey relational analysis to MADM problems with HFSs and  
 301 IVHFSs information, and propose the grey relational based MADM methodology with the help of  
 302 the TOPSIS [50] method.

303 Suppose that a hesitant fuzzy MADM problem has  $m$  alternatives  $A_i (i = 1, 2, \dots, m)$ , each  
 304 alternative have  $n$  hesitant fuzzy attribute  $C_j (j = 1, 2, \dots, n)$ , denote  
 305  $h_{A_i}(C_j) = \{\gamma_{A_i1}, \gamma_{A_i2}, \dots, \gamma_{A_il_{A_i}}, \dots, \gamma_{A_il_{A_i}}\}$  represent the hesitant fuzzy information of the alternatives  $A_i$  on  
 306 the attribute  $C_j$ ,  $l_{A_i}$  is the number of the membership values in  $h_{A_i}(C_j)$ , let  $\mathbf{w} = \{w_1, w_2, \dots, w_n\}$  be  
 307 the relative weight vector of the attribute, satisfying the normalization conditions:  $0 \leq w_j \leq 1$  and  
 308  $\sum_{j=1}^n w_j = 1$ . Then all the hesitant fuzzy information can be concisely expressed in matrix format as:

$$309 \mathbf{A} = \begin{bmatrix} h_{A_1}(C_1) & h_{A_1}(C_2) & \dots & h_{A_1}(C_n) \\ h_{A_2}(C_1) & \ddots & \dots & h_{A_2}(C_n) \\ \vdots & \vdots & h_{A_i}(C_j) & \vdots \\ h_{A_m}(C_1) & h_{A_m}(C_2) & \dots & h_{A_m}(C_n) \end{bmatrix}_{m \times n} \quad (32)$$

310 Then according to the TOPSIS approach, we propose the grey relational based MADM methodology  
 311 with hesitant fuzzy matrix as follows:

312 **Step 1:** Determine the positive ideal solution (PIS) and negative ideal solution (NIS) of each attribute  
 313 in the normalized hesitant fuzzy decision matrix to form two new positive and negative HFSs:

314  $A^+ = \{\langle C_j, h_A^+(C_j) \rangle \mid C_j \in C, j = 1, 2, \dots, n\}$  (33)

315  $A^- = \{\langle C_j, h_A^-(C_j) \rangle \mid C_j \in C, j = 1, 2, \dots, n\}$  (34)

316 Where  $h_A^+(C_j)$  and  $h_A^-(C_j)$  are the new positive and negative HFEs:

317  $h_A^+(C_j) = \{\gamma_1^+, \gamma_2^+, \dots, \gamma_k^+, \dots, \gamma_{l_j^+}^+\}, \gamma_k^+ = \left( \max_{1 \leq i \leq m} \{\gamma_{A_i k}\} \text{ if } \gamma_{A_i k} \in \Omega_b, \min_{1 \leq i \leq m} \{\gamma_{A_i k}\} \text{ if } \gamma_{A_i k} \in \Omega_c \right)$  (35)

318  $h_A^-(C_j) = \{\gamma_1^-, \gamma_2^-, \dots, \gamma_k^-, \dots, \gamma_{l_j^-}^-\}, \gamma_k^- = \left( \min_{1 \leq i \leq m} \{\gamma_{A_i k}\} \text{ if } \gamma_{A_i k} \in \Omega_b, \max_{1 \leq i \leq m} \{\gamma_{A_i k}\} \text{ if } \gamma_{A_i k} \in \Omega_c \right)$  (36)

319 Where  $\Omega_b$  and  $\Omega_c$  are related to benefit attribute and cost attribute,  $l_j^+$  and  $l_j^-$  are the number of  
320 the membership values in the new positive and negative HFEs respectively, and  $l_j^+ = l_j^-$ .

321 **Step 2:** Calculate the HFSs positive and negative grey relational degree between each alternative and  
322 the PIS and NIS, respectively. Here, we can calculate them by the proposed three grey relational  
323 degrees, the HFSs grey relational degree, HFSs slope grey relational degree and HFSs synthetic grey  
324 relational degree.

325  $\gamma_w^+(A_i, A^+) = \sum_{j=1}^n w_j \cdot r(h_{A_i}(C_j), h_A^+(C_j))$  (37)

326  $\gamma_w^-(A_i, A^-) = \sum_{j=1}^n w_j \cdot r(h_{A_i}(C_j), h_A^-(C_j))$  (38)

327  $\gamma_{sw}^+(A_i, A^+) = \sum_{j=1}^n w_j \cdot r_s(h_{A_i}(C_j), h_A^+(C_j))$  (39)

328  $\gamma_{sw}^-(A_i, A^-) = \sum_{j=1}^n w_j \cdot r_s(h_{A_i}(C_j), h_A^-(C_j))$  (40)

329  $\gamma_{cw}^+(A_i, A^+) = \sum_{j=1}^n w_j \cdot r_c(h_{A_i}(C_j), h_A^+(C_j))$  (41)

330  $\gamma_{cw}^-(A_i, A^-) = \sum_{j=1}^n w_j \cdot r_c(h_{A_i}(C_j), h_A^-(C_j))$  (42)

331 Where the equations (37-42) can be obtained according to definition 4, 7, 8.

332 **Step 3:** Construct the relative closeness to the ideal solution based on the calculated positive and  
333 negative grey relational degree. The relative closeness of the alternative  $A_i (i = 1, 2, \dots, m)$  with  
334 respect to the ideal solution are defined as

