Pre prints.org

Article Not peer-reviewed version

Towards Intelligent Cloud Scheduling:
DynaSched-Net with Reinforcement
Learning and Predictive Modeling

Yiming Yu "
Posted Date: 3 June 2025
doi: 10.20944/preprints202506.0129.v1

Keywords: oud resource scheduling; reinforcement learning; LSTM-Transformer; load
balancing; DynaSched-Net

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4493790

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0129.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Towards Intelligent Cloud Scheduling;:
DynaSched-Net with Reinforcement Learning and
Predictive Modeling

Yiming Yu

New York University, New York, USA; yy2210@nyu.edu

Abstract: Dynamic cloud resource scheduling needs real-time adaptation to changing workloads to
keep system performance high and stable. Traditional methods like FCFS and RR lack the ability to
adjust resources dynamically in complex conditions. This paper presents DynaSched-Net, a dual-
network framework that uses a Deep Q-Network (DQN)-based reinforcement learning scheduler and
a hybrid LSTM-Transformer predictor. The reinforcement learning module assigns resources based
on system states to improve load balance. The predictor learns short-term and long-term workload
patterns to guide decisions. A joint loss function helps optimize both parts of the system. Stabilization
methods like experience replay and target network updates help keep training stable. Experiments
show that DynaSched-Net performs better than traditional methods and provides an efficient way to
manage cloud resources.

Keywords: cloud resource scheduling; reinforcement learning; LSTM-Transformer; load balancing;
DynaSched-Net

1. Introduction

Cloud computing has increased the need for smart resource scheduling to keep systems working
well during high and changing loads. Basic algorithms like First-Come-First-Serve (FCFS) and Round
Robin (RR) do not adapt and often fail when workloads change, which leads to wasted resources.
Reinforcement learning (RL) helps solve this by letting systems learn to adjust resources based on
real-time feedback. Wang et al.[1] used deep reinforcement learning to improve resource use in
cloud-native wireless networks and showed good results.

RL can adapt to changes, but it does not predict future workloads. This makes it less useful
when workloads change quickly. Rossi et al.[2] built a forecasting model that uses transfer learning to
predict workload changes better. Arbat et al.[3] also worked on workload forecasting and designed a
Wasserstein Adversarial Transformer to capture complex patterns and improve prediction.

This paper introduces DynaSched-Net, a dual-network framework that uses a DQN-based RL
scheduler and a hybrid LSTM-Transformer predictor. The RL part assigns resources based on the
system’s current state. The predictor finds short-term and long-term patterns and gives advice to
the scheduler. A joint loss function optimizes both parts at the same time. Stabilization methods
like experience replay and target network updates keep training steady. This system improves fast
responses and planning and gives a practical way to schedule resources in cloud environments.

2. Related Work

Hybrid machine learning models have shown good results in solving hard optimization tasks
in cloud systems. Jin et al.[4] proposed a machine learning framework that improves supply chain
risk prediction by combining different learning methods. Wang et al.[5] designed a hybrid FM-GCN-
Attention model for personalized recommendations. Their model mixes factorization machines, graph
convolutional networks, and attention methods to better capture features.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0129.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0129.v1

20f7

Chen et al.[6] developed a coarse-to-fine multi-view 3D reconstruction system using SLAM
optimization and Transformer-based matching. This work showed that Transformer networks can
handle large tasks with complex inputs. Zhou et al.[7] reviewed deep reinforcement learning (DRL)
methods for cloud resource scheduling and noted that DRL can adapt well in real time but needs stable
training and can be slow. Gu et al.[8] also reviewed DRL methods and pointed out challenges when
working with different kinds of workloads.

Zhao et al.[9] suggested using a multi-agent graph reinforcement learning method for large-scale
cluster scheduling. Their method allows systems to make decisions together and work better on big
tasks, but managing many agents is still a problem.

