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RNA-sequencing indicates high hemocyanin expression as a
key strategy for cold adaptation in the Antarctic amphipod

Eusirus cf. giganteus clade g3
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Abstract: We here report the de novo transcriptome assembly and functional annotation of Eusirus cf. giganteus clade g3, providing
the first database of expressed sequences from this giant Antarctic amphipod. RN A-sequencing, carried out on the whole-body of a
single juvenile individual likely undergoing molting, revealed the dominant expression of hemocyanins. The mRNAs encoding these
oxygen-binding proteins cumulatively accounted for about 40% of the total transcriptional effort, highlighting the key biological
importance of high hemocyanin production in this Antarctic amphipod species. We speculate that this observation may mirror a
strategy previously described in Antarctic cephalopods, which compensate the decreased ability to release oxygen to peripheral tissues
at sub-zero temperatures by massively increasing total blood hemocyanin content compared with temperate species. These
preliminary results will undoubtedly require confirmation through proteomic and biochemical analyses aimed at characterizing the
oxygen-binding properties of E. cf. giganteus clade g3 hemocyanins, and at investigating whether other Antarctic arthropod species
exploit similar adaptations to cope with the challenges posed by the extreme conditions of the polar environment.

Introduction

Crustaceans are the most species-rich group of metazoans
in Antarctic benthic communities (Arntz et al., 1994) and
amphipods largely contribute to this biodiversity, with over
800 different species described to date (De Broyer and
Jazdzewski, 1996, 1993). Moreover, several Antarctic
crustacean species are believed to comprise complexes of
cryptic or species that still remain to be formally described
(Branddo et al., 2010; Held and Wégele, 2005; Loerz et al.,
2009; Raupach and Wigele, 2006). Thanks to the high
oxygen availability of Antarctic waters, amphipods occupy
all available micro habitats of the Southern Hemisphere and
can therefore be considered among the most successful
colonizers of these marine environments (Levin and Gage,
1998). Even though Antarctic amphipods most certainly
occupy a key position in polar trophic chains (Dauby et al.,
2001, 2002), studies focused on these widespread
metazoans are still relatively scarce, and molecular or
genetic data are nearly entirely missing for several relevant
genera commonly found in polar waters.

Amphipods belonging to the genus Eusirus (Krayer, 1845),
and part of the suborder Amphilochidea, superfamily
Eusiroidea, have been long known to have a broad circum-
Antarctic distribution. According to the Register of
Antarctic Marine Species, eight different species belonging
to the Eusirus genus have been described to date in the
Antarctic continent: Eusirus antarcticus Thomson, 1880,
Eusirus bouvieri Chevreux, 1911, Eusirus giganteus
Andres, Lorz & Brandt, 2002, Eusirus laevis Walker, 1903,
Eusirus laticarpus Chevreux, 1906, Eusirus microps
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Walker, 1906, Eusirus perdentatus Chevreux, 1912 and
Eusirus propeperdentatus Andres, 1979. E. perdentatus,

the most widespread and the largest among these species,
shows typical features of Antarctic gigantism, with adult
individuals reaching and often exceeding the size of 70 mm
(Chapelle, 2002). However, the marginal morphological
differences between E. perdentatus and the congeneric E.
giganteus, first described in 1972, have been the source of
taxonomical uncertainties over the years (Andres et al.,
2002), until 2012, when molecular approaches were applied
for the first time to study Antarctic giant amphipod
populations. The results provided by these studies have
challenged previously accepted taxonomy, strongly hinting
the presence of multiple cryptic species with limited gene
flow among each other. In particular, the authors found that
E. perdentatus harbored two previously undetected cryptic
species and E. giganteus at least three, defined as clade g1,
g2 and g3, some of which occur in sympatry (Baird et al.,
2011).

Therefore, although specimens collected in several different
locations across all Antarctica have been previously
classified as belonging to E. giganteus (Gutt, 2008; OBIS,
2020; Verheye et al., 2016), it is likely that these represent
multiple cryptic species. Hence, all data collected for this
species should be referred to E. cf. giganteus.