335  $\eta_i = \frac{\gamma_w^+(A_i, A^+)}{\gamma_w^+(A_i, A^+) + \gamma_w^-(A_i, A^-)}, \quad i = 1, 2, \dots, m$  (43)

336  $\eta_{si} = \frac{\gamma_{sw}^+(A_i, A^+)}{\gamma_{sw}^+(A_i, A^+) + \gamma_{sw}^-(A_i, A^-)}, \quad i = 1, 2, \dots, m$  (44)

337  $\eta_{ci} = \frac{\gamma_{cw}^+(A_i, A^+)}{\gamma_{cw}^+(A_i, A^+) + \gamma_{cw}^-(A_i, A^-)}, \quad i = 1, 2, \dots, m$  (45)

338 **Step 4:** Rank the alternatives according to the decreasing order of their relative closeness. That is, the  
339 best alternative is the one with the greatest relative closeness to the ideal solution.

340 **Remark:** The interval-valued hesitant fuzzy MCDM process is similar to the process of the hesitant  
341 fuzzy MCDM, for simplify, we do not repeat it again, it can be deduced easily.

342 The process of the grey relational based MADM methodology with hesitant fuzzy information and  
343 interval-valued hesitant fuzzy information is shown as the following figure 1.

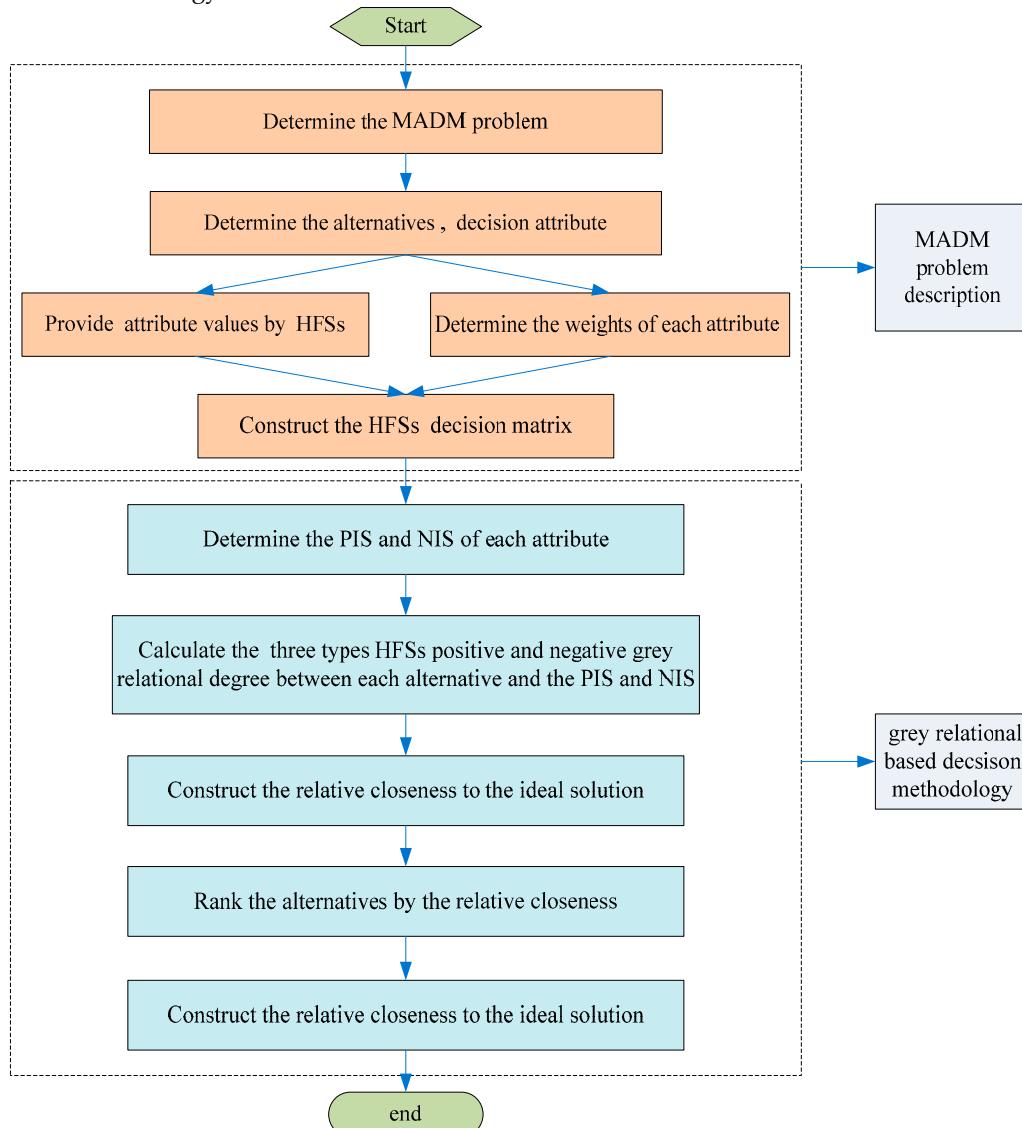
344

345 **5. MADM applications**

346 In this section, we apply the proposed grey relational based MADM methodology to deal with  
 347 MADM problems with HFSs and IVHFSs information respectively.

348 *5.1. Apply the proposed grey relational based MADM methodology to energy policy selection*

349 In this section, followed by the MADM example with hesitant fuzzy information concerning  
 350 energy policy selection in Ref. [7, 10, 12, 18, 51-53], to validate the proposed grey relational based  
 351 MADM methodology.