3. Methodology

We present DynaSched-Net, a dynamic cloud resource allocation framework that integrates
reinforcement learning (RL) with hybrid LSTM-Transformer-based load forecasting. The RL scheduler
adapts task assignment to real-time system states, while the predictive module anticipates future
workloads. This joint approach enables efficient resource utilization, reduced response time, and
enhanced system balance under high concurrency. Experiments demonstrate that DynaSched-Net
surpasses traditional methods in load distribution, task latency, and processing efficiency. The overall
architecture is illustrated in Figure 1.

|~

features

State Reward Action

> |

= | = =

s | @ o §

> Q 3 (<}

2 2

s | Z 3| Z

3 =z 3 =z
—_—) %) 3 o

@ =S 0] =

= = = S

Figure 1. The pipeline of the DynaSched-Net Module.

3.1. Reinforcement Learning Component

We model the dynamic scheduling task as a Markov Decision Process (MDP), where the RL agent
observes system states, takes actions, and receives rewards. The agent learns a policy to maximize
long-term rewards, promoting efficient resource allocation and balanced load distribution.

3.1.1. State and Action Definition

The state space S captures system features at time ¢, including load, available resources, and task
queue length:
St = [load}, available_resources;, task_queue,, . .. | (1)

The action space A defines resource allocation decisions as continuous values:
Ar = [7tusk1f Ttaskyr« s rtusk,,] 2)

where 74, denotes the resources assigned to task i at time ¢.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0129.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0129.v1

30f7

3.1.2. Reward Function

The reward function r(s;, a;) guides the agent by penalizing inefficient resource usage. Actions
leading to overload or underutilization incur negative rewards:

r(st,at) = —(a - over_load(s¢, at) + B - under_load(s¢, a¢)) 3)

Here, & and § adjust the penalty trade-off between over- and under-utilization levels.

3.1.3. Deep Q-Network (DQN) Architecture

We employ a Deep Q-Network (DQN) to approximate the Q-function, which evaluates state-action
pairs using the Bellman equation:

Q(st,at) = r(st,ar) + 7 max Q(S¢41,ap+1) (4)

where 7 is the discount factor for future rewards.
The DON comprises fully connected layers mapping input state s; to Q-values:

Q-values = NeuralNetwork(s;) ()

Training minimizes the loss between predicted and target Q-values:

£(0) = E|(ye — Qlst,a1,6))’] ©)

with target value:
vt = r(st,at) +')’1231)(Q(5t+11at+1197) 7)

where 6~ denotes parameters of the fixed target network.

3.1.4. Training Process for the RL Agent

The RL agent is trained via experience replay to stabilize learning. At each step, the agent stores
transitions (s, a, r(s¢, a¢), S¢+1) in a replay buffer and samples mini-batches to update the Q-network
parameters 0. The training involves:

Randomly initialize Q-network weights.
Observe state s, select and execute action a;.
Record next state s; 11 and reward r(s¢, a¢).
Store the transition in the replay buffer.
Sample mini-batches and compute the loss.
Apply gradient descent to update 6.

N oG LD

Periodically sync the target network for stability.

3.2. Prediction Network for Load Forecasting

To assist the RL agent, we design a hybrid prediction network that forecasts future system load
and task arrivals. It combines LSTM for short-term patterns and Transformer for capturing long-range
dependencies.

3.2.1. LSTM Encoder

The LSTM encoder models the temporal patterns in past system loads and task arrivals. At each
time step ¢, the output is:
I’lt = LSTM(xt, htfl) (8)

where x; is the input and h;_; is the previous hidden state.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0129.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0129.v1

40f7

3.2.2. Transformer Encoder

To model long-range dependencies in time-series data, we employ a Transformer encoder with
self-attention. This mechanism assigns different weights to time steps, aiding in forecasting complex
load patterns:

Attention(Q, K, V) = softmax <QKT) Vv 9)
e

where Q, K, and V denote the query, key, and value matrices, and d is the key dimension.

3.2.3. Output of the Prediction Network

The output of the combined LSTM-Transformer network is the predicted system load for the next
T time steps, denoted as #J;. The prediction model is trained by minimizing the Mean Squared Error

(MSE) loss:
1Y .
Epredict = N 2(% - yl) (10)
i=1

where y; is the true load at time i, and 7; is the predicted load.