Despite the prevalence of Eusiridae in Antarctic high
latitude waters, molecular data are nearly not existing for
this taxon, with a total of 220 nucleotide sequences
deposited in GenBank (as of January 31%, 2021). At the
same time, studies on Eusirus spp. remain very limited and,
to the best of our knowledge, the molecular and genetic
bases of its adaptation to cold have not been explored in
detail. This aspect may be of particular interest due to the
possible threats giant amphipod species could face due to
climate change along with the progressive decline of ocean
oxygen availability expected to occur in the next few
decades (Spicer and Morley, 2019).

With this work, we tried to fill this knowledge gap,
providing a reference annotated transcriptome assembly for
E. cf. giganteus clade g3 (the first resource of this kind in
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the infraorder Amphilochida), which may serve as a
reference for future studies and could provide a useful
resource to investigate molecular strategies of cold
adaptation in Antarctic amphipods.

Results

Species identification

The aforementioned presence of multiple Eusirus spp.
cryptic species in Antarctica, whose recognition is not
possible by morphological examination, implies the need to
use genetic markers for a proper taxonomical identification.
The general external morphology of an adult Eusirus cf.
giganteus individual, sampled in the same geographical
location where the juvenile specimen used for RNA-
sequencing was collected (see the Materials and Methods
section), is exemplified in Figure 1. Although molecular
data available for this genus are very scarce, the screening
of the transcriptomes for previously studied molecular
markers allowed us to unequivocally place the specimen
target of this study within the clade g3 of Eusirus cf.
giganteus identified by Baird and colleagues (Baird et al.,
2011). Indeed, the sequences of cytochrome oxidase 1
(JN001762.1), cytochrome B (JN001729.1) and of the
Internal Transcribed Spacer 2 (JN001807.1) perfectly
matched, without gaps and mismatches, those reported in
this study. Clade g3 has been previously linked with a
primary distribution in the Ross Sea along with another E.
cf. giganteus clade (i.e. clade g2) and two E. cf. perdentatus
clades (i.e., pl and p3), which is consistent with the
placement of the Mario Zucchelli Antarctic Base.

FIGURE 1. External morphology of an adult Eusirus cf.
giganteus individual, collected close to the Italian Mario Zucchelli
Antarctic Base (Ross Sea 74° 38’ 402" S, 164° 39’ 281" E), in
November 2017.

Transcriptome assembly and annotation

The de novo transcriptome assembly, generated starting
from a total of 101,310,170 trimmed paired-end Illumina
reads, comprised 57,607 contigs, 4,369 of which exceeded
1Kb in length (Table 1). 11,217 contigs (19.47%) were
annotated based on significant BLASTx matches in
UniProtKB, leading to the association of 10,247, 10,239
and 10,343 contigs with Gene Ontology Biological Process,
Molecular Function and Cell Component terms,
respectively. Moreover, 10,420 contigs (18.09% of the
total) were associated to one or more Pfam conserved
domains. The observed mapping rate was 78.26%.

Table 1

Assembly and read mapping statistics for the de novo
transcriptome assembly of Eusirus cf. giganteus clade g3

d0i:10.20944/preprints202102.0226.v1

parameter value
Number of contigs 57,607
GC content 0.41
Contig N50 519
Total annotated contigs 13,874
BLASTx annotated contigs 11,217
Contigs with GO Biological 10,247
Process annotations
Contigs with GO Molecular 10,239
Function annotations
Contigs with GO Cellular 10,343
Component annotations
Contigs with Pfam annotations 10,420

High expression of hemocyanins

The E. cf. giganteus clade g3 transcriptome displayed an
unusual skewed distribution of read mapping, with nearly 30
million reads being captured by a relatively high number of
fragmented contigs sharing the same functional annotation
as hemocyanins. Cumulatively, these contigs accounted for
411,000 Transcripts Per Million (TPM), indicating that an
extraordinarily high transcriptional effort (i.e. over 40% of
the total) was employed in the synthesis of mRNAs
encoding these oxygen-transporting proteins (Figure 2).