352 **Figure 1.** The process of the grey relational based MADM methodology with HFSs and IVHFSs  
 353 information

354 In this section, followed by the MADM example with hesitant fuzzy information concerning  
 355 energy policy selection in Ref. [7, 10, 12, 18, 51-53], to validate the proposed grey relational based  
 356 MADM methodology.

357 **Example 1** [7, 10, 12, 18, 50-52]. Suppose that there are five alternatives (energy projects)  
 358  $A_i (i=1,2,\dots,5)$  to be selected, and four attributes to be considered:  $P_j (j=1,2,3,4)$ . The attribute

359 weight vector is  $w = (0.15, 0.3, 0.2, 0.35)^T$ . The attribute values are described in hesitant fuzzy sets,  
 360 shown in Table 1. What we want to do is get the most desirable alternative from these hesitant fuzzy  
 361 information.

362 **Table 1.** The hesitant fuzzy decision making information for the 4 criteria of 5 alternatives

| Alternatives   | Attributes            |                       |                   |                   |
|----------------|-----------------------|-----------------------|-------------------|-------------------|
|                | Technological         | Environmental         | Socio-political   | Economic          |
| A <sub>1</sub> | {0.5,0.4,0.3}         | {0.9,0.8,0.7,0.1}     | {0.5,0.4,0.2}     | {0.9,0.6,0.5,0.3} |
| A <sub>2</sub> | {0.5,0.3}             | {0.9,0.7,0.6,0.5,0.2} | {0.8,0.6,0.5,0.1} | {0.7,0.4,0.3}     |
| A <sub>3</sub> | {0.7,0.6}             | {0.9,0.6}             | {0.7,0.5,0.3}     | {0.6,0.4}         |
| A <sub>4</sub> | {0.8,0.7,0.4,0.3}     | {0.7,0.4,0.2}         | {0.8,0.1}         | {0.9,0.8,0.6}     |
| A <sub>5</sub> | {0.9,0.7,0.6,0.3,0.1} | {0.8,0.7,0.6,0.4}     | {0.9,0.8,0.7}     | {0.9,0.7,0.6,0.3} |

363 Because the numbers of values in different HFEs of HFSs are different, we can not directly  
 364 process these hesitant fuzzy information. We have to extend the shorter one until both of them have  
 365 the same length when we compare them. In this example, we extend these data in the pessimistic  
 366 view as the reference [18] do. Actually, the extension of the HFSs plays an important role in the  
 367 ultimate decision making, different extension methods may obtain the different results, so how to  
 368 select the appropriate extension methods remains to be further research. The extended hesitant  
 369 fuzzy decision making information are shown in Table 2.

370 **Table 2.** The extended hesitant fuzzy decision making information for the 4 criteria of 5 alternatives

| Alternatives   | Attributes            |                       |                   |                   |
|----------------|-----------------------|-----------------------|-------------------|-------------------|
|                | Attribute1            | Attribute2            | Attribute3        | Attribute4        |
| A <sub>1</sub> | {0.5,0.4,0.3,0.3,0.3} | {0.9,0.8,0.7,0.1,0.1} | {0.5,0.4,0.2,0.2} | {0.9,0.6,0.5,0.3} |
| A <sub>2</sub> | {0.5,0.3,0.3,0.3,0.3} | {0.9,0.7,0.6,0.5,0.2} | {0.8,0.6,0.5,0.1} | {0.7,0.4,0.3,0.3} |
| A <sub>3</sub> | {0.7,0.6,0.6,0.6,0.6} | {0.9,0.6,0.6,0.6,0.6} | {0.7,0.5,0.3,0.3} | {0.6,0.4,0.4,0.4} |
| A <sub>4</sub> | {0.8,0.7,0.4,0.3,0.3} | {0.7,0.4,0.2,0.2,0.2} | {0.8,0.1,0.1,0.1} | {0.9,0.8,0.6,0.6} |
| A <sub>5</sub> | {0.9,0.7,0.6,0.3,0.1} | {0.8,0.7,0.6,0.4,0.4} | {0.9,0.8,0.7,0.7} | {0.9,0.7,0.6,0.3} |

371 **Step 1:** All the attribute are benefit type, we select each maximum HFE in the five alternatives HFSs  
 372 on the four attribute to construct the hesitant fuzzy PIS  $A^+$  and each minimum HFE to construct the  
 373 hesitant fuzzy the NIS  $A^-$ :

374 
$$A^+ = [\{0.9, 0.7, 0.6, 0.6, 0.6\}, \{0.9, 0.8, 0.7, 0.6, 0.6\}, \{0.9, 0.8, 0.7, 0.7\}, \{0.9, 0.8, 0.6, 0.6\}],$$

375 
$$A^- = [\{0.5, 0.3, 0.3, 0.3, 0.1\}, \{0.7, 0.4, 0.2, 0.1, 0.1\}, \{0.5, 0.1, 0.1, 0.1\}, \{0.6, 0.4, 0.3, 0.3\}].$$

376 **Step 2:** Calculate the HFSs positive and negative three types grey relational degrees between each  
 377 alternative and the PIS and NIS, respectively. We assume the distinguished coefficient  $\rho = 0.5$ ,  
 378  $\lambda_1 = \lambda_2 = 0.5$ ,  $\xi = \eta = 0.5$ . The results are shown as Table 3.