3.3. Loss Function

The DynaSched-Net loss integrates objectives from both the RL agent and the prediction network.
It jointly optimizes the scheduling policy and forecasting accuracy, with total loss defined as a weighted
sum of RL loss and prediction loss, controlled by hyperparameter A. Figure 2 shows the evolution and
dynamic weighting of both losses during training.

Figure 2. Loss Function Evolution and Loss Weight Changes in DynaSched-Net. The left plot shows the evolution
of RL loss, prediction loss, and total loss, while the right plot illustrates the weight changes of RL and prediction
losses over epochs.

3.3.1. Reinforcement Learning Loss

To optimize long-term rewards, the RL loss is defined using Q-learning as the mean squared error
between the predicted and target Q-values:

LrL(0) =E

2
<r(st,at) + 7 max Q(si11,4,07) — Q(st, ut,9)>] (11)

where Q(s, 4, 0) is the estimated Q-value, r the reward, -y the discount factor, and 6~ the target network
parameters.

3.3.2. Prediction Loss

The prediction component aims to minimize the forecasting error of the system load. The
prediction network’s loss is computed as the Mean Squared Error (MSE) between the predicted load f;
and the true load y;. The prediction loss is given by:

1 N
cpredict = N Z(yl - gi)z (12)
i=1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0129.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0129.v1

50f7

where: - y; is the true load for time step i. - §J; is the predicted load at time step i. - N is the total number
of time steps in the prediction horizon.

3.3.3. Total Loss Function

The total loss function combines the losses from both the RL and prediction components to
optimize the overall performance of the framework. The final loss is expressed as a weighted sum of
the RL loss and the prediction loss:

Liotal = ﬁRL(e) +A- 'C'predict (13)

where: - A is a hyperparameter that controls the balance between the RL and prediction components. -
The first term, Ly (6), encourages the RL agent to improve its resource scheduling decisions. - The
second term, Lpredict, encourages the prediction model to accurately forecast the system load.

By optimizing this combined loss function, the system can both efficiently allocate resources and
predict future load accurately, ensuring optimal performance across cloud resource scheduling tasks.

3.4. Data Preprocessing

The raw input comprises work_order.csv and process_time_matrix.csv. Preprocessing is
crucial for converting this data into a format compatible with RL and prediction model training. Key
steps are summarized below.

3.4.1. Normalization of Task Data

Task arrival times and durations are normalized using z-score transformation to ensure consistent
feature scales and stable training:

g =1"F (14)

where x; is the raw value, p and ¢ are the feature’s mean and standard deviation, and £; is the
normalized output. This ensures balanced contribution from each feature during training.

3.4.2. Time-Series Transformation

To enable load forecasting, task arrival times and system load are converted into fixed-length time
windows for LSTM-Transformer training:

Xt = [xt,l,xt_z, .. .,xt,k] (15)

where X; is the input at time ¢, and x;_; denotes past feature values. The model predicts the next T
steps, capturing temporal dependencies. Figure 3 visualizes this process.

Normalized Task Arrival Times and Task Durations

—— Normalized Task Arrival Times
—— Normalized Task Durations

Normalized Value
o

Time Step
Time-Series Transformation (Task Arrival Times)

Normalized Value

Time Step

Figure 3. Data preprocessing in DynaSched-Net: (a) Normalized task data; (b) Time-series transformation.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0129.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0129.v1

60f7

3.4.3. Feature Engineering for Resource Utilization

To enhance scheduling decisions, we compute expert-wise resource features, including current
load and remaining capacity. Expert i’s load is:

N
load; =) _ [(task; € expert;) - task_duration; (16)
j=1
and remaining resources:
remaining_resources; = total_capacity; — load; (17)

These features inform the RL agent about real-time system utilization.