Several of the other contigs achieving TPM values >
10,000, and expressed at levels higher than housekeeping
genes such as ribosomal structural proteins and components
of the mRNA transcription machinery, shared -close
homology with trypsins, chymotrypsins, chitinases or
brachyurins (Figure 2). All these proteins play a
fundamental role in the molting process in crustaceans (Gao
et al.,, 2017; Van Wormhoudt et al., 1995), and this is
consistent with the developmental stage of the sample
individual. Indeed, juvenile amphipods would be expected
to undergo frequent molting with relatively short intermolt
periods (Chang and Mykles, 2011). Overall, these molting-
related enzymes achieved a cumulative expression level of
~110,000 TPMs. Mitochondrial RNAs accounted for an
additional ~50,000 TPMs, implying that less than 45% of
the global transcriptional effort in E. cf. giganteus clade g3
was put in the synthesis of other nuclear mRNAs.

In line with such an unbalanced transcript
representation, the de mnovo assembly process led to a
collection of expressed transcripts characterized by a low
level of completeness. This was clearly evidenced by the
presence of just 29.6% complete arthropod BUSCOs,
accompanied by a high number of fragmented (22.0%) and
missing (48.4%) orthologs. The duplication rate, on the
other hand, was rather low, standing at just 2.5%
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FIGURE 2. Overview of the transcriptional landscape of E. cf.
giganteus clade g3, with details about the relative contribution to
global transcription of contigs encoding heamocyanins, trypsins,
chymotripsins and chitinases. The relative contribution of non-
nuclear (i.e. mitochondrial) genes is shown in a separate category.

Characterization of a highly expressed full-length
hemocyanin sequence

Although 280 contigs could be linked with heamocyanins
based on BLAST annotation, the vast majority of them
were small fragments, measuring just a few hundred
nucleotides, whereas the complete length of the coding
sequence of arthropod hemocyanins was expected to be ~2
Kb long, with a complete Open Reading Frame of ~700
codons.

The de novo sequencing strategy we applied, which
combined three different transcriptome assembly
algorithms (Trinity, SPAdes and TransABySS) allowed us
to explore in depth the outputs of each single process, with
the aim to recover the most likely full-length mRNA
precursors. Significant fragmentation of hemocyanin
mRNAs was evidenced in all assembly methods, which
could be indicative of the presence of several nearly-
identical paralogous genes in this species. However, we
recovered a single contig which included a complete Open
Reading Frame of 673 codons. This sequence, capturing
~27.5 million reads, reached an expression level equal to
~118,550 TPMs, thereby accounting for over 10% of the
global transcriptional effort of E. cf. giganteus clade g3.

This hemocyanin sequence found the best BLASTx
match with the Hc A and B chains from the decapods
Panulirus interruptus and Panulirus vulgaris, among those
deposited in UniProtKB (64% pairwise sequence identity)
(Bak and Beintema, 1987; Jekel et al., 1996, 1988), and with
the Hc subunit 1 from Gammarus roeseli among those
deposited in nr (82% pairwise sequence identity) (Hagner-
Holler et al., 2005).

The E. cf. giganteus clade g3 Hc displayed the three
expected canonical domains found in arthropod
hemocyanins, i.e. the all N-terminal all alpha domain
(PF03722), the central copper-containing domain
(PF00372) and the C-terminal Ig-like domain (PF03723).
Moreover, the copper-containing domain presented all the
six highly conserved histidine residues involved in copper
binding, confirming its identification as a bona fide Hc
(Figure 3).
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FIGURE 3. Schematic overview of the domain organization of
Eusirus cf. giganteus clade g3 hemocyanin. A detail of the six
histidine residues expected to be involved in copper binding is
provided (His215, His219, His258, His379, His383, His417),
along with the consensus sequence of the neighboring residues in
crustacean hemocyanin sequences deposited in UniprotKB.

Discussion

Hemocyanins, found only in Arthropoda and Mollusca,
are only second in abundance to hemoglobins as molecules
capable of temporarily binding oxygen in organs devoted to
gaseous exchange, transporting it to peripheral tissues, and
releasing it to these locations due to lower partial pressure
(Redmond, 1955). In polar regions, and in particular in the
Southern Ocean, where seawater temperature is constantly
below zero, the increased solubility of oxygen potentially
offers the opportunity for astounding adaptations that
involve the circulatory system and oxygen-carrying
molecules, such as in the case of icefish (Beers et al., 2010).
However, this increased oxygen solubility may
paradoxically result in a lower bioavailability due to the
difficulties linked with its release in tissues.