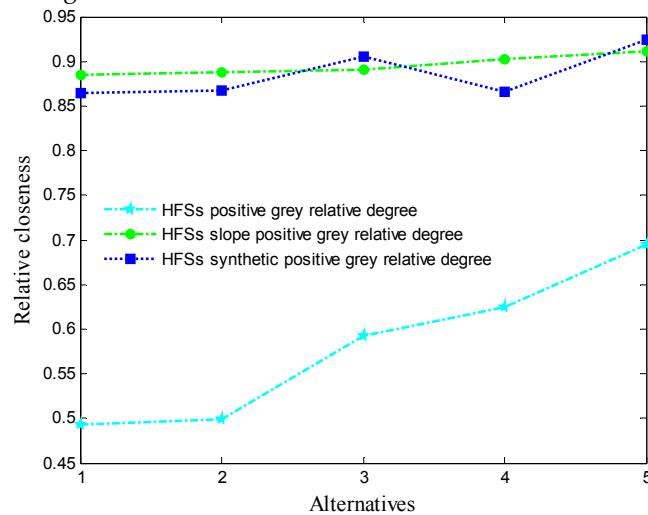
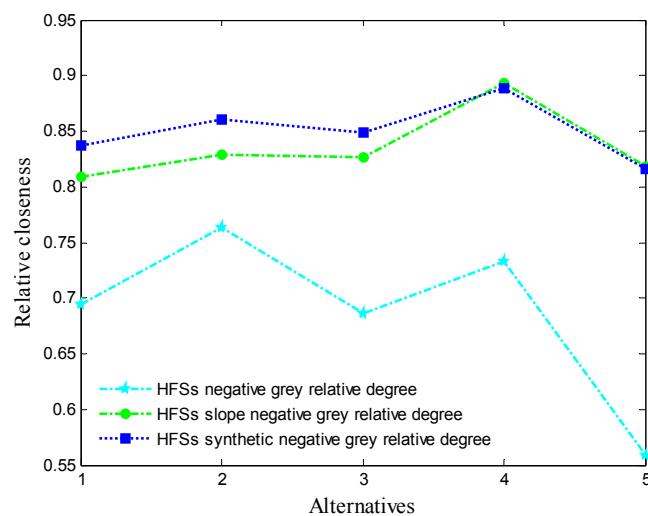
379

380

**Table 3.** Positive and negative grey relational degree from the PIS and the NIS

| Methods                               | Relational degrees | Alternatives   |                |                |                |                |
|---------------------------------------|--------------------|----------------|----------------|----------------|----------------|----------------|
|                                       |                    | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | A <sub>4</sub> | A <sub>5</sub> |
| HFSs grey relational degree           | $\gamma_w^+$       | 0.4934         | 0.4984         | 0.5922         | 0.6250         | 0.6949         |
|                                       | $\gamma_w^-$       | 0.6942         | 0.7630         | 0.6867         | 0.7325         | 0.5583         |
| HFSs slope grey relational degree     | $\gamma_{sw}^+$    | 0.8854         | 0.8882         | 0.8901         | 0.9021         | 0.9107         |
|                                       | $\gamma_{sw}^-$    | 0.8086         | 0.8288         | 0.8265         | 0.8929         | 0.8188         |
| HFSs synthetic grey relational degree | $\gamma_{cw}^+$    | 0.8640         | 0.8676         | 0.9054         | 0.8658         | 0.9251         |
|                                       | $\gamma_{cw}^-$    | 0.8366         | 0.8605         | 0.8493         | 0.8883         | 0.8160         |

381 We also compare the three types positive and negative grey relation degree with each other as  
 382 shown in Figure 2 and Figure 3.

**Figure 2.** The three types positive grey relational degree**Figure 3.** The three types negative grey relational degree

384

385 **Step 3:** Construct the relative closeness to the ideal solution based on the above calculated three  
 386 types positive and negative grey relational degree. The relative closeness of the alternative

387  $A_i (i=1,2,\dots,m)$  with respect to the ideal solution are shown as Table 4 and the compared effect of  
 388 the three methods is shown in Figure 4.

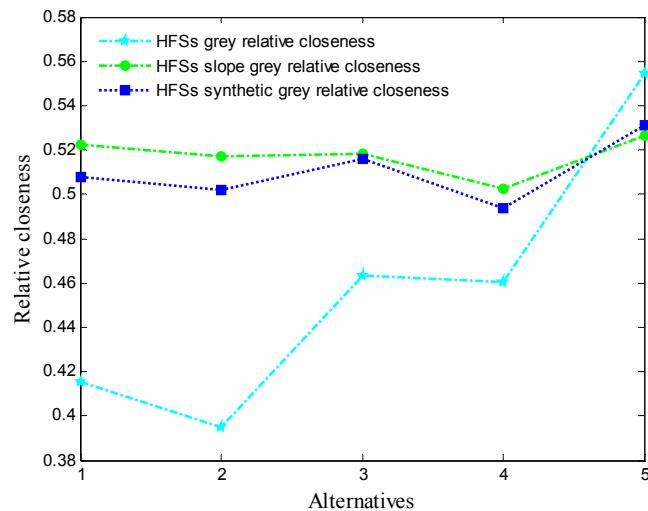
389 **Table 4.** The three types grey relative closeness of the 5 alternatives to the ideal solution

| Relative closeness                     | Alternatives |        |        |        |        | Rankings                                      |
|----------------------------------------|--------------|--------|--------|--------|--------|-----------------------------------------------|
|                                        | $A_1$        | $A_2$  | $A_3$  | $A_4$  | $A_5$  |                                               |
| HFSs grey relative closeness           | 0.4155       | 0.3951 | 0.4631 | 0.4604 | 0.5545 | $A_5 \succ A_3 \succ A_4 \succ A_1 \succ A_2$ |
| HFSs slope grey relative closeness     | 0.5227       | 0.5173 | 0.5185 | 0.5026 | 0.5266 | $A_5 \succ A_1 \succ A_3 \succ A_2 \succ A_4$ |
| HFSs synthetic grey relative closeness | 0.5081       | 0.5020 | 0.5160 | 0.4936 | 0.5313 | $A_5 \succ A_3 \succ A_1 \succ A_2 \succ A_4$ |