4. Evaluation Metrics

We assess the performance of DynaSched-Net using four key metrics:

4.1. Evaluation Metrics Description

1. Standard Deviation of Expert Load: Measures load balance across experts. Lower values
indicate better distribution:

1 N
Tload = 4| 77 Y (Li —pup)? (18)
i=1

2. Average Response Timeout: Captures the average delay beyond maximum response time:

1N
nwzﬁgmmmn—&) (19)
1=

3. Average Processing Efficiency: Evaluates resource use per task:
1 Y p
Eavg = — Y — 2
e AIZ; T; (20)

4. Resource Utilization Rate: Indicates overall resource usage percentage:

YN, P

Urate = Total Available Resources

100 (1)

5. Experiment Results

The results of the ablation study are summarized in Table 1, which shows that DynaSched-Net
outperforms all baseline models in terms of load balancing, response time, and resource utilization.
The ablation study confirms that both the RL agent and the prediction network contribute significantly
to the overall performance.

Table 1. Performance Comparison and Ablation Study Results

Model Std. Dev. of Load | Avg. Response Timeout | Avg. Efficiency | Resource Utilization
FCFS 15.2 35.4 0.78 70%
RR 12.5 28.3 0.82 75%
Min-Min 10.1 22.1 0.86 80%
DynaSched-Net 8.2 19.7 0.92 90%
RL only 9.3 22.5 0.85 85%
Prediction only 11.8 27.3 0.80 78%

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0129.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2025 d0i:10.20944/preprints202506.0129.v1

70f7

6. Conclusion

In this work, we introduced DynaSched-Net, a hybrid model combining reinforcement learn-
ing and prediction networks for cloud resource allocation and load balancing. Our experiments
demonstrate that DynaSched-Net outperforms traditional scheduling algorithms and achieves opti-
mal performance in all key metrics. The ablation study highlights the importance of both the RL agent
and the prediction network in ensuring system efficiency and stability.

References

1. Wang, L.; Wu, J.; Gao, Y.; Zhang,]. Deep reinforcement learning based resource allocation for cloud native
wireless network. arXiv preprint arXiv:2305.06249 2023.

2. Rossi, A.; Visentin, A.; Carraro, D.; Prestwich, S.; Brown, K.N. Forecasting workload in cloud computing;:
towards uncertainty-aware predictions and transfer learning. Cluster Computing 2025, 28, 258.

3. Arbat, S; Jayakumar, VK.; Lee, J.; Wang, W.; Kim, I.LK. Wasserstein adversarial transformer for cloud
workload prediction. In Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence,
2022, Vol. 36, pp. 12433-12439.

4. Jin, T. Integrated machine learning for enhanced supply chain risk prediction. In Proceedings of the
Proceedings of the 2024 8th International Conference on Electronic Information Technology and Computer
Engineering, 2024, pp. 1254-1259.

5. Wang, E. Hybrid FM-GCN-Attention Model for Personalized Recommendation. In Proceedings of the
2025 International Conference on Electrical Automation and Artificial Intelligence (ICEAAI). IEEE, 2025, pp.
1307-1310.

6. Chen, X. Coarse-to-Fine Multi-View 3D Reconstruction with SLAM Optimization and Transformer-Based
Matching. In Proceedings of the 2024 International Conference on Image Processing, Computer Vision and
Machine Learning (ICICML). IEEE, 2024, pp. 855-859.

7. Zhou, G.; Tian, W,; Buyya, R.; Xue, R.; Song, L. Deep reinforcement learning-based methods for resource
scheduling in cloud computing: A review and future directions. Artificial Intelligence Review 2024, 57, 124.

8. Gu, Y, Liu, Z; Dai, S; Liu, C.; Wang, Y.; Wang, S.; Theodoropoulos, G.; Cheng, L. Deep Reinforcement
Learning for Job Scheduling and Resource Management in Cloud Computing: An Algorithm-Level Review.
arXiv preprint arXiv:2501.01007 2025.

9. Zhao, X.; Wu, C. Large-scale machine learning cluster scheduling via multi-agent graph reinforcement
learning. IEEE Transactions on Network and Service Management 2021, 19, 4962-4974.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0129.v1
http://creativecommons.org/licenses/by/4.0/