The few studies carried out so far on hemocyanins in
Antarctica have revealed that some invertebrates developed
interesting molecular strategies to overcome this issue. For
example, the Antarctic octopus Pareledone charcoti
compensates a lower Hc oxygen-binding affinity with a
higher hemocyanin content in hemolymph compared with
species living in temperate waters (Oellermann et al., 2015).
Although no proteomic data are available for E. cg.
giganteus clade g3 to evaluate the actual relative abundance
of hemocyanins in the hemolymph, we here provide
evidence suggesting that a similar strategy might have been
employed by this Antarctic amphipod.

We show that hemocyanin-encoding mRNAs
cumulatively accounted for nearly 40% of the total
transcriptional effort of the juvenile individual subjected to
RNA-sequencing, suggesting that Hcs are by far the most
abundant plasma proteins in this species. Transcriptome data
strongly suggest that multiple highly similar hemocyanin
mRNAs are simultaneously expressed, which would point
towards the existence of several co-regulated paralogous Hc
gene copies. This would be in line with the organization of
Hc genes found in other amphipods, such as Hyalella azteca,
which harbors 9 He genes, seven of which display very high
pairwise sequence homology (Poynton et al., 2018).
Likewise, high sequence similarity between different
crustacean hemocyanin chains has also been previously
shown in P. interruptus, where Hc A and B chains share
96% primary sequence identity (Jekel et al., 1988).

In absence of genomic data, this remains a working
hypothesis, which would however provide a reasonable
explanation for the extremely high levels of expression of E.
cf. giganteus clade g3 Hcs and for the observed severe
fragmentation of Hc-coding contigs. Indeed, the low
pairwise sequence divergence among paralogous gene
copies might have hampered the possibility to obtain a full-
length assembly for the other isoforms.

The single complete Hc mRNA sequence we retrieved,
which presumably represents the most highly expressed
isoform, encodes a full-length protein with all the expected
structural features of functional hemocyanins, i.e. the
presence of the three characterizing all alpha, copper-
containing, and Ig-like domains, as well as of the six
conserved residues involved in copper binding (Figure 3).
Bayesian phylogeny placed this sequence with high
confidence within known members of the crustacean
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hemocyanin superfamily, and close to a cluster of seven
highly similar paralogous genes from the amphipod
Hyalella azteca. At the same time, the E. cf. giganteus clade
g3 sequence only showed distant homology with non-
respiratory crustacean cryptocyanins and
pseudohemocyanins, which lack two of the histidine
residues in the aforementioned array (Burmester, 1999;
Terwilliger et al., 1999) (Figure 4).

Altogether, these observations suggest that E. cf.
giganteus clade g3, and possibly other Antarctic
amphipods, may have evolved a strategy similar to that of
cephalopods, maximizing the expression of oxygen-
carrying molecules to overcome the decreased ability to
unload oxygen in peripheral tissues at sub-zero
temperatures. It remains to be determined whether this
increased expression is linked with a decreased oxygen-
binding affinity, as in cephalopods. Curiously, our findings
are in stark contrast with those reported for other Antarctic
crustaceans, such as Glyptonotus antarcticus (Whiteley et
al., 1997), for which very low hemocyanin oxygen-binding
capacities and low circulating protein levels have been
reported.  Further  transcriptomic, proteomic and
biochemical studies targeting other Antarctic crustacean
species may shed some light on this issue.

The preliminary indications deriving from this study
have also important implications concerning the proposed
relationship between oxygen availability and gigantism in
Antarctic waters, which has been subject of intense debate
over the past few years (Spicer and Morley, 2019). Indeed,
three alternative hypotheses have been proposed to explain
the relationship between body size and oxygen
bioavailability: (i) the “oxygen limitation hypothesis”,
according to which gigantism is allowed by the
combination between a higher availability of oxygen in
freezing waters and the lowest metabolic rates observed in
cold-adapted organisms (Chapelle and Peck, 1999); (ii) the
“respiratory advantage hypothesis”, which is based on the

1

Hyalella azteca He8
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idea that, in spite of a larger solubility, o bioavailability in
Antarctic waters is lower, due to a decreased diffusion
coefficient, leading organisms with scarce respiratory
control to develop gigantism (Verberk and Atkinson, 2013);
(ii1) the “symmorphosis hypothesis”, which postulates that
Antarctic organisms have developed evolutionary
adaptations to optimize oxygen supply, regardless of their
body size (Woods et al., 2009).