390 **Step 4:** Rank the alternatives according to the decreasing order of the three types relative closeness,  
 391 shown as Table 4 too.

392 Consequently, we select the best one with the greatest relative closeness to the ideal solution  
 393 and all the three types relative closeness indicate that the decision result is alternative  $A_5$ .

394 Compared the decision results, we can see that the decision result is consistent with the decision  
 395 result from reference [7, 10, 12, 18, 52, 53], which derived from different distance and similarity  
 396 measures. It proves that the three types grey relation methods are effective in the hesitant fuzzy  
 397 decision problems, successfully apply the grey relation analysis theory into the hesitant fuzzy  
 398 domain.



399 **Figure 4.** The three types relative closeness

400 5.2. *Apply the proposed grey relational based MADM methodology to emergency management evaluation*  
 401 *example*

402 In this section, followed by the MADM example with interval-valued hesitant fuzzy  
 403 information concerning emergency management evaluation problems, these data are extracted from  
 404 Reference [34].

405 Suppose that there are four alternatives  $A_i (i=1,2,3,4)$  to be evaluated by evaluators, each  
 406 alternative has these six attributes  $C_i (i=1,2,\dots,6)$ , and assume the attribute weight is known, let the  
 407 weight  $w = (0.1074, 0.1205, 0.2101, 0.1428, 0.2474, 0.1718)^T$ . The evaluated values are expressed by  
 408 interval-valued hesitant fuzzy information in an interval-valued hesitant fuzzy decision matrix,  
 409 shown in Table 5.

410

411

**Table 5.** The Interval-valued hesitant fuzzy attributes information

| Attribute  | Alternatives                        |                                     |                                     |                                     |
|------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
|            | A <sub>1</sub>                      | A <sub>2</sub>                      | A <sub>3</sub>                      | A <sub>4</sub>                      |
| Attribute1 | $\{[0.7,0.9],[0.7,0.8],[0.6,0.8]\}$ | $\{[0.5,0.7],[0.5,0.6],[0.4,0.6]\}$ | $\{[0.3,0.5],[0.2,0.4],[0.2,0.3]\}$ | $\{[0.6,0.7],[0.5,0.7],[0.5,0.6]\}$ |
| Attribute2 | $\{[0.4,0.5],[0.2,0.3],[0.1,0.3]\}$ | $\{[0.5,0.7],[0.5,0.5],[0.4,0.5]\}$ | $\{[0.8,0.9],[0.7,0.8],[0.6,0.8]\}$ | $\{[0.4,0.6],[0.3,0.6],[0.3,0.4]\}$ |
| Attribute3 | $\{[0.2,0.4],[0.2,0.3],[0.1,0.3]\}$ | $\{[0.8,1.0],[0.7,0.9],[0.6,0.8]\}$ | $\{[0.3,0.4],[0.2,0.4],[0.1,0.4]\}$ | $\{[0.3,0.5],[0.2,0.4],[0.2,0.3]\}$ |
| Attribute4 | $\{[0.5,0.8],[0.4,0.7],[0.4,0.6]\}$ | $\{[0.9,1.0],[0.7,0.9],[0.6,0.8]\}$ | $\{[0.2,0.3],[0.1,0.3],[0.1,0.2]\}$ | $\{[0.3,0.5],[0.3,0.4],[0.2,0.4]\}$ |
| Attribute5 | $\{[0.2,0.5],[0.2,0.4],[0.1,0.4]\}$ | $\{[0.8,0.9],[0.7,0.9],[0.7,0.8]\}$ | $\{[0.1,0.3],[0.0,0.2],[0.0,0.1]\}$ | $\{[0.1,0.2],[0.0,0.2],[0.0,0.1]\}$ |
| Attribute6 | $\{[0.8,0.9],[0.7,0.8],[0.7,0.7]\}$ | $\{[0.9,1.0],[0.8,1.0],[0.8,0.9]\}$ | $\{[0.6,0.8],[0.6,0.7],[0.5,0.5]\}$ | $\{[0.6,0.7],[0.4,0.6],[0.4,0.5]\}$ |

412 We utilize the proposed grey relational based MADM methodology to evaluate the alternatives  
 413 with IVHFSs information in the following steps:

414 **Step 1:** All the attribute are benefit type, we select each maximum IVHFE in the five alternatives  
 415 IVHFSs on the four attribute to construct the interval-valued hesitant fuzzy PIS  $A^+$  and each  
 416 minimum IVHFE to construct the interval-valued hesitant fuzzy the NIS  $A^-$ :

$$417 A^+ = \{[0.7,0.9],[0.7,0.8],[0.6,0.8]\}, \{[0.8,0.9],[0.7,0.8],[0.6,0.8]\}, \{[0.8,1.0],[0.7,0.9],[0.6,0.8]\}, \\ \{[0.9,1.0],[0.7,0.9],[0.6,0.8]\}, \{[0.8,0.9],[0.7,0.9],[0.7,0.8]\}, \{[0.9,1.0],[0.8,1.0],[0.8,0.9]\},$$

$$418 A^- = \{[0.3,0.5],[0.2,0.4],[0.2,0.3]\}, \{[0.4,0.5],[0.2,0.3],[0.1,0.3]\}, \{[0.2,0.4],[0.2,0.3],[0.1,0.3]\}, \\ \{[0.2,0.3],[0.1,0.3],[0.1,0.2]\}, \{[0.1,0.2],[0.0,0.2],[0.0,0.1]\}, \{[0.6,0.7],[0.4,0.6],[0.4,0.5]\}$$

419 **Step 2:** Calculate the IVHFSs positive and negative grey relational degrees between each alternative  
 420 and the PIS and NIS, respectively. We assume the distinguished coefficient  $\rho = 0.5$ . The result is  
 421 shown as Table 6.

**Table 6.** IVHFSs positive and negative grey relational degree from the PIS and the NIS

| Methods                       | Relational degrees | Alternatives   |                |                |                |
|-------------------------------|--------------------|----------------|----------------|----------------|----------------|
|                               |                    | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | A <sub>4</sub> |
| IVHFSs grey relational degree | $\gamma_w^+$       | 0.5456         | 0.9102         | 0.4834         | 0.4498         |
|                               | $\gamma_w^-$       | 0.7027         | 0.4360         | 0.8293         | 0.8292         |

423 **Step 3:** Construct the relative closeness to the ideal solution based on the calculated IVHFSs positive  
 424 and negative grey relational degree. The IVHFSs relative closeness of the alternative  $A_i (i = 1, 2, 3, 4)$   
 425 are shown as Table 7.

**Table 7.** The IVHFSs relative closeness of the 4 alternatives to the ideal solution

| Relative closeness             | Alternatives   |                |                |                | Rankings                |
|--------------------------------|----------------|----------------|----------------|----------------|-------------------------|
|                                | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | A <sub>4</sub> |                         |
| IVHFSs grey relative closeness | 0.4371         | 0.6761         | 0.3683         | 0.3517         | $A_2 > A_1 > A_3 > A_4$ |

427 **Step 4:** Rank the alternatives according to the decreasing order of The IVHFSs relative closeness also  
 428 shown in Table 7.

429 It can be clearly seen from Table 7 that the decision result is the alternative  $A_2$ . It is consistent  
 430 with the decision result from reference [34], which illustrates the validity and accuracy of the  
 431 proposed IVHFSs grey relational MADM methodology.

432 Combined with two practical MADM examples about energy policy selection with HFSs  
 433 information and emergency management evaluation with IVHFSs information, we can see that the  
 434 proposed grey relational based MADM methodology can deal with the HFSs and IVHFSs MADM  
 435 problems well. In addition, the decision results are the same with the previous methods, which

436 demonstrates the grey relational based MADM methodology's effectiveness. Furthermore, it is the  
437 first time to apply the grey relational analysis theory to the HFSs and IVHFSs field, which greatly  
438 enrich the fuzzy measures of HFSs and is significant in the development of the HFSs.

439 **6. Conclusions**

440 In this paper, we apply the grey relational analysis theory to the HFSs and IVHFSs domain and  
441 propose three types grey relational degree: the HFSs grey relational degree, HFSs slope grey  
442 relational degree and HFSs synthetic grey relational degree, which describe the closeness, the  
443 variation tendency and both the closeness and variation tendency of the HFSs, respectively. We also  
444 propose the grey relational degree for the IVHFSs. We deduce these grey relational degrees for HFSs  
445 and IVHFSs in detail. Additionally, we develop the HFSs grey relational based MADM  
446 methodology based on the TOPSIS method to solve the HFSs and IVHFSs MADM problems. Finally,  
447 combined with two practical MADM examples about energy policy selection with HFSs information  
448 and emergency management evaluation with IVHFSs information, we obtain the appropriate  
449 decision results. Compared with the decision results with the previous methods, it illustrates the  
450 validity, effectiveness and accuracy of the proposed grey relational based MADM methodology.

451 In the future, we will apply the proposed grey relational analysis methodology for HFSs and  
452 IVHFSs to some other fields as pattern recognition and deep learning. Also, we will attempt to apply  
453 the grey analysis theory to the Dual hesitant fuzzy sets and hesitant fuzzy linguistic sets.

454 **Acknowledgments:** This work is supported by the Major Research Plan of the National Natural Science  
455 Foundation of China (Grant no. 91538201), the National Natural Science Foundation of China (Grant nos.  
456 61671463, 61571454), the Natural Science Foundation of Shandong Province (Grant no. ZR2017BG014) and the  
457 Program for New Century Excellent Talents in University(Grant no. NCET-11-0872).

458 **Author Contributions:** In this paper, the idea and primary algorithm were proposed by Guidong Sun. Xin  
459 Guan refined the idea and solution models. Xiao Yi and Jing Zhao conducted the simulation and analysis of  
460 the paper.

461 **Conflicts of Interest:** The authors declare no conflict of interest.