In light of the imminent climate changes, whose effects
are already visible in some areas of the Antarctica, these
alternative interpretations have profound effects on the
predicted fate of giant amphipods. Indeed, these animals
might be either among the first or among the latest
organisms to face serious threats, depending on whether the
oxygen limitation or the respiratory advantage hypotheses
are correct (Spicer and Morley, 2019).

The exceptionally high expression of hemocyanins in
E. cf. giganteus clade g3 seems to be in contrast with the
hypothesis proposed by Chapelle and Peck. In this case, it
clearly mirrors the strategy used by cephalopods to
overcome the limited ability to unload oxygen in peripheral
tissues at low temperatures, which would be consistent with
the premises of the “respiratory advantage hypothesis”.
However, it is noteworthy that, according to the latter
hypothesis, gigantism would only be expected to occur in
species lacking efficient respiratory pigments or with scarce
respiratory control.

Clearly, the collection of additional physiological,
biochemical and molecular data from Eusirus spp. and other
giant Antarctic crustaceans that do not rely on high
hemocyanin expression as a strategy for cold adaptation
(such as G. antarcticus) would be needed to clarify the
intricate  relationships that exist between oxygen
bioavailability, oxygen-carrying molecules and body size in
these animals.
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Materials and Methods

Sample collection and RNA-sequencing

A single E. giganteus specimen was collected as a
bycatch during the sampling campaign of the intended
target species, the amphipod Pseudorchomene plebs
(Hurley, 1965). Sampling occurred close to the Italian
Mario Zucchelli Antarctic Base (Ross Sea 74° 38’ 402" S,
164° 39' 281" E), in November 2017, within the frame of
the activities of the Italian XXXIII PNRA expedition. The
specimen was a juvenile, approximately 15.8 mm long
(from the tip of the head to the base of the telson along the
dorsal side), of undetermined sex.

The animal was transferred to the facilities of the
base, in a tank with oxygenated running seawater at the
same temperature recorded in the natural external
environment (-1.9°C). After one week of acclimatization,
to the recovery from the stress of sampling, the specimen
was sacrificed by immersion in RNAlater (Thermo Fisher
Scientific, Waltham, USA), and immediately stored at -
80°C.

Following its transportation to the laboratories of the
University of Trieste, the specimen was moved into Trizol
(Thermo Fisher Scientific, Waltham, USA) and
homogenized. RNA extraction was carried out following
the manufacturer’s instructions, yielding material of
sufficient quality and quantity to prepare a mRNA-seq
library with the Lexogen SENSE mRNA-seq library prep
kit v2 (Lexogen, Wien, Austria), as evaluated by the use
of an Agilent 2100 Bioanalyzer instrument (Agilent
Technologies, Santa Clara, USA).

RNA-sequencing was performed at the Genomics
and Epigenomics Platform of the Area Science Park
(Trieste, Italy), on an Illumina NovaSeq 6000 instrument,
with a 2 x 150 bp paired-end strategy.

Ethical statement

The sample collection complied with the regulations
provided by the Italian Ministry of Education, University
and Research concerning activities and environmental
protection in Antarctica and with the Protocol on
Environmental Protection to the 137 Antarctic Treaty,
Annex II, Art. 3. All the activities on animals performed
during the Italian Antarctic Expedition were under the
control of a PNRA Ethics Referent, which acts on behalf
of the Italian Ministry of Foreign Affairs. In particular, the
required data for the project PNRA16 00099 are as
follows. Name of the ethics committee or institutional
review board: Italian Ministry of Foreign Affairs. Name
of PNRA Ethics Referent: Dr. Carla Ubaldi, ENEA
Antarctica, Technical Unit (UTA).