462 **References**

1. Torra V. Hesitant fuzzy sets. *International Journal of Intelligent Systems*, 2010, 25, 529-539.
2. Torra V.; Narukawa Y. On hesitant fuzzy sets and decision. The 18th IEEE International Conference on Fuzzy Systems, Jeju Island, Korea, 2009, 1378-1382.
3. Xia M.M.; Xu Z.S. Hesitant fuzzy information aggregation in decision making. *International Journal of Approximate Reasoning*, 2011, 52 (3), 395-407.
4. Xia M.M.; Xu Z.S.; Chen N. Some hesitant fuzzy aggregation operators with their application in group decision making. *Group Decision and Negotiation*, 2013, 22, 259-279.
5. Liao H.C.; Xu Z.S. Subtraction and division operations over hesitant fuzzy sets. *Journal of Intelligent & Fuzzy Systems*, 2014, 27 (1), 65-72.
6. Liao H.C.; Xu Z.S.; Xia M.M. Multiplicative consistency of hesitant fuzzy preference relation and its application in group decision making. *International Journal of Information Technology & Decision Making*, 2014, 13 (1), 47-76.
7. Xu Z.S.; Xia M.M. Distance and similarity measures for hesitant fuzzy sets. *Information Sciences*, 2011, 181, 2128-2138
8. Xu Z.S.; Xia M.M. On distance and correlation measures of hesitant fuzzy information. *International Journal of Intelligent Systems*, 2011, 26, 410-425.
9. Xu Z.S.; Xia M.M. Hesitant fuzzy entropy and cross-entropy and their use in multiattribute decision-making. *International Journal of Intelligent Systems*. 2012, 27, 799-822.
10. Farhadinia B. Distance and similarity measures for higher order hesitant fuzzy sets. *Knowledge-Based Systems*, 2014, 55, 43-48.
11. Farhadinia B. Information measures for hesitant fuzzy sets and interval-valued hesitant fuzzy sets. *Information Sciences*, 2013, 240, 129-144.

486 12. Li D.Q.; Zeng W.Y.; Zhao YB. Note on distance measure of hesitant fuzzy sets. *Information Sciences*, 2015,  
487 321, 103-115.

488 13. Zeng W.Y.; Li D.Q.; Yin Q. Distance and similarity measures between hesitant fuzzy sets and their  
489 application in pattern recognition. *Pattern Recognition Letters*, 2016, 84, 267-271.

490 14. Zhao N. Xu Z.S.; Liu F.J. Uncertainty Measures for Hesitant Fuzzy Information. *International Journal of  
491 Intelligent Systems*, 2015, 30, 1-19.

492 15. Chen N.; Xu Z.S.; Xia M.M. Correlation coefficients of hesitant fuzzy sets and their applications to  
493 clustering analysis. *Applied Mathematical Modelling*, 2013, 37, 2197-2211.

494 16. Liao H.C.; Xu Z.S.; Zeng X.J. Novel correlation coefficients between hesitant fuzzy sets and their  
495 application in decision making. *Knowledge-Based Systems*, 2015, 82, 115-127.

496 17. He Y.; Xu Z.S.; Gu J. An approach to group decision making with hesitant information and its application  
497 in credit risk evaluation of enterprises. *Applied Soft Computing*, 2016, 43, 159-169.

498 18. Xu Z.S.; Zhang X.L. Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete  
499 weight information. *Knowledge-Based Systems*, 2013, 52, 53-64.

500 19. Qin J.D.; Liu X.W.; Pedrycz W. Frank aggregation operators and their application to hesitant fuzzy  
501 multiple attribute decision making. *Applied Soft Computing*, 2016, 41, 428-452.

502 20. Zhang X.L.; Xu Z.S. Interval programming method for hesitant fuzzy multi-attribute group decision  
503 making with incomplete preference over alternatives. *Computers & Industrial Engineering*, 2014, 75,  
504 217-229.

505 21. Ashtiani M.; Azgomi M.A. A hesitant fuzzy model of computational trust considering hesitancy,  
506 vagueness and uncertainty. *Applied Soft Computing*, 2016, 42, 18-37.

507 22. Mohammad Kazem Ebrahimpour, Mahdi Eftekhari, Ensemble of feature selection methods: A hesitant  
508 fuzzy sets approach. *Applied Soft Computing*, 2017, 50, 300-312.

509 23. Rodríguez R.M.; Martínez L.; Herrera F. Hesitant Fuzzy Linguistic Term Sets for Decision Making. *IEEE  
510 Transactions on fuzzy Systems*, 2012, 20, 109-119.

511 24. Liao H.C.; Xu Z.S.; Zeng X.J. Hesitant fuzzy linguistic VIKOR method and its application in qualitative  
512 multiple criteria decision making. *IEEE Transactions on fuzzy Systems*, 2015, 23 (5), 1343-1355.

513 25. Wang J.; Wang J.Q.; Zhang H.Y. A likelihood-based TODIM approach based on multi-hesitant fuzzy  
514 linguistic information for evaluation in logistics outsourcing. *Computers & Industrial Engineering*, 2016,  
515 99, 287-299.

516 26. Chen N.; Xu Z.S.; Xia M.M. Interval-valued hesitant preference relations and their applications to group  
517 decision making. *Knowledge-Based Systems*, 2013, 37 (1), 528-540.

518 27. Chen N.; Xu Z.S. Properties of interval-valued hesitant fuzzy sets. *Journal of Intelligent & Fuzzy Systems*,  
519 2014, 27, 143-158.

520 28. Farhadinia B. Study on division and subtraction operations for hesitant fuzzy sets, interval-valued  
521 hesitant fuzzy sets and typical dual hesitant fuzzy sets. *Journal of Intelligent & Fuzzy Systems*, 2015, 28,  
522 1393-1402.

523 29. Fernández R.; Alonso P.; Bustince H.; et al. Ordering finitely generated sets and finite interval-valued  
524 hesitant fuzzy sets. *Information Sciences*, 2015, 325, 375-392.

525 30. Quirós P.; Alonso P.; Bustince H.; et al. An entropy measure definition for finite interval-valued hesitant  
526 fuzzy sets. *Knowledge-Based Systems*, 2015, 84, 121-133.

527 31. Verma R. Hesitant interval-valued fuzzy sets: some new results. *International Journal of Machine  
528 Learning and Cybernetics*, 2017, 8 (3), 865-876.

529 32. Gitinavard H.; Mousavi S.M.; Vahdani B. A new multi-criteria weighting and ranking model for group  
530 decision-making analysis based on interval-valued hesitant fuzzy sets to selection problems. *Neural  
531 Computing and Applications*, 2016, 27 (6), 1593-1605.

532 33. Zhang Z.M. Multi-criteria decision-making using interval-valued hesitant fuzzy QUALIFLEX methods  
533 based on a likelihood-based comparison approach. *Neural Computing and Applications*, 2016, 1-20.

534 34. Jin F.F.; Ni Z.W.; Chen H.Y. Interval-valued hesitant fuzzy Einstein prioritized aggregation operators and  
535 their applications to multi-attribute group decision making. *Soft Computing*, 2016, 20(5), 1863-1878.

536 35. Zhang C.; Li D.Y.; Mu Y.M.; et al. An interval-valued hesitant fuzzy multigranulation rough set over two  
537 universes model for steam turbine fault diagnosis. *Applied Mathematical Modelling*, 2017, 42, 693-704.

538 36. Wei G.W. GRA method for multiple attribute decision making with incomplete weight information in  
539 intuitionistic fuzzy setting. *Knowledge-Based Systems*, 2010, 23, 243-247.

540 37. Wei G.W. Gray relational analysis method for intuitionistic fuzzy multiple attribute decision making.  
541 Expert Systems with Applications, 2011,38, 11671-11677.

542 38. Wei G.W. Grey relational analysis method for 2-tuple linguistic multiple attribute group decision making  
543 with incomplete weight information. Expert Systems with Applications, 2011, 38, 4824-4828.

544 39. Wei G.W. Grey relational analysis model for dynamic hybrid multiple attribute decision making.  
545 Knowledge-Based Systems, 2011, 24, 672-679.

546 40. Zhang S.F.; Liu S.Y.; Zhai R.H. An extended GRA method for MCDM with interval-valued triangular  
547 fuzzy assessments and unknown weights. Computers & Industrial Engineering, 2011, 61, 1336-1341.

548 41. Zhang X.; Jin F.; Liu P.D. A grey relational projection method for multi-attribute decision making based on  
549 intuitionistic trapezoidal fuzzy number. Applied Mathematical Modelling, 2013, 37, 3467-3477.

550 42. Guo J. Hybrid Multiattribute Group Decision Making Based on Intuitionistic Fuzzy Information and GRA  
551 Method. ISRN Applied Mathematics, 2013, Article ID 146026.

552 43. Kong Z.; Wang L.F.; Wu Z.X. Application of fuzzy soft set in decision making problems based on grey  
553 theory. Journal of Computational and Applied Mathematics, 2011, 236, 1521-1530.

554 44. Kuo M.S.; Liang G.S. Combining VIKOR with GRA techniques to evaluate service quality of airports  
555 under fuzzy environment. Expert Systems with Applications, 2011, 38, 1304-1312.

556 45. Tang H.X. A novel fuzzy soft set approach in decision making based on grey relational analysis and  
557 Dempster-Shafer theory of evidence. Applied Soft Computing, 2015, 31, 317-325.

558 46. Li Z.W.; Wen G.Q.; Xie N.X. An approach to fuzzy soft sets in decision making based on grey relational  
559 analysis and Dempster-Shafer theory of evidence: An application in medical diagnosis. Artificial  
560 Intelligence in Medicine, 2015, 64, 161-171.

561 47. Li X.Y.; Wei G.W. GRA method for multiple criteria group decision making with incomplete weight  
562 information under hesitant fuzzy setting. Journal of Intelligent & Fuzzy Systems, 2014, 27, 1095-1105.

563 48. Sun G.D., Guan X., Yi X., Zhou Z., Grey relational analysis between hesitant fuzzy sets with applications to  
564 pattern recognition. Expert Systems with Applications, 2018, 92, 521-532.

565 49. Deng, J. L. Introduction to grey system theory. The Journal of Grey System, 1989, 1(1), 1-24.

566 50. Hwang, C. L.; Yoon, K. P. Multiple attribute decision making: Methods and applications. New York:  
567 Springer-Verlag, 1981.

568 51. Kahraman C.; Kaya I. A fuzzy multicriteria methodology for selection among energy alternatives, Expert  
569 Systems with Applications, 2010, 37, 6270-6281.

570 52. Zhang X.L.; Xu Z.S. Hesitant Fuzzy Methods for Multiple Criteria Decision Analysis, Springer, Singapore,  
571 2017, 1-34.

572 53. Ngan S.C. A unified representation of intuitionistic fuzzy sets, hesitant fuzzy sets and generalized hesitant  
573 fuzzy sets based on their u-maps. Expert Systems With Applications, 2017, 69, 257-276.