Sequencing data processing, de novo transcriptome
assembly and annotation
Raw reads were subjected to base-calling and
sequencing quality trimming according to the output of
FastQCv. 0.11.9 (Andrews, 2010) with fastp v. 0.20.0 (Chen
et al., 2018). Trimmed reads were used as an input for a de
novo transcriptome assembly using the Oyster River
Protocol (ORP) v.2.3.1 (MacManes, 2018), a tool which
generates a unique, non-redundant assembly by joining the
outputs of Trinity (Grabherr et al., 2011), SPAdes
(Bankevich et al., 2012) and TransABySS (Robertson et al.,
2010). Poorly expressed contigs, which may either derive
from exogenous contamination (e.g. gut content) or from
transcripts with little biological relevance were excluded
from the assembly using the TPM FILT=1 parameter.

The completeness of the transcriptome was evaluated
with an analysis carried out with BUSCO v.4.1.4 (Simao
et al, 2015) against the OrthoDB v.10 database
(Kriventseva et al., 2019), checking the presence of a set of
highly conserved single-copy orthologs shared by all
arthropods.

The transcriptome was functionally annotated with
AnnotaM (https://gitlab.com/54mu/annotaM), associating
each contig to Gene Ontology terms (Ashburner et al.,
2000) and Pfam conserved protein domains (Punta et al.,
2012). Annotation was based on BLASTx matches against

the UniProtKB/Swiss-Prot database (e-value threshold = 1
x 107%), and HMMer v.3.1b2 (Finn et al., 2011) matches
against the Pfam-A 34.0 database with default settings.

Gene expression levels were calculated as Transcript
Per Million (TPM) (Wagner et al., 2012), based on read
mapping using the CLC Genomics Workbench v.20
(Qiagen, Hilden, Germany) RNA-seq mapping tool, with
stringent parameters (length fraction = 0.75, similarity
fraction = 0.98).

Hamocyanin sequence characterization and phylogenetic
analysis

We recovered a single He-encoding contig bearing a
complete Open Reading Frame thanks to the inspection of
the preliminary assemblies produced by ORP. This was
virtually translated into an amino acid sequence with the
Expasy translate tool (Gasteiger et al., 2003), and the
presence of the six histidine residues expected to be
involved in copper binding in arthropod Hcs was evaluated
based on the literature data (Burmester, 1999).

The sequences of C. magistrus He and cryptocyanins
(Terwilliger et al., 2006), as well as other phylogenetically
informative crustacean sequences from UniProtKB and nr
were also included in the creation of a multiple sequence
alignment (MSA) with MUSCLE (Edgar, 2004). Namely,
P. vulgaris Hc (P80888.2), P. interruptus Hc chain A
(P04254.2), B (P10787.1) and C (P80096.1), Homarus
americanus  pseudocyanin-1  (Q6KF82.1) and -2
(QO6KF81.1), Carcinus aestuarii Hc subunit 2 (P84293.1)
and Pontastacus leptodactylus Hc chain B (P83180.1) were
used, along with the Hc sequences obtained from the
genome of the amphipod H. azteca (Poynton et al., 2018).
The Hc sequenced from Limulus polyphemus (P04253.2),
Schistocerca americana (AAC16760.1) and Androctonus
australis (P80476.1) were used as outgroups for tree
rooting purposes.

The MSA was processed with Gblocks (Talavera and
Castresana, 2007) to remove phylogenetically non-
informative positions. The resulting file was analyzed with
Modeltest-ng (Darriba et al., 2020) to assess the best-fitting
model of molecular evolution, which was identified as the
Le and Gascuel model, with a gamma-distributed rate of
variation across sites and a fixed (empirical) prior on state
frequencies (LG+G+F) (Le and Gascuel, 2008). Model
choice was based on the corrected Akaike Information
Criterion (Cavanaugh, 1997).

Phylogenetic inference analysis was carried out with
MrBayes v. 3.2.7a (Huelsenbeck and Ronquist, 2001), with
two MCMC analyses run in parallel for 200,000
generations, until all estimated parameters of the model
reached an ESS >= 200, as estimated with Tracer v.1.7
(Rambaut et al., 2018).

Abbreviations

Hc: hemocyanin

LG: Le and Gascuel model

MSA: Multiple Sequence Alignment
ORP: Oyster River Protocol

TPM: Transcript Per Million
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